数值方法迭代法解线性方程组实验报告

合集下载

数值计算实验报告

数值计算实验报告

本科实验报告课程名称:计算机数值方法实验项目:方程求根、线性方程组的直接解法、线性方程组的迭代解法、代数插值实验地点:专业班级:学生姓名:指导教师:实验一方程求根}五、实验结果与分析二分法实验结果迭代法实验结果结果分析:本题目求根区间为[1,2],精度满足|x*-x n|<0.5×10-5,故二分法用公式|x*-x n|<(b-a)/ 2n,可求得二分次数并输出每次结果。

对迭代法首先要求建立迭代格式。

迭代格式经计算已输入程序之中,故直接给初值便可利用迭代法求出精度下的解。

六、讨论、心得每次的实验都是对已学过的理论知识的一种实战。

通过本次实验,我将二分法与迭代法的思路清晰化并且将其变成计算机设计语言编写出来,运用到了实际解决问题上感觉很好。

我自认为本次跟其他同学比较的优点在于我在二分法实现的时候首先利用换底公式将需要的二分次输输出,如此便很清晰明了的知道接下来每一步的意思。

迭代法给我的感觉便是高度的便捷简化,仅用几行代码便可以同样解决问题。

相比较二分法来说,我更喜欢迭代的思路。

实验二线性方程组的直接解法for(k=n-2;k>=0;k--){sum=0;for(j=k+1;j<n;j++)sum=sum+a[k][j]*x[j];x[k]=(b[k]-sum)/a[k][k];}for(i=0;i<n;i++)printf("x[%d]=%f ",i,x[i]); printf("\n"); //输出解向量x}五、实验结果与分析结果结果分析:如上图所示,输入线性方程组元数n=3,则会要求输入3*3的系数矩阵A与向量b构成的增广矩阵。

根据算法需要将系数矩阵A消元成上三角矩阵。

随后根据矩阵乘法公式变形做对应的回代。

六、讨论、心得本次实验在编写时候感觉还好,感觉将思路变成了程序设计语言,得以实现题目的要求。

但是在运行以及结果分析的时候,感觉到了本实验的一些不足之处:就是我的实验虽然可以实现不同的元数的线性方程组求解,但是缺少了分析初始条件——主元素不能为零。

数值分析计算方法实验报告

数值分析计算方法实验报告
break;
end;
end;
X=x;
disp('迭代结果:');
X
format short;
输出结果:
因为不收敛,故出现上述情况。
4.超松弛迭代法:
%SOR法求解实验1
%w=1.45
%方程组系数矩阵
clc;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
b=[10,5,-2,7]'
b=[10,5,-2,7]'
[m,n]=size(A);
if m~=n
error('矩阵A的行数和列数必须相同');
return;
end
if m~=size(b)
error('b的大小必须和A的行数或A的列数相同');
return;
end
if rank(A)~=rank([A,b])
error('A矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解');
3.实验环境及实验文件存档名
写出实验环境及实验文件存档名
4.实验结果及分析
输出计算结果,结果分析和小结等。
解:1.高斯列主元消去法:
%用高斯列主元消去法解实验1
%高斯列主元消元法求解线性方程组Ax=b
%A为输入矩阵系数,b为方程组右端系数
%方程组的解保存在x变量中
format long;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
return;
end
c=n+1;
A(:,c)=b;
for k=1:n-1

数值分析迭代法数值分析实验报告jacobi迭代和seidel迭代分析

数值分析迭代法数值分析实验报告jacobi迭代和seidel迭代分析

数值分析迭代法数值分析实验报告 jacobi迭代和seidel迭代分析导读:就爱阅读网友为您分享以下“数值分析实验报告jacobi迭代和seidel迭代分析”资讯,希望对您有所帮助,感谢您对的支持!数值分析实验报告一、实验目的1、了解熟悉jacobi迭代法和seidel迭代法的解法2、将原理与matlab语言结合起来,编程解决问题3、分析实验结果二、实验题目设线性方程组为2 2 31 201 31 x1 1 7 x801240 2 x 103 10 15 x 1 4考察用jacobi迭代法和seidel迭代法求解该线性方程组的收敛情况。

