初中数学竞赛专题:不等式
数学初中竞赛 方程和不等式 专题训练(含答案)
数学初中竞赛方程与不等式专题训练一.选择题1.方程x2+2xy+3y2=34的整数解(x,y)的组数为()A.3 B.4 C.5 D.62.已知两块边长都为a厘米的大正方形,两块边长都为b厘米的小正方形和五块长、宽分别是a厘米、b厘米的小长方形(a>b),按如图的方式正好不重叠地拼成一个大长方形,若已知拼成的大长方形周长为78厘米,四个正方形的面积和为242平方厘米,则每个小长方形的面积为()A.11平方厘米B.12平方厘米C.24平方厘米D.48平方厘米3.球赛入场券有10元、15元、20元三种票价,老师用480元买了40张入场券,其中票价为10元的比票价为20元的多的张数是()A.12 B.16 C.20 D.244.由方程组消去y后化简得到的方程是()A.2x2﹣2x﹣6=0 B.2x2+2x+5=0 C.2x2+5=0 D.2x2﹣2x+5=0 5.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A.25本B.20本C.15本D.10本6.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.7.如图是某汽车公司销售点的环形分布图.公司在年初分配给A、B、C、D四个销售点某种汽车各50辆.在销售前发现需将A、B、C、D四个销售点的这批汽车分别调整为40、45、54、61辆,但调整只能在相邻销售点之间进行,那么要完成上述调整,最少的调动辆次n为(一辆汽车从一个销售点调整到相邻销售点为一次)()A.15 B.16 C.17 D.188.已知在代数式a+bx+cx2中,a、b、c都是整数,当x=3时,该式的值是2008;当x=7时,该式的值是2009,这样的代数式有()A.0个B.1个C.10个D.无穷多个9.对于任意的有理数a,方程2x2+(a+1)x﹣(3a2﹣4a+b)=0的根总是有理数,则b的值为()A.1 B.﹣1 C.2 D.010.已知关于x的方程(x﹣a)(x﹣b)﹣1=0(a<b)的两根为p、q(p<q,且pq>0),则一定有()A.a<p<q<b B.>C.<<<D.<<<11.为了预防甲流,某班级准备300元钱,计划购入一批体温计.已知有两种体温计可供选购,其中水银体温计3元/支,电子体温计10元/支,由于水银体温计容易破裂且水银具有毒性,所以希望尽可能多地购买电子体温计.如果该班级共53名同学,且要求每位同学有一支体温计,则最多可购买电子体温计()支.A.20 B.21 C.30 D.3312.初二(1)班有48名同学,其中有男同学n名,将他们编成1号、2号、…,n号.在寒假期间,1号给3名同学打过电话,2号给4名同学打过电话,3号给5名同学打过电话,…,n号同学给一半同学打过电话,由此可知该班女同学的人数是()A.22 B.24 C.25 D.26二.填空题13.已知p,q都是正整数,方程7x2﹣px+2009q=0的两个根都是质数,则p+q=.14.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为.15.初三某班共有60名同学,学号依次为1号,2号,…,60号,现分成A,B,C三个小组,每组人数若干,若将B组的小俊(27号)调整到A组,将C组的小芸(43号)调整到B组,此时A,C两组同学学号的平均数都将比调整前增加0.5,B组同学学号的平均数将比调整前增加0.8,同时B组中的小营(37号)计算发现,她的学号数高于调整前B 组同学学号的平均数,却低于调整后的平均数.请问调整前A组共有名同学.16.“十一”国庆期间,某一商品搞清仓促销活动,从10月2日起每天比前一天降价50元,每一天的销售量比前一天增加50件,若“十一”期间7天这种商品的销售共收入308700元,则10月4日这一天收入元.17.某小区打算购买100盆花装饰花园,20人分三组刚好搬完(假设每人都需要搬),每组人的搬花量如下表,请问第一组可能有人.组别第一组第二组第三组每人搬花盆数 5 4 1018.在车站开始检票时,有a(a>0)名旅客在候车室等候检票进站,检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放个检票口.19.某中学有九百多名师生外出参加社会实践活动,准备租某种客车若干辆.如果每辆车刚好坐满(即每个人都刚好有一个座位),就会余下14个人;如果多准备一辆车,那么每辆车刚好都空1个座位,则这种客车每辆的乘客座位有个.20.甲、乙两商店某种铅笔标价都是1元,一天,让学生小王欲购这种铅笔,发现甲、乙两商店都让利优惠:甲店实行每买5枝送1枝(不足5枝不送);乙店实行买4枝或4枝以上打8.5折,小王买了13枝这种铅笔,最少需要花元.三.解答题21.解方程组:22.已知关于x的一元二次方程x2+2(k+1)x+k2+2=0有两个实根x1,x2.(1)求实数k的取值范围;(2)若|x1|﹣|x2|=2,求k的值.23.将一个三位数分成4个数,使得第一个数乘以2,第二个数除以2,第三个数减1,第四个数加2,得到的结果相等,若该三位数比这四个数中最大的数的2倍大59,求这三位数.24.a、b、c为正整数,关于x的方程ax2+bx+c=0的两实根的绝对值都小于,求a+b+c 的最小值.25.《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入;(4)整体求和等.例如,ab=1求证:=1证明:原式===1波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.阅读材料二:基本不等式(a>0,b>0),当且仅当a=b时等号成立,它是解决最值问题的有力工具.例如:在x>0的条件下,当x为何值时,x+有最小值,最小值是多少?解:∵x>0,>0∴,即x,∴当且仅当x=,即x=1时,x+有最小值,最小值为2.请根据阅读材料解答下列问题:(1)已知ab=1,求下列各式的值:=;②=.(2)若abc=1,解方程=1(3)若正数a、b满足ab=1,求M=的最小值.参考答案一.选择题1.解:方程变形得:(x+y)2+2y2=34,∵34与2y2是偶数,∴x+y必须是偶数,设x+y=2t,则原方程变为:(2t)2+2y2=34,∴2t2+y2=17,它的整数解为,则当y=3,t=2时,x=1;当y=3,t=﹣2时,x=﹣7;当y=﹣3,t=2时,x=7;当y=﹣3,t=﹣2时,x=﹣1.∴原方程的整数解为:(1,3),(﹣7,3),(7,﹣3),(﹣1,﹣3)共4组.故选:B.2.解:依题意,得:,整理,得:,(①2﹣②)÷2,得:ab=24.故选:C.3.解:分别设三种票买了x、y、z张.则根据题意,得,由②,得:y=40﹣x﹣z,③将③代入①,得:x﹣z=24.故选:D.4.解:,由①,得x=y+1③,将③代入②,得(x﹣1)2+x2+4=0,化简,得2x2﹣2x+5=0,故选:D.5.解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意,得:,解得:,答:甲种笔记本买了25本,乙种笔记本买了15本.故选:C.6.解:∵各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,∴2022用算筹可表示为故选:C.7.解:根据题意可得:互不相邻两点B、D,B处至少调动5辆次,D处至少调入11辆次,两处之和至少16辆次,因而四个销售点调动至少16辆次,又A、B的数量减少,C、D的数量增加,所以从A调11辆到D,从B调1辆到A,调4辆到C,共调整了11+1+4=16辆.综上,最少调动16辆次.故选:B.8.解:根据题意,得,由②﹣①,得4b+40c=1,③∵a、b、c都是整数,∴③的左边是4的倍数,与右边不等,所以,这样的代数式不存在;故选:A.9.解:∵方程的△=(a+1)2+8(3a2﹣4a+b)=(5a﹣3)2+8b﹣8≥0,∴当8b﹣8≥0时,必定△≥0,即方程必有实根,∴b≥1,当b=1时,3a2﹣4a+1=(3a﹣1)(a﹣1),∴十字因式分解得方程为(x﹣a+1)(2x+3a﹣1)=0,∴b=1成立,当b=2时,3a2﹣4a+b=3a2﹣4a+2不能因式分解,∴方程有可能为无理数解,同理可得b=﹣1以及0时,方程有可能为无理数解,故b的值为1.故选:A.10.解:设y=(x﹣a)(x﹣b),则此二次函数开口向上,当(x﹣a)(x﹣b)=0时,即函数与x轴的交点为:(a,0),(b,0),当(x﹣a)(x﹣b)=1时,∵p、q是关于x的方程(x﹣a)(x﹣b)﹣1=0的两实根,∴函数与y=1的交点为:(p,1),(q,1),根据二次函数的增减性,可得:当a<b,p<q时,p<a<b<q,故<<<当p,q同为负数不合题意,故>不成立,故选:C.11.解:设可购买电子体温计x支,则需买水银体温计(53﹣x)支,由题意,得.10x+3×(53﹣x)≤300.解得:x≤20∴最多可购买电子体温计20支,故选:A.12.解:一半同学是48÷2=24人,1号给3=2+1名打电话,2号给4=2+2名打电话,3号给5=2+3名打电话,…n号给2+n=24名打电话,所以n=22,48﹣22=26,该班有女生26名,故选:D.二.填空题(共8小题)13.解:x 1+x2=x 1x2==287q=7×41×qx 1和x2都是质数则只有x1和x2是7和41,而q=1所以7+41=p=336所以p+q=337故填:33714.解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x==,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=10或z=(舍)或z=7或z=(舍)或z=4或z=(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=5或z=(舍)或z=2或z=(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=(舍)即:满足条件的不同的装法有6种,故答案为6.15.解:设A,B,C组调整前的人数分别是n A,n B,n C,则A,B,C调整后的人数分别是n A+1,n,n C﹣1,B设A,B,C组调整前各组的号码之和分别为w A,w B,w C,则A,B,C调整后各组的号码之和分别为w A+27,w+16,w C﹣43,B根据题意得:由③得,n B=20∴36.2<<37,即724<w B<740又∵n A+n B+n C=60∴n C=40﹣n A④整理得:由①得∴w C+w A=2500﹣56n A又∵∴w B=1830﹣(2500﹣56n A)=﹣670+56n A∴724<﹣670+56n A<740解得∵n A为正整数,所以n A=25所以本题答案为2516.解:设10月1日这种商品每件x元,销售量为a件,由题意,得ax+(x﹣50)(a+50)+(x﹣100)(a+100)+(x﹣150)(a+150)+(x﹣200)(a+200)+(x﹣250)(a+250)+(x﹣300)(a+300)=308700,化简整理,得7ax+1050x﹣1050a﹣227500=308700,两边除以7,得ax+150x﹣150a﹣32500=44100,所以(x﹣150)(a+150)=54100.即10月4日这一天收入54100元.故答案为:54100.17.解:设第一组x人,第二组y人,第三组(20﹣x﹣y)人,由题意得:5x+4y+10(20﹣x﹣y)=100∴x=∵x,y为正整数,∴100﹣6y为5的整数倍,∴y=5或10或15∴x=14或8或2故答案为:14或8或218.解:设一个窗口每分检出的人是c,每分来的人是b,至少要开放x个窗口;a+30b=30c①,a+10b=2×10c②,a+5b≤5×x×c,由①﹣②得:c=2b,a=30c﹣30b=30b,30b+5b≤5×x×2b,即35b≤10bx,∵b>0,∴在不等式两边都除以10b得:x≥3.5,答:至少要同时开放4个检票口.19.解:设准备客车x辆,每辆客车有座位x个,根据题意知:xy+14=(x+1)y﹣x﹣1,得y=x+15,又知xy>900,即x(x+15)>900,x2+15x﹣900>0,解得:x>或x<(舍去)即x>23.43,当x =24时,y =39,xy =936,当x =25时,y =40,xy =1000(不符合题意)即这种客车每辆的乘客座位有39个,故答案为:39.20.解:因为甲店实行每买5枝送1枝,所以小王先到甲店花5元钱买了6枝,剩下7枝到乙店购买,用去了7×0.85=5.95,所以小王一共花了:5+5.95=10.95元.故填:10.95.三.解答题(共5小题)21.解:由①得,( x +y )2=9,则x +y =3或x +y =﹣3, 与②组成方程组和, 解得,,, 所以原方程组的解为,.22.解:(1)∵原方程有两个实数根,∴△=[2(k +1)]2﹣4(k 2+2)=8k ﹣4≥0,解得k ≥.(2)∵x 1、x 2是方程x 2+2(k +1)x +k 2+2=0有两个实根,k ≥,∴x 1+x 2=﹣2(k +1)<0,x 1x 2=k 2+2>0,∴(|x 1|﹣|x 2|)2=x 12﹣2|x 1•x 2|+x 22=x 12+2x 1x 2+x 22﹣4x 1x 2=(x 1+x 2)2﹣4x 1x 2=(2)2=20,∴[﹣2(k +1)]2﹣4(k 2+2)=20,即8k ﹣24=0,解得:k =3.故k 的值为3.23.解:设这个相等的结果为x ,则由三位数分成的四个数分别为:、2x 、x +1、x ﹣2,则这个三位数为:+2x +(x +1)+(x ﹣2)=﹣1 ∴100≤﹣1<1000 ∴≤x <∴四个数、2x 、x +1、x ﹣2中,2x 最大,由题意得:﹣1=2×2x +59 ∴=60∴x =120 ∴这个三位数为:×120﹣1=539答:这个三位数为539.24.解:由于a ,b ,c 是正整数,关于x 的一元二次方程ax 2+bx +c =0的两个实数根, 则判别式△=b 2﹣4ac ≥0,若方程的两根设为x 1,x 2,且x 1≤x 2,则由题设可得x 1+x 2=﹣,x 1x 2=, 则﹣<x 1≤x 2<0.令f (x )=ax 2+bx +c ,即有f (﹣)>0, 即﹣b +c >0,且﹣<﹣<0.整理可得:2a >3b ,且a +9c >3b ,且b 2>4ac即有2a >3b >18c .结合前者,可知,最小为a =16,b =9,c =1.则a +b +c 的最小值为26.25.解:(1)①∵ab =1∴a=∴原式=+=+=1故答案为:1②∵ab=1∴a=原式=+=1故答案为:1(2)∵=1,且abc=1,∴+=15x=1x=(3)∵正数a、b满足ab=1∴b=,a>0,b>0,∴a+=(﹣)2+2≥2∵M====1﹣∴当a+=2时,M的值最小,∴M最小值=1﹣=2﹣2。
初中数学竞赛不等式(含答案)
12.不等式A 卷1.不等式2(x + 1) -12732-≤-x x 的解集为_____________。
2.同时满足不等式7x + 4≥5x – 8和523x x -<的整解为______________。
3.如果不等式33131++>+x mx 的解集为x >5,则m 值为___________。
4.不等式22)(7)1(3)12(k x x x x ++<--+的解集为_____________。
5.关于x 的不等式(5 – 2m)x > -3的解是正数,那么m 所能取的最小整数是__________。
6.关于x 的不等式组⎩⎨⎧<->+25332b x x 的解集为-1<x <1,则ab____________。
7.能够使不等式(|x| - x )(1 + x ) <0成立的x 的取值范围是_________。
8.不等式2<|x - 4| <3的解集为_____________。
9.已知a,b 和c 满足a ≤2,b ≤2,c ≤2,且a + b + c = 6,则abc=______________。
10.已知a,b 是实数,若不等式(2a - b)x + 3a – 4b <0的解是94>x ,则不等式(a – 4b)x + 2a – 3b >0的解是__________。
C 卷一、填空题1.不等式2|43|2+>--x x x 的解集是_____________。
2.不等式|x| + |y| < 100有_________组整数解。
