初中数学竞赛专题:不等式

初中数学竞赛专题:不等式
初中数学竞赛专题:不等式

初中数学竞赛专题:不等式 §5.1 一元一次不等式(组)

5.1.1★已知2(2)3(41)9(1)x x x ---=-,且9y x <+,试比较1π

y 与

10

31

y 的大小. 解析 首先解关于x 的方程得10x =-.将10x =-代入不等式得109y <-+,即1y <-.又因为110π

31

<,所以110π

31

y y >

5.1.2★解关于x 的不等式

233122x x

a a

+-->

. 解析 由题设知0a ≠,去分母并整理得

(23)(23)(1)a x a a +>+-.

当230a +>,即3

(0)2

a a >-≠时,1x a >-; 当230a +=,即32

a =-时,无解; 当230a +<,即32

a <-时,1x a <-.

评注 对含有字母系数的不等式的解,也要分情况讨论.

5.1.3★★已知不等式(2)340a b x a b -+-<的解为49

x >,求不等式(4)230a b x a b -+->的解. 解析 已知不等式为(3)43a b x b a -<-.由题设知

20,

434.29a b b a a b -

-?=?-?

所以 2,

7.8a b b a

=??

由728a a <,可得0a <,从而0a <,78

b a =. 于是不等式(4)230a b x a b -+->等价于

721

()2028

a a x a a -+->,

即5528ax a ->,解得14

x >-. 所求的不等式解为14

x >-.

5.1.4★★如果关于x 的不等式

(2)50a b x a b -+->

的解集为10

7

x <

,求关于x 的不等式ax b >的解集. 解析 由已知得

(2)5a b x b a ->-,①

710x ->-.②

由已知①和②的解集相同,所以

27,

510,

a b b a -=-??

-=-? 解得

5,

3.

a b =-??

=-? 从而ax b >的解集是3

5

x <. 5.1.5★求不等式

111

(1)(1)(2)326

x x x +---≥ 的正整数解.

解析 由原不等式可得1736x ≤,所以72

x ≤是原不等式的解.因为要求正整数解,所以原不等式的正整数解为1x =,2,3. 5.1.6★★如果不等式组90,

80x a x b -??

-

≥的整数解仅为1、2、3,那么适合这个不等式组的整数a 、b 的

有序数对(a ,b )共有多少对? 解析 由原不等式组可解得98

a

b x <≤.

如图所示,在数轴上画出这个不等式组解集的可能范围,可得

01,9

3 4.8a b ?

?

≤≤

09,

2432.a b

≤≤ 所以,a =1,2,…,9共9个,25b =,26,…,32共8个,于是有序数对(a ,b )共有9872?=个. 5.1.7★★★设a 、b 是正整数,求满足8

99

10a b

<<

,且b 最小的分数a b

. 解析 欲求b 的最小值,只需将b 放入一个不等式,然后估计出b 的下界,这里要用到整数的离散性,即若整数x 、y 满足x y >,则1x y +≥. 原不等式等价于

8,99,10

a

b

a b ?

?

89,

109.b a a b

所以 819,

1019.

b a a b +??+?≤≤

故 91

81910

b b -+?

≤, 解得

19b ≥.

又分数

1719满足817991910<<,故b 最小且满足题意的分数是1719

. 5.1.8★已知520m ≤≤,2530n ≤≤,求

m

n

的最大值和最小值. 解析 因为520m ≤≤,2530n ≤≤,所以m 的最大值为20,最小值为5;

n 的最大值为30,最小值为25.

m n 的最大值为204255m n ==;m n 的最小值为51

306

m n ==. 5.1.9★★求同时满足6a b c ++=,23a b c -+=和0b c ≥≥的a 的最大值及最小值. 解析 由6a b c ++=和23a b c -+=,得

32a b +=

,932

a

c -=. 再由0b c ≥≥得,

393022a a +-≥≥,解此不等式,得3

32

a ≤≤. 所以a 的最大值为3,最小值为3

2

.

5.1.10★求适合2x y x y ->+,且y 满足方程3523y y x -=+的x 取值范围. 解析 3523y y x -=+,所以35y x =+.于是

2(35)35x x x x -+>++,2x <-.

故x 的取值范围是2x <-.

5.1.11★★当x 、y 、z 为非负数时,323y z x +=+,343y z x +=-,求334w x y z =-+的最大值和最小值.

解析 由323,

343,y z x y z x +=+??+=-?解得14,

57.3z x x y =-+??-?

=??

因为x 、y 、z 均为非负数.所以,从上面可得1

547

x ≤≤.

334357416w x y z x x x =-+=-+-+

269x =-.

56727

w -≤≤. 所以w 的最大值是

677,w 的最小值是5

2

-. §5.2 含绝对值的不等式(组)

5.2.1★(1)解不等式1

|32|2

x -<-; (2)解不等式|32|3x ->-.

解析 根据绝对值的非负性,易知(1)无解,(2)的解集为全体实数. 5.2.2★★解不等式|5||23|1x x ---<.

解析 原不等式的零点为5、32

.根据零点的情况分类讨论. (1)当5x >时,原不等式化为

(5)(23)1x x ---<,

解之,得3x >-.

所以,此时不等式的解为5x >. (2)当32

x <时,原不等式化为

(5)(23)1x x --+-<,

解之,得1x <-.

(3)当352

x ≤≤时,原不等式化为

(5)(23)1x x ----<,

解之,得73

x >.

所以,此时不等式的解为753

x <≤. 综上,原不等式的解为1x <-或73

x >.

评注 解与绝对值有关的不等式的关键一点是根据绝对值的定义,去掉不等式中的绝对值符号.分类讨论是去绝对值符号的另一种重要方法. 5.2.3★解不等式|7||2|3x x +--<.