如果收敛,给出误差满足x(k) x(k 1)10 4的解。

三、实验原理将A 作如下分解A D L U这里a11D a22 0 a ,L 21 anna n100 a n2 0 0 a12 a1n 0 0 0 a2n ,0 00 0 JacobiU迭代矩阵为BJ D 1(L U)Seidel迭代矩阵为BS (D L) 1U它们的迭代格式都可化为x(k 1) Bx(k) g则迭代格式对任何初值都瘦脸的充要条件是迭代矩阵谱半径 (B) max k 1,其中, k是矩阵B的n个特征值,k 1,2 ,n 1 k nJacobi迭代矩阵的特征方程为det( I B J) 0Seidel迭代矩阵的特征方程为det( I B S) det( (D L) U) 0四、实验内容用matlab编写计算jacobi迭代矩程序,建立m文件如下:function[M]=BJ(A)D=diag(diag(A));L=tril(-A)+D;U=triu(-A)+D;M=inv(D)*(L+U);输入:&gt;&gt; A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];&gt;&gt; [M]=BJ(A)M:M =0 -0.0500 0.1500 0.0500-0.1667 0 0 -0.38890.0250 -0.0500 0 0.0500-0.2000 0 0.2000 00 0.050.150.05 0.166700 0.3889 则jacobi迭代矩阵为:BJ 0.025 0.0500.05 0.2 00.20用matlab求jacobi迭代矩阵的特征根的算法如下:&gt;&gt; A=[0 -0.05 0.15 -0.05;-0.67 0 0 -0.39;0.025 -0.05 0 0.05;-0.2 0 0.2 0];[V,D]=eig(A)V =-0.1892 + 0.0450i -0.1892 - 0.0450i -0.3812 -0.5005-0.9467 -0.9467 0.8867 0.5461 -0.1528 - 0.1181i -0.1528 + 0.1181i -0.2099 -0.0466 -0.1056 + 0.1325i -0.1056 - 0.1325i 0.1561 0.6701D =-0.1774 + 0.0864i 0 0 0 0 -0.1774 - 0.0864i 0 0 0 0 0.2194 0 0 0 0 0.1355 则最大特征根为:0.2194 则(BJ) 0.2194 1,所以jacobi迭代法收敛用matlab编程jacobi迭代法求根的算法:function [n,x]=jacobi(A,b,X,nm,w)%用雅克比迭代法求解方程组Ax=b%输入:A为方程组的系数矩阵,b为方程组右端的列向量,X为迭代初值构成的列向量,nm为最大迭代次数,w 为误差精度%输出:x为求得的方程组的解构成的列向量,n为迭代次数n=1;m=length(A);D=diag(diag(A)); %令A=D-L-U,计算矩阵DL=tril(-A)+D; %令A=D-L-U,计算矩阵LU=triu(-A)+D; %令A=D-L-U,计算矩阵UM=inv(D)*(L+U); %计算迭代矩阵g=inv(D)*b; %计算迭代格式中的常数项%下面是迭代过程while n&lt;=nmx=M*X+g; %用迭代格式进行迭代if norm(x-X,2)&lt;wdisp(…迭代次数为‟);ndisp(…方程组的解为‟);xreturn;%上面:达到精度要求就结束程序,输出迭代次数和方程组的解endX=x;n=n+1;end%下面:如果达到最大迭代次数仍不收敛,输出警告语句及迭代的最终结果(并不是方程组的解)disp(…在最大迭代次数内不收敛!‟);输入数据:&gt;&gt; A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];b=[1;2;10;-1];X=[0;0;0;0];&gt;&gt; nm=100;&gt;&gt; w=1e-4;&gt;&gt; [n,x]=jacobi1(A,b,X,nm,w)迭代次数为n =6方程组的解为x =0.06870.16450.2352-0.1667n =6x =0.06870.16450.2352-0.1667所以,满足精度的根为x = 0.0687 0.1645 0.2352用matlab编程计算seidel迭代矩阵算法为:function[M]=BS(A)D=diag(diag(A));L=tril(-A)+D;U=triu(-A)+D;M=inv(D-L)*U;输入:&gt;&gt; A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5]; &gt;&gt; [M]=BS(A)M =0 -0.0500 0.1500 0.0500 0 0.0083 -0.0250 -0.3972 -0.1667 迭代次数为6次0 -0.0017 0.0050 0.07110 0.0097 -0.0290 0.0042则seidel迭代矩阵为:0.150.05 0 0.05 00.0083 0.025 0.3972BS 0 0.00170.0050.0711 00.0097 0.0290.0042用matlab编程求得seidel矩阵的算法为:&gt;&gt; A=[0 -0.05 0.15 0.05;0 0.0083 -0.025 -0.3972;0 -0.0017 0.005 0.0711;0 0.0097 -0.029 0.0042];[V,D]=eig(A)V =1.0000 -0.1596 + 0.6750i -0.1596 - 0.6750i -0.91040 0.6965 0.6965 0.3924 0 -0.1250 + 0.0028i -0.1250 - 0.0028i 0.1313 0 0.0070 - 0.1348i 0.0070 + 0.1348i 0.0000D =0 0 0 0 0 0.0088 + 0.0768i 0 0 0 0 0.0088 - 0.0768i 0 0 0 0 -0.0001则特征根为 0 0.008+0.0768i 0.0088-0.0768i-0.0001则 (BS) 0.08 1,所以seidel迭代法收敛用seidel迭代法求根的算法为:function [n,x]=gaussseidel(A,b,X,nm,w)%用高斯-赛德尔迭代法求解方程组Ax=b%输入:A为方程组的系数矩阵,b为方程组右端的列向量,X为迭代初值构成的列向量,nm为最大迭代次数,w 为误差精度%输出:x为求得的方程组的解构成的列向量,n为迭代次数n=1;m=length(A);I=eye(m); %生成m*m阶的单位矩阵D=diag(diag(A)); %令A=D-L-U,计算矩阵DL=tril(-A)+D; %令A=D-L-U,计算矩阵LU=triu(-A)+D; %令A=D-L-U,计算矩阵U M=inv(D-L)*U; %计算迭代矩阵g=inv(I-inv(D)*L)*(inv(D)*b); %计算迭代格式中的常数项%下面是迭代过程while n&lt;=nmx=M*X+g; %用迭代格式进行迭代if norm(x-X,2)&lt;wdisp(…迭代次数为‟);ndisp(…方程组的解为‟);xreturn;%上面:达到精度要求就结束程序,输出迭代次数和方程组的解endX=x;n=n+1;end%下面:如果达到最大迭代次数仍不收敛,输出警告语句及迭代的最终结果(并不是方程组的解)disp(…在最大迭代次数内不收敛!‟);disp(…最大迭代次数后的结果为‟);x输入数据:&gt;&gt; A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];b=[1;2;10;-1];X=[0;0;0;0];nm=100;w=1e-4;[n,x]=gaussseidel(A,b,X,nm,w) 迭代次数为n =5方程组的解为x =0.06870.16450.2352-0.1667n =5x =0.06870.16450.2352-0.166满足精度的根为x =0.0687 0.1645 0.2352 -0.1667 迭代次数为5次五、实验分析从实验过程可以看到求出满足精度的根,seidel迭代要比jacobi迭代快,这是因为在jacobi迭代计算中,计算向量x(k 1)时是按分量的角标由小到大依次计算的。

数值分析与算法 简单迭代法求解线性方程组

数值分析与算法 简单迭代法求解线性方程组

简单迭代法求解线性方程组1.原理:将原线性方程组Ax=b中系数矩阵的主对角线移到一边并将其系数化为一,然后在给定迭代初值的情况下通过迭代的方法求解线性方程组的值。

2.C语言实现方式:(1)计算迭代矩阵:将系数矩阵的所有值分别处以各自所在行的主对角线值,然后将主对角线赋值为0。

(2)输入迭代初值,进行迭代将迭代初值存入y[n]矩阵,然后利用迭代式nn=nn+x[i][j]*y[j];y[i]=nn+b[i];经过有限次迭代得到误差要求以内的值3.源程序如下:#include<iostream>#include<math.h>#include<iomanip>using namespace std;#define kk 50 //定义最大方程元数int n,i,c,j,hh,gg,mm;double A[kk][kk],x[kk][kk],b[kk],y[kk],a[kk],z[kk],m,nn,d,e=1,w,fff ;void main(){cout<<"输入的方程元数"<<endl; //数据的输入cin>>n;cout<<"请输入方程系数矩阵:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j];cout<<"请输入右边向量:"<<endl;for(i=0;i<n;i++)cin>>b[i];cout<<"输入你想要的迭代精度(建议1e-5以上)!"<<endl; cin>>fff;cout<<"输入最大迭代次数(建议300次以上)!"<<endl; cin>>mm;//计算出迭代矩阵for(i=0;i<n;i++){b[i]=b[i]/A[i][i];for(j=0;j<n;j++){if(i==j){x[i][i]=0;}else{x[i][j]=-A[i][j]/A[i][i];}}}//输出迭代矩阵cout<<"计算出迭代矩阵为:"<<endl;for(i=0;i<n;i++){for(j=0;j<n;j++)cout<<x[i][j]<<" ";cout<<b[i]<<" ";cout<<endl;}//赋迭代初值cout<<"输入迭代初值"<<endl;for(i=0;i<n;i++)cin>>y[i];int f=1;//简单迭代法cout<<" ";for(i=1;i<n+1;i++)cout<<'\t'<<"X["<<i<<"]"<<" "<<'\t';cout<<"精度";cout<<endl;cout<<"迭代初值为: ";cout<<setiosflags(ios::fixed);for(i=0;i<n;i++)cout<<y[i]<<" ";cout<<endl;while(e>fff){for(i=0;i<n;i++){z[i]=y[i];nn=0;for(j=0;j<n;j++){nn=nn+x[i][j]*y[j];y[i]=nn+b[i];}e=fabs(z[0]-y[0]);if(fabs(z[i]-y[i])>e)e=fabs(z[i]-y[i]);if(i==0){cout<<setiosflags(ios::fixed);cout<<"第"<<setw(3)<<setprecision(3)<<f++<<"次迭代"<<" "; }cout<<setiosflags(ios::fixed);cout<<setw(8)<<setprecision(8)<<y[i]<<" ";}cout<<e;cout<<endl;if(f>mm){cout<<"迭代次数大于"<<mm<<"次"<<endl;cout<<"认为方程发散,迭代不收敛"<<endl;exit(1);}}cout<<endl;cout<<endl;cout<<"方程迭代了"<<f-1<<"次,达到你所要求的精度"<<fff<<endl;cout<<"最后结果为:"<<endl;cout<<endl;for(i=0;i<n;i++){cout<<"X"<<"["<<i+1<<"]"<<"="<<y[i];cout<<endl;}exit(1);}4.实验数据和结果:按照提示依次输入方程元数,系数矩阵,右边向量和迭代初值。