3.若x,y,z 为正整数,且满足不等式⎪⎩⎪⎨⎧≥+≥≥1997213z y y z x 则x 的最小值为_______________。
4.已知M=1212,12122000199919991998++=++N ,那么M ,N 的大小关系是__________。
初中数学竞赛专题1-均值不等式的应用
初中数学竞赛专题1均值不等式的应用基础概念1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 例题解析【例1】求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x =-2∴值域为(-∞,-2]∪[2,+∞)【例2】求函数2y =的值域。
(2)t t =≥,则2y =1(2)t t t ==+≥ 因10,1t t t >⋅=,但1t t=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。
因为1y t t=+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥。
全国各地初中(九年级)数学竞赛《不等式》真题大全 (附答案)
全国初中(九年级))数学竞赛专题大全竞赛专题5 不等式一、单选题1.(2021·全国·九年级竞赛)若满足不等式871513n n k <<+的整数k 只有一个,则正整数n 的最大值为( ). A .100B .112C .120D .1502.(2021·全国·九年级竞赛)27234x x x ----有意义,则x 的取值范围是( )A .4x >B .7x ≥5x ≠C .4x >且5x ≠D .45x <<3.(2021·全国·九年级竞赛)某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该运动队有20名同学,统计表如下表,由于不小心弄脏了统计表,下表中阴影部分的两个数据看不到. 鞋码 38 394041 42 人数 532下列说法正确的是( ).A .这组鞋码数据中的中位数是40,众数是39 B .这组鞋码数据中的中位数与众数一定相等 C .这组鞋码数据中的平均数p 满足3940p ≤≤ D .以上说法都不对4.(2021·全国·九年级竞赛)如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的有序对(),a b 共有( ). A .17个B .64个C .72个D .81个5.(2021·全国·九年级竞赛)若不等式054ax ≤+≤的整数解是1,2,3,4,则a 的取值范围是( ). A .54a -B .1a <-C .514a -≤<-D .54a -6.(2021·全国·九年级竞赛)2009x y 且0x y <<,则满足此等式的不同整数对(,)x y 有( )对. A .1B .2C .3D .47.(2021·全国·九年级竞赛)有两个四位数,它们的差是534,它们平方数的末四位数相同.则较大的四位数有( )种可能.A .1B .2C .3D .48.(2021·全国·九年级竞赛)一个正方形纸片,用剪刀沿一条不过顶点的直线将其剪成两部分,拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分,又从得到的3部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分,……,如此下去,最后得到34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ). A .2004B .2005C .2006D .20079.(2021·全国·九年级竞赛)若正数a ,b ,c 满足不等式1126352351124c a b c a b c a b a c b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩则a ,b ,c 的大小关系是( )A .a b c <<B .b c a <<C .c a b <<D .不确定10.(2021·全国·九年级竞赛)设114,,11(1)r a b c r r r r r r r ≥=-==++++的是( ). A .a b c >> B .b c a >> C .c a b >> D .c b a >>二、填空题11.(2021·全国·九年级竞赛)设a ,b 为正整数,且2537a b <<则b 取最小值时a b +=_____ 12.(2021·全国·九年级竞赛)已知实数x ,y 满足234x y -=且0,1x y ≥≤,则x y -的最大值是______,最小值是_______.13.(2021·全国·九年级竞赛)已知01a ≤≤,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ([]x 表示不超过x 的最大整数),则[]10a 的值等于_______.14.(2021·全国·九年级竞赛)若化简2269x x x --+25x -,则满足条件是x 的取值围是_________.15.(2021·全国·九年级竞赛)[]x 表示不超过x 的最大整数(例如[]3.23=).已知正整数n 小于2006,且362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦,则这样的n 有___________个. 16.(2021·全国·九年级竞赛)不等式2242x ax a +<的解是___________.17.(2021·全国·九年级竞赛)已知正整数m 和n 有大于1的最大公约数,并且满足3371m n +=,则mn =________.18.(2021·全国·九年级竞赛)长沙市某中学100名学生向某“希望学校”捐书1000本,其中任意10人捐书总数不超过190本,那么捐书最多的某同学最多能捐书_________本.19.(2021·全国·九年级竞赛)已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________. 三、解答题20.(2021·全国·九年级竞赛)某宾馆底楼客房比二楼客房少5间,某旅游团有48人.若全部安排底楼,每间房间住4人,房间不够;每间住5人,则有房间没有住满5人.又若全部安排住2楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人.问该宾馆底楼有多少间客房?21.(2021·全国·九年级竞赛)一座大楼有4部电梯,如果每部电梯可停靠三层(不一定连续三层,也不一定停最低层),对大楼中的任意两层,至少有一部电梯可在这两层停靠.问:这座大楼最多有几层22.(2021·全国·九年级竞赛)解方程22424x x x x ⎡⎤+-=⎢⎥⎣⎦.23.(2021·全国·九年级竞赛)证明:对任意实数x 及任意正整数n 有[][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.24.(2021·全国·九年级竞赛)已知01,01,01a b c <<<<<<,证明: ()()()1,1,1a b b c c a ---中至少有一个不大于14. 25.(2021·全国·九年级竞赛)设正数a ,b ,c ,x ,y ,x 满足a x b y c z k +=+=+=,证明;2ay bz cx k ++<. 26.(2021·全国·九年级竞赛)已知实数a ,b ,c 满足0,10a b c ac ++==,证明1110a b c++<.27.(2021·全国·九年级竞赛)下图是某单位职工年龄(取正整数)的频率分布图(每组可含最低年龄但不含最高值),根据图中提供的信息回答下列问题:(1)该厂共有多少职工?(2)年龄不小于38但小于44岁的职工人数占职工总人数的百分比是多少? (3)如果42岁的职工有4人,那么42岁以上的职工有多少人?(4)有人估计该单位职工的平均年龄在39岁与42岁之间,问这个估计正确吗?28.(2021·全国·九年级竞赛)某人到花店买花,他只有24元,打算买6支玫瑰和3支百合,但发现钱不够,只买了4支玫瑰和5支百合,这样还剩下2元多钱.请你算一算:2支玫瑰和3支百合哪个价格高?29.(2021·全国·九年级竞赛)1132x x -+ 30.(2021·全国·九年级竞赛)解不等式:2243414143x x x x x x x x +-->-++-- 31.(2021·全国·九年级竞赛)求满足下列条件的最小正整数n ,使得对这样的n ,有唯一的正整数k ,满足871513n n k <<+. 32.(2021·全国·九年级竞赛)解不等式: 2256154x x x x -+≤++.33.(2021·全国·九年级竞赛)解不等式21311x x x x -+>-+. 34.(2021·全国·九年级竞赛)如果二次不等式:28210ax ax ++<的解是71x -≤<-,求a 的值. 35.(2021·全国·九年级竞赛)某校参加全国数,理,化,计算机比赛的人数分别是20,16,x ,20人.已知这组数据的中位数和平均数相等,求这组数据的中位数.36.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6次、第7次,第8次,第9次射击中,分别得到9.0环、8.4环、8.1环、9.3环,他的前9次射击所得平均环数高于前5次射击所得平均环数,如果要使10次射击的平均环数超过8.8环,那么他第10次射击至少要得多少环?(每次射击环数精确到0.1环)37.(2021·全国·九年级竞赛)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60g,60g,47g ,现要配制成浓度为7%的盐水100g .间甲盐水最多可用多少克?最少可用多少克?38.(2021·全国·九年级竞赛)求证:对任意的实数x ,y ,[2][2][][][]x y x x y y ++++.39.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他的前9次射击所得环数的平均值高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中最少要得多少环?(每次射击所得环数都精确到0.1环)40.(2021·全国·九年级竞赛)已知x ,y ,z 都是正数,证明:32()()()()()()x y x z y z y x z x z y +≤++++++.41.(2021·全国·九年级竞赛)某饮料厂生产A 、B 两种矿泉水,每天生产B 种矿泉水比A 种矿泉水多10吨,A 种矿泉水比B 种矿泉水每天多获利润2000元,其中A 种矿泉水每吨可获利润200元,B 种矿泉水每吨可获利润100元.(1)问:该厂每天生产A 种,B 种矿泉水各多少吨?(2)由于江水受到污染,市政府要求该厂每天必须多生产10吨矿泉水,该厂决定响应市政府的号召,在每天的利润不超过原利润的情况下不少于8000元,该厂每天生产A 种矿泉水最多多少吨?42.(2021·全国·九年级竞赛)要使不等式2320x x -+≤①与不等式2(1)(3)20m x m x -+--<②无公共解,求m 的取值范围.43.(2021·全国·九年级竞赛)已知三个非负数a ,b ,c ,满足325a b c ++=和231a b c +-=.若37m a b c =+-,求m 的最大值和最小值.44.(2021·全国·九年级竞赛)某班学生到公园进行活动,划船的有22人,乘电动车的有20人,乘过山车的有19人,既划船又乘电动车的有9人,既乘电动车又乘过山车的有6人,既划船又乘过山车的有8人,并且有4人没有参加上述3项活动中任何一项活动,问这个班学生人数的可能值是多少?竞赛专题5 不等式答案解析 (竞赛真题强化训练)一、单选题1.(2021·全国·九年级竞赛)若满足不等式871513n n k <<+的整数k 只有一个,则正整数n 的最大值为( ). A .100 B .112C .120D .150【答案】B 【解析】 【分析】 【详解】 由已知不等式得13156767,,787878n k k n nk n n +<<<<<<.因由已知条件,67n 与78n 之间只有 唯一一个整数k ,所以76287n n-≤解得112n ≤.当112n =时,9698k ≤≤,存在唯一97k =,所以n 的 最大值为112.故应选B .2.(2021·全国·九年级竞赛)27234x x x ----有意义,则x 的取值范围是( )A .4x >B .7x ≥5x ≠C .4x >且5x ≠D .45x <<【答案】C 【解析】 【分析】 【详解】依题意得27077321544x x x x x x x x ⎧⎧-≥≤≥⎪⎪-≠⇒≠≠⎨⎨⎪⎪>>⎩⎩或且,4x ⇒>且5x ≠.故选C .3.(2021·全国·九年级竞赛)某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该运动队有20名同学,统计表如下表,由于不小心弄脏了统计表,下表中阴影部分的两个数据看不到. 鞋码 38 39 40 41 42 人数 532下列说法正确的是( ).A .这组鞋码数据中的中位数是40,众数是39 B .这组鞋码数据中的中位数与众数一定相等 C .这组鞋码数据中的平均数p 满足3940p ≤≤ D .以上说法都不对 【答案】C 【解析】 【分析】 【详解】设穿39码和40码的学生分别有x 人和y 人,则()2052310x y +=-++=.(1)若y x ≥,即穿40码的人数最多时,中位数和众数都等于40,故选A 错;(2)若5x y ==,则中位数1(3940)39.52=+=,众数为39和40,中位数不等于众数,故选B 错;(3)平均数[]13853940(10)41342239.75220xp x x =⨯++⨯-+⨯+⨯=-,且010x ≤≤,于是39.2539.75p <≤,满足3940p ≤≤,故选C 正确.所以应选C .4.(2021·全国·九年级竞赛)如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的有序对(),a b 共有( ). A .17个 B .64个 C .72个 D .81个【答案】C 【解析】 【分析】 【详解】 解 因98ax b x ⎧≥⎪⎪⎨⎪<⎪⎩中x 的整数值仅为1,2,3,所以01,34,98a b <≤<≤即9a <≤, 2432b <≤,故a 可取1,2,…,9这9个值,b 可取25,26,….32这8个值,所以有序对(),a b 有8972⨯=个.故选C .5.(2021·全国·九年级竞赛)若不等式054ax ≤+≤的整数解是1,2,3,4,则a 的取值范围是( ). A .54a -B .1a <-C .514a -≤<-D .54a -【答案】C 【解析】 【分析】 【详解】解 由054ax ≤+≤得51ax -≤≤-,且已知0x >,所以0a <,15ax a ≤-≤-. 又不等式054ax ≤+≤的整数解是1,2,3,4,所以101a <-≤,且545a≤-<解得 1a ≤-且5114a -<-≤,故514a -≤<-,所以选C .6.(2021·全国·九年级竞赛)2009x y 且0x y <<,则满足此等式的不同整数对(,)x y 有( )对. A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】 【详解】选C .理由:由20094941=⨯,得200941= 又0x y <<2009200941641241541341441===20094114761641025369656===因此,满足条件的整数对(,)x y 为(41,1476),(164,1025),(369,656).共有3对.7.(2021·全国·九年级竞赛)有两个四位数,它们的差是534,它们平方数的末四位数相同.则较大的四位数有( )种可能. A .1 B .2C .3D .4【答案】C 【解析】 【分析】 【详解】理由:设较大的四位数为x ,较小的四位数为y ,则534x y -=, ① 且22x y -能被10000整除.而22()()x y x y x y -=+-2672()x y =⨯+,则x y +能被5000整除.