解析1 如图,分别用A 、B 两点代表7-和2.

|7||2|x x +--表示某点C (x 所对应的点)到A 点和B 点的距离差.又当1x =-时,C 点到A 、B 两

点的距离差恰好为3.

A B x

当点C 靠近点A 时,C 到A 、B 两点的距离差变小,所以原不等式的解为

1x <-.

解析2 因为7-、2分别是|7|x +和|2|x -的零点,于是分三种情况讨论: (1)当7x <-时,原不等式变为

(7)(2)3x x -++-<,

此式恒成立,故7x <-是原不等式的解. (2)当72x -<≤时,原不等式变为

(7)(2)3x x ++-<,

解得 1x <-.

所以,71x -<-≤是原不等式的解. (3)若2x ≥,原不等式变为

(7)(2)3x x +--<,

即53<,此不等式无解.

5.2.4★★解不等式||3||3||3x x +-->. 解析 原不等式等价于

|3||3|3x x +-->,①

或 |3||3|3x x +--<-. ②

①的解为32x >;②的解为32

x <-. 所以,原不等式的解为32x <-或32

x >. 5.2.5★解不等式:

25||60x x -+>.

解析 注意22(||)x x =,整体分解. 由题意得

(||2)(||3)0x x -->,

即 ||3x >或||2x <, 而由||3x >得

3x >或3x <-,

由||2x <得

22x -<<.

所以,原不等式的解为

3x <-或22x -<<或3x >.

5.2.6★★解不等式组:

22350,

|2|10.x x x ?+->?

-

解析 由22350x x +->得7x <-或5x >. 由|2|10x -<得812x -<<. 于是原不等式组的解就是

75,

812,

x x x <->??

-<

87x -<<-或512x <<.

5.2.7★★a 取何值时,不等式

|25||42|x x a ++-<

无实数解?

解法1 欲使不等式|25||42|x x a ++-<无实数解,关键是求出|25||42|x x ++-的最小值. 因|25|x +、|42|x -的零点分别是52

-、2.

当52x -≤时,|25||42|(25)4214x x x x x ++-=-++-=--.当52

x =-时,|25||42|x x ++-有最小值9; 当522

x -<≤时,|25||42|25429x x x x ++-=++-=,最小值及最大值都是9; 当2x >时,|25||42|252441x x x x x ++-=++-=+,无最小值. 故|25||42|x x ++-的最小值为9.

欲使不等式|25||42|x x a ++-<无实数解,则9a ≤. 解法2 由||||||a b a b ++≥,得

|25||42||2542|9x x x x ++-++-=≥,

故欲使不等式|25||42|x x a ++-<无实数解,只需9a ≤即可. 5.2.8★★若不等式|1||3|x x a ++-≤有解,求a 的取值范围. 解析1 利用不等式性质:

|1||3||1(3)|4x x x x ++-+--=≥,

又|1||3|x x a ++-≤, 可得4a ≥.

解析2 根据绝对值的几何意义,因为|1|x +、|3|x -分别表示数轴上点x 到点1-和3的距离,所以

|1||3|x x ++-表示数轴上某点到A :1-和B :3的距离和.从图可见,不论x 在A 点左边或者B 点

右边时,x 到A 、B 点距离和至少为4;当x 在AB 两点之间时,x 到A 、B 点距离和为4.所以4a ≥.

x

评注 解绝对值不等式常用分类讨论方法 (1)当1x -≤时,原不等式化为224a x -≥≥; (2)当13x -<<时,原不等式化为4a ≥; (3)当3x ≥时,原不等式化为224a x -≥≥. 综上所述,4a ≥.

本题中,两个绝对值符号中未知数的系数相同,所以我们利用了绝对值的几何意义. 5.2.9★已知0n <且||m n

m m n

-=+,求m 的取值范围. 解析 整理可得(1||)

1||

m m n m -=+.

因为0n <,所以

(1||)

01||

m m m -<+,

即 (1||)0m m -<.

(1)当0m <时,1||0m ->,解之得10m -<<. (2)当0m >时,1||0m -<,解之得1m >. 综上,m 的取值范围为10m -<<或者1m >. 5.2.10★解不等式24||30x x -+>. 解析1 因为

24||3(||1)(||3)0x x x x -+=-->,

所以

||1x <或||3x >,

即11x -<<或者3x >或者3x <-.

解析 2 考虑函数2()4||3f x x x =-+.注意到对任意实数x ,有()()f x f x -=.从函数图象来看,这个函数的图象关于y 轴对称,即只需作出0x >时的图象,再把函数图象关于y 轴作对称即可. 如图,可知,原不等式的解为使得图象在x 轴上方的x 的取值集合:

11x -<<或者3x >或者3x <-

.

评注当我们从函数图象的角度去解不等式时,有两点需要引起读者注意:(||)

f x表示的函数图象是()

f x在x轴正向部分图象及其与关于y轴翻折;|()|

f x的图象是把()

f x在x轴下方的图象关于x轴翻折后的图象.由这两点,利用数形结合的方法,是比较巧的.

5.2.11★★解不等式2|41|3

x x x

-+>.

解析(1)当2410

x x

-+≥,

即2

x≥

2

x≤,原不等式变形为

2413

x x x

-+>. 解不等式组,得

x>

或x.

(2)当2410

x x

-+<,

即22

x<,原不等式变形为

2

(41)3

x x x

--+>.

此时,不等式组无解. 综上,原不等式的解为

x>

或x.

(本题从几何解释为使2

|41|

y x x

=-+的图象在3

y x

=图象上方的x的取值范围.如图.)

