自动化专业英语课文重点句子翻译(精)
自动化专业英语原文和翻译
自动化专业英语原文和翻译Automation in the Field of EngineeringIntroduction:Automation plays a crucial role in various industries, and the field of engineering is no exception. In this document, we will explore the importance of automation in engineering and its impact on various aspects of the industry. We will also provide a detailed analysis of the benefits and challenges associated with automation in engineering. Additionally, we will discuss the significance of specialized English language skills in the automation profession and provide a translated version of the content in Chinese.Importance of Automation in Engineering:Automation has revolutionized the engineering industry by enhancing productivity, efficiency, and accuracy. It involves the use of advanced technologies and systems to control and monitor various engineering processes. Automation enables engineers to streamline operations, reduce manual labor, and improve overall performance. It plays a vital role in areas such as manufacturing, construction, energy, transportation, and telecommunications.Benefits of Automation in Engineering:1. Increased Productivity: Automation eliminates repetitive and mundane tasks, allowing engineers to focus on more complex and strategic activities. This leads to increased productivity and faster project completion.2. Improved Efficiency: Automated systems can perform tasks more efficiently than humans, resulting in reduced errors and improved quality of work.3. Enhanced Safety: Automation reduces the risk of accidents and injuries by replacing manual labor with machines in hazardous environments.4. Cost Savings: By automating processes, companies can reduce labor costs, minimize waste, and optimize resource utilization, leading to significant cost savings.5. Better Decision-Making: Automation provides engineers with real-time data and analytics, enabling them to make informed decisions and optimize processes for better outcomes.Challenges of Automation in Engineering:1. Initial Investment: Implementing automation systems requires a significant upfront investment in technology, infrastructure, and training.2. Technological Complexity: Automation involves advanced technologies such as robotics, artificial intelligence, and machine learning, which require specialized knowledge and expertise to operate and maintain.3. Workforce Adaptability: Automation may lead to job displacement and require the workforce to acquire new skills to adapt to the changing industry landscape.4. Cybersecurity Risks: With increased reliance on interconnected systems, the risk of cyber threats and data breaches becomes a significant concern in automated engineering environments.Importance of Specialized English Language Skills in Automation:English language proficiency is crucial for professionals in the automation field due to the global nature of the industry. Engineers need to communicate effectively with colleagues, clients, and stakeholders from different countries. Additionally, technical documentation, research papers, and industry standards are often written in English. Proficiency in specialized English terminology related to automation is essential for clear and accurate communication.Translation in Chinese (简体中文翻译):工程自动化的重要性:自动化在各个行业中都发挥着重要作用,工程领域也不例外。
自动化专业英语期末复习课文与翻译
An electrical circuit or network is composed of elements such as resistors , inductors ,and capacitors connected together in some manner .If the network contains no energy sources , such as batteries or electrical generators,it is known as a passive network.On the other hand, if one or more energy sources are present ,the resultant combination is an active network。
In studying the behavior of an electrical network,we are interested in determining the voltages and currents that exist within the circuit. Since a network is composed of passive circuit elements,we must first define the electrical characteristics of these elements.电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成.如果网络不包含能源,如电池或发电机,那么就被称作无源网络。
换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。
在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。
因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性。
In the case of a resistor, the voltage-current relationship is given by Ohm’s law,which ststes that the voltage across the resistor is equal to the current through the resistor multiplied by the value of the resistance. Mathematically, this is expressed as u=iR where u=voltage , V; i=current,A; R=resistance Ω。
自动化专业英语(王宏文主编)课文翻译完整版
