2018年广东高考理科数学试题及答案
2018年高考广东卷理科数学试题及答案解析版 精品
2018年普通高等学校招生全国统一考试(广东卷)A数学(理科)一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的 1 设i 为虚数单位,则复数56ii-= A 6+5i B 6-5i C -6+5i D -6-5i2 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM= A .U B {1,3,5} C {3,5,6} D {2,4,6}3 若向量BA=(2,3),CA =(4,7),则BC =A (-2,-4)B (3,4)C (6,10)D (-6,-10)4.下列函数中,在区间(0,+∞)上为增函数的是 A.y=ln (x+2) B.y=-1x + C.y=(12)x D.y=x+1x5.已知变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+≤112y x y x y ,则z=3x+y 的最大值为A.12B.11C.3D.-16,某几何体的三视图如图1所示,它的体积为A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是 A.49 B. 13 C. 29D. 198.对任意两个非零的平面向量α和β,定义βββαβα∙∙=∙。
若平面向量a ,b 满足|a|≥|b|>0,a 与b 的夹角⎪⎭⎫⎝⎛0,∈4πθ,且a ·b 和b ·a 都在集合⎭⎬⎫⎩⎨⎧∈Z n 2中,则b a ∙= A .12 B.1 C. 32 D. 52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9-13题)9.不等式|x+2|-|x|≤1的解集为_____。
10. 621⎪⎭⎫ ⎝⎛+x x 的展开式中x ³的系数为______。
(用数字作答)11.已知递增的等差数列{a n }满足a 1=1,423-=a a ,则a n =____。
2018年高考理科数学(全国I卷)参考答案
设函数 g ( x)
1 x 2ln x ,由(1)知, g ( x) 在 (0, ) 单调递减,又 g (1) 0 ,从 x
而当 x (1, ) 时, g ( x) 0 . 所以
f ( x1 ) f ( x2 ) 1 x2 2ln x2 0 ,即 a 2. x2 x1 x2
2 18 (1)20 件产品中恰有 2 件不合格品的概率为 f ( p) C2 20 p (1 p) . 因此 2 f ( p) C p ( 1 p1 8 ) 20 [ 2 2 1 p 8 (p 1 1 7 ) 2]0 2 p 2C p(117 ). p (1 1 0 )
所以 DP 与平面 ABFD 所成角的正弦值为
3 . 4
19.解: (1)由已知得 F (1,0) , l 的方程为 x 1 . 由已知可得,点 A 的坐标为 (1, 所以 AM 的方程为 y
2 2 ). ) 或 (1, 2 2
2 2 x 2或 y x 2 . 2 2
(2)当 l 与 x 轴重合时, OMA OMB 0 . 当 l 与 x 轴垂直时,OM 为 AB 的垂直平分线,所以 OMA OMB . 当 l 与 x 轴不重合也不垂直时, 设 l 的方程为 y k ( x 1) (k 0) , B( x2 , y2 ) , A( x1 , y1 ) , 则 x1 2 , x2 2 ,直线 MA ,MB 的斜率之和为 kMA kMB 由 y1 kx1 k , y2 kx2 k 得
令 f ( p) 0 ,得 p 0.1 . 当 p (0,0.1) 时, f ( p) 0 ;当 p (0.1,1) 时, f ( p) 0 . 所以 f ( p) 的最大值点为 p0 0.1 . (2)由(1)知, p 0.1 . (ⅰ)令 Y 表示余下的 180 件产品中的不合格品件数,依题意知 Y
2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分. 1、设z=,则|z |=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z |=1【考点定位】复数2、已知集合A={x|x 2-x —2〉0},则A =A 、{x|—1<x 〈2}B 、{x|—1x 2}C 、{x|x 〈-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x —2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上.C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半. 【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、—12B、—10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0;d=—3 ∴a5=2+(5—1)*(—3)=—10【考点定位】等差数列求和5、设函数f(x)=x3+(a—1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(—x)=2*(a—1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、-—B、-—C、—+D、—【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处.∴最短路径的长度为AB=【考点定位】立体几何:圆柱体的展开图形,最短路径8。
2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
最新-2018年普通高等学校招生全国统一考试数学理试题广东卷含答案 精品003
2018年普通高等学校招生全国统一考试数学理试题(广东卷,含答案)参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高; 线性回归方程y bx a =+中系数计算公式为1122211()()()nnii i ii i nniii i xx y y x yx y b xx xnxη====---==--∑∑∑∑,a y bx =-,其中,x y 表示样本均值;若n 是正整数,则()n n a b a b -=-12(n n a a b --++ (2)1n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为A.0 B.1 C.2 D.3 3.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a bA.4 B.3C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。