5.2.12★★已知||1

x≤,||1

y≤,且

|||1||24|

k x y y y x

=++++--,

求k的最小值和最大值.

解析解题的关键是把绝对值符号去掉,必要时可以分类讨论.

因为||1

x≤,||1

y≤,所以

11

x

-≤≤,11

y

-≤≤.

所以10

y+≥.

又222y -≤≤,故3233y x --≤≤,从而240y x --<. 当0x y +<时,有()(1)(24)25k x y y y x y =-+++---=-+. 因为11y -≤≤,所以3257y -+≤≤,此时37k ≤≤. 当0x y +≥时,有()(1)(24)25k x y y y x x =+++---=+. 同样,当11x -≤≤时,3257x +≤≤,即37k ≤≤. 综上所述,37k ≤≤.

又当1x =时,7k =,当1x =-时,3k =,所以,k 的最值是3,最大值是7.

5.2.13★★实数a 、b 、c 满足不等式||||a b c +≥,||||b c a +≥,||||c a b +≥.求证:

0a b c ++=.

解析1 若a 、b 、

c 中有一个为零时,设0a =,则||0b c +=,所以,0b c +=,故0a b c ++=.下面可设a 、b 、c 均不等于零.

(1)当a 、b 、c 全为正数时,则

b c a +≤,c a b +≤,a b c +≤,

这不可能.

(2)当a 、b 、c 为二正一负时,不妨设0a >,0b >,0c <.则由||b c a +≤,得a b c a -+≤≤,所以

0a b c ++≥.

又有||||a b c +≤得:a b c +-≤,所以0a b c ++≤,从而

0a b c ++=.

(3)当a 、b 、c 为一正二负时,不妨设0a >,0b <,0c <,于是由||b c a +≤,得a b c -+≤,所以

0a b c ++≥.

又有||||a b c +≤得:a b c +-≤,所以0a b c ++≤,从而

0a b c ++=.

(4)当a 、b 、c 全为负数时,于是由条件得

a b c a +-≤≤,b c a b +-≤≤,c a b c +-≤≤,所以2()a b c a b c ++++≤,所以0a b c ++≥,矛盾.

综上所述,得0a b c ++=.

解析2 把题设的3个不等式两边平方后相加,得

2222222()222a b c a b c ab bc ca +++++++≥,

故 2()0a b c ++≤,

从而

0a b c ++=.

5.2.14★★★★实数a 、b 、c 满足a b c ≤≤,0ab bc ca ++=,1abc =.求最大的实数k ,使得不等式

||||a b k c +≥恒成立.

解析 当a b ==2

c =

时,则实数a 、b 、c 满足题设条件,此时4k ≤. 下面证明:不等式||4||a b c +≥对满足题设条件的实数a 、b 、c 恒成立.由已知条件知,a 、b 、c 都不等于0,且0c >.因为

10ab c =

>,21

0a b c

+=-<, 所以0a b <≤.

由根与系数的关系知,a 、b 是一元二次方程

22110x x c c

+

+= 的两个实数根,于是

414

0c c

?=

-≥, 故

314

c ≤.

所以

2

1

||()4||a b a b c c c +=-+=

=≥4. 5.2.15★★★已知 (1)0a >;

(2)当11x -≤≤时,满足2||1ax bc c ++≤; (3)当11x -≤≤时,ax b +有最大值2. 求常数a 、b 、c .

解析 由(1)知2y ax bx c =++为开口向上的抛物线,由(1)、(3)知

2a b +=.①

由(2)知

||1a b c ++≤, ②

||1c ≤.

由①、②知

|2|1c +≤.④

由③、④得1c =-.

故0x =时,2y ax bx c =++达到最小值.因此,

02b

a

-

=,0b =. 由①得2a =. 故

2a =,0b =,1c =-.

5.2.16★★★证明

|||2|||24max{,,}A x y x y z x y x y z x y z =-++-+-+++=,

其中max {x ,y ,z }表示x 、y 、z 这三个数中的最大者.

解析 欲证的等式中含有三个绝对值符号,且其中一个在另一个内,要把绝对值去掉似乎较为困难,但等式的另一边对我们有所提示,如果x 为x 、y 、z 中的最大者,即证4A x =,依次再考虑y 、z 是它们中的最大值便可证得. (1)当x y ≥,x z ≥时,

|2|222224A x y x y z x y x y z x z x z x =-++-+-+++=-++=.

(2)当y z ≥,y x ≥时,

|2|222224A y x x y z y x x y z y z y z y =-++-+-+++=-++=.

(3)当z x ≥,z y ≥时,因为

||2max x y x y -++={x ,y }2z ≤,

所以

2||||24A z x y x y x y x y z z =----+-+++=.

从而 4max A ={x ,y ,z }.

§5.3 一元二次不等式

5.3.1★设a 为参数,解关于x 的一元二次不等式

2(3)30x a x a -++<.

解析 分解因式

(3)()0x x a --<.

(1)若3a >,解为3x a <<; (2)若3a <,解为3a x <<;

(3)若3a =,原不等式变成2(3)0x -<,无解. 5.3.2★★设a 为参数,解关于x 的一元二次不等式

2(1)10ax a x -++<.

解析 (1)0a =时,原不等式为10x -+<,解为1x >.

(2)0a ≠时,分解因式得

1(1)0a x x a ?

?--< ??

?.

①若0a >,则

1(1)0x x a ?

?--< ??

?. (i )11a >,即01a <<时,解为11x a

<<

. (ii )1

1a

<,即1a >时,解为11x a

<<. (iii )1

1a

=,即1a =时,不等式无解. ②若0a <,则

1(1)0x x a ?

?--> ??