数值分析实验报告--解线性方程组的迭代法及其并行算法

数值分析实验报告--解线性方程组的迭代法及其并行算法

disp('请注意:高斯-塞德尔迭代的结果没有达 到给定的精度,并且迭代次数已经超过最大迭 代次数max1,方程组的精确解jX和迭代向量X 如下: ') X=X';jX=jX' end end X=X';D,U,L,jX=jX'
高斯-塞德尔的输入为:
A=[10 2 3;2 10 1;3 1 10]; b=[1;1;2]; X0=[0 0 0]'; X=gsdddy(A,b,X0,inf, 0.001,100) A=[10 2 3;2 10 1;3 1 10]; 请注意:因为对角矩阵 D 非奇异,所以此方程组有解.
0.0301 0.0758 0.1834
8.心得体会:
这已经是第三次实验了, 或多或少我已经对 MATLAB 有了更多的了 解与深入的学习。通过这次实验我了解了雅可比迭代法和高斯- 塞德尔迭代法的基本思想,虽然我们不能熟练编出程序,但还是 能看明白的。运行起来也比较容易,让我跟好的了解迭代法的多 样性,使平常手算的题能得到很好的验证。通过这次实验让我对 MATLAB 又有了更深一层的认识,使我对这门课兴趣也更加浓厚。
运行雅可比迭代程序输入: A=[10
b=[1;1;2];X0=[0 0 0]'; X=jacdd(A,b,X0,inf,0.001,100)
2 3;2 10 1;3 1 10];
结果为:
k= 1 X=
0.1000 k= 2 X= 0.0200 k= 3 X= 0.0400 k= 4 X= 0.0276 k= 5 X= 0.0314 k= 6 X= 0.0294 k= 7 X= 0.0301 k= 8 X= 0.0297
6、 设计思想:先化简,把对角线的项提到左边,其它项

数值分析_线性方程组迭代解法Hilbert矩阵

数值分析_线性方程组迭代解法Hilbert矩阵

0.999427 1.000368 1.000068 0.999538 1.003545 0.999834 1.000724 1.002775 0.99582 x 9 0.99888 0.9983 0.99933 0.995748 0.999679
0.996358 0.999739
1.002141 1.001106 1.001204 1.001784 1.005742 1.00315 1.00155 1.00181 1.002206 1.00062
1.000066 0.999977 1.000001 1.000041 0.998534 1.000054 0.999712 0.999029 1.005874 1.000672 1.00175 1.004447
0.996128 0.998886 0.998141 0.994858 10 x 0.993805 0.998912 0.998328 0.998514 0.999227 1.000283 1.000399 1.001125 1.005241 1.001468 1.001894 1.002573 1.006835 1.001551 1.001869 1.002117
数值分析课程上机报告
数值分析第二次上机实习报告
——线性方程组迭代解法
一、问题描述
设 Hn = [hij ] ∈ Rn×n 是 Hilbert 矩阵, 即 hij = 对 n = 2,3,4,…15, 1 i + j −1
1 x ∈ R n×n ,及 bn = H n x ,用 SOR 迭代法和共轭梯度法来求解,并与直 取= 1
四、计算结果及其分析
1. 超松弛迭代法分析 令初始向量 x0=u(1,1,……)T,给定不同的初始向量与松弛因子,计算不同情 况下解的情况。计算结果如下。

高斯-赛德尔法--数值分析线性方程组的迭代解法

高斯-赛德尔法--数值分析线性方程组的迭代解法
高斯赛德尔法数值分析线性方程组的迭代解法线性方程组的迭代解法迭代法求解线性方程组高斯赛德尔迭代法高斯赛德尔迭代法原理高斯赛德尔迭代赛德尔迭代法线性方程组的解法pkpm线性方程组解法非线性方程数值解法
实验六、高斯-塞德尔法
一、实验目的
通过本实验学习线性方程组的迭代解法。掌握高斯-赛德尔迭代法编程。
二、计算公式
}
if(k==T)printf("\nNo");
else
printf("\n",k);
for(i=0;i<M;i++)
printf("x(%d)=%15.7f\n",i+1,x[i]);
}
四、例题
书P189页例6:用高斯-塞德尔迭代解线性方程组:
取 使得
#include<math.h>
#define M 3
#define N 4
main()
{
double a[M][N]={{8,-3,2,20},
{4,11,-1,33},
{6,3,12,36},
};
double x[M]={0,0,0};//初值
double r,t,q,eps=0.0000202;//需要精度
if(j!=i)q=q+a[i][j]*x[j];
x[i]=(a[i][N-1]-q)/a[i][i];
if(fabs(x[i]-t)>r)r=fabs(x[i]-t);
}
if(r<eps)break;
printf("\nk=%d,",k);
for(i=0;i<M;i++)
printf("\nx[%d]=%lf",i,x[i]);

迭代法解线性方程组-数值分析实验报告

迭代法解线性方程组-数值分析实验报告

数学与计算科学学院《数值分析》课程设计题目:迭代法解线性方程组专业:信息与计算科学学号:*******-24*名:**指导教师:**成绩:二零一六年六月二十日一 、前言:(目的和意义)1.实验目的①掌握用迭代法求解线性方程组的基本思想和步骤。

②了解雅可比迭代法,高斯-赛德尔法和松弛法在求解方程组过程中的优缺点。

2.实验意义迭代法是用某种极限过程去逐步逼近线性方程组精确解的方法,它是解高阶稀疏方程组的重要方法。

迭代法的基本思想是用逐次逼近的方法求解线性方程组。

比较雅可比迭代法,高斯-赛德尔迭代方法和松弛法,举例子说明每种方法的试用范围和优缺点并进行比较。

二、数学原理:设有方程组b Ax = …① 将其转化为等价的,便于迭代的形式f Bx x += …② (这种转化总能实现,如令b f A I B =-=,), 并由此构造迭代公式f Bx x k k +=+)()1( …③ 式中B 称为迭代矩阵,f 称为迭代向量。

对任意的初始向量)0(x ,由式③可求得向量序列∞0)(}{k x ,若*)(lim x xk k =∞→,则*x 就是方程①或方程②的解。

此时迭代公式②是收敛的,否则称为发散的。

构造的迭代公式③是否收敛,取决于迭代矩阵B 的性1.雅可比迭代法基本原理设有方程组),,3,2,1(1n i b x aj j nj ij==∑= …①矩阵形式为b Ax =,设系数矩阵A 为非奇异矩阵,且),,3,2,1(,0n i a ii =≠ 从式①中第i 个方程中解出x ,得其等价形式)(111j nj j ij ii i x a b a x ∑≠=-= …②取初始向量),,,()0()0(2)0(1)0(n x x x x=,对式②应用迭代法,可建立相应的迭代公式:)(111)()1(∑≠=++-=nj j i k j ij ii k ib x a a x…③ 也可记为矩阵形式: J x J k F B xk +==)()1( …④若将系数矩阵A 分解为A=D-L-U ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=--=--00000000000000111211212211212222111211n n n nn n nn nn n n n n a a a a a a a a a a a a a a a a a a U L D A式中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn a a a D2211,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-0000121323121nn n n a a a a a a L ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000122311312n n n n a a a a a a U 。

