(优选)卫生统计学第六章方差分析

合集下载

生物统计第六章方差分析PPT课件

生物统计第六章方差分析PPT课件

这里所测验的统计假设是H0:σt2σe2或μA=μB=μC=μD对HA: σt2>σe2或μA、μB、μC和μD间存在差异(不一定μA、μB、μC和 μD间均不等,可能部分不等。)
不同药剂处理水稻苗高的方差分析表
变异来源 df
药剂处理间 3 药剂处理内 12
总变异 15
SS
504 98 602
MS F
为此D.B.Duncan提出了新复极差法,又称最小显著极差法 (shortest significant ranges,SSR) 。
第二节 多重比较
其方法是把多个样本中两个极端平均数的差数当作极差对待,如 果极差不显著,则包括在这两个极端处理平均数间的各处理平均 数的任何成对比较,其差异也是不显著的。极差是否显著用极差 相当于均数标准差的倍数:SSR=R/S 式中R为y 极差,SSR为极 差相当于均数标准差的倍数 。
第一节 方差分析的基本原理
2、求均方,进行F测验,列方差分析表
求均方
MSt
SSt dft
504168 3
MSe
SSe dfe
988.17 12
第一节 方差分析的基本原理
F分布与F测验
从一个正态总体N (μ,σ2)中,分别随机抽取两个 独立样本,分别求得其均方S21和S22 ,将S21和S22 的比值定义为F:
F ( 1 , 2 )
s 12
s
2 2
第一节 方差分析的基本原理
不同自由度下的F分布曲线
第一节 方差分析的基本原理
F分布的特点:
1、是平均数 F 1 ,取值区间为[0,∞)的一组曲线;
2、在 11和2 2F分布是反向J型,在 1 3 时,曲线转为偏态;
3、F分布下一定区间的概率可以通过书中的附表5查得。

卫生统计学---方差分析

卫生统计学---方差分析

c4 0.419 -0.663 -0.663 -0.196 0.740 1.591 0.942 0.810 -1.279 0.410 0.262
c5 0.466 -1.032 -1.032 -0.465 1.752 0.029 -0.694 -0.790 1.067 0.016 -0.017
c6 -1.357 0.151 0.151 0.535 0.850 -1.806 0.942 -1.634 -0.745 0.856 -0.140

ni
2


k SS组内
i 1
ni
( xij
j 1
xi )2

k i 1

ni j 1
xi2j


xij
j 1
ni




组内 N k
2019/12/5
19
ANOVA
• 三种变异的关系:线性可加性
SS总 SS组间 SS组内
Ronald Fisher
2019/12/5
11
ANOVA
• 常用术语:
– 因素:所要检验的对象称为因素(如研究某种 药物的不同剂量疗效,药物即因素)
– 水平:因素的具体表现称为水平(药物的每个 剂量为一个水平)
– 观察值:在每个因素水平下得到的样本值
2019/12/5
12
ANOVA
• 变异的测量:
c10 0.562 0.828 1.446 0.487 0.208 0.603 0.549 0.416 -0.472 1.080 0.571
S 0.970
1.072
1.026
0.844 0.887 1.128 0.995 0.876 0.839 0.510

卫生统计学第六章-方差分析

卫生统计学第六章-方差分析

谢谢!
27
SS 组内 SS 总 SS 组间
组内 N k
平均变异
MS组间
=
SS 组间
组间
MS组内 =
组内
SS组内
14
变异分解
SS总
SS组间 SS组内
方差分析表
变异来源
SS
MS
F