?, 解为1x >及1x a

<.

5.3.3★★若一元二次不等式20ax bx c ++>的解是12x <<,求不等式20cx bx a ++<的解.

解析 1 因一元二次不等式20ax bx c ++>的解是12x <<,所以,不等式20ax bx c ++>与

(1)(2)0x x --<等价.即20b c

x x a a

++<(0a <)与2320x x -+<等价.所以 3,

2,0,

b

a c

a

a ?=-??

?=???

即3,2,0.b a c a a =-??=??

故不等式20cx bx a ++<,即2230ax ax a -+<,且0a <. 化为22310x x -+>,解得1x >,或1

2

x <.

解析2 因一元二次不等式20ax bx c ++>的解是12x <<,所以20ax bx c ++=的根是1,2,且0a <.

由韦达定理,得3,2.b

a

c a

?-=????=??

故不等式20cx bx a ++<的解是1x >,或12

x <.

5.3.4★★★欲使不等式2(1)(3)20m x m x -+--<与不等式2320x x -+<无公共解,求m 的取值范围.

解析 不等式2320x x -+<的解是12x <<. 不等式

2(1)(3)20m x m x -+--<,

即 [(1)2](1)0m x x -+-<. ①

(1)当1m =时,不等式为220x -<,即1x <,符合题意; (2)当10m ->,即1m >时,不等式①之解为

2

11x m

<<-,符合题意; (3)当10m -<,即1m <时,我们分两种情况讨论: 若211m <-,即1m <-时,不等式①之解为1x >,或2

1x m

<

-,不合题意; 若

211m >-,即11m -<<时,不等式①之解为2

1x m

>

-,或1x <,欲使不等式2(1)(3)20m x m x -+--<与不等式2320x x -+<无公共解,则须

2

21m

-≥,从而01m <≤. 综上所述,欲使不等式2(1)(3)20m x m x -+--<与不等式2320x x -+<无公共解,m 的取值范围是

0m ≥

5.3.5★★对一切实数x ,不等式

2(6)20ax a x +-+>

恒成立,求a 的值.

解析 由于不等式对一切x 恒成立,故a 应该满足

2

0,

6420,

a a a >???=(-)-?

2

0,

20360,a a a >??-+

所以 218a <<.

5.3.6★★设有不等式

2221

(2)3238

t t x x t --+-≤≤, 试求对于满足02x ≤≤的一切x 成立的t 的取值范围.

解析 令232y x x =-+,02x ≤≤,则在02x ≤≤上y 能取到的最小值为14

-,最大值为2,从而总有

2

211(2),

8

432,t t t ?--???-?

≤≥ 即

22

220,10,t t t ?--?

?-??

≥≤ 所以

111;t t ?-??-??≤≤≤

或11 1.

t t ???

-??≥≤≤ 于是t

的取值范围为11t --≤≤5.3.7★解不等式

213

11

x x x x -+>

-+. 解析 原不等式可化为

213

011

x x x x -+->-+, 即

22

0(1)(1)

x x x x -+>-+. ①

因为2217

2024

x x x x ??-+=-+> ??

?

,所以①式等价于

(1)(1)0x x -+>,

所以 1x <-或1x >.

5.3.8★★解不等式

12

>.

解析 首先,由30,

10x x -??

+?

≥≥

得13x -≤≤.将原不等式变形为

1>.

由于上式两边均非负,故两边平方后,整理得

78x ->,

所以780x ->,即7

8

x <,并且

2(78)16(1)x x ->+,

所以

264128330x x -+>,

x >

x <.

综上可得,原不等式的解为1x -≤. 5.3.9★求不等式21(1)37x x x -<-<+的整数解的个数. 解析 不等式21(1)37x x x -<-<+等价于不等式组

22

(1)1,(1)37,x x x x ?->-?

?-<+??

22

320,

560.

x x x x ?-+>??--得2x >或1x <;解2560x x --<得16x -<<.

故原不等式组的解为11x -<<或26x <<.x 的整数解为0x =,3,4,5共四个. 5.3.10★★实数a 、b 、c 满足

()()0a c a b c +++<.

证明:2()4()b c a a b c ->++. 解析 要证2()4()b c a a b c ->++,即证

2()4()0b c a a b c --++>,

联想到一元二次方程根的判别式,进而构造符合条件的二次函数,通过对函数图象与性质的研究使问题得以解决.

设辅助函数2()()y ax b c x a b c =+-+++,令10x =,得函数值1y a b c =++;令21x =-,得函数值

22()y a c =+.

因为()()0a c a b c +++<,所以120y y <.

这说明,辅助函数2()()y ax b c x a b c =+-+++上两点11(,)x y 、22(,)x y 分布在x 轴的两侧,由此可见抛物线与x 轴有两个交点,也就是说方程2()()0ax b c x a b c +-+++=有两个不相等的实数根. 因此2()4()0b c a a b c ?=--++>,故

2()4()b c a a b c ->++.

评注 有些数学问题,可以借助函数,利用对函数图象与性质的研究,将一些抽象的数量关系通

过函数图象形象直观地反映出来,这种数形结合的思想非常重要. 5.3.11★★★满足下列两个条件: (1)对所有正整数x ,220010x x n -+≥; (2)存在正整数0x ,使

20020020x x n -+<

的正整数n 的个数有几个?

解析 先求满足条件(1)的正整数n .由

2

2

2

20012001200124n x x x ??-+=--+

???

≥ 对所有正整数x 都成立,则n 不小于2

2

20012001

24x ??--+

???的最大值,故 2

2

2001200110001000100124n ?

?--+

=? ???

≥. 再求满足条件(2)的正整数n .

240n ?=2002->, 21001n <.