令()5000x y k k ++=∈N . ②由式①②解得2500267,2500267.x k y k =+⎧⎨=-⎩ 考虑到x ,y 均为四位数,于是,100025002679999,100025002679999,k k ≤+≤⎧⎨≤-≤⎩解得126755832500625k ≤≤. k 可取1,2或3.从而,x 可取的值有3个:2767,5267,7767.8.(2021·全国·九年级竞赛)一个正方形纸片,用剪刀沿一条不过顶点的直线将其剪成两部分,拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分,又从得到的3部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分,……,如此下去,最后得到34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ). A .2004 B .2005C .2006D .2007【答案】B 【解析】 【分析】 【详解】解 (算两次方法)依题意,用剪刀沿不过顶点的直线剪成两部分时,所得各张多边形(包括三角形)的纸片的内角和增加了2180360⨯︒=︒,剪过k 刀后,可得(1)+k 个多边形,这些多边形的内角总和为360360(1)360k k ︒+⨯︒=+⨯︒.另一方面,因为这1k +个多边形中有34个为六十二边形,它们的内角总和为34(622)1802040180⨯-⨯=⨯︒︒,余下的多边形(包括三角形)有13433k k +-=-个,其内角总和至少为(33)180k -⨯︒,于是(1)3602040180(33)180k k +⨯︒≥⨯︒+-⨯︒,解得2005k ≥.其次,我们按如下方式剪2005刀时,可得到符合条件的结论.先从正方形剪下1个三角形和1个五边形,再将五边形剪成1个三角形和1个六边形,…,如此下去,剪了58刀后,得到1个六十二边形和58个三角形,取出其中33个三角形,每个各剪一刀,又可得到33个四边形和33个三角形,对这33个四边形,按上述方法各剪58刀,便得到33个六十二边形和3358⨯个三角形,于是共剪了583333582005++⨯=(刀),故选B .9.(2021·全国·九年级竞赛)若正数a ,b ,c 满足不等式1126352351124c a b c a b c a b a c b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩则a ,b ,c 的大小关系是( )A .a b c <<B .b c a <<C .c a b <<D .不确定【答案】B 【解析】 【分析】 【详解】解 由已知条件及加法的单调性得1126352251124c c a b c c c a a a b c a a b b a b c b b ⎧+<++<+⎪⎪⎪+<++<+⎨⎪⎪+<++<+⎪⎩,即1736582371524c a b c c a a b c a b a b c b ⎧<++<⎪⎪⎪<++<⎨⎪⎪<++<⎪⎩①②③由①,②得17816176366c a b c a a a <++<=< (传递性),所以a c >. 由①,③得7673222b a bc c c c <++<=< (传递性),所以b c <.可见,a ,b ,c 的大小关系是a c b >>,故选B . 10.(2021·全国·九年级竞赛)设114,,11(1)r a b c r r r r r r r ≥=-==++++的是( ). A .a b c >> B .b c a >>C .c a b >>D .c b a >>【答案】D 【解析】 【分析】 【详解】 解:因111221r r r ≥<+=+,故 ()(111a b r r r r r r =+<=+++, 1111r r r r c b r r r x +-+->=+⋅+.所以c b a >>. 故选:D . 二、填空题11.(2021·全国·九年级竞赛)设a ,b 为正整数,且2537a b <<则b 取最小值时a b +=_____ 【答案】17 【解析】 【分析】 【详解】由已知条件得32,57a b b a >>.令32,57A a b B b a =-=-,则A ,B 均为正整数,解出52,737310a A B b A B =+=+≥+=.当1,1A B ==时等号成立,故b 的最小值为10,这时527a =+=,17a b +=.故应填17.12.(2021·全国·九年级竞赛)已知实数x ,y 满足234x y -=且0,1x y ≥≤,则x y -的最大值是______,最小值是_______. 【答案】 4352【解析】 【分析】 【详解】 434370222y x ++≤=≤=. 又243x y -=所以24433x x x y x -+-=-=.故当0x =时,x y -取最小值43;当72x =时,x y -取最大值175(4)322+=所以应填45,32.13.(2021·全国·九年级竞赛)已知01a ≤≤,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ([]x 表示不超过x 的最大整数),则[]10a 的值等于_______. 【答案】6 【解析】 【分析】 【详解】 因122902303030a a a <+<+<<+<,所以1229,,,303030a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦每一个等于0或1.由题设知其中恰有18个等于1, 所以12111213290,1303030303030a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=+==+=+=+==+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦于是111201,123030a a <+<≤+<,解得1183019,61063a a ≤<≤<所以[]106a =.故应填6. 14.(2021·全国·九年级竞赛)若化简2269x x x --+25x -,则满足条件是x 的取值围是_________. 【答案】23x ≤≤ 【解析】 【分析】 【详解】由()2226923232(3)25x x x x x x x x x x --+=--=---=---=-,得2030x x -≥⎧⎨-≤⎩即23x ≤≤.故填23x ≤≤.15.(2021·全国·九年级竞赛)[]x 表示不超过x 的最大整数(例如[]3.23=).已知正整数n 小于2006,且362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦,则这样的n 有___________个. 【答案】334 【解析】 【分析】 【详解】解 设[]6n m =则(01)6na a m =≤+<从而66n m a =+.当102a ≤<时, 22(021)3n m a a =+≤<,故23n m ⎡⎤=⎢⎥⎣⎦.于是由362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦得662332m a m m m a ++==+,从而0a =.此时(6204)06133n m m =<≤≤. 当112a ≤<,223n m a =+由212222m m a m +≤+<+得213n m ⎡⎤=+⎢⎥⎣⎦代入 362n n n ⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦得2133m m m a ++=+,得13a =,与112a ≤<矛盾,舍去. 故所有的n 共有334个.16.(2021·全国·九年级竞赛)不等式2242x ax a +<的解是___________. 【答案】67a a x -<<(当0a >时);76a ax <<-(当0a <时);无解(当0a =时).【解析】 【分析】 【详解】解 原不等式化为()()670x a x a +-<,方程()()670x a x a +-=的两根为6a -和7a.若0a >,则67a a -<不等式的解为67a ax -<<; 若0a <,则76a a <-不等式的解为76a a x <<-; 若0a =,则67a a-=,不等式无解. 故应填:67a a x -<< (当0a >时); 76a ax <<-(当0a <时);无解(当0a =时). 17.(2021·全国·九年级竞赛)已知正整数m 和n 有大于1的最大公约数,并且满足3371m n +=,则mn =________. 【答案】196 【解析】 【分析】 【详解】理由:设k 是m ,n 的最大公约数,则m 和n 可以表示为,m ka n kb ==(1k >,a ,b 均为正整数).于是,()3323()371753m n ka kb k k a b +=+=+==⨯.因为1k >且7与53都是质数,23232k a b k a k k +>≥>, 所以7k =且2353k a b +=,即34953a b ⨯+=.由a ,b 是正整数,得1,4a b ==. 所以7,28m n ==.故728196mn =⨯=.18.(2021·全国·九年级竞赛)长沙市某中学100名学生向某“希望学校”捐书1000本,其中任意10人捐书总数不超过190本,那么捐书最多的某同学最多能捐书_________本. 【答案】109 【解析】 【分析】 【详解】设100名学生捐书数分别是12100,,,a a a ,不妨设其中100a 为最大,于是100101000a +=()129100a a a a +++++()101118100a a a a ++++()192027100a a a a +++++(91a +++)9299100a a a +++190190190≤+++111902090=⨯=,所以100109a ≤.另一方面,当12999a a a ====,100109a =时,满足题目要求,故捐书最多的人最多能捐书109本.19.(2021·全国·九年级竞赛)已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________. 【答案】 329 335或334 【解析】 【分析】 【详解】要使10a 最大,必须1a ,2a ,3a ,4a 及6a ,7a ,8a ,9a ,10a 尽量小.又因为1210a a a <<<,且1a ,2a ,3a ,4a 的最小可能值依次为1,2,3,4,于是有2000123≥+++56104a a a ++++,即56101990a a a +++≤.又651a a ≥+,752a a ≥+,853a a ≥+,954a a ≥+,1055a a ≥+,故51990615a ≥+,51975132966a ≤=.又5a 为正整数,所以5329a ≤,于是6710a a a +++=199********-=.又761a a ≥+,862a a ≥+,963a a ≥+,1064a a ≥+,故65101661a +≤,616515a ≤=13305,且6a 为正整数,所以6330a ≤,而651330a a ≥+=,所以6330a =,要7a ,8a ,9a 最小得7331a =,8332a =,9333a =,这时101661a =-()6789335a a a a +++=.但如果取1a ,2a ,3a ,4a 依次为1,2,3,5,那么同样可得569,,,a a a 取上述值,这时10334a =.故应填5a 的最大值是329,这时10a 的值应是335或334. 三、解答题20.(2021·全国·九年级竞赛)某宾馆底楼客房比二楼客房少5间,某旅游团有48人.若全部安排底楼,每间房间住4人,房间不够;每间住5人,则有房间没有住满5人.又若全部安排住2楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人.问该宾馆底楼有多少间客房? 【答案】宾馆的底楼有客房10间 【解析】 【分析】 【详解】设底楼有x 间客房,则2楼有()5+x 间客房. 简4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩依题意可得不等式组解不等式组得9.611x <<.又x 为正整数,所以10x =. 答:宾馆的底楼有客房10间.21.(2021·全国·九年级竞赛)一座大楼有4部电梯,如果每部电梯可停靠三层(不一定连续三层,也不一定停最低层),对大楼中的任意两层,至少有一部电梯可在这两层停靠.问:这座大楼最多有几层? 【答案】这座大楼最多有5层【解析】 【分析】 【详解】设大楼有n 层,则楼层对的个数为(1)2n n -每架电梯停3层,有3232⨯=个楼层对, 所以(1)43,(1)242n n n n -⨯≥-≤,且n 为正整数,所以5n ≤.设置4部电梯使它们停靠的楼层分别为 ()()()()1,4,5,2,4,5,3,4,5,1,2,3满足题目要求,故这座大楼最多有5层.22.(2021·全国·九年级竞赛)解方程22424x x x x ⎡⎤+-=⎢⎥⎣⎦.【答案】4x =-或45【解析】 【分析】 【详解】原方程中显然0x ≠,故原方程可化为2241()2x x ⎡⎤+-=⎢⎥⎣⎦.又2222221()21()2()1x x x ⎡⎤⎡⎤⎡⎤+-=+-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,故原方程可化为224[()]1x x=+,所以4x 为整数,设4n x =(n 为整数),原方程又化为2[]14n n =+.于是2124n n n +≤<+,即222(12)2(12)440,2(13)2(12)4802(13)2(13)n n n n n n n n ⎧≤≥+⎧--≥⎪⇒≤≤⎨⎨--<<<⎩⎪⎩或 或.2(12)2(13n <<).又n 为整数,所以1n =-或5n =,故4x =-或4523.(2021·全国·九年级竞赛)证明:对任意实数x 及任意正整数n 有[][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.【答案】见解析 【解析】 【分析】 【详解】设[]x x α=-,则01a ≤≤,于是存在小于n 的正整数r ,使1r rn nα-≤<故[][]1r rx x x n n-+<<+, 故当0k n r ≤≤-时,[][][][]11r k r n rx x x x x n n n n--≤+≤+<++=-, 故[](0)k x x k n r n ⎡⎤+=≤≤-⎢⎥⎣⎦当11n r k n -+≤≤-时,[][][][][]1111111r n r k r n r x x x x x x n n n n n n--+--+=++≤+<++=++<+, 故[]1(11)k x x n r k n n ⎡⎤+=+-+≤≤-⎢⎥⎣⎦,于是[]1111[]()(n n r n r x x x x x x x n n n n n ---+⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=++++++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦[][]21)(1)(1)(1)[]1n r n x x n r x r x n x r n n -+-⎡⎤⎡⎤++++=-++-+=+-⎢⎥⎢⎥⎣⎦⎣⎦①. 又因为[][]1n x r nx n x r +-≤≤+,所以[][]1nx n x r =+-②. 由①及②便知要证等式成立.24.(2021·全国·九年级竞赛)已知01,01,01a b c <<<<<<,证明: ()()()1,1,1a b b c c a ---中至少有一个不大于14. 【答案】见解析 【解析】 【分析】 【详解】 (1)1(1)22a a a a +--≤=11(1)(1)22b bc c --≤三式平方后相乘得 31(1)(1)(1)()4a b b c c a -⋅-⋅-≤故()()()1,1,1a b b c c a ---中至少有一个不大于14.25.(2021·全国·九年级竞赛)设正数a ,b ,c ,x ,y ,x 满足a x b y c z k +=+=+=,证明; 2ay bz cx k ++<. 【答案】见解析 【解析】 【分析】 【详解】因3()()()()()()k a x b y c z abc xyz ay c z bz a x cx b y =+++=+++++++()()abc xyz k ay bz cx k ay bx cx =++++>++.