Jacobi迭代法求解线性方程组实验报告

Jacobi迭代法求解线性方程组实验报告

仿真平台与工具应用实践Jacobi迭代法求解线性方程组实验报告院系:专业班级:姓名:学号:指导老师:一、实验目的熟悉Jacobi迭代法原理;学习使用Jacobi迭代法求解线性方程组;编程实现该方法;二、实验内容应用Jacobi迭代法解如下线性方程组:, 要求计算精度为三、实验过程(1)、算法理论迭代格式的引出是依据迭代法的基本思想: 构造一个向量系列, 使其收敛至某个极限, 则就是要求的方程组的准确解。

Jacobi迭代将方程组:在假设, 改写成如果引用系数矩阵, 及向量, , ,方程组(1)和(2)分别可写为: 及, 这样就得到了迭代格式用迭代解方程组时, 就可任意取初值带入迭代可知式, 然后求。

但是, 比较大的时候, 写方程组和是很麻烦的, 如果直接由, 能直接得到, 就是矩阵与向量的运算了, 那么如何得到, 呢?实际上, 如果引进非奇异对角矩阵将分解成:要求的解, 实质上就有而是非奇异的, 所以存在, 从而有我们在这里不妨令就得到迭代格式:(2)算法框图(3)、算法程序m 文件:function x=jacobi(A,b,P,delta,n)N=length(b); %返回矩阵b的最大长度for k=1:nfor j=1:Nx(j)=(b(j)-A(j,[1:j-1,j+1:N])*P([1:j-1,j+1:N]))/A(j,j);enderr=abs(norm(x'-P)); %求(x'-P)模的绝对值P=x';if(err<delta) %判断是否符合精度要求break;endendE=eye(N,N); %产生N行N列矩阵D=diag(diag(A));f=A*inv(D); %f是A乘D的逆矩阵B=E-f;Px=x';k,errBMATLAB代码:>> clear allA=[4, -1, 1;4, -8, 1;-2, 1, 5];b=[7, -21, 15]';P=[0,0,0]';x=jacobi(A,b,P,1e-7,20)(4)、算法实现用迭代法求解方程组:正常计算结果是2, 3, 4 , 下面是程序输出结果:P =2.00004.00003.0000k =17err =9.3859e-008B =0 -0.1250 -0.2000-1.0000 0 -0.20000.5000 0.1250 0x =2.00004.00003.0000四、实验体会五、MATLAB是非常实用的软件, 能够避免大量计算, 简化我们的工作, 带来便捷。

【分析】数值分析迭代法

【分析】数值分析迭代法

【关键字】分析数值分析实验报告(3)学院:信息学院班级:计算机0903班姓名:王明强学号:课题三线性方程组的迭代法一、问题提出1、设线性方程组=x= ( 1, -1, 0, 1, 2, 0, 3, 1, -1, 2 )2、设对称正定阵系数阵线方程组=x = ( 1, -1, 0, 2, 1, -1, 0, 2 )3、三对角形线性方程组=x= ( 2, 1, -3, 0, 1, -2, 3, 0, 1, -1 )试分别选用Jacobi 迭代法,Gauss-Seidol迭代法和SOR方法计算其解。

二、要求1、体会迭代法求解线性方程组,并能与消去法做以比较;2、分别对不同精度要求,如由迭代次数体会该迭代法的收敛快慢;3、对方程组2,3使用SOR方法时,选取松弛因子=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者;4、给出各种算法的设计程序和计算结果。

三、目的和意义1、通过上机计算体会迭代法求解线性方程组的特点,并能和消去法比较;gauss消去法是一种规则化的加减消元法。

它的基本思想是:通过逐次消元计算把需要求求解的线性方程转化成上三角形方程组,也就是把线性方程组的系数矩阵转化为上三角矩阵,从而使一般线性方程组求解转化为等价(同解)的上三角方程组的求解。

消去法是直接方法的一种。

优点:对于简单的方程组可以很快得出结果,计算中如果没有舍入误差,在稳定的方程组中容易得到精确解,理论上可以求解任何可以求出解得方程组。

缺点:数值有的时候不稳定(可采用列主元gauss消去法),既要消去,又要回代,算法实现起来比较复杂,不适用于大规模方程组。

迭代法是从某一取定的初始向量x(0)出发,按照一个适当的迭代公式,逐次计算出向量x(1),x(2),......,使得向量序列{ x(k)}收敛于方程组的精确解,这样,对于适当大的k,可取x(k)作为方程组的近似解。

优点:算法简单,程序易于实现,特别适用求解庞大稀疏线性方程组。

迭代法求解方程问题实验报告

迭代法求解方程问题实验报告

迭代法求解方程问题实验报告姓名:殷伯旭 班级:信计0801班 学号:u200810065一. 实验目的运用数学知识与matlab 相结合,运用数学方法,建立数学模型,用matlab 软件辅助求解模型,解决实际问题。

二. 实验任务求方程1020x e x +-=的一个近似解,误差不超过410-,要求: 设计4种求解的迭代法,讨论其收敛性,并求出满足精度的近似解;三. 实验分析与求解题目要求设计四种迭代方法,我们考虑用书上的四种迭代思想:方法一:用Steffenson 迭代法,首先构造函数:2()10xe g x -=, 则迭代公式为:21(())k k k k k k kg x x x x +-=- 方法二:一般的迭代法,1210k k x e x +-=方法三:单点弦截法法,固定01()()()()0.25,f a b a f b f a a x x --==-, 其中端点120,a b ==,则迭代公式为:010()()()()k k k k k f x x x x x f x f x +=--- 方法四:双点弦截法法,迭代公式为:111()()()()k k k k k k k f x x x x x f x f x +--=--- 实验程序:function shiyan112%%%%%方法一: stefften 迭代x0=0.25;g0=(2-exp(x0))/10;gg0=(2-exp(g0))/10;x1=x0-(g0-x0)^2/(gg0-2*g0+x0);n1=0;while abs(x1-x0)>0.00001x0=x1;g0=(2-exp(x0))/10;gg0=(2-exp(g0))/10;x1=x0-(g0-x0)^2/(gg0-2*g0+x0);n1=n1+1;x(n1)=x1;endn1x0=x1%%%%%方法二: 一般迭代x20=0.25;x21=(2-exp(x20))/10;n2=0;while abs(x21-x20)>0.00001x20=x21;x21=(2-exp(x20))/10;n2=n2+1;endn2x20=x21%%%%%方法三: 单点弦截法x30=0.25;a=0;b=0.5;n3=0;fa=exp(a)+10*a-2;fb=exp(b)+10*b-2;x31=a-fa*(b-a)/(fb-fa);f30=exp(x30)+10*x30-2;f31=exp(x31)+10*x31-2;x32=x31-f31*(x31-x30)/(f31-f30); while abs(x32-x31)>0.00001x31=x32;f31=exp(x31)+10*x31-2;x32=x31-f31*(x31-x30)/(f31-f30);n3=n3+1;endn3x30=x32%%%%%%%方法四:双点弦截法x40=0.25;x41=0.5;n4=0;f40=exp(x40)+10*x40-2;f41=exp(x41)+10*x41-2;x42=x41-f41*(x41-x40)/(f41-f40);while abs(x42-x41)>0.00001x40=x41;x41=x42;f40=exp(x40)+10*x40-2;f41=exp(x41)+10*x41-2;x42=x41-f41*(x41-x40)/(f41-f40);n4=n4+1;endn4x40=x42运行结果:(1) 方法一: x =0.0905 ; 迭代次数: n1 = 2(2)方法二: x =0.0905 ; 迭代次数: n2 = 5(3) 方法三: x =0.0905 ; 迭代次数: n3 = 2(4) 方法四: x =0.0905 ; 迭代次数: n4 =33)实验总结通过自主学习matlab,编程能力有了较大提高,并将其应用于数值代数刚学的一种思想,在加深对该领域印象的同时对matlab有了更深一层的了解。