由于?是正整数,且大于1,故此时方程220020x x n -+=的两根1x 、2x (均大于0),满足

22121212()()4x x x x x x -=+-=?>1,

即12||1x x ->,从而,当21001n <时,必存在正整数0x ,使得

2

0020020x x n -+<.

所以,满足条件(1)、(2)的正整数n 有

21001100010011001-?=(个).

5.3.12★★★设a 为实数,

解不等式x <解析 (1)若0a ≤,由原不等式,得

10,

0.

x x -???

,则有

22

10,

(1).x a x x -???->??

≥①② 由①,得 1x ≥.

由②,得

2220x a x a -+<, 2(2)(2)a a a ?=+-.

此时又分两种情形:

当02a <≤时,0?≤,则不等式①②无解; 当2a >时,?>0,注意到

22

2212a a

=>=. 此时不等式②的解为

x <. 综上所述,当2a >时,原不等式才有解,此时不等式的解集为

x <. 5.3.13★★★设0a >,解不等式

1x +.①

解析 因为0a >,①的左端非负,因此10x +≥. 下面分两种情形讨论.

(1)0x ≥时,①式左右两边平方得

22(1)a x x +≤,

整理得

22(2)10x a x +-+≥.②

因为2222(2)4(4)a a a ?=--=-,所以2a <时,0?<,②对一切0x ≥成立.2a ≥时,0?≥,22(2)1x a x +-+有实根,而且两根的积为1,和为非负数22a -,所以两根均为正.②的解为

x 及

0x ≤. (2)10x -<≤时,①式变为

1x +.

③式两边平方整理得

22

+++≥. ④

x a x

(2)10

因为22

+++有两个不相等的实数根,由韦达定理知,两根均为负.

x a x

(2)40

a

?=+->,所以22(2)1

由于两根积为1,较小的根小于1-,较大的根大于1-,所以④的解为

<>.

x a

0(0)

综合(1)、(2),原不等式的解为:

当2

a≥时,

x

及x

当02

<<时,

a

x

初中数学竞赛:不等式的应用

初中数学竞赛:不等式的应用 不等式与各个数学分支都有密切的联系,利用“大于”、“小于”关系,以及不等式一系列的基本性质能够解决许多有趣的问题,本讲主要结合例题介绍一下这方面的应用.例1已知x<0,-1<y<0,将x,xy,xy2按由小到大的顺序排列. 分析用作差法比较大小,即若a-b>0,则a>b;若a-b<0,则a<b. 解因为x-xy=x(1-y),并且x<0,-1<y<0,所以x(1-y)<0,则x<xy. 因为xy2-xy=xy(y-1)<0,所以xy2<xy. 因为x-xy2=x(1+y)(1-y)<0,所以x<xy2. 综上有x<xy2<xy. 例2若 试比较A,B的大小. 显然,2x>y,y>0,所以2x-y>0,所以A-B>0,A>B. 例3若正数a,b,c满足不等式组 试确定a,b,c的大小关系. 解①+c得 ②+a得

③+b得 由④,⑤得 所以 c<a. 同理,由④,⑥得b<C. 所以a,b,c的大小关系为b<c<a. 例4当k取何值时,关于x的方程 3(x+1)=5-kx 分别有(1)正数解;(2)负数解;(3)不大于1的解. 解将原方程变形为(3+k)x=2. (1)当 3+k>0,即 k>-3时,方程有正数解. (2)当3+k<0,即k<-3时,方程有负数解. (3)当方程解不大于1时,有 所以1+k,3+k应同号,即 得解为k≥-1或k<-3. 注意由于不等式是大于或等于零,所以分子1+k可以等于零,而分母是不能等于零的。例5已知

求|x-1|-|x+3|的最大值和最小值. |x-1|-|x+3| 达到最大值4.结合x<-3时的情形,得到:在已 说明对含有绝对值符号的问题,无法统一处理.一般情况下,是将实数轴分成几个区间,分别进行讨论,即可脱去绝对值符号. 例6已知x,y,z为非负实数,且满足 x+y+z=30,3x+y-z=50. 求u=5x+4y+2z的最大值和最小值. 解将已知的两个等式联立成方程组 所以①+②得 4x+2y=80,y=40-2x. 将y=40-2x代入①可解得 z=x-10. 因为y,z均为非负实数,所以 解得 10≤x≤20. 于是 u=5x+4y+2z=5x+4(40-2x)+2(x-10) =-x+140.

高中数学奥赛讲义:竞赛中常用的重要不等式

不等式是数学竞赛的热点之一。由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。 竞赛中常用的重要不等式 【内容综述】 本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用 【要点讲解】 目录§1 柯西不等式 §2 排序不等式 §3 切比雪夫不等式 ★ ★ ★ §1。柯西不等式 定理1 对任意实数组恒有不等式“积和方不大于方和积”,即 等式当且仅当时成立。 本不等式称为柯西不等式。 思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。 证明1 ∴右-左= 当且仅当定值时,等式成立。 思路2 注意到时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。

证明2 当时等式成立;当时,注意到 =1 故 当且仅当 且 (两次放缩等式成立条件要一致)

即同号且常数, 亦即 思路3 根据柯西不等式结构,也可利用构造二次函数来证明。 证明3 构造函数 。 由于恒非负,故其判别式 即有 等式当且仅当常数时成立。 若柯西不等式显然成立。 例1 证明均值不等式链: 调和平均数≤算术平均数≤均方平均数。 证设本题即是欲证: 本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法 (1)先证① 注意到欲证①,即需证 ② 此即 由柯西不等式,易知②成立,从而①真

初中数学竞赛专题:不等式(2)