若(,)M x y 为D 上的动点,点A的坐标为,则=⋅z OM OA 的最大值为 A. B. C .4D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为正视图侧视图A.B.C.D.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,TV Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2018广东高考理科数学试题及答案教学文案
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设i iiz 211++-=,则|z|= A 、0B 、21 C 、1D 、22、已知集合{}022>--=x x x A ,则A C R =A 、{}21<<-x xC 、{}{}21>⋃-<x x x xB 、{}21≤≤-x xD 、{}{}21≥⋃-≤x x x x3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是: A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
4、记n S 为等差数列{}n a 的前n 项和,若4233S S S +=,21=a ,则5a = A 、-12B 、-10C 、10D 、125、设函数ax x a x x f +-+=231)()(,若)(x f 为奇函数,则曲线)(x f y =在点(0,0)处的切线方程为: A 、x y 2-=B 、x y -=C 、x y 2=D 、x y =6、在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A 、4143- C 、AC AB 4143+ B 、4341- D 、AC AB 4341+ 7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A 、172B 、52C 、3D 、28.设抛物线x y C 42=:的焦点为F ,过点),(02-且斜率为32的直线与C 交于M ,N 两点,则FM ⋅= A.5B.6C.7D.89.已知函数⎩⎨⎧>≤=,,,,)(0ln 0x x x e x f x a x x f x g ++=)()(,若)(x g 存在2个零点,则a 的取值范围是A. [)01,-B. [)∞+,0C. [)∞+-,1D. [)∞+,1 10.下图来自古希腊数学家希波克拉底所研究的几何图形。
广东省2018年高考数学
2018年普通高等学招生全国统一考试理科数学一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A、0B、C、1D、2A、B、C、D、3ABCD4、记SnA、5A、6、在ABC=A、--B、--C、-+D、-7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A、B、C、3D、28.设抛物线C:y2=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·=A.5B.6C.7D.89.已知函数f(x)=g(x)=f(x)+x+a,若g(x)存在2个零点,则a的取值范围是A.[-1,0B.[0,+C.[-1,+D.[1,+10.p1,p2A.p1B.p1C.p2D.p111.若△OMNA.B.3C.D.412.A.二、填空题:本题共4小题,每小题5分,共20分。
13.若x,y满足约束条件则z=3x+2y的最大值为.14.记Sn 为数列{an}的前n项和.若Sn=2an+1,则S6=.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)16.已知函数f(x)=2sinx+sin2x,则f(x)的最小值是.三.解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=,求BC.18.(12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把?DFC折起,使点C到达点P的位置,且PF⊥BP.((19.(12设椭圆C+y2=1两点,点的坐标为(的方程;(2)设20、(12如检验出(1)记(2的值,已25元(i),求EX:(ii)21、(12已知函数.(1)讨论的单调性;(2)若(二)选考题:共10分。
2018年高考理科数学试卷及答案(清晰word版)
理科数学试题 第1页(共9页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C .{|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半理科数学试题 第2页(共9页)4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC -B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+理科数学试题 第3页(共9页)11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。
2018年广东高考(理科)数学试题及答案
2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
) 1、设z=,则∣z ∣=( )A.0B. 12 C.1 D. √2 2、已知集合A={x|x 2-x-2>0},则C R A =( ) A 、{x|-1<x<2} B 、{x|-1≤x ≤2} C 、{x|x<-1}∪{x|x>2} D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、125、设函数f (x )=x ³+(a-1)x ²+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( )A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB→ =( ) A. 34 AB → - 14 AC → B. 14 AB → - 34 AC → C. 34 AB→ +14AC → D. 14 AB → + 34 AC→7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM → ·FN→ =( ) A.5 B.6 C.7 D.8 9.已知函数f (x )=g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。