X
2
( X
N
)2
N-1
组间
(
j
X ij )2 (
i
ni
X )2 N
SS k-1
MS 组间 组间
组间
MS 组内
组内
方差分析表
变异来源 SS DF MS F值 P值 组间 119.8314 2 59.916 14.32 <0.05 组内 112.9712 27 4.184
总变异 232.8026 29
18
3.求 P 值,下结论。
按=0.05水准,拒绝H0,接受H1,认为三组
的差异具有统计学意义(统计结论),不同时期切 痂对大鼠肝脏的ATP平均含量有影响,以B组最 高,其次为A组,C组最低(专业结论)。
完全随机设计资料的方差 (one-way ANOVA)
one-way ANOVA
完全随机设计(completely random design) 只设计一个处理因素,该因素有两个或两 个以上水平,采用完全随机的方法直接将 受试对象分配到各个处理水平组。各处理 水平组例数可以相等也可以不等。
表1 大鼠烫伤后肝脏ATP的测量结果(mg)
从正态分布总体的随机样本
例1中每个组测得的ATP含量服从正态分布
3. 方差齐性 ( homoscedasticity )

方差分析

方差分析

还不能认为三个总体方差不齐。
2. Levene检验
既可用于两总体方差奇性检验,也可用于多个 总体方差奇性检验。该法是将原始观测值 X ij 转换为 相应离差Zij , 然后按下述公式进行单向方差分析, 以相应自由度查F界值表得到结论。 计算公式:
F (k 1) ( zij zi ) ( N k ) ni ( zi z ) 2
卫生统计学(第五版)
卫生统计学与数学学教研室
第九章
方差分析
一、 完全随机设计资料的方差分析 二、 随机区组设计资料的方差分析
三、 析因设计资料的方差分析
四、重复测量资料的方差分析
五、 多个样本均数的两两比较
六、方差分析前提条件和数据转换
• 学习要求:
1.掌握方差分析的基本思想; 2.掌握单因素、双因素方差分析的应用条件、
X ij X i
2 (X ij X i)
例9-1的Levene方差奇性检验结果 F 0.177 P 0.838
离差计算方法 Zij ,
X ij M i
F 0.860 0.561
P 0.151 0.547
0.591 0.557
O, Brien
(3)做出推断结 四种计算>方法的 P>0.10。
B1 B2 A1 2 7 A2 5 10 B1 B2 A1 2 7 A2 5 3
可加性
处理效应与误差效应应该是可加的,并服从
方差分析的数学模型,即
xij =μ +αi +βj +εij
这样才能将试验的总变异分解为各种原因所 引起的变异,以确定各变异在总变异中所占的比
例,对试验结果作出客观评价。可加性是否显著
σ12=σ22=…=σn2

六单因素方差分析

六单因素方差分析

可以比较第一组和第二组的NO;再点击next按钮,继续输入下一个组
合,即0,-1,1。
均数两两比较方法
Contrast Coeffici ents group Cont rast 1 2 1 1 1 2 -1 0 3 0 -1
结果分析
Contrast Tests Value of Contrast Contrast Std. Error t no Assume equal 1v ariances 13.6125 26.51068 2 .513 82.4817 26.51068 3.111
趋势检验
理论上,方差分析所对应的分组变量应该是一个无序的变量。
但实际上,往往分组变量的取值也可以体现顺序的意义,比如, 多个时间点上的某项指标的比较;不同 pH 下某些化学物质转 化率的比较等。这类资料并不少见。
对于这类资料,既然是多组间计量资料的比较,当然是优先考 虑单因素方差分析。但是在得到各组间有差异的结论之余,也 应该注意到单纯的方差分析并未利用分组变量中蕴涵的次序信
方差分析的原假设和备择假设为: H0:1=2=…=k H1:k个总体均数不同或者不全相同
M S S S / ( k - 1 ) B B F k - 1 , N k M S S ( /N - k ) W S W
其 中 , M S 是 组 间 均 方 , M S 是 组 内 均 方 , 在 原 假 设 成 立 B W 时 , F 值 应 该 服 从 自 由 度 为 k 1 , N k 的 中 心 F 分 布 。
*. The mean difference is sig nificant at the .05 level.
均数两两比较方法
假设在调查的设计阶段,就计划好了第二组和第一组,以及第三 组和第一组的比较,可以使用主对话框中的contrast 按钮实现。