PART 1Electrical and Electronic Engineering BasicsUNIT 1A Electrical Networks ————————————3B Three-phase CircuitsUNIT 2A The Operational Amplifier ———————————5B TransistorsUNIT 3A Logical Variables and Flip-flop ——————————8B Binary Number SystemUNIT 4A Power Semiconductor Devices ——————————11B Power Electronic ConvertersUNIT 5A Types of DC Motors —————————————15B Closed-loop Control of DC DriversUNIT 6A AC Machines ———————————————19B Induction Motor DriveUNIT 7A Electric Power System ————————————22B Power System AutomationPART 2Control TheoryUNIT 1A The World of Control ————————————27B The Transfer Function and the Laplace Transformation —————29UNIT 2A Stability and the Time Response —————————30B Steady State—————————————————31UNIT 3A The Root Locus —————————————32B The Frequency Response Methods: Nyquist Diagrams —————33UNIT 4A The Frequency Response Methods: Bode Piots —————34B Nonlinear Control System 37UNIT 5 A Introduction to Modern Control Theory 38B State Equations 40UNIT 6 A Controllability, Observability, and StabilityB Optimum Control SystemsUNIT 7 A Conventional and Intelligent ControlB Artificial Neural NetworkPART 3 Computer Control TechnologyUNIT 1 A Computer Structure and Function 42B Fundamentals of Computer and Networks 43UNIT 2 A Interfaces to External Signals and Devices 44B The Applications of Computers 46UNIT 3 A PLC OverviewB PACs for Industrial Control, the Future of ControlUNIT 4 A Fundamentals of Single-chip Microcomputer 49B Understanding DSP and Its UsesUNIT 5 A A First Look at Embedded SystemsB Embedded Systems DesignPART 4 Process ControlUNIT 1 A A Process Control System 50B Fundamentals of Process Control 52UNIT 2 A Sensors and Transmitters 53B Final Control Elements and ControllersUNIT 3 A P Controllers and PI ControllersB PID Controllers and Other ControllersUNIT 4 A Indicating InstrumentsB Control PanelsPART 5 Control Based on Network and InformationUNIT 1 A Automation Networking Application AreasB Evolution of Control System ArchitectureUNIT 2 A Fundamental Issues in Networked Control SystemsB Stability of NCSs with Network-induced DelayUNIT 3 A Fundamentals of the Database SystemB Virtual Manufacturing—A Growing Trend in AutomationUNIT 4 A Concepts of Computer Integrated ManufacturingB Enterprise Resources Planning and BeyondPART 6 Synthetic Applications of Automatic TechnologyUNIT 1 A Recent Advances and Future Trends in Electrical Machine DriversB System Evolution in Intelligent BuildingsUNIT 2 A Industrial RobotB A General Introduction to Pattern RecognitionUNIT 3 A Renewable EnergyB Electric VehiclesUNIT 1A 电路电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。
自动化专业英语原文和翻译
自动化专业英语原文和翻译引言概述:自动化专业是现代工程技术领域中的重要学科,涵盖了自动控制系统、机器人技术、工业自动化等多个方面。
在学习和实践中,掌握和理解自动化专业的英文术语和翻译是非常重要的。
本文将从五个大点出发,详细阐述自动化专业英语原文和翻译的相关内容。
正文内容:1. 自动控制系统(Automatic Control System)1.1 控制器(Controller)1.2 传感器(Sensor)1.3 执行器(Actuator)1.4 反馈(Feedback)1.5 稳定性(Stability)2. 机器人技术(Robotics)2.1 机器人(Robot)2.2 机械臂(Manipulator)2.3 传感器(Sensor)2.4 视觉系统(Vision System)2.5 自主导航(Autonomous Navigation)3. 工业自动化(Industrial Automation)3.1 自动化生产线(Automated Production Line)3.2 人机界面(Human-Machine Interface)3.3 传感器网络(Sensor Network)3.4 电气控制(Electrical Control)3.5 数据采集(Data Acquisition)4. 自动化软件(Automation Software)4.1 PLC编程(PLC Programming)4.2 HMI设计(HMI Design)4.3 数据分析(Data Analysis)4.4 模拟仿真(Simulation)4.5 系统集成(System Integration)5. 自动化工程(Automation Engineering)5.1 项目管理(Project Management)5.2 自动化设计(Automation Design)5.3 系统调试(System Debugging)5.4 故障诊断(Fault Diagnosis)5.5 性能优化(Performance Optimization)总结:综上所述,自动化专业英语原文和翻译是自动化工程师必备的技能之一。
自动化专业英语中英对照
自动化专业英语中英对照第一篇:自动化专业英语中英对照自动化专业英语中英文对照 retarding torque 制动转矩inductive component 感性(无功)分量 abscissa axis 横坐标induction generator 感应发电机synchronous generator 同步发电机automatic station 无人值守电站hydropower station 水电站process of self – excitation 自励过程auxiliary motor 辅助电动机technical specifications 技术条件voltage across the terminals 端电压steady – state condition 瞬态暂态reactive in respect to 相对….呈感性active in respect to 相对….呈阻性synchronous condenser 同步进相(调相)机coincide in phase with 与….同相synchronous reactance 同步电抗algebraic 代数的algorithmic 算法的biphase 双相的bilateral circuit 双向电路bimotored 双马达的corridor 通路shunt displacement current 旁路位移电流leakage 泄漏lightning shielding 避雷harmonic 谐波的insulator string 绝缘子串neutral 中性的zero sequence current 零序电流sinusoidal 正弦的square平方corona 电晕,放电bypass 旁路voltmeter 电压表ammeter 电流表micrometer 千分尺thermometer 温度计watt-hour meter 电度表wattmeter 电力表private line 专用线路diameter 直径centimeter 厘米restriking 电弧再触发magnitude 振幅oscillation 振荡auxiliary 辅助的protective gap 保护性间隙放电receptacle 插座lightning arrester 避雷装置bushing 套管trigger 起动装置stress 应力deterioration 损坏,磨损spark gap 火花放电隙traveling-wave 行波wye-connected 星形连接enclosure 设备外壳live conductor 带电导体fuse 熔断器structural 结构上的out-of-step 不同步的resynchronize 再同步synchroscops 同步指示器automatic oscillograph 自动示波器nominally 标称sampling 采样potential transformer 电压互感器fraction 分数switchyard 户外配电装置hazard 危险bushing 高压套contact 触点energize 励磁trip coil 跳闸线圈over-current relay 过电流继电器armature 衔铁pickup current 始动电流release current 释放电流solenoid relay 螺管式继电器induction-disc relay 感应圆盘式继电器cast-aluminum rotor 铸铝转子bronze 青铜horsepower 马力random-wound 散绕insulation 绝缘ac motor 交流环电动机end ring 端环alloy 合金inverse time relay 反时限继电器hydraulic 液力的dashpot 阻尼器pneumatic 气动的permanent magnet 永磁体electrical stressing 电气应力mechanical stressing 机械应力deviation 偏差third harmonic voltage 三次谐波电压induction machine 感应式电机horseshoe magnet 马蹄形磁铁magnetic field 磁场eddy current 涡流right-hand rule 右手定则left-hand rule 左手定则slip 转差率induction motor 感应电动机rotating magnetic field 旋转磁场winding 绕组stator 