又0k >,所以2ay bz cx k ++<.26.(2021·全国·九年级竞赛)已知实数a ,b ,c 满足0,10a b c ac ++==,证明1110a b c++<.【答案】见解析 【解析】 【分析】 【详解】因10abc =,故a ,b ,c 都不为零.又2222()2()0a b c a b c ab bc ca ++=+++++=且2220a b c ++>,所以0ab bc ca ++<,于是1110bc ca ab a b c abc++++=<. 27.(2021·全国·九年级竞赛)下图是某单位职工年龄(取正整数)的频率分布图(每组可含最低年龄但不含最高值),根据图中提供的信息回答下列问题:(1)该厂共有多少职工?(2)年龄不小于38但小于44岁的职工人数占职工总人数的百分比是多少? (3)如果42岁的职工有4人,那么42岁以上的职工有多少人?(4)有人估计该单位职工的平均年龄在39岁与42岁之间,问这个估计正确吗? 【答案】(1)50;(2)60%;(3)15人;(4)正确 【解析】 【分析】 【详解】(1)职工人数47911106350=++++++=;(2)年龄不小于38但小于44岁职工人数占职工总数的百分比为91110100%60%50++⨯=; (3)年龄在42岁以上职工人数()1063415=++-=(人); (4)设该厂职工的年龄平均值为n ,则11(34436738940114210446463)199239.84395050n ≥⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=>且11(36438740942114410466483)209241.84425050n <⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=<,故所作的估计是正确的.28.(2021·全国·九年级竞赛)某人到花店买花,他只有24元,打算买6支玫瑰和3支百合,但发现钱不够,只买了4支玫瑰和5支百合,这样还剩下2元多钱.请你算一算:2支玫瑰和3支百合哪个价格高? 【答案】2支玫瑰的价格高于3支百合的价格. 【解析】 【分析】 【详解】解 设玫瑰每支x 元,百合每支y 元,依题意得632445242x y x y +>⎧⎨+=-⎩①② 32⨯-⨯②①得918y <,故2y <. 53⨯-⨯①②得1854x >,故3x >.答:2支玫瑰的价格高于3支百合的价格.29.(2021·全国·九年级竞赛)1132x x -+ 【答案】8313x ---≤≤【解析】 【分析】 【详解】解 首先,由1030x x -≥⎧⎨+≥⎩得31x -≤≤.1132x x -≥+① 数上式两边均非负(当31x -≤≤时),两边平方后,整理得 9843x x --≥+②于是980x --≥,即98x ≤-结合31x -≤≤得938x -≤≤-.并且②式两边平方,得2(98)16(3)x x ≥--+,整理得264128330x x ++≥.③因方程264128330x x ++=的两根为1,2831x -±= 所以③的解为831x --≤或831x -+≥结合938x -≤≤-得原不等式的解为8313x ---≤≤30.(2021·全国·九年级竞赛)解不等式:2243414143x x x x x x x x +-->-++-- 【答案】1144x -<<或364x -<<634x <【解析】 【分析】 【详解】解 不等式两边乘以4,化简为5115(1)(1)(1)(1)43414143x x x x +-->+--++-- 移项、整理得22151169161x x ->--,移项、通分得2224(646)0(169)(161)x x x -<--, 可化为222(646)(169)(161)0x x x ---<,即222139()()()0163216x x x ---<. 如右图得2116x <或2393216x <<,解得1144x -<<或364x -<<634x <<31.(2021·全国·九年级竞赛)求满足下列条件的最小正整数n ,使得对这样的n ,有唯一的正整数k ,满足871513n n k <<+. 【答案】15 【解析】 【分析】 【详解】因n ,k 为正整数,所以0,0n n k >+>. 由题中不等式得151387n k n +>>,即1513187k n >+>所以7687k n >>,故76,87k n k n ><. 令760,780A k n B n k =-≥=-≥,可解出87,76n A B k A B =+=+. 又因为A ,B 均为正整数,1,1A B ≥≥,所以8715n ≥+=.当且仅当1,1A B ==时n 取最小值15,这时k 有唯一值716113⨯+⨯=. 故所求n 的最小值为15.32.(2021·全国·九年级竞赛)解不等式: 2256154x x x x -+≤++.【答案】41x -≤<-或4x <-或15x ≥.【解析】 【分析】 【详解】解 移项,通分整理得1020(1)(4)x x x -+≤++故得(Ⅰ) 1020(1)(4)0x x x -+≥⎧⎨++<⎩,或(Ⅱ)1020(1)(4)0x x x -+≤⎧⎨++>⎩.解(I ) 1541x x ⎧≤⎪⎨⎪-<<-⎩,∴41x -≤<-. 解(Ⅰ)1541x x x ⎧≥⎪⎨⎪--⎩或∴4x <-或15x ≥. 综上所述得,原不等式的解为41x -≤<-或4x <-或15x ≥.33.(2021·全国·九年级竞赛)解不等式21311x x x x -+>-+. 【答案】1x <-或1x > 【解析】 【分析】 【详解】解 移项通分得(21)(1)(3)(1)0(1)(1)x x x x x x -+-+->-+,即220(1)(1)x x x x -+>-+. 因22172()024xx x,故上述不等式化为()()110,1x x x -+>∴<-或1x >. 34.(2021·全国·九年级竞赛)如果二次不等式:28210ax ax ++<的解是71x -≤<-,求a 的值. 【答案】3a =【解析】 【分析】 【详解】解 依题意,1,7--是方程28210ax ax ++=的两个根,且0a >,由韦达定理得 2(1)(7)a-⨯-=,所以3a =. 35.(2021·全国·九年级竞赛)某校参加全国数,理,化,计算机比赛的人数分别是20,16,x ,20人.已知这组数据的中位数和平均数相等,求这组数据的中位数. 【答案】18或20. 【解析】 【分析】 【详解】(1)当16x ≤时,平均数为564x x +=,中位数为2016182+=.由56184x+=,解得16x =,满足16x ≤;(2)当1620x ≤≤时,平均数564x x +=,中位数为202x +.由562042x x++=,解得16x =,不符合1620x <<;当20x ≥时,平均数为564x x +=,中位数为2020202+=.由56204x+=,解得24x =,符合20x ≥.因此,所求中位数为18或20.36.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6次、第7次,第8次,第9次射击中,分别得到9.0环、8.4环、8.1环、9.3环,他的前9次射击所得平均环数高于前5次射击所得平均环数,如果要使10次射击的平均环数超过8.8环,那么他第10次射击至少要得多少环?(每次射击环数精确到0.1环) 【答案】第10次至少要射9.9环 【解析】 【分析】 【详解】设前9次射击共得x 环,依题意得1(9.08.48.19.3)95x x -+++>,解得78.3x <,故78.30.178.2x ≤-=.依题目要求,第10次射击至少要达到的环数为()8.8100.178.29.9⨯+-=(环). 答:第10次至少要射9.9环37.(2021·全国·九年级竞赛)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60g,60g,47g ,现要配制成浓度为7%的盐水100g .间甲盐水最多可用多少克?最少可用多少克? 【答案】甲种盐水最多可用49g ,最少可用35g 【解析】【分析】【详解】设3种盐水应分别取,,xg yg zg ,1005%8%9%1007%060060047x y z x y z x y z ++=⎧⎪++=⨯⎪⎪≤≤⎨⎪≤≤⎪≤≤⎪⎩,解得20043100y x z x =-⎧⎨=-⎩所以02004600310047x x ≤-≤⎧⎨≤-≤⎩, 解得3549x ≤≤.答:甲种盐水最多可用40g ,最少可用35g .38.(2021·全国·九年级竞赛)求证:对任意的实数x ,y ,[2][2][][][]x y x x y y ++++.【答案】见解析.【解析】【分析】【详解】设[],[]x x y y n αββ=+=+=+,其中0,1αβ≤<,m ,n 为整数.(1)若110,022αβ≤<≤<,则021,021,01αβαβ≤<≤<≤+<.这时有 [2][2][22][22]22x y m m m n αβ+=+++=+,[][][]x x y y +++[][()()][]m a m n n αββ=+++++++()22m m n n m n =+++=+,所以[2][2][][][]x y x x y y +=+++.(2)若111,122αβ≤<≤<,则122,122,12αβαβ≤<≤<≤+<.这时有 [2][2][22][22]2121x y m n m n αβ+=+++=+++222m n =++,[][][][][()()][]x x y y m m n n ααββ+++=+++++++()1221m m n n m n =++++=++.所以[2][2][][][]x y x x y y +>+++.(3)若110,122αβ≤<≤<(111,022αβ≤<≤<的情况类似),这时有021α≤<,13122,22βαβ≤<≤+<,这时有[2][2][22][22]221x y m a n m n β+=+++=++,[][][][()()]221x x y y m m n a n m n β+++=+++++++.综上所述,不论何种情况,都有[2][2][][][]x y x x y y +≤+++.39.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他的前9次射击所得环数的平均值高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中最少要得多少环?(每次射击所得环数都精确到0.1环)【答案】第10次最少要得9.9环.【解析】【分析】【详解】9.设前5次射击所得平均环数为a ,第10次击中x 环,依题意59.08.48.19.39a a ++++<, ① 59.08.48.19.38.810a x +++++<. ② 由①得8.7a <,从而558.70.143.4a ≤⨯-=.由②得8834.8553.243.49.8x a >--≥-=,所以9.9x ≥,即第10次最少要得9.9环.40.(2021·全国·九年级竞赛)已知x ,y ,z 都是正数,证明:32()()()()()()x y x z y z y x z x z y +≤++++++. 【答案】见解析【解析】【分析】【详解】 (0,0)2a b ab a b +≥≥得 []()()()()11()2()()2()()x x y x z x x y x z x x x y x z x y x z x y x z +++++=⋅=+++++++①. 1()2()()y y y x y zy x y z ≤+++++②. 1()2()()z z z x z yz x z y ≤+++++③由①+②+③即得要证不等式. 41.(2021·全国·九年级竞赛)某饮料厂生产A 、B 两种矿泉水,每天生产B 种矿泉水比A 种矿泉水多10吨,A 种矿泉水比B 种矿泉水每天多获利润2000元,其中A 种矿泉水每吨可获利润200元,B 种矿泉水每吨可获利润100元.(1)问:该厂每天生产A 种,B 种矿泉水各多少吨?(2)由于江水受到污染,市政府要求该厂每天必须多生产10吨矿泉水,该厂决定响应市政府的号召,在每天的利润不超过原利润的情况下不少于8000元,该厂每天生产A 种矿泉水最多多少吨?【答案】(1)该厂每天生产A 种矿泉水30吨,B 种矿泉水40吨.(2)该厂每天最多生产A 种矿泉水20吨.【解析】【分析】【详解】解 (1)设该厂每天生产A 种矿泉水x 吨,则该厂每天生产B 种矿泉水10x +吨,依题意得()200100102000x x -+=,解得30,1040x x =+=.(2)设该厂每天生产A 吨矿泉水y 吨,依题意得该厂每天共生产30401080++=吨矿泉水且()10000200100808000y y ≥+-≥,其中100002003010040=⨯+⨯为该厂原来每天获得的利润,解上述不等式得020y ≤≤.答:(1)该厂每天生产A 种矿泉水30吨,B 种矿泉水40吨.(2)该厂每天最多生产A 种矿泉水20吨.42.(2021·全国·九年级竞赛)要使不等式2320x x -+≤①与不等式2(1)(3)20m x m x -+--<②无公共解,求m 的取值范围.【答案】0m ≥【解析】【分析】【详解】解 ①化为()()120x x --<,故①的解为12x <<.②化为()()1210m x x ⎡⎤⎣⎦-+-<.③(1)当1m =,③为()210x -<,即1x <,符合题意.(2)当10m ->,即1m 时,③的解为211x m -<<-符合题意. (3)当10m -<,即1m <时,又分两种情形讨论: 若211m <-,即1m <-时,③的解为21x m <-或1x >,不符合题意; 若211m >-,即1m >-时,③的解为1x <或21x m>-. 要使①与②无公共解,必须221m ≥-即0m ≥,结合1m <得01m ≤<. 综上所述,得到要使①与②无公共解,m 的取值范围是0m ≥.43.(2021·全国·九年级竞赛)已知三个非负数a ,b ,c ,满足325a b c ++=和231a b c +-=.若37m a b c =+-,求m 的最大值和最小值.【答案】m 的最大值为111-;m 的最小值为57- 【解析】【分析】【详解】 解 由325,231a b c a b c ++=+-=可解出73,711a c b c =-=-,于是()()37373711732m a b c c c c c =+-=-+--=-.由0,0,0a b c ≥≥≥得73071100c c c -≥⎧⎪-≥⎨⎪≥⎩解得37711c ≤≤. 所以m 的最大值为71321111m =⨯-=-,m 的最小值为353277m =⨯-=-. 44.(2021·全国·九年级竞赛)某班学生到公园进行活动,划船的有22人,乘电动车的有20人,乘过山车的有19人,既划船又乘电动车的有9人,既乘电动车又乘过山车的有6人,既划船又乘过山车的有8人,并且有4人没有参加上述3项活动中任何一项活动,问这个班学生人数的可能值是多少?【答案】这个班的学生人数可能是42,43,44,45,46,47,48.【解析】【分析】【详解】解 设3项活动都参加了的学生有n 人,于是由容斥原理I 知至少参加了一项活动人数为222019(968)38n n ++-+++=+.所以,这个班的学生人数为38442n n ++=+.另一方面参加了两项活动的学生人数分别是9,6,8,所以06n ≤≤,故424248n ≤+≤.综上所述,这个班的学生人数可能是42,43,44,45,46,47,48.。
初中数学竞赛——不等式和不等式组
第1讲不等式和不等式组
知识总结归纳
一.不等式的概念:
用“”、“”等符号表示大小关系的式子叫不等式。
二.不等式的解:
不等式的解:使不等式成立的未知数x的值叫不等式的解。
三.解集:
使不等式成立的x的取值范围叫不等式解的集合,简称解集。
四.一元一次不等式:
含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式。
五.一元一次不等式组:
把几个不等式合起来,组成一个一元一次不等式组。
六.不等式的性质:
(1)不等式两边同时加(或减)同一个数(或式子),不等号的方向不变。
(2)不等式两边同乘(或除以)同一个正数,不等号的方向不变;
(3)不等式两边同乘(或除以)同一个负数,不等号的方向改变.