广东理科高考数学试题及答案
2018年普通高等学校招生全国统一考试(广东卷)A数学(理科)本试卷共4页,21题,满分150分。
考试用时120分钟。
ShShV?为柱体的高。
为柱体的底面积,,其中参考公式:柱体的体积公式1ShShV?为锥体的高。
为锥体的底面积,锥体的体积公式为,其中3一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
5?6i i= 设为虚数单位,则复数1.i6?5i6?5i?6?5i?6?5i..AD.C.B【答案】D CM1,2,3,4,5,6}U?{1,2,4}M?{=,2.设集合,则U U{1,3,5}{3,5,6}{2,4,6}.B..DA .C【答案】CBC(4,7)?(2,3)CABA?,,则3.若向量(?2,?4)(3,4)(6,10)(?6,?10)B.DCA...【答案】A4.下列函数中,在区间(0,+∞)上为增函数的是11x??x)y?(y2)?y?ln(x1?y??x B CA...D.x2【答案】Ay?2??z?3x?y y,x1x?y?的最大值为5.已知变量,则满足约束条件??1??yx?1 3 D.-12 B.11 C.A.B【答案】所示,它的体积为某几何体的三视图如图16..81π57πD45πC12πBA...C【答案】 1 / 8从个位数与十位数之和为奇数的两位数种任取一个,其个位数万恶哦0的概率是7.1124D.C B.A..9399D【答案】?????a b?0|a|?|b|?ba,的。
若平面向量,与满足α8.对任意两个非零的平面向量和β,定义????n?babbaa(0,}?n{)|?Z夹角都在集合,且中,则= 和42513B.1C.D. A.222|bb?a|2|a?b|a?????b1?cosa?cos??ab?cos??cos,【解读】:因为|a?a|a2bb?|b|nabba}n?{|Z中和且都在集合2|a|1|1|b|b|2????b?2cos?2acos?ba??cos,,所以所以,?||b2cos|||a|2a2ab?12?ab?,故有所以2【答案】B二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分。
2018年广东省高考数学真题(理科)及答案
绝密★启用前 试卷类型:A2018年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1. 答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。
用2B 铅笔讲试卷类型(A )填涂在答题卡相应的位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁,考试结束后,将试题与答题卡一并交回。
参考公式:台体的体积公式V=31(S 1+S 2+21s s )h,其中S 1,S 2分别表示台体的上、下底面积,h 表示台体的高。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x ∣x 2+2x=0,x ∈R},N={x ∣x 2-2x=0,x ∈R},则M ∪N=A. {0}B. {0,2}C. {-2,0} D {-2,0,2}2.定义域为R 的四个函数y=x 3,y=2x ,y=x 2+1,y=2sinx 中,奇函数的个数是A. 4B.3C. 2D.13.若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是A. (2,4)B.(2,-4)C. (4,-2) D(4,2)4.已知离散型随机变量X 的分布列为1 2 3 P则X 的数学期望E (X )=A.B. 2C. D 35.某四棱台的三视图如图1所示,则该四棱台的体积是X。
广东省2018年高考数学
2018年普通高等学招生全国统一考试理科数学一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A、0B、C、1D、2、已知集合A={x|x2-x-2>0},则A=A、{x|-1<x<2}B、{x|-1x2}C、{x|x<-1}∪{x|x>2}D、{x|x-1}∪{x|x2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A、新农村建设后,种植收入减少。
B、新农村建设后,其他收入增加了一倍以上。
C、新农村建设后,养殖收入增加了一倍。
D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、125、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的A 、B 、C 、3D 、28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为的直线与C 交于M ,N 两点,则·=A.5B.6C.7D.89.已知函数f (x )=g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。
此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC. △ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。
2018年高考广东省理科数学真题答案