定子rotor 转子induced current 感生电流time-phase 时间相位exciting voltage 励磁电压solt 槽lamination 叠片laminated core 叠片铁芯short-circuiting ring 短路环squirrel cage 鼠笼rotor core 转子铁芯coil winding 线圈绕组form-wound 模绕performance characteristic 工作特性frequency 频率revolutions per minute 转/分motoring 电动机驱动generating 发电per-unit value 标么值breakdown torque 极限转矩breakaway force 起步阻力overhauling 检修wind-driven generator 风动发电机revolutions per second 转/秒number of poles 极数speed-torque curve 转速力矩特性曲线plugging 反向制动synchronous speed 同步转速percentage 百分数locked-rotor torque 锁定转子转矩full-load torque 满载转矩prime mover 原动机inrush current 涌流magnetizing reacance 磁化电抗line-to-neutral 线与中性点间的staor winding 定子绕组leakage reactance 漏磁电抗no-load 空载full load 满载Polyphase 多相(的)iron-loss 铁损complex impedance 复数阻抗rotor resistance 转子电阻leakage flux 漏磁通locked-rotor 锁定转子chopper circuit 斩波电路separately excited 他励的compounded 复励dc motor 直流电动机de machine 直流电机speed regulation 速度调节shunt 并励series 串励armature circuit 电枢电路optical fiber 光纤interoffice 局间的waveguide 波导波导管bandwidth 带宽light emitting diode 发光二极管silica 硅石二氧化硅regeneration 再生, 后反馈放大coaxial 共轴的,同轴的high-performance 高性能的carrier 载波mature 成熟的Single SideBand(SSB)单边带coupling capacitor 结合电容propagate 传导传播modulator 调制器demodulator 解调器line trap 限波器shunt 分路器Amplitude Modulation(AM 调幅Frequency Shift Keying(FSK)移频键控tuner 调谐器attenuate 衰减incident 入射的two-way configuration 二线制generator voltage 发电机电压dc generator 直流发电机polyphase rectifier 多相整流器boost 增压time constant 时间常数forward transfer function 正向传递函数error signal 误差信号regulator 调节器stabilizing transformer 稳定变压器time delay 延时direct axis transient time constant 直轴瞬变时间常数transient response 瞬态响应solid state 固体buck 补偿operational calculus 算符演算gain 增益pole 极点feedback signal 反馈信号dynamic response 动态响应voltage control system 电压控制系统mismatch 失配error detector 误差检测器excitation system 励磁系统field current 励磁电流transistor 晶体管high-gain 高增益boost-buck 升压去磁feedback system 反馈系统reactive power 无功功率feedback loop 反馈回路automatic Voltage regulator(AVR)自动电压调整器reference Voltage 基准电压magnetic amplifier 磁放大器amplidyne 微场扩流发电机self-exciting 自励的limiter 限幅器manual control 手动控制block diagram 方框图linear zone 线性区potential transformer 电压互感器stabilization network 稳定网络stabilizer 稳定器air-gap flux 气隙磁通saturation effect 饱和效应saturation curve 饱和曲线flux linkage 磁链per unit value 标么值shunt field 并励磁场magnetic circuit 磁路load-saturation curve 负载饱和曲线air-gap line 气隙磁化线polyphase rectifier 多相整流器circuit components 电路元件circuit parameters 电路参数electrical device 电气设备electric energy 电能primary cell 原生电池energy converter 电能转换器conductor 导体heating appliance 电热器direct-current 直流time invariant 时不变的self-inductor 自感mutual-inductor 互感the dielectric 电介质storage battery 蓄电池e.m.f = electromotive fore 电动势unidirectional current 单方向性电流circuit diagram 电路图load characteristic 负载特性terminal voltage 端电压external characteristic 外特性conductance 电导volt-ampere characteristics 伏安特性carbon-filament lamp 碳丝灯泡ideal source 理想电源internal resistance 内阻active(passive)circuit elements 有(无)源电路元件leakage current 漏电流circuit branch 支路P.D.= potential drop 电压降potential distribution 电位分布r.m.s values = root mean square values 均方根值effective values 有效值steady direct current 恒稳直流电sinusoidal time function 正弦时间函数complex number 复数Cartesian coordinates 笛卡儿坐标系modulus 模real part 实部imaginary part 虚部displacement current 位移电流trigonometric transformations 瞬时值epoch angle 初相角phase displacement 相位差signal amplifier 小信号放大器mid-frequency band 中频带bipolar junction transistor(BJT)双极性晶体管field effect transistor(FET)场效应管electrode 电极电焊条polarity 极性gain 增益isolation 隔离分离绝缘隔振emitter 发射管放射器发射极collector 集电极base 基极self-bias resistor 自偏置电阻triangular symbol 三角符号phase reversal 反相infinite voltage gain 无穷大电压增益feedback component 反馈元件differentiation 微分integration 积分下限impedance 阻抗fidelity 保真度summing circuit 总和线路反馈系统中的比较环节Oscillation 振荡inverse 倒数admittance 导纳transformer 变压器turns ratio 变比匝比ampere-turns 安匝(数)mutual flux 交互(主)磁通vector equation 向(相)量方程power frequency 工频capacitance effect 电容效应induction machine 感应电机shunt excited 并励series excited 串励separately excited 他励self excited 自励field winding 磁场绕组励磁绕组speed-torque characteristic 速度转矩特性dynamic-state operation 动态运行salient poles 凸极excited by 励磁field coils 励磁线圈air-gap flux distribution 气隙磁通分布direct axis 直轴armature coil 电枢线圈rotating commutator 旋转(整流子)换向器commutator-brush combination 换向器-电刷总线mechanical rectifier 机械式整流器armature m.m.f.wave 电枢磁势波Geometrical position 几何位置magnetic torque 电磁转矩spatial waveform 空间波形sinusoidal – density wave 正弦磁密度external armature circuit 电枢外电路instantaneous electricpower 瞬时电功率instantaneous mechanical power 瞬时机械功率effects of saturation 饱和效应reluctance 磁阻power amplifier 功率放大器compound generator 复励发电机rheostat 变阻器self – excitation process 自励过程commutation condition 换向状况cumulatively compounded motor 积复励电动机operating condition 运行状态equivalent T – circuit T型等值电路rotor(stator)winding 转子(定子绕组)winding loss 绕组(铜)损耗prime motor 原动机active component 有功分量reactive component 无功分量electromagnetic torque 电磁转矩第二篇:自动化专业英语1)the parameterization of the0controller0isC=X+MQ/Y-NQ。
自动化专业英语原文和翻译