医学统计学(方差分析)

医学统计学(方差分析)

24名患者与健康人的血磷值大小不等,称这种
变异为总变异。可以用总离均差平方和
SS总=
及N来反映,总自由度 νT=N-1。
2个组各组内部血磷值也不等,这种变异称为 组内变异,其大小可用2组组内离均差平方和 SS组内= ( xij xi ) =(ni
k 2 i 1 j 1 nj
1)s
教学内容提要

重点讲解:
方差分析的基本思想
完全随机设计的单因素方差分析
多个样本均数间的多重比较

介绍:方差分析的原理与条件
与前面讲过的假设检验相同的是:
不同的是:方差分析用于多个均数的比较。 t检验是用 t值进行假设检验,方差分析则用 F值进行假设检验
方差分析的任务:统计量F的计算 F=MS1/MS2
SS总
( x
i j
x ) ij
2
SS总=SS组间+SS组内 v总=ν组间+ν组内
直观意义
SS组间
检验统计量
MS组间 (k 1) F MS组内 SS组内 (N k)
F统计量具2个自由度: v1, v2
MS组间 1 H 0成立时 F = MS组内 1 H1成立时
SS总= SS组内+ SS组间 总= 组内+ 组间
SS组间 组间 MS组间
统计量F 的计算及其意义
F=MS组间/MS组内 自由度: 组间=组数-1
组内=N-组数
通过这个公式计算出统计量F,查表求
出对应的P值,与进行比较,以确定是否
为小概率事件。
各种符号的意义

xij第i 个组的第j 个观察值


i=1,2,…k

医学统计学(课件)方差分析

医学统计学(课件)方差分析

要点二
原理
通过将因变量和协变量之间的关系线 性化,进行线性回归分析,并控制其 他因素的影响。
要点三
应用
医学研究中用于研究疾病与基因型、 环境因素之间的关系,社会科学中用 于研究收入和教育水平的关系等。
多重比较方法
01
定义
多重比较方法是方差分析的一种补充 方法,用于比较多个组之间的差异。
02
原理
通过比较每个组与对照组或其他组之 间的差异,推断各组之间的差异是否 具有统计学显著性。
重复测量方差分析
定义
重复测量方差分析是方差分析的另一种拓展,用于比较多次测量或重复观测的差异。
原理
通过将多次测量视为不同的观察对象,对测量误差进行控制和调整。
应用
医学研究中常用于比较不同治疗方案的效果,以及社会科学中研究时间序列数据的变化等。
协方差分析
要点一
定义
协方差分析是方差分析与其他统计方 法的结合,通过控制一个或多个协变 量对因变量的影响。
偏度检验
检查数据分布的偏斜程度。
峰度检验
检查数据分布的峰态。
正态性检验
通过图形和统计量判断数据是否符合正态分布。
方差齐性检验
• 方差齐性检验:通过Levene's Test或Bartlett's Test检验各组方差是否相等。
主效应检验
将数据按照分组变量进行分组,并 对每个分组变量的平均值进行计算 。
方差分析还可以与其他统计方法结合 使用,例如与回归分析结合可进行协 方差分析和混合线性模型分析等。
02
方差分析基本原理
数学模型
数学模型的假设
假定每个总体均数之间有差异,且每个总体均数与模型中其他变量的关系已知。