数值分析实验报告--实验6--解线性方程组的迭代法

数值分析实验报告--实验6--解线性方程组的迭代法

1 / 8数值分析实验六:解线性方程组的迭代法2016113 张威震1 病态线性方程组的求解1.1 问题描述理论的分析表明,求解病态的线性方程组是困难的。

实际情况是否如此,会出现怎样的现象呢?实验内容:考虑方程组Hx=b 的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(),,,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。

通过首先给定解(例如取为各个分量均为1)再计算出右端b 的办法给出确定的问题。

实验要求:(1)选择问题的维数为6,分别用Gauss 消去法、列主元Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法求解方程组,其各自的结果如何?将计算结果与问题的解比较,结论如何?(2)逐步增大问题的维数(至少到100),仍然用上述的方法来解它们,计算的结果如何?计算的结果说明了什么?(3)讨论病态问题求解的算法1.2 算法设计首先编写各种求解方法的函数,Gauss 消去法和列主元高斯消去法使用实验5中编写的函数myGauss.m 即可,Jacobi 迭代法函数文件为myJacobi.m ,GS 迭代法函数文件为myGS.m ,SOR 方法的函数文件为mySOR.m 。

1.3 实验结果1.3.1 不同迭代法球求解方程组的结果比较选择H 为6*6方阵,方程组的精确解为x* = (1, 1, 1, 1, 1, 1)T ,然后用矩阵乘法计算得到b ,再使用Gauss 顺序消去法、Gauss 列主元消去法、Jacobi 迭代法、G-S 迭代法和SOR 方法分别计算得到数值解x1、x2、x3、x4,并计算出各数值解与精确解之间的无穷范数。

Matlab 脚本文件为Experiment6_1.m 。

迭代法的初始解x 0 = (0, 0, 0, 0, 0, 0)T ,收敛准则为||x(k+1)-x(k)||∞<eps=1e-6,SOR方法的松弛因子选择为w=1.3,计算结果如表1。

线性方程组的直接解法迭代解法

线性方程组的直接解法迭代解法

广东金融学院实验报告课程名称:数值分析实验目的及要求实验目的:题一:通过数值实验,从中体会解线性方程组选主元的必要性和LU分解法的优点,以及方程组系数矩阵和右端向最的微小变化对解向最的影响。

比较各种直接接法在解线性方程组中的效果;题二:认识齐种迭代法收敛的含义、影响齐迭代法收敛速度的因素。

实验要求:题一:(1)在MATLAB中编写程序用列主元高斯消去法和LU分解求解上述方程组,输出曲b中矩阵A 及向量b和A二LU分解中的L及U, detA及解向量X.(2)将方程组中的2. 099999改为2. 1, 5. 900001改为5. 9,用列主元高斯消去法求解变换后的方程组,输出解向最x及detA,并与(1)中的结果比较。

(3)用MATLAB的内部函数inv求出系数矩阵的逆矩阵,再输入命令x=inv(A)*b,即可求出方程组的解。

请与列主元高斯消公法和LU分解法求出的解进行比较,体会选主元的方法具有良好的数值稳定性。

用MATLAB的内部曲数det求出系数行列式的值,并与(1)、(2)中输出的系数行列式的值进行比较。

(4)比较以上各种直接解法在解线性方程组中的效果。

题二:(1)选取不同的初始向M:X(0)及右端向最b,给泄迭代误差要求,用Jacobi迭代法和Gauss-Seidel迭代法求解,观察得到的序列是否收敛?若收敛,记录迭代次数,分析计算结果并得出你的结论。

列岀算法清单。

(2)用SOR迭代法求上述方程组的解,松弛系数血取1<69<2的不同的三个值,在< 10"5时停止迭代,记录迭代次数,分析计算结呆与松弛系数血的关系并得出你的结论。

(3)用MATLAB的内部函数inv求出系数矩阵的逆矩阵.再输入命令^inv(A)*b>即可求出上述各个方程组的解.并与上述三种方法求出的解进行比较。

请将比较结果列入卜表。

方程组的解X1 Xr■迭代次数误差楮确解Jacibi解法Gause・seidel 解法SOR 解法00= 60= 60=实验环境及相关情况(包含使用软件、实验设备、主要仪器及材料等)1. Win72. Mat lab 7.0实验内容及步骤(包含简要的实验步骤流程) 实验内容:题一:解卜列线性方程组'10 -7‘X 】、(8、-3 2.099999 62Xr5.9000015-1 5 -15、12> 0< 1 >题二研究解线性方程组 做=b 迭代法的收敛性、收敛速度以及SOR 方法中/佳松弛因子的选取问题, 用迭代法求解做二b,其中・4 -1r■7 A=4 -81 ,b =-21-2 ■1515实验结果(包括程序或图表、结论陈述.数据记录及分析等,可附页)题一:直接解法解线性方程组(1)列主兀高斯消去法与LU 分解求解列主元高斯消去法:编写matalab 程序(见附录gaosi.m ),输出矩阵10.000 -7.000 0.000= 0.000 2.5000-5.000一 0.000 0.0006.0000020.000 0.000 0.000向量8 b =1 8.300 L5.0800J解向量:X = (0 ・-1 , 1 r I )7 其中系数行列式的值det (A )=762.00009LU 分解求解:编J matalab 程序(见附录zhjLU. m 和LU ・m ),执行输出:-1.5 2.300 5.080-3.0001.000000.00000.5000 -25000001.0000 0.2000 -24000000.9600 10.0000 -7.0000 0.0000 1.0000n = 0.0000-0.0000010.0000 2.3000 —0.0000 0.000015000000 57500000.0000 0.0000 0.0000 5.0800在matlab 命令窗II 输入L*U ,可以得到A 二L*U ,即分解结果正确。

数值计算方法实验报告

数值计算方法实验报告

数值分析实验报告实验一、解线性方程组的直接方法——梯形电阻电路问题利用追赶法求解三对角方程组的方法,解决梯形电阻电路问题:电路中的各个电流{1i ,2i ,…,8i }须满足下列线性方程组:R V i i =- 22 210 252321=-+-i i i 0 252 432=-+-i i i 0 252 543=-+-i i i 0 252 654=-+-i i i 0 252 765=-+-i i i 0 252 876=-+-i i i 052 87=+-i i设V 220=V ,Ω=27R ,运用追赶法,求各段电路的电流量。