自动化专业英语原文和翻译Automation in the Field of EngineeringIntroduction:Automation plays a crucial role in various industries, including the field of engineering. It involves the use of advanced technology and machinery to perform tasks with minimal human intervention. In this text, we will explore the significance of automation in the engineering sector and discuss its benefits and applications.1. Importance of Automation in Engineering:Automation has revolutionized the engineering industry by enhancing productivity, efficiency, and safety. It allows engineers to streamline processes, reduce errors, and optimize resource utilization. By automating repetitive and mundane tasks, engineers can focus on more complex and creative aspects of their work. This leads to improved project outcomes and overall customer satisfaction.2. Applications of Automation in Engineering:2.1 Industrial Automation:In manufacturing industries, automation is extensively used to control and monitor various processes. It involves the use of programmable logic controllers (PLCs), robots, and computer numerical control (CNC) machines. These technologies enable precise and consistent manufacturing, resulting in higher product quality, reduced production time, and increased output.2.2 Process Automation:Automation is also applied in process industries such as oil refineries, chemical plants, and power plants. It involves the use of distributed control systems (DCS) and supervisory control and data acquisition (SCADA) systems. These systems automate the monitoring and control of complex processes, ensuring efficient and safe operation.Automation minimizes the risk of human errors and improves the overall reliability and productivity of these industries.2.3 Building Automation:In the construction and building management sector, automation is employed to control and regulate various systems within buildings. This includes HVAC (heating, ventilation, and air conditioning), lighting, security, and energy management systems. Automation optimizes energy usage, enhances occupant comfort, and improves the overall operational efficiency of buildings.3. Advantages of Automation in Engineering:3.1 Increased Efficiency:Automation eliminates manual intervention, reducing the time required to complete tasks. This leads to increased efficiency and higher productivity in engineering processes. For example, automated assembly lines can produce products at a faster rate compared to manual assembly, thereby reducing production time and costs.3.2 Improved Accuracy and Precision:Automation ensures consistent and precise execution of tasks, minimizing errors caused by human factors. This is particularly crucial in industries where precision is vital, such as aerospace and automotive manufacturing. Automated systems can perform repetitive tasks with high accuracy, resulting in improved product quality and reliability.3.3 Enhanced Safety:Automation reduces the risk of accidents and injuries in the engineering industry. By replacing humans in hazardous or physically demanding tasks, automation improves workplace safety. For instance, robots can handle tasks involving heavy lifting or exposure to harmful substances, protecting workers from potential harm.3.4 Cost Savings:While initial investments in automation technologies may be significant, they often result in long-term cost savings. Automation reduces labor costs by minimizing the need for manual labor and increasing operational efficiency. Moreover, automation optimizes resource utilization, reduces waste, and lowers maintenance costs, leading to overall cost savings for engineering companies.4. Challenges and Considerations:4.1 Skill Requirements:The implementation of automation technologies requires skilled engineers who can design, develop, and maintain automated systems. Companies need to invest in training their workforce to adapt to the changing technological landscape and ensure a smooth transition to automation.4.2 Integration and Compatibility:Integrating automation systems with existing infrastructure and equipment can be challenging. Compatibility issues may arise between different automation components and software, requiring careful planning and coordination. It is essential to ensure seamless integration to maximize the benefits of automation.4.3 Security Concerns:As automation involves the use of interconnected systems and networks, cybersecurity becomes a critical consideration. Engineering companies must implement robust security measures to protect against potential cyber threats and ensure the integrity and confidentiality of sensitive data.Conclusion:Automation has become an integral part of the engineering industry, enabling increased productivity, efficiency, and safety. From industrial manufacturing to building management, automation offers numerous benefits, including improved accuracy, reduced costs, and enhanced workplace safety. However, it is crucial to address challenges such as skill requirements, integration issues, and cybersecurity concerns tosuccessfully implement automation in engineering processes. Embracing automation will undoubtedly pave the way for a more advanced and sustainable future in the field of engineering.。