七.不等式组的解集:
不等式组中每一个解集的公共部分叫不等式组的解集。
八.解一元一次不等式的步骤
(1)去分母;
(注意:不等式两边都乘以或除以同一个负数时,不等号方向要改变)(2)去括号;
(3)移项;
(4)合并同类项;
(5)系数化为1
(注意:不等式两边都乘以或除以同一个负数时,不等号方向要改变)
典型例题
一.解不等式
【例1】解下列不等式,并在数轴上表示出它们的解集.
(1)3228
x x;(2)3[2(2)]3(2)
x x x x;
(3)112
[(1)](1)
225
x x x;(4)
0.40.90.030.02.5
0.50.032
x x x
.
【例2】解不等式:
11
3151
11
x x
x x
.。
数学竞赛中的不等式知识点总结
数学竞赛中的不等式知识点总结数学竞赛在学生的学习中扮演着很重要的角色,不仅能够提高学生的数学素养,还能够培养学生的逻辑思维能力和解题能力。
在数学竞赛中,不等式是一个非常重要的知识点,很多的数学竞赛都会考察不等式相关的题目,因此在备战数学竞赛的过程中,掌握好不等式知识点是非常必要的。
1.基本不等式基本不等式是指在所有正整数中,算术平均数大于等于几何平均数。
即对于任意正整数$a_1,a_2,\cdots,a_n$,都有:$\frac{a_1+a_2+\cdots+a_n}{n} \geq \sqrt[n]{a_1a_2\cdots a_n}$基本不等式是不等式中最基础的知识点,但是在数学竞赛中应用的非常广泛,尤其是在证明其他不等式定理时,基本不等式起到了非常重要的作用。
2.均值不等式均值不等式是指在所有实数中,算术平均数大于等于几何平均数。
均值不等式分为两种情况,一种是两个数的情况,另一种是多个数的情况。
两个实数$a$和$b$的均值不等式如下:$\frac{a+b}{2} \geq \sqrt{ab}$多个实数$a_1,a_2,\cdots,a_n$的均值不等式如下:$\frac{a_1+a_2+\cdots +a_n}{n} \geq \sqrt[n]{a_1a_2\cdots a_n}$均值不等式是在基本不等式的基础上发展起来的,应用范围比基本不等式更广泛,也更加灵活。
3.柯西不等式柯西不等式是指两个向量的点积不大于这两个向量的模的乘积。
柯西不等式可用于证明其他不等式,也可作为求极值的工具在数学竞赛中得到广泛应用。
柯西不等式如下:$(x_1y_1+x_2y_2+\cdots+x_ny_n)^2 \leq(x_1^2+x_2^2+\cdots+x_n^2)(y_1^2+y_2^2+\cdots+y_n^2)$其中$x_1,x_2,\cdots,x_n$和$y_1,y_2,\cdots,y_n$是任意实数。
初一不等式竞赛试题及答案
初一不等式竞赛试题及答案一、选择题(每题3分,共15分)1. 如果a > 0,b < 0,且|a| < |b|,那么a + b()A. 总是负数B. 可能是正数C. 总是正数D. 可能是零2. 对于任意实数x,下列不等式中正确的是()A. x^2 ≥ 0B. x^3 ≥ 0C. x^4 ≥ 0D. 所有选项都正确3. 如果x > y,那么下列不等式中一定成立的是()A. x + 1 > y + 1B. x - 1 > y - 1C. 2x > 2yD. 所有选项都正确4. 对于任意实数a和b,下列不等式中正确的是()A. a + b ≥ 0B. a - b ≥ 0C. a * b ≥ 0D. 无法确定5. 如果a < b < 0,那么下列不等式中一定成立的是()A. a^2 > b^2B. a^2 < b^2C. a^3 > b^3D. a^3 < b^3二、填空题(每题2分,共10分)6. 如果x > 0,那么x^2 ________ 0。
7. 对于任意实数x,|x|总是 ________ 0。
8. 如果a > b,且b > 0,那么1/a ________ 1/b。
9. 对于任意实数x,x^3 - 3x^2 + 2x ________ 0。
10. 如果a > 0,且b < 0,那么a + b ________ 0。
三、解答题(每题5分,共20分)11. 证明:对于任意实数x,x^3 - x^2 + x - 1 ≥ 0。
12. 已知a > b,证明:a^2 > b^2。
13. 已知x > y,证明:x^2 > y^2。
14. 已知a < b,证明:a^3 < b^3。
四、综合题(每题10分,共10分)15. 已知a, b, c是正整数,且a < b < c,请证明:(a + b) / c < 1。
数学竞赛技巧解不等式的方法与技巧
数学竞赛技巧解不等式的方法与技巧不等式是数学竞赛中常见的题型,解不等式是考察学生对数学知识的掌握和解题能力的重要手段。
下面将介绍一些解不等式的方法与技巧,希望对广大数学竞赛爱好者有所帮助。
一、拆分、合并法在解不等式时,我们有时可以通过拆分和合并的方法将复杂的不等式化简成简单的形式。
拆分法:针对复杂的不等式,我们可以将其拆分成若干个简单的不等式,然后分别求解。
例如,对于不等式2x + 3 > 5x - 1,我们可以将其拆分成两个不等式2x + 3 > 5x - 1和2x + 3 < 5x - 1,再分别求解。
合并法:针对简单的不等式,我们可以通过合并的方法将其化简成更简单的形式。
例如,对于不等式2x + 3 > 5x - 1,我们可以将其化简为3 > 3x,再求解。
二、绝对值法对于带有绝对值的不等式,我们可以通过绝对值法求解。
首先,我们需要将绝对值中的参数拆分成两种情况,正数和负数。
然后,分别解得各自情况下的不等式,并取交集。
例如,对于不等式|2x - 1| > 3,我们可以将其拆分成两个不等式2x - 1 > 3和2x - 1 < -3,再分别求解,然后取交集得到最终解。
三、二次函数法对于一些复杂的二次不等式,利用二次函数的性质可以有效地求解。
首先,我们需要将二次函数转化为标准形式,即形如f(x) = ax² + bx + c的形式。
然后,通过绘制函数图像,分析抛物线开口的方向和与坐标轴的交点情况,得出不等式的解集。
例如,对于不等式x² + x - 2 > 0,我们可以将其转化为f(x) = x² + x - 2 > 0的形式,然后绘制函数图像,分析得出x > 1或x < -2,最终解为{x|x > 1或x < -2}。
四、倒置法倒置法是一种常用的解不等式的技巧。
它适用于那些具有对称性的不等式。
初中数学竞赛:几何不等式
初中数学竞赛:几何不等式平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.定理1在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2同一个三角形中,大边对大角,小边对小角,反之亦然.定理3在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l上的射影,若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A或B时等号成立.说明 max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}.例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(图2-137).证在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证:<a+b+c;(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2.证 (1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得又由定理4可知PA+PB<a+b, PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所以(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.例3如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB >DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.证在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE.例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC延长线于K,求证:分析在不等式两边的线段数不同的情况下,一般是设法构造其所为边的三角形.证如图2-140,在GK上取一点M,使GM=MK,则在Rt△GCK中,CM是GK边上的中线,所以∠GCM=∠MGC.而∠ACG=45°,∠MGC>∠ACG,于是∠MGC>45°,所以∠ACM=∠ACG+∠GCM>90°.由于在△ACM中∠ACM>∠AMC,所以AM>AC.故例5如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.证 (1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY.又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS中的最大边,而且SXOC′是平行四边形,所以BX>XS=OC′.同理CY>OB′.所以OA′+OB′+OC′<XY+BX+CY=BC.所以OA′+OB′+OC′=x·AA′+y·BB′+z·CC′≤(x+y+z)max{AA′,BB′,CC′}=max{AA′,BB′,CC′}下面我们举几个与角有关的不等式问题.例6在△ABC中,D是中线AM上一点,若∠DCB>∠DBC,求证:∠ACB>∠ABC(图2-142).证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB>∠AMC,由定理3知,AB>AC,所以∠ACB>∠ABC.说明在证明角的不等式时,常常把角的不等式转换成边的不等式.证 由于AC >AB ,所以∠B >∠C .作∠ABD=∠C ,如图2即证BD ∠CD .因为△BAD ∽△CAB ,即 BC >2BD .又 CD >BC -BD ,所以BC +CD >2BD +BC -BD ,所以 CD >BD .从而命题得证.例8 在锐角△ABC 中,最大的高线AH 等于中线BM ,求证:∠B <60°(图2-144).证 作MH 1⊥BC 于H 1,由于M 是中点,所以于是在Rt △MH 1B 中,∠MBH 1=30°.延长BM 至N ,使得MN=BM ,则ABCN 为平行四边形.因为AH 为最ABC 中的最短边,所以AN=BC <AB ,从而∠ABN <∠ANB=∠MBC=30°,∠B=∠ABM+∠MBC <60°.下面是一个非常著名的问题——费马点问题.例9 如图2-145.设O 为△ABC 内一点,且∠AOB=∠BOC=∠COA=120°,P 为任意一点(不是O).求证:PA +PB+PC >OA+OB+OC .证 过△ABC 的顶点A ,B ,C 分别引OA ,OB ,OC 的垂线,设这三条垂线的交点为A 1,B 1,C 1(如图2-145),考虑四边形AOBC 1.因为∠OAC 1=∠OBC 1=90°,∠AOB=120°,所以∠C 1=60°.同理,∠A 1=∠B 1=60°.所以△A1B1C1为正三角形. 设P 到△A 1B 1C 1三边B 1C 1,C 1A 1,A 1B 1的距离分别为ha ,hb ,hc ,且△A 1B 1C 1的边长为a ,高为h .由等式S △A 1B 1C 1=S △PB 1C 1+S △PC 1A 1+S △PA 1B 1知所以 h=h a +h b +h c .这说明正△A 1B 1C 1内任一点P 到三边的距离和等于△A 1B 1C 1的高h ,这是一个定值,所以OA +OB +OC=h=定值.显然,PA +PB +PC >P 到△A1B1C1三边距离和,所以PA +PB +PC >h=OA +OB +OC .这就是我们所要证的结论.由这个结论可知O点具有如下性质:它到三角形三个顶点的距离和小于其他点到三角形顶点的距离和,这个点叫费马点.练习1.设D是△ABC中边BC上一点,求证:AD不大于△ABC中的最大边.2.AM是△ABC的中线,求证:3.已知△ABC的边BC上有两点D,E,且BD=CE,求证:AB+AC>AD+AE.4.设△ABC中,∠C>∠B,BD,CE分别为∠B与∠C的平分线,求证:BD >CE.5.在△ABC中,BE和CF是高,AB>AC,求证:AB+CF≥AC+BE.6.在△ABC中,AB>AC,AD为高,P为AD上的任意一点,求证:PB-PC>AB-AC.7.在等腰△ABC中,AB=AC.(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.。
初中数学重点梳理:不等式的证明和应用
不等式的证明和应用知识定位不等式是数学竞赛的热点之一。
由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。
而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。
证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。
但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。
知识梳理1. 不等式三个基本性质:① 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
② 不等式两边都乘(或除以)同一个正数,不等号的方向不变。
③ 不等式两边都乘(或除以)同一个负数,不等号的方向改变。
2. 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。
设a>b,不等式组⎩⎨⎧>>b x ax 的解集是x>a ⎩⎨⎧<<b x ax 的解集是x<b ⎩⎨⎧<>ax bx 的解集是 b<x<a ⎩⎨⎧<>bx ax 的解集是空集 3.不等式证明的基本方法:(1)比较法比较法可分为差值比较法和商值比较法。
差值比较法:原理 A - B >0A >B .商值比较法:原理 若>1,且B>0,则A>B 。
3.不等式的应用:(1)几何中证明线段或角的不等关系常用以下定理①三角形任意边两边的和大于第三边,任意两边的差小于第三边。
②三角形的一个外角等于和它不相邻的两个内角和。
③在一个三角形中,大边对大角,大角对大边。
直角三角形中,斜边大于任一直角边。
④有两组边对应相等的两个三角形中如果这两边的夹角大,那么第三边也大;如果第三边大,那么它所对的角也大。