2018 年一般高等学校招生全国一致考试理科数学答案123456789101112C B A BD A B D C A B A13.614.6315.1616.33217. ( 12分)解:( 1)在△ABD中,由正弦定理得BD AB.sin A sin ADB由题设知,52,所以 sin ADB 2 .sin 45sin ADB5由题设知,ADB90,所以 cos ADB1223 .255(2)由题设及(1)知,cos BDC sin ADB 2 .5在△ BCD 中,由余弦定理得BC 2BD 2DC 2 2 BD DC cos BDC2582522 2525.所以 BC 5.18.(12 分)解:( 1)由已知可得,BF⊥PF,BF⊥EF,所以 BF⊥平面 PEF.又 BF 平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足为H.由( 1)得,PH⊥平面ABFD.以 H 为坐标原点,HF的方向为 y 轴正方向,| BF |为单位长,成立如下图的空间直角坐标系 H- xyz.由( 1)可得,DE⊥PE.又DP=2,DE=1,所以PE= 3 .又PF=1,EF=2,故 PE⊥PF.可得 PH3,EH 3 . 22则 H (0,0,0),P(0,0,3), D( 1,3,0), DP(1,3,3), HP(0,0,3) 为平面ABFD的22222法向量 .HP DP 33 .设 DP 与平面 ABFD 所成角为,则 sin||4|HP| |DP|34所以 DP 与平面 ABFD 所成角的正弦值为 3 .419. ( 12 分)解:( 1)由已知得F (1,0) ,l的方程为x=1.由已知可得,点 A 的坐标为(1,2)或 (1,2) . 22所以 AM 的方程为y 2 x2或 y 2 x 2 .22(2)当l与x轴重合时,OMA OMB0 .当 l 与 x 轴垂直时, OM 为 AB 的垂直均分线,所以OMA OMB .当 l 与 x 轴不重合也不垂直时,设l 的方程为y k(x 1)(k0),A(x1, y1 ), B( x2 , y2 ) ,则 x12, x2 2 ,直线MA,MB的斜率之和为k MA k MB y1y 2.x12x2 2由 y1kx1k, y2kx2k得kMA kMB2kx1 x23k( x1x2)4k .( x12)( x22)将 y k( x1) 代入x2y21得2(2k21)x24k 2 x2k 220 .所以, x1x24k 2, x1x22k 22. 2k22k211则 2kx1 x2 3k( x1x2 )4k34k12k 38k 34k0. 4k2k21进而 k MA kMB0,故MA,MB的倾斜角互补,所以OMA OMB .综上,OMA OMB .20.(12 分)解:( 1) 20 件产品中恰有 2 件不合格品的概率为 f ( p) C220 p2 (1p)18.所以f ( p) C220 [2 p(1 p)1818 p2 (1 p)17 ] 2C220 p(1p)17 (1 10 p) .令 f ( p) 0 ,得 p 0.1.当 p (0,0.1) 时, f ( p) 0 ;当 p (0.1,1) 时, f ( p)0 .所以 f ( p) 的最大值点为p00.1 .(2)由( 1)知,p 0.1.(i)令Y表示余下的 180 件产品中的不合格品件数,依题意知Y : B(180,0.1) , X 20225Y ,即 X 40 25Y .所以 EX E(40 25Y )4025EY 490 .( ii)假如对余下的产品作查验,则这一箱产品所需要的查验费为400元 .因为 EX 400 ,故应当对余下的产品作查验.21.(12 分)解:( 1)f (x)的定义域为(0,) , f ( x)11a x2ax1. x2x x2(i)若a 2 ,则 f ()x 0,当且仅当 a 2 ,x 1时 f(x)0 ,所以 f ( x) 在 (0,)单一递减 .(ii)若a 2 ,令 f (x)0 得,x a a24或 x a a2 4 .22当 x(0, aa24) U (aa2 4 ,) 时,f( x) 0;22当x ( aa2 4 , a a 2 4 )时, f ( x).所以f ( x)在22(0, aa24),(aa24,) 单一递减,在 (aa24,aa24)单一递加.2222(2)由( 1)知,f ( x)存在两个极值点当且仅当a 2 .因为 f ( x) 的两个极值点x1, x2知足 x2ax 1 0 ,所以x1x2 1 ,不如设 x1x2,则 x21.因为f (x1) f (x2 )1 1 a ln x1ln x2 2 aln x1ln x2x1x2x1x2x1x2x1x2所以f ( x1)f ( x2 )a2等价于1x2 2ln x2 0 .x1x2x2设函数 g(x)1x2ln x ,由(1)知, g (x) 在 (0,x 2a2ln x2,1x2x2) 单一递减,又 g(1)0 ,进而当 x(1,) 时, g( x)0 .所以1x2 2ln x20,即 f ( x1 ) f ( x2 )a2. x2x1x222 . [选修 4-4 :坐标系与参数方程]( 10分)【分析】( 1)由xsoc,ysin得C2 的直角坐标方程为( x1)2y2 4 .(2)由( 1)知C2是圆心为A(1,0),半径为 2 的圆.由题设知,C1 是过点B(0, 2)且对于y轴对称的两条射线.记y轴右侧的射线为l1 ,y轴左侧的射线为l2.因为B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1 与C2 只有一个公共点且l2 与C2有两个公共点,或l2 与C2 只有一个公共点且l1与C2有两个公共点.当l1 与C2 只有一个公共点时,A到l1 所在直线的距离为2 ,所以| k 2 |4或k0 .k 22,故 k3 1经查验,当k4时,l1与C2只有一个0 时,l1与C2没有公共点;当k3公共点,l2 与C2 有两个公共点.当l2 与C2 只有一个公共点时,A到l2 所在直线的距离为 2 ,所以| k 2 |,故k4.k 220 或 k13经查验,当 k0 时, l 1 与C2没有公共点;当k4时, l 2 与C2没有公共3点.综上,所求C1的方程为y4| x | 2 .323 . [选修 4-5 :不等式选讲 ]( 10 分)2, x 1, 【分析】( 1)当 a 1 时,f (x)| x1| | x 1| ,即 f ( x)2x, 1 x 1,2, x1.故不等式f (x)1的解集为 { x | x1} .2(2)当 x (0,1) 时 | x 1| | ax 1|x 成立等价于当 x (0,1) 时 | ax 1| 1成立.若 a 0 ,则当 x(0,1) 时 | ax 1| 1 ;若 a 0 , | ax 1| 1 的解集为 0x 2 ,所以 2 1,故 0 a 2 . a a综上, a的取值范围为(0, 2].。