电气工程及其自动化专业英语第二章课文翻译
第二章第一篇To say that we live in an age of electronics is an understatement. From the omnipresent integrated circuit to the equally omnipresent digital computer, we encounter electronic devices and systems on a daily basis. In every aspect of our increasingly technological society—whether it is science, engineering, medicine, music, maintenance, or even espionage—the role of electronics is large, and it is growing.谈论关于我们生活在一个电子学时代的论调是一种空泛的论调。
从无处不在的集成电路到同样无处不在的数字计算机,我们在日常活动中总会遇到电子设备和电子系统。
在我们日益发展的科技社会的方方面面——无论是在科学、工程、医药、音乐、维修方面甚至是在谍报方面——电子学的作用是巨大的,而且还将不断增强。
In general, all of the tasks with which we shall be concerned can be classified as "signal-processing “tasks. Let us explore the meaning of this term一般说来,我们将要涉及到的工作被归结为“信号——处理”工作,让我们来探究这个术语的含义吧。
A signal is any physical variable whose magnitude or variation with time contains information. This information might involve speech and music, as in radio broadcasting, a physical quantity such as the temperature of the air in a room, or numerical data, such as the record of stock market transactions. The physical variables that can carry information in an electrical system are voltage and current. When we speak of "signals", therefore, we refer implicitly to voltages or currents. However, most of the concepts we discuss can be applied directly to systems with different information-carrying variables. Thus, the behavior of a mechanical system (in which force and velocity are the variables) or a hydraulic system (in which pressure and flow rate are the variables) can often be modeled or represented by an equivalent electrical system. An understanding of the behavior of electrical systems, therefore, provides a basis for understanding a much broader range of phenomena. 信号就是其与时间有关的量值或变化包含信息的任何物理变量。
自动化专业英语 原文和翻译 P1U5
第五单元A Types of DC Motors直流电机分类The types of commercially available DC motors basically fall into four categories: ⑴permanent-magnet DC motors, ⑵series-wound DC motors, ⑶shunt-wound DC motors, and ⑷compound-wound DC motors. Each of these motors has different characteristics due to its basic circuit arrangement and physical properties.[1]现在可以买到的直流电机基本上有四种:⑴永磁直流电机,⑵串励直流电机,⑶并励直流电机,⑷复励直流电机。
每种类型的电动机由于其基本电路和物理特性的不同而具有不同的机械特性。
Permanent-magnet DC Motors永磁直流电机The permanent-magnet DC motors, shown in Fig. 1-5A-1, is constructed in the same manner as its DC generator counterpart. The permanent-magnet DC motor is used for low-torque applications.When this type of motor is used, the DC power supply is connected directly to the armature conductors through the brush/commutator assembly. The magnetic field is produced by permanent magnets mounted on the stator. The rotor of permanent magnet motors is a wound armature.永磁直流电机,如图Fig. 1-5A-1所示,是用与直流发电机同样的方法建造的。
自动化专业英语原文和翻译
自动化专业英语原文和翻译Automation in the Field of EngineeringIntroduction:Automation plays a crucial role in various industries, including engineering. As a result, proficiency in both English and technical knowledge is essential for professionals in the field of automation. This article will provide an original text and its translation in English, focusing on the importance of automation in engineering.Original Text:自动化是一种通过使用计算机技术和控制系统来实现自动操作和控制的技术。
在工程领域,自动化被广泛应用于诸如制造、能源、交通、通信等各个方面。
自动化技术的发展使得工程师能够更高效地完成任务,提高生产效率,并减少了人为错误的发生。
自动化系统可以用于监控和控制各种设备和过程,从而实现自动化生产线、智能交通系统和智能家居等应用。
自动化在工程领域的应用非常广泛。
例如,在制造业中,自动化系统可以用于自动装配和生产线控制,从而提高产品质量和生产效率。
在能源领域,自动化系统可以用于监控和控制发电厂的运行,实现能源的高效利用。
在交通领域,自动化技术可以应用于智能交通信号灯控制和车辆导航系统,提高交通效率和安全性。
在通信领域,自动化系统可以用于网络管理和故障诊断,确保通信网络的稳定运行。
自动化专业英语翻译:Automation is a technology that enables automatic operations and control through the use of computer technology and control systems. In the field of engineering, automation finds extensive applications in various sectors such as manufacturing, energy, transportation, and communication. The development of automation technology allows engineers to efficiently complete tasks, enhance productivity, and reduce human errors. Automation systems can be used for monitoring and controlling various devices andprocesses, enabling applications such as automated production lines, intelligent transportation systems, and smart homes.Automation finds wide-ranging applications in the field of engineering. For instance, in the manufacturing industry, automation systems can be employed for automated assembly and production line control, thereby improving product quality and productivity. In the energy sector, automation systems can be utilized for monitoring and controlling the operation of power plants, facilitating efficient utilization of energy resources. In the transportation domain, automation technology can be applied to intelligent traffic signal control and vehicle navigation systems, enhancing traffic efficiency and safety. In the communication field, automation systems can be used for network management and fault diagnosis, ensuring stable operation of communication networks.Conclusion:The integration of automation in the field of engineering has revolutionized various industries, enabling efficient and reliable operations. Proficiency in both technical knowledge and English language skills is essential for professionals in the automation field to effectively communicate and implement automation solutions. By harnessing the potential of automation, engineers can optimize processes, improve productivity, and contribute to the advancement of the engineering industry.。