⑤任意多边形的每一边都小于其他各边的和(2)不等式(组)的应用主要表现在:作差或作商比较数的大小;求代数式的取值范围;求代数式的最值,列不等式(组)解应用题.其中,不等式(组)解应用题与列方程解应用题的步骤相仿,一般步骤是:(1)弄清题意和题中的数量关系,用字母表示未知数;(2)找出能够表示题目全部含义的一个或几个不等关系;(3)列出不等式(组);(4)解这个不等式(组),求出解集并作答.例题精讲【试题来源】【题目】已知x<0,-1<y<0,将x,xy,xy2按由小到大的顺序排列.【答案】x<xy2<xy.【解析】分析用作差法比较大小,即若a-b>0,则a>b;若a-b<0,则a<b.解因为x-xy=x(1-y),并且x<0,-1<y<0,所以x(1-y)<0,则x<xy.因为xy2-xy=xy(y-1)<0,所以xy2<xy.因为x-xy2=x(1+y)(1-y)<0,所以x<xy2.综上有x<xy2<xy.【知识点】不等式的证明和应用【适用场合】当堂例题【难度系数】2【试题来源】【题目】若试比较A,B的大小.【答案】A>B【解析】显然,2x>y,y>0,所以2x-y>0,所以A-B>0,A>B.【知识点】不等式的证明和应用【适用场合】当堂练习题【难度系数】3【试题来源】【题目】若正数a,b,c满足不等式组试确定a,b,c的大小关系.【答案】b<c<a【解析】解①+c得②+a得③+b得由④,⑤得所以c<a.同理,由④,⑥得b<c.所以a,b,c的大小关系为b<c<a.【知识点】不等式的证明和应用【适用场合】当堂例题【难度系数】3【试题来源】【题目】当k取何值时,关于x的方程3(x+1)=5-kx分别有(1)正数解;(2)负数解;(3)不大于1的解.【答案】k≥-1或k<-3.【解析】解将原方程变形为(3+k)x=2.(1)当 3+k>0,即k>-3时,方程有正数解.(2)当3+k<0,即k<-3时,方程有负数解.(3)当方程解不大于1时,有所以1+k,3+k应同号,即得解为k≥-1或k<-3.注意由于不等式是大于或等于零,所以分子1+k可以等于零,而分母是不能等于零的。
中学数学竞赛讲义——不等式不等式
中学数学竞赛讲义——不等式 一、基础知识不等式的基本性质:(1)a>b ⇔a-b>0; (2)a>b, b>c ⇒a>c ; (3)a>b ⇒a+c>b+c ; (4)a>b, c>0⇒ac>bc ;(5)a>b, c<0⇒ac<bc; (6)a>b>0, c>d>0⇒ac>bd; (7)a>b>0, n ∈N+⇒an>bn; (8)a>b>0, n ∈N+⇒n nb a >;(9)a>0, |x|<a ⇔-a<x<a, |x|>a ⇔x>a 或x<-a; (10)a, b ∈R ,则|a|-|b|≤|a+b|≤|a|+|b|; (11)a, b ∈R ,则(a-b)2≥0⇔a2+b2≥2ab;(12)x, y, z ∈R+,则x+y≥2xy , x+y+z .33xyz ≥前五条是显然的,以下从第六条开始给出证明。
(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd ,所以ac>bd ;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若nnb a ≤,由性质(7)得n n n n b a )()(≤,即a≤b ,与a>b 矛盾,所以假设不成立,所以nnb a >;由绝对值的意义知(9)成立;-|a|≤a≤|a|, -|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-22)(y x xy -=≥0,所以x+y≥xy 2,当且仅当x=y 时,等号成立,再证另一不等式,令c z b y a x ===333,,,因为x3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc=(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca)=21(a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a3+b3+c3≥3abc ,即x+y+z≥33xyz ,等号当且仅当x=y=z 时成立。
初中数学竞赛专题训练之不等式含答案
b c d > < ⎧ 2 x + 5 ⎪⎪ 32 B. -6≤a<- 11 2 C. -6<a ≤- 112 D. -6≤a ≤- 11a ()初中数学竞赛专项训练(4)(不等式)一、选择题:1、若不等式|x+1|+|x-3|≤a 有解,则 a 的取值范围是A. 0<a ≤4B. a ≥4C. 0<a ≤2D. a ≥2( )2、已知 a 、、、 都是正实数,且a c a c a c < ,给出下列四个不等式:① > ② <b d a + bc +d a + b c + db c b d③ ④ 其中正确的是 ( )a +bc +d a + b c + d A. ①③ B. ①④ C. ②④ D. ②③3、已知 a 、b 、c 满足 a <b <c ,ab+bc+ac =0,abc =1,则( )A. |a+b |>|c|B. |a+b|<|c|C. |a+b|=|c|D. |a+b|与|c|的大小关系不能确定> x - 5 4、关于 x 的不等式组 ⎨ 只有 5 个整数解,则 a 的取值范围是 ()⎪ x + 3 < x + a ⎪⎩ 2A. -6<a<-1125、设关于 x 的方程 ax 2 + (a + 2) x + 9a = 0 有两个不等的实数根 x 、 x ,且 x <1< x ,那么 a 的取值12 1 2范围是 ( )A. - 2 2< a <7 5B. a >2 5 C. a < - 2 7 D. - 2 11< a < 06、下列命题:①若 a=0,b ≠0,则方程 a x = b 无解 ②若 a=0,b ≠0,则不等式 a x > b 无解 ③若 a ≠0,则方程 ax = b 有惟一解 ④若 a ≠0,则不等式 ax > b 的解为 x >A. ①②③④都正确B. ①③正确,②④不正确C. ①③不正确,②④正确D. ①②③④都不正确 b,其中)7、已知不等式①|x-2|≤1 ② ( x - 2) 2 ≤ 1 ③ ( x - 1)( x - 3 ) ≤ 0 ④ x - 1 ≤ 0 其中解集是1 ≤ x ≤ 3 的不等x - 3式为A. ①B. ①②C. ①②③( )D. ①②③④8、设 a 、b 是正整数,且满足 56≤a+b ≤59,0.9<A. 171B. 177C. 180a b<0.91,则 b 2-a 2 等于D. 182( )二、填空题:1、若方程2 x + a x - 2= -1的解是正数,则 a 的取值范围是_________ 2、乒乓球队开会,每名队员坐一个凳子,凳子有两种:方凳(四脚)或圆凳(三脚,一个小孩走进会场,13、已知不等式①|x+2|<3②(x+2)2-9<0③x-16<0④<-1,其中解集是-5<x<1 x+5x-1的不等式有_____个。
初中数学竞赛题中有关不等式的解题策略
初中数学竞赛题中有关不等式的解题策略例1关于x 的不等式组255332x x x x a +⎧-⎪⎪⎨+⎪+⎪⎩><只有5个整数解,则a 的取值范围是( ) 11111111.6.6.6.62222A aB aC aD a ---≤--≤--≤≤-<<<< 例2某个篮球运动员共参加了10场比赛,他在第6,第7,第8,第9场比赛中分别获得了 23,14,11和20分,他的前9场比赛的平均分比前5场比赛的平均分要高.如果他的10场比赛 的平均分超过18分,问:他在第10场比赛中至少得了多少分?例3已知x ,y ,z 是正整数,求方程11178x y z ++=的正整数解.例4设a ,b 为正整数,且2537a b <<,求a+b 的最小值 .变式:使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 .例5五个整数a 、b 、c 、d 、e ,它们两两相加的和按从小到大顺序排分别是183,186,187, 190,191,192,193,194,196,x.已知e d c b a ≤≤≤≤,x >196.求a 、b 、c 、d 、e 及 x 的值.例6实数a ,b ,c 满足a+b+c=1.求a 2+b 2+c 2的最小值.例7设S=++…+,求不超过S 的最大整数[S ].例8,求[S ].例9设3333311111=+++++12320102011S ,则4S 的整数部分等于( ) A.4 B.5 C.6 D.7应用练习:1.若不等式2|x-1|+3|x-3|≤a 有解,则实数a 最小值是( )A.1B.2C.4D.62.若不等式|x-4|+|3-x|<m 恒不成立,实数m 的取值范围是( )A .m <2B .m <1C .m≤1D .m <03.设a ,b 是常数,不等式10x a b +>的解集是15x <,则关于x 的不等式bx-a >0的解集是( ) A .x >15 B .x <- 15 C .x >-15 D .x < 154.已知△ABC 的三条边a,b,c 满足321a b c =+,则∠A=( ) A 、锐角 B 、 直角 C 、 钝角 D 、非直角5.若△ABC 的三个内角满足3∠A >5∠B ,3∠C <2∠B ,则△ABC 必是 三角形.6. x 1,x 2,……,x 100是自然数,且x 1<x 2<……<x 100,若x 1+x 2+……+x 100=7001,那么, x 1+x 2+……+x 50的最大值是( )A.2225B.2226C.2227D.22287.如果7889q p <<,p ,q 是正整数,则p 的最小值是( ) A .15 B .17 C .72 D .1448.计算:已知,求M 的整数部分.(第6届睿达杯八年级复赛)9.已知13,28,a b a b ≤+≤≤-≤若9,t a b =+则t 的取值范围是 .10.已知21141,,=2n n n a a a a a +==+则 ; 12320141111,1111s a a a a =++++++++则与s 最接近的整数为 . 11.已知关于x 的不等式组230,320a x a x +>⎧⎨-≥⎩恰有3个整数解,则这三个整数解是 ; a 的取值范围是 .12“姑苏城外寒山寺,夜半钟声到客船”,每逢除夕夜,寒山寺主持便敲钟108响,祈求天下太平.已知寺外的江中有两条客船,当第一次钟声响起时,两船分别以3cm/s 、9cm/s 的速度从江边分别向上游、下游行驶.若寒山寺到江边的距离忽略不计,且每隔9秒钟响一次,声音传播速度为300m/s.试求当上游的船客听到第108次钟声时,下游的船客只听到了多少次钟声?13(08全国竞赛)条长度均为整数厘米的线段:a 1,a 2,a 3,a 4,a 5,a 6,a 7,满足a 1<a 2<a 3<a 4<a 5<a 6<a 7,且这7条线段中的任意3条都不能构成三角形.若a 1=1厘米,a 7=21厘米,则a 6=( )(A) 18厘米 (B) 13厘米 (C) 8厘米 (D) 5厘米参考答案:例1 C解析:3-2a <x <20,∴14≤3-2a <15,得C例2 解析:学生容易把平均分认为是整数出现错误.解:设前5场比赛的总分为x 分,第10场比赛得分为y 分.68958584x x x x +><=8468181029y y ++>= 例3解析:利用不等式的放缩性不妨令x y z ≥≥从而确定z 的范围是2或3,进而把三元方程的解转化为二元.(2,3,24);(2,4,8);共12个解.例4利用不等式的放缩性.a+b=17变式:解法1: 9817157889788987298144144n n k k n n n k n n n n <<+∴<<∴<<-≤≤∴= 解法2: 98171578891718,89178118798144144n n k k n k k n n k n k k n n n n <<+∴<<-+∴≤≥-∴-≥-+--≥-≤∴= 例5由题意得a+b=183①a+c=186②c+e=196③d+e=x ④由①-②+③得b+e=193⑤则c+d=194⑥①-②的b-c=-3∴b+c=187即a=91,b=92,c=95,d=99,e=101,x=200例6 13解析:①利用2222222,()222a b ab a b c a b c ab bc ca +≥++=+++++ ②利用柯西不等式. ()()()2222111a b c a b c ++++≥++例7 1999 解析:①利用特殊到一般3117111111,112226623=+=+-=+=+- ②利用一般到特殊 ()2211111111n n n n ++=+-++例8 1 解析:利用不等式的放缩性例9 A 解析:利用不等式的放缩性()()()()31111111211n n n n n n n n ⎡⎤<=-⎢⎥+--+⎣⎦应用练习:1..C 2 .C 3.C. 4.A 5.钝角 6.B 7.B 8.1659.13≤t ≤47 10. 777256 ,2 11, 0,1,2;4332a -≤≤。
不等式专题整理
不等式专题整理1. 一次不等式:- 加减法:- 如果 a>b,则 a+c > b+c (c为任意实数)- 如果 a>b,则 a-c > b-c (c为任意实数)- 乘法:- 如果 a>b 且 c>0,则 ac > bc- 如果 a>b 且 c<0,则 ac < bc- 除法:- 如果 a>b 且 c>0,则 a/c > b/c- 如果 a>b 且 c<0,则 a/c < b/c- 平方:- 如果 a>b 且 a>0 且 b>0,则 a^2 > b^2- 如果 a>b 且 a<0 且 b<0,则 a^2 > b^2- 开方:- 如果 a>b 且 a>0 且 b>0,则√a > √b- 如果 a>b 且 a<0 且 b<0,则√a < √b2. 二次不等式:- 求根:- 如果 ax^2+bx+c > 0 且 a>0,则该二次函数有两个实根。
可以通过求解方程 ax^2+bx+c = 0 来确定实根所在的区间。
- 如果 ax^2+bx+c < 0 且 a<0,则该二次函数有两个实根。
可以通过求解方程 ax^2+bx+c = 0 来确定实根所在的区间。
- 判别式:- 当二次函数 ax^2+bx+c = 0 的判别式 D = b^2-4ac > 0 时,该二次函数有两个不相等的实根。
- 当二次函数 ax^2+bx+c = 0 的判别式 D = b^2-4ac = 0 时,该二次函数有两个相等的实根。
- 当二次函数 ax^2+bx+c = 0 的判别式 D = b^2-4ac < 0 时,该二次函数无实根。
3. 绝对值不等式:- 绝对值大于等于某个数:- 如果|a| ≥ b,则a ≥ b 或a ≤ -b (b为非负实数)- 绝对值小于等于某个数:- 如果|a| ≤ b,则 -b ≤ a ≤ b (b为非负实数)4. 分式不等式:- 分式大于等于某个数:- 如果f(x) ≥ a,则分别对 f(x)-a ≥ 0 进行相应的不等式变形和求解。
七年级数学竞赛不等式