初中数学竞赛专题:不等式(2) §5.4 不等式的证明和应用 5.4.1★设a 、b 、c 的平均数为M ,a 、b 的平均数为N ,N 、c 的平均数为P .若a b c >>,则M 与P 的大小关系是( ) A.M P = B.M P > C.M P < D.不确定 解析 因为3a b c M ++= ,2a b N +=,224N c a b c P +++==,212 a b c M P +--=,因为a b c >>,所以2201212 a b c c c c +-+->=,即0M P ->,所以M P >.故选B. 5.4.2★若a 、b 是正数,且满足12345(111)(111)a b =+-,则a 与b 之间的大小关系是( ) A.a b > B.a b = C.a b < D.不能确定 解析 因为 12345(111)(111)a b =+- 2111111()a b ab =+--, 所以 2111()1234511124a b ab ab -=-+=+. 由于0a >,0b >,所以0ab >. 所以240ab +>,即0a b ->,a b >.故选A. 5.4.3★若223894613M x xy y x y =-+-++(x 、y 是实数),则M 的值一定是( ). A.正数 B.负数 C.零 D.整数 解析 因为223894613M x xy y x y =-+-++ 2222(2)(2)(3)0x y x y =-+-++≥, 且3x y -,2x -,3y +这三个数不能同时为0,所以0M >. 故选A. 5.4.4★设a 、b 是正整数,且满足5659a b +≤≤,0.90.91a b <<,则22b a -等于( ). A.171 B.177 C.180 D.182

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

初中数学竞赛专题:不等式

初中数学竞赛专题:不等式 §5.1 一元一次不等式(组) 5.1.1★已知2(2)3(41)9(1)x x x ---=-,且9y x <+,试比较1π y 与 10 31 y 的大小. 解析 首先解关于x 的方程得10x =-.将10x =-代入不等式得109y <-+,即1y <-.又因为110π 31 <,所以110π 31 y y > 5.1.2★解关于x 的不等式 233122x x a a +--> . 解析 由题设知0a ≠,去分母并整理得 (23)(23)(1)a x a a +>+-. 当230a +>,即3 (0)2 a a >-≠时,1x a >-; 当230a +=,即32 a =-时,无解; 当230a +<,即32 a <-时,1x a <-. 评注 对含有字母系数的不等式的解,也要分情况讨论. 5.1.3★★已知不等式(2)340a b x a b -+-<的解为49 x >,求不等式(4)230a b x a b -+->的解. 解析 已知不等式为(3)43a b x b a -<-.由题设知 20, 434.29a b b a a b -等价于 721 ()2028 a a x a a -+->, 即5528ax a ->,解得14 x >-. 所求的不等式解为14 x >-.

5.1.4★★如果关于x 的不等式 (2)50a b x a b -+-> 的解集为10 7 x < ,求关于x 的不等式ax b >的解集. 解析 由已知得 (2)5a b x b a ->-,① 710x ->-.② 由已知①和②的解集相同,所以 27, 510, a b b a -=-?? -=-? 解得 5, 3. a b =-?? =-? 从而ax b >的解集是3 5 x <. 5.1.5★求不等式 111 (1)(1)(2)326 x x x +---≥ 的正整数解. 解析 由原不等式可得1736x ≤,所以72 x ≤是原不等式的解.因为要求正整数解,所以原不等式的正整数解为1x =,2,3. 5.1.6★★如果不等式组90, 80x a x b -?? -

竞赛均值不等式专题讲解

均值不等式专题讲解 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 112 +2 a b +≤≤≤2 2 2b a +。. 二、用均值不等式求最值 利用均值不等式求最值的记忆口诀为:“一正二定三相等”,三者缺一不可: 一 正:利用均值不等式解题要先保证各式都是正数; 二 定:求和的 积要固定,求积的 和要固定; 三相等:只有在各式都相等的前提下,和与积才能取到最值。 例1:下列命题中正确的是【 】 A 、x x 1 + 的最小值为2; B 、x x -+2 2的最小值为2; C 、b a a b +的最小值为2; D 、θθcot tan +的最小值为2。 点评:各式都是正数是利用均值不等式解题的前提,缺少这个条件足以致命。 例2:你能指出下列推导过程错在哪里吗? ⑴若0>x ,则221213x x x x x ++=+≥332 23123?=???x x x ; ⑵若?? ? ??∈2,0πx ,则x x x x sin 2sin sin 2sin 2+=+≥22sin 2sin 2=?x x ; ⑶若R x ∈,则 ( ) 4 144 144 1)4(4 52 22 2 2 2 2 2 2 ++ += +++= +++= ++x x x x x x x x ≥2。

初中数学竞赛专项训练不等式

初中数学竞赛专项训练 (不等式与不等式组)及参考答案 1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。 A. 111 B. 1000 C. 1001 D. 1111 2、若2001 119811198011 ??++= S ,则S 的整数部分是____________________ 3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡号码是n 的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。 4、某商店经销一批衬衣,进价为每件m 元,零售价比进价高a%,后因市场的变化,该店把 零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ( ) A. m(1+a%)(1-b%)元 B. m·a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元 5、如果a 、b 、c 是非零实数,且a+b+c=0,那么||||||||abc abc c c b b a a +++的所有可能的值 为 ( ) A. 0 B. 1或-1 C. 2或-2 D. 0或-2 6、在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B =60°,则b c a b a c ++ +的值为 ( ) A. 2 1 B. 2 2 C. 1 D. 2 7、设a <b <0,a 2+b 2=4ab ,则b a b a -+的值为 ( ) A. 3 B. 6 C. 2 D. 3 8.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab-bc-ca 的值为 ( ) A. 0 B. 1 C. 2 D. 3