卫生统计学 方差分析基础

卫生统计学   方差分析基础
随机区组设计又称配伍组设计,通常是将受试对象按
性质(如动物的窝别、性别、体重等非实验因素)相同或 相近者组成b个区组(又称配伍组),再将每个区组中的 受试对象随机地分配到k个处理组中去。随机区组设计
的方差分析属无重复数据的两因素方差分析(two-way
ANOVA)。
例2 为探索丹参对肢体缺血再灌注损伤的影响,将30
1 2
本例:v1=3-1=2,v2=36-3=33。查附表3-1,得P<0.001。 所以按 =0.05水准,拒绝H0,接受H1,差异有统计学上 显著意义。可以认为三组不同的喂养方式下大白鼠体重
改变总体水平不同或不全相同。
④. 确定概率P值 以求F值时分子的自由度v1=v组间,分母的自由 v2=v组内查附表3-1的F界值表,得到P值。 ⑤. 下结论 若F≥Fa(v1,v2),则P≤ ,按水准,拒绝H0,接受 H1,差异有统计学意义。
本均数 X i 也不相同,这种变异称为组内变异。组内变异
反映了随机变异(含个体差异和测量误差),故又称随机误 差。组内变异大小可用(观察数据-组均数)2之和SS组内与
组内均方MS组内来描述。
SS组内 X ij X i ni 1 S
2 i j i
2 i
MS组内
确实有作用),同时也包括了随机误差(含个体差异和测量
误差)。组间变异大小可用(组均数-总均数)2之和SS组间与组 间均方MS组间来描述。
SS组间 ni X i X
i
2
MS组间
SS组间
组间
组间 1 k 1,k 表示处理组数
3. 组内变异
各组内大白鼠体重差值Xij大小各不相同,与其本组的样
SS组间 31291.67 MS组间 15645.83 组间 2