不等式(组)阅读与思考客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在:1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性.2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”.例题与求解【例1】已知关于x 的不等式组⎪⎩⎪⎨⎧<-+->-+x t x x x 235352恰好有5个整数解,则t 的取值范围是( )A 、2116-<<-tB 、2116-<≤-tC 、2116-≤<-tD 、2116-≤≤-t(2013 年全国初中数学竞赛广东省试题)解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式71005)2(<>---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 .(黑龙江省哈尔滨市竞赛试题)解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组⎩⎨⎧=+=-62y mx y x 若方程组有非负整数解,求正整数m 的值.(天津市竞赛试题)解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围.【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的最大 值和最小值.(江苏省竞赛试题)解题思路:本例综合了方程组、不等式(组)的知识,解题的关键是用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求m 的最大值与最小值.【例6】设765,4321,,,,,x x x x x x x 是自然数,7654321x x x x x x x <<<<<<,654543432321,,,x x x x x x x x x x x x =+=+=+=+,2010,7654321765=++++++=+x x x x x x x x x x 又,求321x x x ++的最大值.(“希望杯”邀请赛试题)解题思路:代入消元,利用不等式和取整的作用,寻找解题突破口.【例6】已知实数a ,b 满足,10,41≤-≤≤+≤b a b a 且a -2b 有最大值,求8a +2003b 的值. 解题思路:解法一:已知a -b 的范围,需知-b 的范围,即可知a -2b 的最大值得情形.解法二:设a -2b =m (a +b )+n (a -b )=(m +n )a +(m -n )b能力训练A 级1、已知关于x 的不等式4321432≥-≤+x mx x m 的解集是那么m 的值是 (“希望杯”邀请赛试题)2、不等式组⎩⎨⎧<->+5242b x a x 的解集是20<<x ,那么a +b 的值为(湖北省武汉市竞赛试题)3、若a +b <0,ab <0,a <b ,则b b a a --,,,的大小关系用不等式表示为(湖北省武汉市竞赛试题)4、若方程组⎩⎨⎧+=++=+36542m y x m y x 的解x ,y 都是正数,则m 的取值范围 是(河南省中考试题)5、关于x 的不等式x a ax +>+33的解集为3-<x ,则a 应满足( )A 、a >1B 、a <1C 、1≥aD 、1≤a(2013年全国初中数学竞赛预赛试题)6、适合不等式21414312-≥+->-x x x 的x 的取值的范围是( )7、已知不等式0)2)(1(>+-x mx 的解集23-<<-x 那么m 等于( ) A 、31 B 、31- C 、3 D 、-3 8、已知0≠a ,下面给出4个结论:①012>+a ;②012<-a ;③1112>+a ④1112<-a ,其中,一定成立的结论有( )A 、1个B 、2个C 、3个D 、4个(江苏省竞赛试题)9、当k 为何整数值时,方程组 ⎩⎨⎧-=-=+k y x y x 3962有正整数解?(天津市竞赛试题)10、如果⎩⎨⎧==21y x 是关于x ,y 的方程08)12(2=+-+-+by ax by ax 的解,求不等式组⎪⎩⎪⎨⎧+<-+>-331413x ax bx a x 的解集11、已知关于x 的不等式组⎪⎩⎪⎨⎧<≥-203b x a x 的整数解有且仅有4个:-1,0,1,2那么,适合这个不等式组的所有可能的整数对(a ,b )共有多少个?(江苏省竞赛试题)B 级1、如果关于x 的不等式03≥+ax 的正整数解为1,2,3那么a 的取值范围是(北京市”迎春杯“竞赛试题)2、若不等式组⎩⎨⎧-≥-≥+2210x x a x 有解, 则a 的取值范围是___________.(海南省竞赛试题)3、已知不等式03≤-a x 只有三个正整数解,那么这时正数a 的取值范围为 .(”希望杯“邀请赛试题)4、已知1121<-<-x 则12-x的取值范围为 . (“新知杯”上海市竞赛试题)5、若正数a ,b ,c 满足不等式组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<<+<<+<b c a b a c b a c b a c 4112535232611,则a ,b ,c 的大小关系是( )A 、a <b <cB 、 b <c <aC 、c <a <bD 、不确定(“祖冲之杯”邀请赛试题)6、一共( )个整数x 适合不等式99992000≤+-x xA 、10000B 、20000C 、9999D 、80000(五羊杯“竞赛试题)7、已知m ,n 是整数,3m +2=5n +3,且3m +2>30,5n +3<40,则mn 的值是( )A 、70B 、72C 、77D 、84 8、不等式5+>x x 的解集为( ) A 、25<x B 、25>x C 、25-<x D 、25->x (山东省竞赛试题)9、31,2351312++---≥--x x xx x 求已知的最大值和最小值. (北京市”迎春杯”竞赛试题)10、已知x ,y ,z 是三个非负有理数,且满足3x +2y +z =5,x +y -z =2,若s =2x +y -z ,求s 的取值范围.(天津市竞赛试题)11、求满足下列条件的最小正整数n ,对于n 存在正整数k 使137158<+<k n n 成立.12、已知正整数a ,b ,c 满足a <b <c ,且1111=++cb a ,试求a ,b ,c 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛专题:不等式 §5.1 一元一次不等式(组)5.1.1★已知2(2)3(41)9(1)x x x ---=-,且9y x <+,试比较1πy 与1031y 的大小. 解析 首先解关于x 的方程得10x =-.将10x =-代入不等式得109y <-+,即1y <-.又因为110π31<,所以110π31y y >5.1.2★解关于x 的不等式233122x xa a+-->. 解析 由题设知0a ≠,去分母并整理得(23)(23)(1)a x a a +>+-.当230a +>,即3(0)2a a >-≠时,1x a >-; 当230a +=,即32a =-时,无解; 当230a +<,即32a <-时,1x a <-.评注 对含有字母系数的不等式的解,也要分情况讨论.5.1.3★★已知不等式(2)340a b x a b -+-<的解为49x >,求不等式(4)230a b x a b -+->的解. 解析 已知不等式为(3)43a b x b a -<-.由题设知20,434.29a b b a a b -<⎧⎪-⎨=⎪-⎩所以 2,7.8a b b a <⎧⎪⎨=⎪⎩由728a a <,可得0a <,从而0a <,78b a =. 于是不等式(4)230a b x a b -+->等价于721()2028a a x a a -+->,即5528ax a ->,解得14x >-. 所求的不等式解为14x >-.5.1.4★★如果关于x 的不等式(2)50a b x a b -+->的解集为107x <,求关于x 的不等式ax b >的解集. 解析 由已知得(2)5a b x b a ->-,①710x ->-.②由已知①和②的解集相同,所以27,510,a b b a -=-⎧⎨-=-⎩ 解得5,3.a b =-⎧⎨=-⎩ 从而ax b >的解集是35x <. 5.1.5★求不等式111(1)(1)(2)326x x x +---≥ 的正整数解.解析 由原不等式可得1736x ≤,所以72x ≤是原不等式的解.因为要求正整数解,所以原不等式的正整数解为1x =,2,3. 5.1.6★★如果不等式组90,80x a x b -⎧⎨-<⎩≥的整数解仅为1、2、3,那么适合这个不等式组的整数a 、b 的有序数对(a ,b )共有多少对? 解析 由原不等式组可解得98ab x <≤.如图所示,在数轴上画出这个不等式组解集的可能范围,可得01,93 4.8a b ⎧<⎪⎪⎨⎪<⎪⎩≤≤即09,2432.a b <⎧⎨<⎩≤≤ 所以,a =1,2,…,9共9个,25b =,26,…,32共8个,于是有序数对(a ,b )共有9872⨯=个. 5.1.7★★★设a 、b 是正整数,求满足89910a b<<,且b 最小的分数a b. 解析 欲求b 的最小值,只需将b 放入一个不等式,然后估计出b 的下界,这里要用到整数的离散性,即若整数x 、y 满足x y >,则1x y +≥. 原不等式等价于8,99,10aba b ⎧<⎪⎪⎨⎪<⎪⎩ 即89,109.b a a b <⎧⎨<⎩所以 819,1019.b a a b +⎧⎨+⎩≤≤故 9181910b b -+⋅≤, 解得19b ≥.又分数1719满足817991910<<,故b 最小且满足题意的分数是1719. 5.1.8★已知520m ≤≤,2530n ≤≤,求mn的最大值和最小值. 解析 因为520m ≤≤,2530n ≤≤,所以m 的最大值为20,最小值为5;n 的最大值为30,最小值为25.故m n 的最大值为204255m n ==;m n 的最小值为51306m n ==. 5.1.9★★求同时满足6a b c ++=,23a b c -+=和0b c ≥≥的a 的最大值及最小值. 解析 由6a b c ++=和23a b c -+=,得32a b +=,932ac -=. 再由0b c ≥≥得,393022a a +-≥≥,解此不等式,得332a ≤≤. 所以a 的最大值为3,最小值为32.5.1.10★求适合2x y x y ->+,且y 满足方程3523y y x -=+的x 取值范围. 解析 3523y y x -=+,所以35y x =+.于是2(35)35x x x x -+>++,2x <-.故x 的取值范围是2x <-.5.1.11★★当x 、y 、z 为非负数时,323y z x +=+,343y z x +=-,求334w x y z =-+的最大值和最小值.解析 由323,343,y z x y z x +=+⎧⎨+=-⎩解得14,57.3z x x y =-+⎧⎪-⎨=⎪⎩因为x 、y 、z 均为非负数.所以,从上面可得1547x ≤≤.334357416w x y z x x x =-+=-+-+269x =-.56727w -≤≤. 所以w 的最大值是677,w 的最小值是52-. §5.2 含绝对值的不等式(组)5.2.1★(1)解不等式1|32|2x -<-; (2)解不等式|32|3x ->-.解析 根据绝对值的非负性,易知(1)无解,(2)的解集为全体实数. 5.2.2★★解不等式|5||23|1x x ---<.解析 原不等式的零点为5、32.根据零点的情况分类讨论. (1)当5x >时,原不等式化为(5)(23)1x x ---<,解之,得3x >-.所以,此时不等式的解为5x >. (2)当32x <时,原不等式化为(5)(23)1x x --+-<,解之,得1x <-.(3)当352x ≤≤时,原不等式化为(5)(23)1x x ----<,解之,得73x >.所以,此时不等式的解为753x <≤. 综上,原不等式的解为1x <-或73x >.评注 解与绝对值有关的不等式的关键一点是根据绝对值的定义,去掉不等式中的绝对值符号.分类讨论是去绝对值符号的另一种重要方法. 5.2.3★解不等式|7||2|3x x +--<.解析1 如图,分别用A 、B 两点代表7-和2.|7||2|x x +--表示某点C (x 所对应的点)到A 点和B 点的距离差.又当1x =-时,C 点到A 、B 两点的距离差恰好为3.A B x当点C 靠近点A 时,C 到A 、B 两点的距离差变小,所以原不等式的解为1x <-.解析2 因为7-、2分别是|7|x +和|2|x -的零点,于是分三种情况讨论: (1)当7x <-时,原不等式变为(7)(2)3x x -++-<,此式恒成立,故7x <-是原不等式的解. (2)当72x -<≤时,原不等式变为(7)(2)3x x ++-<,解得 1x <-.所以,71x -<-≤是原不等式的解. (3)若2x ≥,原不等式变为(7)(2)3x x +--<,即53<,此不等式无解.5.2.4★★解不等式||3||3||3x x +-->. 解析 原不等式等价于|3||3|3x x +-->,①或 |3||3|3x x +--<-. ②①的解为32x >;②的解为32x <-. 所以,原不等式的解为32x <-或32x >. 5.2.5★解不等式:25||60x x -+>.解析 注意22(||)x x =,整体分解. 由题意得(||2)(||3)0x x -->,即 ||3x >或||2x <, 而由||3x >得3x >或3x <-,由||2x <得22x -<<.所以,原不等式的解为3x <-或22x -<<或3x >.5.2.6★★解不等式组:22350,|2|10.x x x ⎧+->⎨-<⎩解析 由22350x x +->得7x <-或5x >. 由|2|10x -<得812x -<<. 于是原不等式组的解就是75,812,x x x <->⎧⎨-<<⎩或 即87x -<<-或512x <<.5.2.7★★a 取何值时,不等式|25||42|x x a ++-<无实数解?解法1 欲使不等式|25||42|x x a ++-<无实数解,关键是求出|25||42|x x ++-的最小值. 因|25|x +、|42|x -的零点分别是52-、2.当52x -≤时,|25||42|(25)4214x x x x x ++-=-++-=--.当52x =-时,|25||42|x x ++-有最小值9; 当522x -<≤时,|25||42|25429x x x x ++-=++-=,最小值及最大值都是9; 当2x >时,|25||42|252441x x x x x ++-=++-=+,无最小值. 故|25||42|x x ++-的最小值为9.欲使不等式|25||42|x x a ++-<无实数解,则9a ≤. 解法2 由||||||a b a b ++≥,得|25||42||2542|9x x x x ++-++-=≥,故欲使不等式|25||42|x x a ++-<无实数解,只需9a ≤即可. 5.2.8★★若不等式|1||3|x x a ++-≤有解,求a 的取值范围. 解析1 利用不等式性质:|1||3||1(3)|4x x x x ++-+--=≥,又|1||3|x x a ++-≤, 可得4a ≥.解析2 根据绝对值的几何意义,因为|1|x +、|3|x -分别表示数轴上点x 到点1-和3的距离,所以|1||3|x x ++-表示数轴上某点到A :1-和B :3的距离和.从图可见,不论x 在A 点左边或者B 点右边时,x 到A 、B 点距离和至少为4;当x 在AB 两点之间时,x 到A 、B 点距离和为4.所以4a ≥.x评注 解绝对值不等式常用分类讨论方法 (1)当1x -≤时,原不等式化为224a x -≥≥; (2)当13x -<<时,原不等式化为4a ≥; (3)当3x ≥时,原不等式化为224a x -≥≥. 综上所述,4a ≥.本题中,两个绝对值符号中未知数的系数相同,所以我们利用了绝对值的几何意义. 5.2.9★已知0n <且||m nm m n-=+,求m 的取值范围. 解析 整理可得(1||)1||m m n m -=+.因为0n <,所以(1||)01||m m m -<+,即 (1||)0m m -<.(1)当0m <时,1||0m ->,解之得10m -<<. (2)当0m >时,1||0m -<,解之得1m >. 