数学竞赛选讲不等式证明

§14不等式的证明 不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型. 证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性分类罗列如下: 不等式的性质:.0,0<-?<>-?≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a (对称性) (2)c b c a b a +>+?>(加法保序性) (3).0,;0,bc ac c b a bc ac c b a >?>> (4)*).(,0N n b a b a b a n n n n ∈> >?>> 对两个以上不等式进行运算的性质. (1)c a c b b a >?>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+?>> (3).,d b c a d c b a ->-?<> (4).,,0,0bc ad d b c a c d b a >>?>>>> 含绝对值不等式的性质: (1).)0(||2 2 a x a a x a a x ≤≤-?≤?>≤ (2).)0(||2 2 a x a x a x a a x -≤≥?≥?>≥或 (3)|||||||||||| b a b a b a +≤±≤-(三角不等式). (4).||||||||2121n n a a a a a a +++≤+++ΛΛ 证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函 数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更 为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法. 例题讲解 1.,0,,>c b a 求证:.6)()()(abc a c ca c b bc b a ab ≥+++++ 2.0,,>c b a ,求证:.) (3 c b a c b a ab c c b a ++≥ 3.:.222,,,3 33222222ab c ca b bc a b a c a c b c b a c b a R c b a ++≤+++++≤ ++∈+ 求证 4.设* 21,,,N a a a n ∈Λ,且各不相同, 求证:.321312112 23221n a a a a n n ++++≤+ +++ΛΛ.

人教版七年级下册数学期末专项复习题:不等式(组)【含答案】

人教版七年级下册数学期末专项复习题:不等式(组)【含答案】 阅读与思考 客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在: 1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性. 2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”. 例题与求解 【例1】已知关于x 的不等式组?????<-+->-+x t x x x 2 35 35 2恰好有5个整数解,则t 的取值范围是( ) A 、2116-<<-t B 、2116-<≤-t C 、2116-≤<-t D 、2 116-≤≤-t (2013 年全国初中数学竞赛广东省试题) 解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式7 10 05)2(< >---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 . (黑龙江省哈尔滨市竞赛试题) 解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组?? ?=+=-6 2y mx y x 若方程组有非负整数解,求正整数m 的值. (天津市竞赛试题) 解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围. 【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的

高中数学竞赛之路

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》《数学选修4-5:不等式选讲》《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星)1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社2、《数学竞赛培优教程(一试)》浙江大学出版社3、命题人讲座《数列与数学归纳法》单樽4、《数列与数学归纳法》(小丛书第二版,冯志刚)5、《数列与归纳法》浙江大学出版社韦吉珠6、《解析几何的技巧》单樽(建议买华东师大出版的版本)7、《概率与期望》单樽8、《同中学生谈排列组合》苏淳9、《函数与函数方程》奥林匹克小丛书第二版10、《三角函数》奥林匹克小丛书第二版11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星)12、《圆锥曲线的几何性质》13、《解析几何》浙江大学出版社 二试 平几1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星) 2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神10、《重要不等式》中科大出版社11、奥林匹克小丛书《柯西不等式与平均值不等式》数论(9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题)12、奥林匹克小丛书初中版《整除,同余与不定方程》13、奥林匹克小丛书《数论》14、命题人讲座《初等数论》冯志刚组合15、奥林匹克小丛书第二版《组合数学》16、奥林匹克小丛书第二版《组合几何》17、命题人讲座刘培杰《组合问题》18、《构造法解题》余红兵19、《从特殊性看问题》中科大出版社20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦《近代欧式几何学》《近代的三角形的几何学》《不等式的秘密》范建熊、隋振林《奥赛经典:奥林匹克数学中的数论问题》沈文选《奥赛经典:数学奥林匹克高级教程》叶军《初等数论难题集》命题人讲座《图论》奥林匹克小丛书第二版《图论》《走向IMO》

初中数学竞赛专题训练之不等式含答案

初中数学竞赛专项训练(4) (不等式) 一、选择题: 1、若不等式|x+1|+|x-3|≤a 有解,则a 的取值范围是 ( ) A. 0<a ≤4 B. a ≥4 C. 0<a ≤2 D. a ≥2 2、已知a 、b 、c 、d 都是正实数,且 d c b a <,给出下列四个不等式:①d c c b a a +>+ ②d c c b a a +<+ ③d c c b a b +>+ ④d c d b a b +<+其中正确的是 ( ) A. ①③ B. ①④ C. ②④ D. ②③ 3、已知a 、b 、 c 满足a <b <c ,ab+bc+ac =0,abc =1,则 ( ) A. |a+b |>|c| B. |a+b|<|c| C. |a+b|=|c| D. |a+b|与|c|的大小关系不能确定 4、关于x 的不等式组???????+<+->+a x x x x 2 3535 2只有5个整数解,则a 的取值范围是 ( ) A. -6 a C. 7 2- 无解 ③若a ≠0,则方程b ax =有惟一解 ④若a ≠0,则不等式b ax >的解为a b x >,其中 ( ) A. ①②③④都正确 B. ①③正确,②④不正确 C. ①③不正确,②④正确 D. ①②③④都不正确 7、已知不等式①|x-2|≤1 ②1)2(2≤-x ③0)3)(1(≤--x x ④03 1≤--x x 其中解集是31≤≤x 的不等式为 ( ) A. ① B. ①② C. ①②③ D. ①②③④ 8、设a 、b 是正整数,且满足56≤a+b ≤59,0.9<b a <0.91,则b 2-a 2等于 ( ) A. 171 B. 177 C. 180 D. 182 二、填空题: 1、若方程 12 2-=-+x a x 的解是正数,则a 的取值范围是_________ 2、乒乓球队开会,每名队员坐一个凳子,凳子有两种:方凳(四脚)或圆凳(三脚),一个小孩走进会场,他数得人脚和凳脚共有33条(不包括小孩本身),那么开会的队员共有____名。