医学统计学方差分析

医学统计学方差分析

医学统计学方差分析方差分析是一种统计学方法,用于比较三个或三个以上的组之间的平均值是否存在显著差异。

在医学研究中,方差分析常用于比较不同治疗方法或不同个体群体之间的差异,以确定是否存在统计学上的显著差异。

方差分析的基本原理是比较组间离散程度与组内离散程度的比值,即组间均方与组内均方的比值。

组间方差表示不同组之间的差异性,组内方差表示同一组内个体之间的变异程度。

如果组间离散程度显著大于组内离散程度,即组间均方大于组内均方,就可以得出组间存在显著差异的结论。

在医学研究中,方差分析可以应用于很多不同的情况。

举例来说,我们可以使用方差分析来比较不同药物对同一疾病的治疗效果,或者比较不同药物剂量对同一疾病的治疗效果。

我们还可以使用方差分析比较不同年龄组、性别组或不同地区患者之间的其中一种疾病发病率。

方差分析的核心是比较组间差异与组内差异。

组间差异可以通过计算组间均方来得到。

组间均方的计算公式为组间平方和除以组间自由度。

组间平方和是每个组内数据与该组均值之差的平方的总和。

组间自由度等于组数减1、组内差异可以通过计算组内均方来得到。

组内均方的计算公式为组内平方和除以组内自由度。

组内平方和是每个组内数据与该组均值之差的平方的总和。

组内自由度等于总体样本量减去组数。

计算得到组间均方和组内均方之后,即可计算F值。

F值等于组间均方除以组内均方。

F值的计算结果可以与F分布的临界值进行比较,以判断组间均方是否显著大于组内均方。

如果F值大于F分布的临界值,就可以得出组间存在显著差异的结论。

除了F值,方差分析还可以计算一些其他的统计量。

例如,可以计算每个组的均值和标准差,以了解不同组之间的差异程度。

还可以计算方差分析表,其中包含了组间平方和、组间自由度、组间均方、组内平方和、总平方和、总自由度、组内自由度和组内均方等统计量。

需要注意的是,在进行方差分析之前,需要检验数据的正态性和方差齐性。

正态性检验可通过绘制正态概率图、Shapiro-Wilk检验或Kolmogorov-Smirnov检验进行。

医学统计学方差分析课件

医学统计学方差分析课件

协方差分析
实验设计
协方差分析用于研究两个独立变量对因变量的影响,同时控制一个或多个协变量对结果的影响。
数据要求
各组样本量需相等,且满足方差齐性和正态性假设。
统计软件实现
一般使用SPSS、SAS、R等统计软件进行计算和分析。
01
02
03
区别
方差分析主要研究独立变量对因变量的影响,而相关性分析主要研究两个变量之间的相关关系;方差分析需要满足随机化和对照原则,而相关性分析不需要;方差分析可以控制协变量对结果的影响,而相关性分析不能。
方差分析的基本思想是将数据的总变异分解为不同来源的变异,包括组间变异和组内变异。
组间变异是由于不同因素或分组的影响导致的,可以用方差来度量;组内变异是由于随机误差或其他未知因素导致的,可以用组内均方来度量。
方差分析的目的是比较不同因素或分组对因变量的影响是否显著,即组间变异与组内变异之间的差异是否有统计学意义。
方差分析在药物疗效研究中的应用
总结词
医学遗传学研究中应用方差分析可以研究基因型与表型之间的关系,分析遗传因素对疾病等表型特征的影响。
详细描述
通过收集患者的基因型和表型数据,研究人员可以使用方差分析来比较不同基因型患者之间的表型特征是否存在显著性差异。例如,研究人员可以比较不同基因型精神分裂症患者的症状严重程度是否有所不同。
效应大小
效应大小是指各因素对结果的影响程度。在方差分析中,应注意效应大小的评估,以便更好地了解各因素对结果的贡献程度。通常,可以通过计算因素贡献率、标准化均方差等指标来评估效应大小。
样本量大小与效应大小
VS
在方差分析中,如果因素水平存在差异,会对结果产生影响。因此,需要对因素水平进行调整,以消除其对结果的影响。例如,可以通过采用配对或配伍设计来平衡各组间的因素水平。

生物统计学第六章方差的全面分析

生物统计学第六章方差的全面分析

t检 验 的 统 计 量 是
x1x2
(n11)s1 2(n21)s2 2 n1n22
n 11n 12
这部分是对差 原 2的 始估 数计 据, 方它样 只本 用的 了数 两
但我们 a个有 样本,没有 时被 的全 利部 用同 来 2。估 所以,我们 2的 认估 为计 对有待改善。
因此,两两t检验生的物统精计学确第六性章方有差的待全面提。 分析高
a5时1作 次 0 检 H 0被 验接 ,受1 的 ) 1概 = 00.9率 15 = 00.5 为 98 (
I型错 1- 0 误 .59= 80.4 7013
通过以上分 a的析 增, 大随 , I型 着 检错 验误 的的 大大增大,是 这不 样可 的靠 检的 验。
生物统计学第六章方差的全面分析
原因(3)检验统计量的精确性低
生物统计学第六章方差的全面分析
5、试验处理(treatment):在试验对象上实施的事先设计 好的具体项目,简称处理。在进行单因素试验时,试验因 素的一个水平就是一个处理;对于双因素试验,处理的个 数等于两个因素水平个数的乘积。每个处理可以看做是一 个总体,每个处理得到的一组数据可以看做是从这个处理 总体中抽取的一个样本的数据。
2、试验指标(experiment index):为衡量试验结果的好坏 或处理效应的高低,在试验中具体测定的性状或观测的项目。
3、试验因素(experiment factor):试验中所研究的影响试 验指标的因素:单因素、双因素或多因素试验。
4、因素水平(level of factor):因素的具体表现或数量等级。
(二)两类方差
1、处理内方差:在因素的同一水平(同一个总体)下,样本 数据的方差
2、处理间方差:因素的不同水平(不同总体)下,各样本之 间的方差。