问题分析:上述方程组可用矩阵表示为:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------00000001481.8522520000002520000002520000002520000002520000002520000002287654321i i i i i i i i问题转化为求解A x b =,8阶方阵A 满足顺序主子式(1,2...7)0i A i =≠,因此矩阵A存在唯一的Doolittle 分解,可以采用解三对角矩阵的追赶法!追赶法a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0]; d=[220/27 0 0 0 0 0 0 0];Matlab 程序function x= zhuiganfa( a,b,c,d )%追赶法实现要求:|b1|>|C1|>0,|bi|>=|ai|+|ci| n=length(b); u=ones(1,n); L=ones(1,n); y=ones(1,n); u(1)=b(1); y(1)=d(1); for i=2:nL(i)=a(i)/u(i-1);u(i)=b(i)-c(i-1)*L(i); y(i)=d(i)-y(i-1)*L(i); endx(n)=y(n)/u(n); for k=n-1:-1:1x(k)=(y(k)-c(k)*x(k+1))/u(k); end endMATLAB 命令窗口输入:a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0] d=[220/27 0 0 0 0 0 0 0];x= zhuiganfa(a,b,c,d )运行结果为:x =8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477存在问题根据电路分析中的所讲到的回路电流法,可以列出8个以回路电流为独立变量的方程,课本上给出的第八个回路电流方程存在问题,正确的应该是78240i i -+=;或者可以根据电路并联分流的知识,同样可以确定78240i i -+=。

数值计算方法实验报告(含所有)

数值计算方法实验报告(含所有)

本科实验报告课程名称:计算机数值方法实验项目:计算机数值方法实验实验地点:虎峪校区致远楼B401专业班级:软件学院1217班学号:******xxxx 学生姓名:xxx指导教师:xxx2014 年 5 月21 日太原理工大学学生实验报告五、实验结果与分析二分法割线法分析:由程序知,使用二分法和割线法均能计算出方程的根,但利用割线法要比二分法计算的次数少,并且能够较早的达到精度要求。

相比之下,割线法程序代码量较少,精简明了。

六、讨论、心得本次数值计算方法程序设计实验从习题练习中跳脱出来,直接面对实用性较强的程序代码编写。

效果很好,不仅加深对二分法、割线法的理解,还加强了实际用运能力。

将理论知识成功地转化成实践结果。

实验地点虎峪校区致远楼B401指导教师xx太原理工大学学生实验报告l[i][k]=a[i][k];for(r=1;r<k;++r){l[i][k]-=l[i][r]*u[r][k];}l[i][k]/= u[k][k];}l[k][k]=1.0;}for(i=1;i<=n;++i){y[i] = b[i];for(j=1;j<i;++j){y[i]-=l[i][j]*y[j];}}for(i=n;i>0;--i){x[i] = y[i];for(j=i+1;j<=n;++j){x[i]-=u[i][j]*x[j];}x[i]/= u[i][i];}for(i=1;i<=n;++i){printf("%0.2lf\n",x[i]);}return 0;}五、实验结果与分析完全主元素消元法:列主元素消元法:LU分解法:分析:对于两种高斯解方程,完全主元素跟列主元素都是先消元、再回代,由程序段可以发现,始终消去对角线下方的元素。

即,为了节约内存及时效,可以不必计算出主元素下方数据。

列主元素消元法的算法设计上优于完全主元素消元法,它只需依次按列选主元素然后换行使之变到主元素位置,再进行消元即可。

线性方程组AX=B的数值计算方法实验

线性方程组AX=B的数值计算方法实验

线性方程组AX=B的数值计算方法实验学号:姓名:梁哲豪一、实验描述在自然科学和工程技术中很多问题的解决常常归结为解线性代数方程组。

例如电学中的网络问题,船体数学放样中建立三次样条函数问题,用最小二乘法求实验数据的曲线拟合问题,解非线性方程组问题,用差分法或者有限元法解常微分方程,偏微分方程边值问题等都导致求解线性方程组,而且后面几种情况常常归结为求解大型线性方程组。

线性代数方面的计算方法就是研究求解线性方程组的一些数值解法与研究计算矩阵的特征值及特征向量的数值方法。

关于线性方程组的数值解法一般有两类:直接法:若在计算过程中没有舍入误差,经过有限步算术运算,可求得方程组的精确解的方法。

迭代法:用某种极限过程去逐步逼近线性方程组精确解的方法。

迭代法具有占存储单元少,程序设计简单,原始系数矩阵在迭代过程中不变等优点,但存在收敛性及收敛速度等问题。

上三角线性方程组的求解:基本算法:高斯消元法:将原方程组化为三角形方阵的方程组:(k=1,2,…,n-1; i=k+1,k+2, …,n ;j=k+1,k+2, …,n+1)由回代过程求得原方程组的解:LU分解法:将系数矩阵A转化为A=L*U,L为单位下三角矩阵,U为普通上三角矩阵,然后通过解方程组l*y=b,u*x=y,来求解x。

二、实验内容1、许多科学应用包含的矩阵带有很多零。

在实际情况中很重要的三角形线性方程组有如下形式:……构造一个程序求解三角形线性方程组。

可假定不需要变换。

而且可用第k 行消去第k+1行的x。

k核心代码:#include<iostream.h>#include<math.h>#include<iomanip.h>#define N 4//矩阵阶数void ColPivot(double c[N][N+1],double[]);//函数声明void main(){int i,j;double x[N];double c[N][N+1]={1,3,5,7,1,2,-1,3,5,2,0,0,2,5,3,-2,-6,-3,1,4};cout<<"----------------------------------------"<<endl;cout<<"系数矩阵为: \n";for(i=0;i<N;i++){for(j=0;j<N;j++)cout<<setw(10)<<c[i][j];cout<<endl;}cout<<"右侧矩阵 y 为: \n";for(i=0;i<N;i++)cout<<setw(10)<<c[i][N];cout<<endl;cout<<"----------------------------------------"<<endl;ColPivot(c,x);//调用函数,进行高斯消去法变换cout<<"变换后得到的三角矩阵: \n";for(i=0;i<N;i++){for(j=0;j<N;j++)cout<<setw(10)<<c[i][j];cout<<endl;}cout<<"变换后的右侧矩阵 y 为: \n";for(i=0;i<N;i++)cout<<setw(10)<<c[i][N];cout<<endl;cout<<"----------------------------------------"<<endl; cout<<"方程的解为: \n";for(i=0;i<N;i++)cout<<" x["<<i<<"]= "<<x[i]<<endl;cout<<"----------------------------------------"<<endl; }void ColPivot(double c[N][N+1],double x[]){int i,j,k;double p,max;double t[N];for(i=0;i<=N-2;i++){max=0;k=i;for(j=i+1;j<N;j++)if(fabs(c[j][i])>max){k=j;max=fabs(c[j][i]);//选主元}if(k!=i)for(j=i;j<=N;j++){p=c[i][j];c[i][j]=c[k][j];//选出主元后进行交换c[k][j]=p;}for(j=i+1;j<N;j++){p=c[j][i]/c[i][i];for(k=i;k<=N;k++)c[j][k]-=p*c[i][k];//高斯消去,进行计算}}for(i=0;i<N;i++)t[i]=c[i][N];for(i=N-1;i>=0;i--)//利用回代法求最终解{for(j=N-1;j>i;j--)t[i]-=c[i][j]*x[j];x[i]=t[i]/c[i][i];}}运行结果:(以具体方程组为例)2、(PA=LU:带选主元的分解法)求解线性方程组AX=B,其中:A=B=核心代码:#include <stdio.h>#include <math.h>#define L 30double a[L][L],b[L],l[L][L],u[L][L],x[L],y[L];int main(){int n,i,j,k,r;printf("请输入矩阵元次:\n");scanf("%d",&n);printf("请输入矩阵各项:\n");for(i=1;i<=n;++i){for(j=1;j<=n;++j){scanf("%lf",&a[i][j]);}}printf("请输入方程组的常数项:\n");for(i=1;i<=n;++i){scanf("%lf",&b[i]);}for(i=1;i<=n;++i){for(j=1;j<=n;++j){l[i][j]=0;u[i][j]=0.0;}}for(k=1;k<=n;++k){for(j=k;j<=n;++j){u[k][j]=a[k][j];for(r=1;r<k;++r){u[k][j]-=l[k][r]*u[r][j];}}for(i=k+1;i<=n;++i){l[i][k]=a[i][k];for(r=1;r<k;++r){l[i][k]-=l[i][r]*u[r][k];}l[i][k]/= u[k][k];}l[k][k]=1.0;}for(i=1;i<=n;++i){y[i]= b[i];for(j=1;j<i;++j){y[i]-=l[i][j]*y[j];}}for(i=n;i>0;--i){x[i]= y[i];for(j=i+1;j<=n;++j){x[i]-=u[i][j]*x[j];}x[i]/= u[i][i];}for(i=1;i<=n;++i){printf("%0.2lf\n",x[i]);}return0;}运行结果:3、使用程序3.3求解线性方程组AX=B,其中,A= [a ij] N×N= i j-1,而且B=[b ij] N×1, b11=N,当i≥2时,b i1=(i N-1)/(i-1),对N=3,7,11的情况分别求解。