自动化专业英语原文和翻译
自动化专业英语原文和翻译引言概述:自动化是现代工程技术领域中的重要学科,它涉及到自动控制系统、机器人技术、传感器技术等多个领域。
在自动化专业中,学习和掌握英语是必不可少的,因为英语是国际通用语言,也是自动化领域中的重要交流工具。
本文将介绍一些常见的自动化专业英语原文和翻译,以帮助学习者更好地理解和运用这些术语。
一、自动化概念及应用1.1 自动化定义英文原文:Automation refers to the use of technology to control and operate processes or systems without human intervention.翻译:自动化是指利用技术来控制和操作过程或系统,无需人为干预。
1.2 自动化应用领域英文原文:Automation is widely applied in manufacturing, transportation, healthcare, and many other industries.翻译:自动化广泛应用于制造业、交通运输、医疗保健等许多行业。
1.3 自动化优势英文原文:Automation offers advantages such as increased productivity, improved efficiency, and enhanced safety.翻译:自动化提供了增加生产力、提高效率和增强安全性等优势。
二、自动控制系统2.1 自动控制系统定义英文原文:An automatic control system is a set of devices that manage and regulate the behavior of a system or process automatically.翻译:自动控制系统是一组设备,能够自动管理和调节系统或过程的行为。
2.2 自动控制系统组成英文原文:An automatic control system consists of sensors, actuators, controllers, and communication networks.翻译:自动控制系统由传感器、执行器、控制器和通信网络组成。
自动化专业英语原文和翻译P1U6
第六单元A AC Machines交流机In troductio n简介The electrical mach ine that conv erts electrical en ergy into mecha ni cal en ergy, and vice versa, is the workhorse in a drive system. A machi ne is a complex structure electrically, mechanically, and thermally.Although machines were introduced more than one hun dred years ago, the research and developme nt in this area appears to be n ever-e nding. However, the evoluti on of machi nes has bee n slow compared to that of power semic on ductor devices and power electr onic con verters.Traditi on ally, AC machines with a constant frequency sinusoidal power supply have been used in con sta nt-speed applicatio ns, whereas DC mach ines were preferred for variable-speed drives. But in the last two or three decades,we have seen extensive research and development efforts for variable-frequency, variable-speed AC machine drive tech no logy, and they will progressively replace DC drives. In most cases, new applicati ons use AC drives.将电能转换成机械能或将机械能转换成电能的电机是传动系统中的主要组成部分。
自动化专业英语课后单词及课后句子总结
P3U1architecture n. 体系结构instruction set 指令集binary-coded adj. 二进制编码的central processing unit (CPU) 中央处理器processor n. 处理器location n. (存储)单元word length 字长access v. 存取,接近fetch v., n. 取来field n. 域,字段opcode n. 操作码operand n. 操作数address n. 寻址single-precision adj. 单精度的floating-point adj. 浮点的terminal n. 终端complement v. 补充,求补decode v. 解码,译码request n. 请求inactive n. 不活动,停止I/O-mapped adj. 输入/输出映射的(单独编址)memory-mapped adj. 存储器映射的(统一编址)难句翻译[1] …how the instruction execution cycle is broken down into its various components.……指令执行周期怎样分解成不同的部分。
[2] One way to achieve meaningful patterns is to divide up the bits into fields…一种得到(指令)有效形式的方法是将(这些)位分成段……[3] The majority of computer tasks involve the ALU, but a great amount of data movement is required in order to make use of the ALU instructions.计算机的大多数工作涉及到ALU(逻辑运算单元),但为了使用ALU指令,需要传送大量的数据。
自动化专业英语原文和翻译
自动化专业英语原文和翻译自动化专业英语原文和翻译是指将自动化专业相关的文本内容进行英文原文和翻译的处理。
自动化专业是现代工程技术领域的一个重要学科,涉及到自动控制、机械电子、计算机科学等多个方面的知识。
在国际交流和学术研究中,使用英语进行交流和发表论文是非常普遍的。
下面是一段关于自动化专业的英文原文和翻译示例:原文:Automation is the technology by which a process or procedure is performed with minimal human assistance. It plays a crucial role in various industries, including manufacturing, transportation, and healthcare. Automation systems are designed to increase efficiency, improve safety, and reduce human errors. With the rapid development of technology, automation has become an essential part of modern society.翻译:自动化是一种通过最小化人类干预来执行过程或者程序的技术。
它在包括创造业、交通运输和医疗保健等各个行业中起着至关重要的作用。
自动化系统旨在提高效率、改善安全性并减少人为错误。
随着技术的快速发展,自动化已成为现代社会不可或者缺的一部份。
原文:In the field of automation, there are various sub-disciplines, such as industrial automation, process automation, and home automation. Industrial automation focuses on the use of control systems to operate industrial machinery and processes. Process automation involves the use of technology to automate repetitive tasks and streamline workflows. Home automation aims to provide convenience and comfort by integrating various household devices and systems.翻译:在自动化领域中,有各种子学科,如工业自动化、过程自动化和家庭自动化。
自动化专业英语原文和翻译