医学统计学(课件)方差分析

医学统计学(课件)方差分析
医学统计学(课件)方 差分析
汇报人:
日期:
目录
• 方差分析概述 • 方差分析的数学模型与步骤 • 方差分析在医学中的应用 • 方差分析的局限性及注意事项 • 方差分析的软件实现 • 方差分析案例解析
01
方差分析概述
定义与原理
方差分析(ANOVA)是一种统计方法,用于比较三个或更多组间的均值差异,以此确定因素对 因变量的影响。
案例三
总结词
通过方差分析,可以比较不同品牌疫苗接种后不良反 应发生率的差异,为选择安全可靠的疫苗提供参考。
详细描述
在疫苗接种研究中,不同品牌疫苗接种后不良反应发 生率可能存在差异。方差分析可以用于比较不同品牌 疫苗接种后不良反应发生率的差异,以评估不同疫苗 的安全性。结果可以为疫苗选择提供参考依据,以最 大程度地减少不良反应的发生。
VS
例如,研究不同治疗方案对某疾病患 者疗效的影响、不同地区居民收入差 异等。
02
方差分析的数学模型与步骤
数学模型
方差分析(ANOVA)的数学模型
F = MS组间 / MS组内。其中,MS组间是各组间的均方,MS组内是各组内的均方。
方差分析的基本思想
将总的变异分解为组间变异和组内变异两部分,并计算它们的比值,即F值。
03 多重比较
在多个因素之间进行多重比较,确定各因素之间 的差异以及治疗效果的差异。
方差分析的局限性及注意事
04

样本量与效应指标的选择
样本量
方差分析对样本量有一定的要求,过小的样本量可能导致统计结果不稳定。在实验设计时,应充分考虑样本量对 结果的影响,并合理选取样本量。
效应指标
方差分析主要关注多个组间的均值差异,因此应选择合适的效应指标,如均数、中位数等,来反映各组的平均水 平。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意:
1、ANOVA与试验设计类型联系在一起, 并非任何变异都有适当的分解。
2、数据要求:①各次观察独立,即任何两 个观察值间均不相关 ; ②每一水平下的观 察值xij分别服从总体均数为 ij的正态分布; ③各总体的方差相等,即方差齐性 homogeneity of variance.(任何观察值都是 独立地来自具有等方差的正态总体)
组内变异反映的观察值的随机误差,如个 体差异和随机测量误差
4、三种变异的关系
l总=l组间+l组内
k ni
l总
(xij x)2
i1 j
k ni
[( xij xi ) (xi x)]2
i1 j
k
k ni
ni (xi x)2
(xij xi )2
i 1
i1 j
l组间 l组内
2、此外,同一受试对象不同时间点上的观 察,或同一样本给予不同处理的比较,亦 当作随机区组设计进行分析。
3、由于区组内个体特征比较一致,减少了 个体间变异对结果的影响,统计效率高, 易检出组间的差别。
4、用两因素方差分析two-way ANOVA,两 因素指研究因素和区组因素。研究因素有k 个水平,共n个区组。
三、分析计算步骤:例6-3,P 63
1、建立检验假设和确定检验水准
H0:放置不同时间的血糖浓度相等,即
1 = 2= 3= 4
H1:放置不同时间的血糖浓度不全相等 =0.05 2、计算检验统计量F值,根据下表计算公 式计算
随机区组方差分析计算公式
变异来源
SS
ν
MS
F
处理间
1
n
k i 1
(
n j 1
5、当k=2时,两因素方差分析等价于配对t 检验,且F = t2
二、随机区组设计方差分析中变异的分解:
总变异分解为:处理组间变异、误差、区 组间变异(新增的,用ss区组l区组表示,大小 为各区组均数与总均数的离均差平方和)。 ss总=ss处理+ss区组+ss误差 自由度分解: 总= 处理+ 区组+ 误差 N-1=(k-1)+(n-1)+(k-1)(n-1). k为处理组数, n为区组数,N为总例数
3= 4
H1: 4种衣料吸附硼氢量的总体均数不全相等 =0.05
2、计算检验统计量F值:如下表
k n1
(
xij )2
C i1 j1 N
成组设计方差分析计算表
变异来源
SS
组间
ni
(
k
xij )2
j1
i 1
ni
C
组内 SS 总-SS 组间