大学数学实验五_线性代数方程组的数值解法

大学数学实验五_线性代数方程组的数值解法

【实验目的】 1、学会用 MATLAB 软件数值求解线性代数方程组,对迭代法的收敛性和解
的稳定性作初步分析。 2、通过实例学习用线性代数方程组解决简化的实际问题。
【实验内容】
3 已知方程组 Ax=b,其中
,定义为
试通过迭代法求解此方程组,认识迭代法收敛的含义以及迭代初值和方程组系数矩阵性质对 收敛速度的影响。实验要求: (1) 选取不同的初始向量 x(0)和不同的方程组的右端项向量 b,给定迭代误差要求,用雅
k=k+1; xj=Bj*xj+fj; 多输出了矩阵 P,矩阵 P 可视为一个行向量,其每个元素均为迭代 k 次后得到的 xk。这样以 k 为横轴,解向量为纵轴,可输出图形观察 xk 是否收敛。函数 GaussSeidel 也需作同样修改,修改后的函数在此不再赘述。
模型: 已知某年该植物的数量为 x0,记第 k 年的植物数量为 xk,那么有 xk + pxk-1 + qxk-2 = 0 (k = 2, 3, …… , n)
其中 p = -a1bc,q = -a2b(1-a1)bc。若要求 n 年后数量达到 xn,则 Ax = b
其中


7
① 用稀疏系数矩阵求解。
这个函数中,n 表示矩阵 A 的阶数,在本题中恒取 20,a 表示主对角线元素的值,b 在 本题中恒取-1/4,c 在本题中恒取-1/2。
编写用雅可比迭代法求方程解的函数 Jacobi。
function [xj,k]=Jacobi(A,X0,b,e) D=diag(diag(A)); n=length(A); L=-(tril(A)-D); U=-(triu(A)-D); fj=D\b; Bj=D\(L+U); xj=X0; k=0; while norm(A*xj-b)/norm(b)>e

数值方法实验报告

数值方法实验报告

数值方法实验报告数值方法实验报告引言:数值方法是一种通过数学模型和计算机算法来解决实际问题的方法。

在现代科学和工程领域,数值方法被广泛应用于求解复杂的数学方程、优化问题以及模拟和预测等任务。

本实验报告旨在介绍数值方法的基本原理和应用,并通过实验验证其有效性和可靠性。

一、数值方法的基本原理1.1 近似方法数值方法的核心是通过近似方法来求解问题。

由于大多数实际问题无法用解析方法求解,因此需要使用近似方法来获得问题的数值解。

常见的近似方法包括插值法、拟合法、数值积分和数值微分等。

1.2 数值算法数值算法是实现数值方法的具体计算步骤和流程。

常见的数值算法有牛顿法、迭代法、高斯消元法等。

这些算法通过迭代和逼近的方式,逐步逼近问题的解,并最终得到数值解。

二、数值方法的应用2.1 方程求解数值方法可以用于求解各种类型的方程,如线性方程组、非线性方程、微分方程等。

通过数值方法,可以得到这些方程的数值解,并在实际问题中进行应用。

例如,通过数值方法可以计算电路中的电压和电流分布,从而优化电路设计。

2.2 优化问题数值方法可以用于求解各种优化问题,如线性规划、非线性规划、整数规划等。

通过数值方法,可以找到问题的最优解,并在实际问题中进行决策和优化。

例如,通过数值方法可以确定最佳的生产计划,使得生产成本最小或者利润最大。

2.3 模拟和预测数值方法可以用于模拟和预测实际问题的行为和变化。

通过建立数学模型和使用数值方法,可以模拟天气变化、交通流量、金融市场等复杂系统的行为,并进行预测和分析。

例如,通过数值方法可以预测飓风路径和强度,从而提前做好防灾准备。

三、实验验证为了验证数值方法的有效性和可靠性,我们进行了一系列实验。

以线性方程组求解为例,我们使用高斯消元法和迭代法两种数值方法,并与解析解进行对比。

实验结果表明,高斯消元法和迭代法都可以得到线性方程组的数值解。

与解析解相比,数值解的误差较小,且在实际问题中具有较好的适用性。

数值_分析实验报告

数值_分析实验报告

一、实验目的1. 理解数值分析的基本概念和方法;2. 掌握线性方程组的求解方法,如雅可比迭代法、高斯赛德尔迭代法和SOR迭代法;3. 利用MATLAB软件进行数值计算,并分析结果。

二、实验原理1. 数值分析是研究如何用数值方法求解数学问题的学科,其核心是误差分析和算法设计。

2. 线性方程组是数值分析中的基本问题之一,常见的求解方法有直接法和迭代法。

3. 雅可比迭代法、高斯赛德尔迭代法和SOR迭代法是三种常用的迭代法,它们通过迭代过程逐步逼近方程组的解。

4. MATLAB是一种高性能的科学计算软件,具有强大的数值计算和可视化功能。

三、实验内容1. 实验一:雅可比迭代法(1)原理:雅可比迭代法是求解线性方程组的迭代法之一,其基本思想是将线性方程组分解为多个子方程,然后依次求解子方程,逐步逼近方程组的解。

(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 计算对角矩阵D、上三角矩阵L和下三角矩阵U;d. 进行迭代计算,直到满足精度要求或达到最大迭代次数;e. 输出解向量X。