综上,m 的取值范围为10m -<<或者1m >. 5.2.10★解不等式24||30x x -+>. 解析1 因为24||3(||1)(||3)0x x x x -+=-->,所以||1x <或||3x >,即11x -<<或者3x >或者3x <-.解析 2 考虑函数2()4||3f x x x =-+.注意到对任意实数x ,有()()f x f x -=.从函数图象来看,这个函数的图象关于y 轴对称,即只需作出0x >时的图象,再把函数图象关于y 轴作对称即可. 如图,可知,原不等式的解为使得图象在x 轴上方的x 的取值集合:11x -<<或者3x >或者3x <-.评注当我们从函数图象的角度去解不等式时,有两点需要引起读者注意:(||)f x表示的函数图象是()f x在x轴正向部分图象及其与关于y轴翻折;|()|f x的图象是把()f x在x轴下方的图象关于x轴翻折后的图象.由这两点,利用数形结合的方法,是比较巧的.5.2.11★★解不等式2|41|3x x x-+>.解析(1)当2410x x-+≥,即2x≥2x≤,原不等式变形为2413x x x-+>. 解不等式组,得x>或x.(2)当2410x x-+<,即22x<,原不等式变形为2(41)3x x x--+>.此时,不等式组无解. 综上,原不等式的解为x>或x.(本题从几何解释为使2|41|y x x=-+的图象在3y x=图象上方的x的取值范围.如图.)5.2.12★★已知||1x≤,||1y≤,且|||1||24|k x y y y x=++++--,求k的最小值和最大值.解析解题的关键是把绝对值符号去掉,必要时可以分类讨论.因为||1x≤,||1y≤,所以11x-≤≤,11y-≤≤.所以10y+≥.又222y -≤≤,故3233y x --≤≤,从而240y x --<. 当0x y +<时,有()(1)(24)25k x y y y x y =-+++---=-+. 因为11y -≤≤,所以3257y -+≤≤,此时37k ≤≤. 当0x y +≥时,有()(1)(24)25k x y y y x x =+++---=+. 同样,当11x -≤≤时,3257x +≤≤,即37k ≤≤. 综上所述,37k ≤≤.又当1x =时,7k =,当1x =-时,3k =,所以,k 的最值是3,最大值是7.5.2.13★★实数a 、b 、c 满足不等式||||a b c +≥,||||b c a +≥,||||c a b +≥.求证:0a b c ++=.解析1 若a 、b 、c 中有一个为零时,设0a =,则||0b c +=,所以,0b c +=,故0a b c ++=.下面可设a 、b 、c 均不等于零.(1)当a 、b 、c 全为正数时,则b c a +≤,c a b +≤,a b c +≤,这不可能.(2)当a 、b 、c 为二正一负时,不妨设0a >,0b >,0c <.则由||b c a +≤,得a b c a -+≤≤,所以0a b c ++≥.又有||||a b c +≤得:a b c +-≤,所以0a b c ++≤,从而0a b c ++=.(3)当a 、b 、c 为一正二负时,不妨设0a >,0b <,0c <,于是由||b c a +≤,得a b c -+≤,所以0a b c ++≥.又有||||a b c +≤得:a b c +-≤,所以0a b c ++≤,从而0a b c ++=.(4)当a 、b 、c 全为负数时,于是由条件得a b c a +-≤≤,b c a b +-≤≤,c a b c +-≤≤,所以2()a b c a b c ++++≤,所以0a b c ++≥,矛盾.综上所述,得0a b c ++=.解析2 把题设的3个不等式两边平方后相加,得2222222()222a b c a b c ab bc ca +++++++≥,故 2()0a b c ++≤,从而0a b c ++=.5.2.14★★★★实数a 、b 、c 满足a b c ≤≤,0ab bc ca ++=,1abc =.求最大的实数k ,使得不等式||||a b k c +≥恒成立.解析 当a b ==2c =时,则实数a 、b 、c 满足题设条件,此时4k ≤. 下面证明:不等式||4||a b c +≥对满足题设条件的实数a 、b 、c 恒成立.由已知条件知,a 、b 、c 都不等于0,且0c >.因为10ab c =>,210a b c+=-<, 所以0a b <≤.由根与系数的关系知,a 、b 是一元二次方程22110x x c c++= 的两个实数根,于是4140c c∆=-≥, 故 314c ≤. 所以 21||()4||a b a b c c c +=-+==≥4. 5.2.15★★★已知(1)0a >;(2)当11x -≤≤时,满足2||1ax bc c ++≤;(3)当11x -≤≤时,ax b +有最大值2.求常数a 、b 、c .解析 由(1)知2y ax bx c =++为开口向上的抛物线,由(1)、(3)知2a b +=.①由(2)知||1a b c ++≤, ② ||1c ≤. ③由①、②知|2|1c +≤.④ 由③、④得1c =-.故0x =时,2y ax bx c =++达到最小值.因此,02b a-=,0b =. 由①得2a =.故 2a =,0b =,1c =-.5.2.16★★★证明|||2|||24max{,,}A x y x y z x y x y z x y z =-++-+-+++=,其中max {x ,y ,z }表示x 、y 、z 这三个数中的最大者.解析 欲证的等式中含有三个绝对值符号,且其中一个在另一个内,要把绝对值去掉似乎较为困难,但等式的另一边对我们有所提示,如果x 为x 、y 、z 中的最大者,即证4A x =,依次再考虑y 、z 是它们中的最大值便可证得.(1)当x y ≥,x z ≥时,|2|222224A x y x y z x y x y z x z x z x =-++-+-+++=-++=.(2)当y z ≥,y x ≥时,|2|222224A y x x y z y x x y z y z y z y =-++-+-+++=-++=.(3)当z x ≥,z y ≥时,因为||2max x y x y -++={x ,y }2z ≤,所以2||||24A z x y x y x y x y z z =----+-+++=.从而 4max A ={x ,y ,z }.§5.3 一元二次不等式5.3.1★设a 为参数,解关于x 的一元二次不等式2(3)30x a x a -++<.解析 分解因式(3)()0x x a --<.(1)若3a >,解为3x a <<;(2)若3a <,解为3a x <<;(3)若3a =,原不等式变成2(3)0x -<,无解.5.3.2★★设a 为参数,解关于x 的一元二次不等式2(1)10ax a x -++<.解析 (1)0a =时,原不等式为10x -+<,解为1x >.(2)0a ≠时,分解因式得1(1)0a x x a ⎛⎫--< ⎪⎝⎭. ①若0a >,则1(1)0x x a ⎛⎫--< ⎪⎝⎭. (i )11a >,即01a <<时,解为11x a <<. (ii )11a <,即1a >时,解为11x a <<.(iii )11a=,即1a =时,不等式无解.②若0a <,则1(1)0x x a ⎛⎫--> ⎪⎝⎭, 解为1x >及1x a <.5.3.3★★若一元二次不等式20ax bx c ++>的解是12x <<,求不等式20cx bx a ++<的解. 解析 1 因一元二次不等式20ax bx c ++>的解是12x <<,所以,不等式20ax bx c ++>与(1)(2)0x x --<等价.即20b c x x a a++<(0a <)与2320x x -+<等价.所以 3,2,0,b a c a a ⎧=-⎪⎪⎪=⎨⎪⎪<⎪⎩即3,2,0.b a c a a =-⎧⎪=⎨⎪<⎩ 故不等式20cx bx a ++<,即2230ax ax a -+<,且0a <.化为22310x x -+>,解得1x >,或12x <.解析2 因一元二次不等式20ax bx c ++>的解是12x <<,所以20ax bx c ++=的根是1,2,且0a <.由韦达定理,得3,2.b a c a ⎧-=⎪⎪⎨⎪=⎪⎩ 故不等式20cx bx a ++<的解是1x >,或12x <.5.3.4★★★欲使不等式2(1)(3)20m x m x -+--<与不等式2320x x -+<无公共解,求m 的取值范围.解析 不等式2320x x -+<的解是12x <<.不等式2(1)(3)20m x m x -+--<,即 [(1)2](1)0m x x -+-<. ①(1)当1m =时,不等式为220x -<,即1x <,符合题意;(2)当10m ->,即1m >时,不等式①之解为211x m<<-,符合题意; (3)当10m -<,即1m <时,我们分两种情况讨论: 若211m <-,即1m <-时,不等式①之解为1x >,或21x m <-,不合题意; 若211m >-,即11m -<<时,不等式①之解为21x m>-,或1x <,欲使不等式2(1)(3)20m x m x -+--<与不等式2320x x -+<无公共解,则须221m -≥,从而01m <≤. 综上所述,欲使不等式2(1)(3)20m x m x -+--<与不等式2320x x -+<无公共解,m 的取值范围是0m ≥5.3.5★★对一切实数x ,不等式2(6)20ax a x +-+>恒成立,求a 的值.解析 由于不等式对一切x 恒成立,故a 应该满足20,6420,a a a >⎧⎨∆=(-)-⋅<⎩ 即20,20360,a a a >⎧⎨-+<⎩所以 218a <<.5.3.6★★设有不等式2221(2)3238t t x x t --+-≤≤, 试求对于满足02x ≤≤的一切x 成立的t 的取值范围.解析 令232y x x =-+,02x ≤≤,则在02x ≤≤上y 能取到的最小值为14-,最大值为2,从而总有2211(2),8432,t t t ⎧--⎪⎨⎪-⎩≤≥ 即22220,10,t t t ⎧--⎪⎨-⎪⎩≥≤ 所以111;t t ⎧-⎪⎨-⎪⎩≤≤≤或11 1.t t ⎧⎪⎨-⎪⎩≥≤≤ 于是t的取值范围为11t --≤≤5.3.7★解不等式21311x x x x -+>-+. 解析 原不等式可化为213011x x x x -+->-+, 即 220(1)(1)x x x x -+>-+. ① 因为22172024x x x x ⎛⎫-+=-+> ⎪⎝⎭,所以①式等价于 (1)(1)0x x -+>,所以 1x <-或1x >.5.3.8★★解不等式12>. 解析 首先,由30,10x x -⎧⎨+⎩≥≥ 得13x -≤≤.将原不等式变形为1>.由于上式两边均非负,故两边平方后,整理得78x ->,所以780x ->,即78x <,并且2(78)16(1)x x ->+,所以264128330x x -+>,x >x <.综上可得,原不等式的解为1x -≤. 5.3.9★求不等式21(1)37x x x -<-<+的整数解的个数.解析 不等式21(1)37x x x -<-<+等价于不等式组22(1)1,(1)37,x x x x ⎧->-⎪⎨-<+⎪⎩即22320,560.x x x x ⎧-+>⎪⎨--<⎪⎩ 解2320x x -+>得2x >或1x <;解2560x x --<得16x -<<.故原不等式组的解为11x -<<或26x <<.x 的整数解为0x =,3,4,5共四个.5.3.10★★实数a 、b 、c 满足()()0a c a b c +++<.证明:2()4()b c a a b c ->++.解析 要证2()4()b c a a b c ->++,即证2()4()0b c a a b c --++>,联想到一元二次方程根的判别式,进而构造符合条件的二次函数,通过对函数图象与性质的研究使问题得以解决.设辅助函数2()()y ax b c x a b c =+-+++,令10x =,得函数值1y a b c =++;令21x =-,得函数值22()y a c =+.因为()()0a c a b c +++<,所以120y y <.这说明,辅助函数2()()y ax b c x a b c =+-+++上两点11(,)x y 、22(,)x y 分布在x 轴的两侧,由此可见抛物线与x 轴有两个交点,也就是说方程2()()0ax b c x a b c +-+++=有两个不相等的实数根. 因此2()4()0b c a a b c ∆=--++>,故2()4()b c a a b c ->++.评注 有些数学问题,可以借助函数,利用对函数图象与性质的研究,将一些抽象的数量关系通过函数图象形象直观地反映出来,这种数形结合的思想非常重要.5.3.11★★★满足下列两个条件:(1)对所有正整数x ,220010x x n -+≥;(2)存在正整数0x ,使20020020x x n -+<的正整数n 的个数有几个?解析 先求满足条件(1)的正整数n .由22220012001200124n x x x ⎛⎫-+=--+ ⎪⎝⎭≥ 对所有正整数x 都成立,则n 不小于222001200124x ⎛⎫--+ ⎪⎝⎭的最大值,故 222001200110001000100124n ⎛⎫--+=⨯ ⎪⎝⎭≥. 再求满足条件(2)的正整数n .240n ∆=2002->,21001n <.由于∆是正整数,且大于1,故此时方程220020x x n -+=的两根1x 、2x (均大于0),满足 22121212()()4x x x x x x -=+-=∆>1,即12||1x x ->,从而,当21001n <时,必存在正整数0x ,使得20020020x x n -+<.所以,满足条件(1)、(2)的正整数n 有21001100010011001-⨯=(个).5.3.12★★★设a 为实数,解不等式x <解析 (1)若0a ≤,由原不等式,得10,0.x x -⎧⎪⎨<⎪⎩≥ 此为矛盾不等式组,无解.(2)若0a >,则有2210,(1).x a x x -⎧⎪⎨->⎪⎩≥①② 由①,得 1x ≥.由②,得2220x a x a -+<,2(2)(2)a a a ∆=+-.此时又分两种情形:当02a <≤时,0∆≤,则不等式①②无解; 当2a >时,∆>0,注意到222212a a=>=. 此时不等式②的解为x <. 综上所述,当2a >时,原不等式才有解,此时不等式的解集为x <. 5.3.13★★★设0a >,解不等式1x +.①解析 因为0a >,①的左端非负,因此10x +≥. 下面分两种情形讨论.(1)0x ≥时,①式左右两边平方得22(1)a x x +≤,整理得22(2)10x a x +-+≥.②因为2222(2)4(4)a a a ∆=--=-,所以2a <时,0∆<,②对一切0x ≥成立.2a ≥时,0∆≥,22(2)1x a x +-+有实根,而且两根的积为1,和为非负数22a -,所以两根均为正.②的解为x 及0x ≤. (2)10x -<≤时,①式变为1x +. ③③式两边平方整理得22+++≥. ④x a x(2)10因为22+++有两个不相等的实数根,由韦达定理知,两根均为负.x a x(2)40a∆=+->,所以22(2)1由于两根积为1,较小的根小于1-,较大的根大于1-,所以④的解为<>.x a0(0)综合(1)、(2),原不等式的解为:当2a≥时,x及x当02<<时,ax。