k ni
xi2j C
i1 j1
ν MS F
k-1 SS 组间 MS 组间 /组间 /MS 组内
各组样本含量相等和各组样本含量不等时, 计算的基本方法完全一样,只是在计算l组间 时有所不同,相等时将ni直接用n计算即可。 举例:P61,例6-2
第三节 随机区组设计的ANOVA Two-way ANOVA
一、概念:
1、随机区组设计randomized block design, 亦称配伍组设计:应用分层的思想,事先 将受试对象按某种或某些特征分为若干个 区组block,使每个区组内的观察对象的特 征尽可能的相近。每个区组内的观察对象 数与研究因素的水平数相等,分别使每个 区组内的观察对象随机地接受研究因素某 一水平的处理。
总=N-1=(k-1)+(N-k)= 组间+组内
三、方差分析的基本思想:
总变异可分解为组间变异和组内变异两个 部分,相应的总自由度也分解为组间自由 度和组内自由度。如果各样本均数来自同 一总体,即各组之间无差别,则组间变异 和组内变异均只反映随机误差,这时若计 算组间均方与组内均方的比值,F=MS组间 /MS组内,应接近1。反之,若各样本均数不 是来自同一总体,组间变异较大,F值将明 显大于1。要大到多大程度才有统计学意义?
这个程度就是与随机误差而言。即以随机 误差进行衡量,若处理组间的变异明显大 于组内变异,则不能认为组间的变异仅反 映随机误差,也就是说处理因素有作用。
R. A. Fisher于20世纪20年代推导出在无效 假设成立的情况下,统计量F的分布规律。 1934年G. W. Snedecor以Fisher的名字命 名了这一分布,称F分布,故ANOVA又称F 检验。F(组间,组内)查表
xij )2
C
k-1
SS 处理/ν处理 MS 处理/MS 误差区源自间1knk
(
j1 i1
xij )2
N-k SS 组内 /组内
N-1
以P59表6-1实例进行计算:先计算基本数 据结果,再代入上表的公式计算:C、SS、 MS、F等
一般将计算结果列为表6-2的形式,见P61
3、确定P值和作出统计推断结论
按计算所得F值:11.1644,查附表6-2, 表中1指分子均方的自由度, 2为分母均 方的自由度。F=11.164>F0.01(3,16)=5.29,故 P<0.01。认为四组均数间差别有高度统计 学意义
第二节 完全随机设计的单因素
ANOVA(one-way ANOVA)
按完全随机化的原则将受试对象随机分配 到一个研究因素的多个水平中去,然后观 察试验效应。
目的:比较不同水平下,各组均值间的差 别是否具有统计学意义
基本步骤:P59,例6-1为例
1、建立检验假设和确定检验水准:
Ho:4种衣料吸附硼氢量的总体均数相等,即 1 = 2=
(优选)卫生统计学第六章方 差分析
2、组间变异:各处理组的样本均数大小不 一,用各组均数与总均数的离均差平方和 表示,记为SS组间或l组间,组间自由度 组间 =k-1。MS组间=l组间/ 组间 组间变异反映的是处理因素的作用,同时 也包括随机误差
均方:mean square, MS
3、组内变异:各处理组内部观察值大小不 等,用各处理组内部每个观察值与组均数 的离均差平方各表示,记为l组内。 组内=(n1-1)+…+(nk-1)=N-k MS组内=l组内/ 组内
基本思想:根据资料变异的不同来源,将
全部观察值总的离均差平方和和自由度分
解为两个或多个部分,除随机误差外,其 余每个部分的变异可由某个因素的作用(或 某几个因素的交互作用)加以解释,如各组 均数间的变异SS组间,可由处理因素的作用 加以解释,通过比较不同变异来源的均方, 用F分布作出统计推断,从而了解该因素对 观察指标有无影响。
相关文档
最新文档