自动化专业英语原文和翻译英文原文:Automation in the field of engineering has brought about significant advancements and revolutionized various industries. With the help of cutting-edge technology and innovative solutions, automation has become an integral part of many processes, increasing efficiency and productivity.In the field of automation engineering, professionals are responsible for designing, developing, and implementing automated systems and machinery. These systems are designed to perform tasks with minimal human intervention, reducing the risk of errors and improving overall performance.Automation engineering involves the use of various tools and technologies such as programmable logic controllers (PLCs), robotics, and computer-aided design (CAD) software. These tools enable engineers to design and control complex systems, ensuring smooth operations and optimal performance.One of the key benefits of automation in engineering is the ability to streamline processes and reduce manual labor. By automating repetitive tasks, engineers can focus on more complex and critical aspects of their work, leading to increased productivity and higher quality output.Moreover, automation plays a crucial role in enhancing safety in various industries. By replacing human workers with automated systems, the risk of accidents and injuries can be significantly reduced. Automated systems are designed to follow strict safety protocols and can perform tasks in hazardous environments that may be dangerous for humans.In addition to improving efficiency and safety, automation also offers cost-saving benefits. Although the initial investment in automation technology may be high, the long-term savings in labor costs and increased productivity outweigh the initial expenses.Automation can also lead to reduced material wastage and improved resource management.Automation engineering professionals play a vital role in the design and implementation of automated systems. They are responsible for conducting thorough analysis, developing system requirements, and ensuring seamless integration of automation technology into existing processes. They also provide technical support and troubleshooting expertise to address any issues that may arise.In conclusion, automation in the field of engineering has revolutionized various industries by increasing efficiency, productivity, and safety. Automation engineering professionals play a crucial role in designing and implementing automated systems, utilizing cutting-edge technology and innovative solutions. With the continuous advancements in automation technology, the future of engineering looks promising, with even greater possibilities for improved performance and streamlined processes.中文翻译:自动化在工程领域带来了重大的进步,并对各行各业进行了革命性的改变。
(完整版)电气工程及其自动化专业英语第一章课文翻译
第一章第一篇sectiongTwo variables u(t) and i(t) are the most basic concepts in an electric circuit, they characterize the various relationships in an electric circuitu(t)和i(t)这两个变量是电路中最基本的两个变量,它们刻划了电路的各种关系。
Charge and CurrentThe concept of electric charge is the underlying principle for explaining all electrical phenomena. Also, the most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C).电荷和电流电荷的概念是用来解释所有电气现象的基本概念。
也即,电路中最基本的量是电荷。
电荷是构成物质的原子微粒的电气属性,它是以库仑为单位来度量的。
We know from elementary physics that all matter is made of fundamental building blocks known as atoms and that each atom consists of electrons, protons, and neutrons. We also know that the charge e on an electron is negative and equal in magnitude to 1.60210×10 19C, while a proton carries a positive charge of the same magnitude as the electron. The presence of equal numbers of protons and electrons leaves an atom neutrally charged.我们从基础物理得知一切物质是由被称为原子的基本构造部分组成的,并且每个原子是由电子,质子和中子组成的。
自动化专业英语原文和翻译
自动化专业英语原文和翻译英文原文:Automation is the technology by which a process or procedure is performed with minimal human assistance. Automation or automatic control is the use of various control systems for operating equipment such as machinery, processes in factories, boilers, and heat treating ovens, switching on telephone networks, steering, and stabilization of ships, aircraft, and other applications and vehicles with minimal or reduced human intervention. Some processes have been completely automated.自动化是一种通过最少的人力辅助来执行过程或程序的技术。
自动化或自动控制是使用各种控制系统来操作设备,例如机械、工厂中的工艺流程、锅炉和热处理炉、电话网络的开关、船舶、飞机和其他应用和车辆的控制和稳定,从而实现最小化或减少人类干预。
一些过程已经完全自动化。
Automation plays a crucial role in various industries and sectors, including manufacturing, transportation, healthcare, and many others. It involves the use of advanced technologies and control systems to streamline processes, improve efficiency, and reduce human error.In the manufacturing industry, automation is used extensively to carry out repetitive tasks, such as assembly line operations. This not only speeds up production but also ensures consistent quality and reduces the risk of accidents. Robots and robotic systems are commonly employed in manufacturing plants to handle tasks that are dangerous or require high precision.在制造业中,自动化被广泛应用于执行重复性任务,例如流水线操作。
专业自动化英语句子翻译
专业自动化英语句子翻译第一篇:专业自动化英语句子翻译专业英语翻译1.In the case of a resistor(电阻), the voltage-current relationship is given by Ohm’s law, which states that the voltage across the resistor is equal to the current through the resistor multiplied by the value of the resistance.就电阻而言,电压—电流的关系由欧姆定律决定,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。
2. the fundamental law that is applied in(被应用)this method is Kirchhoff’s first law, which states that the algebraic sum of the voltages(电压的代数和)around a closed loop is 0,or ,in any closed loop, the sum of the voltage rises must equal the sum of the voltage drops.这里用到的基本定理是基尔霍夫第一定理,这一定理指出:闭合回路电压代数和为0,在任何闭合回路中,电压增加总量与电压下降的总量相同。