(完整版)2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z |=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z |=1 【考点定位】复数2、已知集合A={x|x 2-x —2>0},则A =A 、{x|—1〈x 〈2}B 、{x|—1x 2}C 、{x|x 〈-1}∪{x |x>2}D 、{x|x —1}∪{x |x 2} 【答案】B【解析】由题可得C R A={x |x 2-x-2≤0},所以{x|—1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%, 【考点定位】简单统计4、记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=A 、-12B 、-10C 、10D 、12 【答案】B【解析】3*(a 1+a 1+d+a 1+2d )=( a 1+a 1+d ) (a 1+a 1+d+a 1+2d+a 1+3d ),整理得: 2d+3a 1=0 ; d=—3 ∴a 5=2+(5-1)*(—3)=—10 【考点定位】等差数列 求和5、设函数f (x)=x 3+(a-1)x 2+ax ,若f (x)为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为:A 、y=-2xB 、y=-xC 、y=2xD 、y=x 【答案】D【解析】f (x )为奇函数,有f (x )+f (-x )=0整理得: f (x )+f (-x)=2*(a —1)x 2=0 ∴a=1 f (x )=x 3+x求导f ‘(x )=3x 2+1 f ‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A 、—-B 、—-C 、—+D 、- 【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB —AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2018年广东高考理科数学试题和答案解析
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设i iiz 211++-=,则|z|= A 、0B 、21 C 、1D 、22、已知集合{}022>--=x x x A ,则A C R = A 、{}21<<-x x C 、{}{}21>⋃-<x x x xB 、{}21≤≤-x xD 、{}{}21≥⋃-≤x x x x3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
4、记n S 为等差数列{}n a 的前n 项和,若4233S S S +=,21=a ,则5a = A 、-12B 、-10C 、10D 、125、设函数ax x a x x f +-+=231)()(,若)(x f 为奇函数,则曲线)(x f y =在点(0,0)处的切线方程为: A 、x y 2-=B 、x y -=C 、x y 2=D 、x y =6、在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A 、4143- C 、AC AB 4143+B 、4341- D 、AC AB 4341+7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、172 B 、52 C 、3 D 、28.设抛物线x y C 42=:的焦点为F ,过点),(02-且斜率为32的直线与C 交于M ,N 两点,则FN FM ⋅= A.5B.6C.7D.89.已知函数⎩⎨⎧>≤=,,,,)(0ln 0x x x e x f x a x x f x g ++=)()(,若)(x g 存在2个零点,则a 的取值范围是A. [)01,-B. [)∞+,0C. [)∞+-,1D. [)∞+,1 10.下图来自古希腊数学家希波克拉底所研究的几何图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试(广东卷)
数学(理)
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=
A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}
答案:B
2.已知复数Z 满足(34)25,i z +=则Z=
A .34i - B. 34i + C. 34i -- D. 34i -+
答案:A
2525(34)25(34):=34,.34(34)(34)25i i z i i i i --=
==-++-提示故选A
3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=
A .8 B.7 C.6 D.5
:(),(2,1)(1,1)3,
3,6,.C
M m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选
4.若实数k 满足09,k <<则曲线221259x y k
-=-与曲线22
1259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等
09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D
提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.
5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是
A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1
)0:11,,60,.22B
B =∴答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为
A. 200,20
B. 100,20
C. 200,10
D. 100,10
::(350045002000)2%200,20002%50%20,.
A
A ++⋅=⋅⋅=∴答案提示样本容量为抽取的高中生近视人数为:选
7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是
A.14l l ⊥
B.14//l l
C.14,l l 既不垂直也不平行
D.14,l l 的位置关系不确定
答案:D
8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i
A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为
A.60
B.90
C.120
D.130
答案: D。