(3)MATLAB代码实现:```MATLABfunction [X, K] = JACOBI(A, B, X0, E, N)[n, n] = size(A);D = diag(A);L = tril(A - D, -1);U = triu(A - D);K = 0;for i = 1:NX_new = (B - L \ U \ X0) / D;if norm(X_new - X0) < Ebreak;endX0 = X_new;K = K + 1;endX = X_new;end```2. 实验二:高斯赛德尔迭代法(1)原理:高斯赛德尔迭代法是另一种求解线性方程组的迭代法,其基本思想是在每次迭代中,利用已求得的近似解来更新下一个近似解。

(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 进行迭代计算,直到满足精度要求或达到最大迭代次数;d. 输出解向量X。

工程数值分析实验报告(3篇)

工程数值分析实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,对工程实际问题进行建模、求解和分析。

通过学习数值方法的基本原理和算法,提高解决实际工程问题的能力。

二、实验内容1. 线性方程组的求解2. 矩阵特征值与特征向量的计算3. 函数插值与曲线拟合4. 数值微分与积分三、实验步骤1. 线性方程组的求解(1)编写程序实现高斯消元法、克劳斯消元法和列主元素法(2)设计输入界面,用户输入增广矩阵的行和列,填写系数及常数项(3)分别运用三种方法求解线性方程组,比较求解结果的正确性、数值稳定性和计算效率2. 矩阵特征值与特征向量的计算(1)编写程序实现幂法、QR算法和逆幂法(2)设计输入界面,用户输入矩阵的行和列,填写矩阵元素(3)分别运用三种方法计算矩阵的特征值与特征向量,比较求解结果的准确性和计算效率3. 函数插值与曲线拟合(1)编写程序实现拉格朗日插值、牛顿插值和样条插值(2)设计输入界面,用户输入函数的自变量和函数值,选择插值方法(3)分别运用三种方法进行函数插值,比较插值结果的准确性和光滑性4. 数值微分与积分(1)编写程序实现有限差分法、龙格-库塔法和辛普森法(2)设计输入界面,用户输入函数的导数或积分的上下限,选择数值方法(3)分别运用三种方法进行数值微分和积分,比较求解结果的准确性和计算效率四、实验结果与分析1. 线性方程组的求解通过实验,我们发现列主元素法在求解线性方程组时具有较好的数值稳定性,计算效率也较高。

而高斯消元法和克劳斯消元法在处理大型稀疏矩阵时存在一定的困难。

2. 矩阵特征值与特征向量的计算实验结果表明,QR算法和逆幂法在计算矩阵特征值与特征向量时具有较高的准确性和计算效率。

幂法在处理大型稀疏矩阵时表现出较好的性能。

3. 函数插值与曲线拟合在函数插值和曲线拟合实验中,样条插值方法具有较好的准确性和光滑性。

拉格朗日插值和牛顿插值方法在处理简单函数时表现良好,但在处理复杂函数时可能存在精度问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 138053
x2
1.267604
k二5
x0=-3. 108742
xl=
1. 089012
x2
1. 266255
k=6
x0=-3. 088856
xl=
1.094659
x2
1. 265101
k=7
x0=-3. 090884
xl=
L094729
x2
1. 265541
k=8
x0=-3. 091000
xl=
迭代格式:
Ax二bu (D -L -U)x =b
(若D-L可逆)二x=(D _L)」Ux (D _L)」b
x(k=Gx(k)C, K =0,1,2……
G =(D -L)dU ,C =(D -L)」b,x(0)为初始向量(矩阵形式)
1i-1n
x/k)=—(-送ajX(f-送ajX(k)+bj, (i=1,2,,n)(分量形式)
>p\Debu
g\OOO.exe'
xO=O, 000000 xl-o. 00000(
J边=(
1 00000(
)
k=2
x0=-2. 400000
xl=
1.900000
x2
1. 530000
k=3
x0=-3. 466000
xl=
0. 868500
x2
1. 227450
k=4
x0=-2, 992890
xl=
double A[3][3]={{5,2,1},{-1,4,2},{2,-5,10}};
double b[3]={-12,10,1},X[3]={0,0,0}; //以上为输入部分
while(k<=N)〃迭代步数从1开始,在最大迭代步数之内
{
e=0.0000;
printf("\nk=%d ",k);〃输出第k次迭代
这次实验使我对Guass-Seidel迭代法的理解更加深刻,掌握了迭代法解线性方程 组的方法,掌握了判别迭代法收敛的基本方法及其运用。
三、指导教师评语及成绩
评语
评语等级



பைடு நூலகம்及 格
不及格
1.实验报告按时完成,字迹清楚,文字叙述流畅,逻辑性强
2.实验方案设计合理
3.实验过程(实验步骤详细,记录完整,数据合理,分析透彻)
for(i=0;i<=n ;i++)
{
t=X[i];
s=0.0000;
printf("x%d=%f\t",i,X[i]);〃输出k-1次迭代后的值作为第k次
的初值
for(j=0;j<=n ;j++)
{
if(j!=i)
s=s+A[i][j]*X[j];
}
X[i]=(b[i]-s)/A[i][i]; //迭代过程,得到x[i]的解
4实验结论正确.
成绩:
指导教师签名:
批阅日期:
附录
#i nclude<stdio.h>
#in clude<math.h>
#defi ne eps 1e-4
#defi ne n 2
#defi ne N 10 //以上为定义部分
void mai n()
{
int i,j,k=1;
double t,e,s;
一、实验概述:
1实验目的
1)了解Guass-Seidel迭代法的迭代思想;
2)熟练掌握Guass-Seidel迭代法的基本原理和基本方法;
3)学会用逐次Guass-Seidel迭代法解简单方程组;
4)体会数值计算方法的收敛性及收敛速度;
5)掌握判别迭代法收敛的基本方法及其运用;
2实验原理
Guass-Seidel迭代法:
}
if(k==N)
{
prin tf("fail!");
}
k++;//步数增加
}
}
附录
1•实验项目名称: 要求与实验教学大纲一致。
b)不成立,则判断k<N是否成立
i成立,则k=k+1,回到步骤1)ii否则,输出失败信息,结束程序。
2实验步骤
(1)上机前思考解决问题的思路与方法并写好算法;
(2)根据算法编写解决冋题的程序;
(3)上机时调试程序发现错误并改正;
(4)运行无误后得到结果;
3实验结论(数据及分析结果)
EI
1C:\Users\87058\Desktc
aiij二jw卅
3实验环境
VC++6.0
WIN10操作系统
二、实验内容:
a)i—Xi
1n
b)为_——(bajXj)
aiij J
c)判断声_i | e是否成立,成立则e:-|Xt-t|;(比较本次与上次迭代中的对应 人的 值,寻找最大误差)
3)判断e:::;是否成立
a)成立,找到近似解,则输出迭代步数和近似解k,结束程序。
if(fabs(X[i]-t)>e)
e=fabs(X[i]-t);〃求出最大误差}
if(e<=eps)
{
prin tf("\nthe root:\nk=%d\t",k+1);
for(i=0;i<=n ;i++)
prin tf("x%d=%f\t",i,X[i]);
break;
}//如果两次相邻迭代步数求出的解的误差在最大误差限内,则找到解
1. 094479
x2
1. 265440
x0=-3. 090880
the
roo t:
k=lC
1x0=-3.090915
xl=L 094560
x2=L 265456
k=lC
i x0=-3. 090915
the
roo t:
k=l]
⑷二」3.090915
xl=L 094560
x2=L 265456
4实验小结(收获体会)
相关文档
最新文档