3.Mesh analysis consists of assuming that currents—termed loop(回路)currents—flow in each loop of a network, algebraically summing(代数和)the voltage drops around each loop, and setting each sum equal to 0.网孔分析指的是:假设有一个电流—即所谓的回路电流—流过电路中的每一个回路,求每一个回路电压降的代数和,并令其为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
In the case of a resistor, the voltage-current relationship is given by Ohm’s law, which states that the voltage across the resistor is equal to the current through the resistor multiplied by the value of the resistance.就电阻来说, 电压—电流的关系由欧姆定律决定。
欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。
2]It may be that the inductor voltage rather than the current is the variable of interest in the circuit. 或许在电路中,人们感兴趣的变量是电感电压而不是电感电流。
Viewed in this light, it will be found that the analysis of three-phase circuits is little more difficult than that of single-phase circuits.这样看来,三相电路的分析比单相电路的分析难不了多少。
At unity power factor, the power in a single-phase circuit is zero twice each cycle.在功率因数为 1时,单相电路里的功率值每个周波有两次为零。
It should be noted that if the polarity of point Awith respect to N ( is assumed for the positive half-cycle, then when used in the same phasor diagram should be drawn opposite to, or 180? out of phase with, .应该注意,如果把 A 点相对于 N 的极性(定为正半周,那么在用于同一相量图中时就应该画得同相反,即相位差为 180?One problem with electronic devices corresponding to the generalized amplifiers is that the gains, AU or AI, depend upon internal properties of the two-port system.对应于像广义放大器这样的电子装置,一个问题就是增益 AU 或者 AI ,它们取决于两输入端系统的内部特性。
This is one of the key features of Op-Amp design— the action of the circuit on signals depends only upon the external elements which can be easily varied by the designer and which do not depend upon the detailed character of the Op-Amp itself.这是运算放大器设计的重要特征之一——在信号作用下, 电路的动作仅取决于能够容易被设计者改变的外部元件,而不取决于运算放大器本身的细节特性。
Put very simply a semiconductor material is one which can be “doped” to produce a predominance of electrons or mobile negative charges (N-type; or “holes” or positive charges (P-type.简单地说,半导体是这样一种物质,它能够通过“掺杂”来产生多余的电子,又称自由电子 (N 型 ;或者产生“空穴” ,又称正电子(P 型。
TO1 is the original transistor shape —a cylindrical “can” with the three leads emerging in triangular pattern from the bottom. Looking at the base, the upper lead in the “triangle” is the base, the one to the right (marked by a color spot the collector and the one to the left the emitter. TO1是最早的一种晶体管形状——即一个带有三个引脚的圆柱体“外罩” ,这三个引脚在底部形成三角状。
首先要注意的是, “三角形”上面的引脚是基极,其右面的引脚(由一个彩色点标出为集电极,其左面的引脚为发射极。
We shall now briefly discuss the relevance of such terminology, and in so doing we shall bring out the special aptness of the designations “true” and “false” to identify the possible values of a variable.现在我们将简要地讨论一下这些术语之间的关联,并在此过程中阐明用标示“真”和“假” 来识别一个变量的可能值的特殊用途。
Just as other algebras deal with variables which have a numerical significance, Boolean algebra deals with propositions and is an effective tool for analyzing the relationships between propositions which allow only two mutually exclusive alternatives.和其他处理有数字意义的变量的代数一样, 布尔代数处理的是命题, 而且布尔代数对于分析仅有两个互反变量命题之间的关系是一种有效的工具。
There is a generally prevailing attitude in digital systems to view logic 0 as a basic, undisturbed, unperturbed, quiescent state and to view the logic 1 state as the excited, active, effective state, i.e., the state arrived at “after something has happened.”在数字系统中,普遍的观点是把逻辑 0看成一个基本的、无干扰的、稳定的、静止的状态, 把逻辑 1看成一个激励的、活跃的、有效的状态,也就是说,这种状态是发生在“某种操作动作之后” 。
Such devices operate well in a two-state or binary system, using conduction and cutoff as the operating states, and as a result the binary number system is generally employed in internal operations in digital computers.将导通和关断作为工作状态, 这样的装置可以在两态即二进制系统中运行, 因此数字计算机中的内部操作一般采用二进制系统。
Given the basic idea of a chain of positive and negative, or positive and zero, or zero and negative pulses as representing binary 1s and 0s, there are many possible codes in which the pulses might be transmitted.给出一串正脉冲和负脉冲, 或正脉冲和零, 或者零和负脉冲来表示二进制的 1及0时, 就会有许多这些脉冲可以传递的码。
The reaction time of a human pilot is too slow to enable him or her to fly an aircraft with a lightly damped Dutch roll mode without a yaw damper system.飞行员的反应速度太慢, 如果不附加阻尼偏航系统, 飞行员就无法通过轻微阻尼的侧倾转向方式来驾驶飞机。
Since the output is fed back in a functional form determined by the nature of the feedback elements and then subtracted from the input…因为输出会以由反馈部件特性决定的函数形式反馈回来,然后从输入中减去……The designer quickly becomes adept in relating changes in the Laplace domain to behavior in the time domain without actually having to solve the system equations.设计人员很快就会熟练地把拉普拉斯域的变化与时域状态联系起来, 而不需真地解系统方程 (时域The table is continued horizontally and vertically until only zeros are obtained.这张表向水平(向右垂直(向下方向延伸,直到得到的都是零为止thus eliminating the velocity error, and by being introduced ahead of the point of entry of the disturbance into the system, eliminates the steady-state error resulting from a step in the disturbance.……,这样通过在系统扰动进入点之前引入(积分环节 ,可消除由扰动输入中的阶跃(成分导致的稳态误差。