数学竞赛历年的不等式题

(2006年全国)2. 设2log (21)log 2 1x x x x +->-,则x 的取值范围为 A . 112x << B .1 , 12 x x >≠且 C . 1x > D . 01x << 【答】( B ) 【解】因为2 0,1210 x x x x >≠?? +->?,解得 1 ,12x x >≠. 由2log (21)log 2 1x x x x +->- 32log (2)log 2x x x x x ?+-> 32 01 22 x x x x <? ? +->? 解得 1x >,所以x 的取值范围为 1 , 12x x >≠且. 1.(05)使关于x k ≥有解的实数k 的最大值是( ) A 解 : 令 6, y x =≤≤ 则 2(3)(6)2[(3)y x x x =-+-+≤- (6)] 6.x +- =0y k ∴<≤实数 D 。 (2004年全国)3.不等式2log 21 1log 32 12++ -x x >0的解集是( C ) A .[2,3] B .(2,3) C .[2,4] D .(2,4) 解:原不等式等价于2 2331log 0222 log 10 x x ++>?-≥? 解得20log 11,24x x ≤-<∴≤<.故选C . (2003年全国)5已知x ,y 都在区间(-2,2)内,且xy =-1,则函数 u =244 x -+2 99y -的最小值是D (A) 58 (B)11 24 (C)712 (D)512 (2003年全国)7不等式|x |3-2x 2-4|x |+3<0的解集是__________.7、}2 5 133215| {-<<-<<-x x x 或; (2003年全国)13已知 52 3 ≤≤x ,证1923153212<-+-++x x x

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

初中数学竞赛题中有关不等式的解题策略

初中数学竞赛题中有关不等式的解题策略 例1关于x 的不等式组255332 x x x x a +?-???+?+??><只有5个整数解,则a 的取值围是( ) 11111111.6.6.6.62222 A a B a C a D a ---≤--≤--≤≤-<<<< 例2某个篮球运动员共参加了10场比赛,他在第6,第7,第8,第9场比赛中分别获得 了 23,14,11和20分,他的前9场比赛的平均分比前5场比赛的平均分要高.如果他的10场比 赛 的平均分超过18分,问:他在第10场比赛中至少得了多少分? 例3已知x ,y ,z 是正整数,求方程 11178x y z ++=的正整数解. 例4设a ,b 为正整数,且 2537 a b <<,求a+b 的最小值 .

变式:使得不等式981715 n n k <<+对唯一的整数k 成立的最大正整数n 为 . 例5五个整数a 、b 、c 、d 、e ,它们两两相加的和按从小到大顺序排分别是183,186,187, 190,191,192,193,194,196,x.已知e d c b a ≤≤≤≤,x >196.求a 、b 、c 、d 、e 及 x 的值. 例6实数a ,b ,c 满足a+b+c=1.求a 2+b 2+c 2的最小值. 例7设S=++…+,求不超过S 的最大整数[S]. 例8 ,求[S]. 例9设3333311111=+++++12320102011 S ,则4S 的整数部分等于( ) A.4 B.5 C.6 D.7 应用练习: 1.若不等式2|x-1|+3|x-3|≤a 有解,则实数a 最小值是( ) A.1 B.2 C.4 D.6

高中数学竞赛培优——不等式

不等式 例1. 已知122016,,,x x x ??? 均为正实数,则 3201621112122015122016 4x x x x x x x x x x x x x + ++???++?????? 的最小值__________ 例2. 已知二次函数()20y ax bx c a b =++≥< ,则24a b c M b a ++= - 的最小值为 ____________ 例3. 记223 (,)()(),03x F x y x y y y =-++≠ ,则(),F x y 的最小值是________ 例4. 已知[],1,3,4,a b a b ∈+= 求证:1146103 a b a b ≤+ ++< 例5. 设0,1,2,,,i x i n ≥=???约定11,n x x += 证明:() () 2 12 2 1 11 .2 11n k k k k x x x +=++ ≥ ++∑ 证明:因0,1,2,,,i x i n ≥=???令2tan ,0,,1,2,,2k k k x k n πθθ?? =∈=??????? 约定 11, n θθ+= () () 2 44 112 2 11 =cos sin 11k k k k k x x x θθ++++ +++() 2 222211 cos sin 2 2 k k k k θθ+++≥ = 所以() () 2 22112 2 11 11 =.2211n n k k k k k k k x x x ++==++ ≥++∑ ∑ 例6. 设2,,n n N +≥∈ 求证:ln 2ln 3ln 1 .23n n n ?????< ()ln 1n n <- 例7. 已知* ,,n N x n ∈≤求证:2(1)n x x n n e x n --≤. 【证明】原不等式等价于2 ((1))x n n x n x n e n -≤-?. 当2x n ≥,上述不等式左边非正,不等式成立; 当2x n <时,由1(0)y e y y ≥+≥及贝努力不等式(1)1(1,1)n y ny n y +≥+≥>-,

初中数学竞赛辅导资料

第一篇 一元一次方程的讨论 第一部分 基本方法 1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。一元方程的解也叫做根。 例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。 2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =a b ; 当a =0且b ≠0时,无解; 当a =0且b =0时,有无数多解。(∵不论x 取什么值,0x =0都成立) 3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解 当a |b 时,方程有整数解; 当a |b ,且a 、b 同号时,方程有正整数解; 当a 、b 同号时,方程的解是正数。 综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b 第二部分 典例精析 例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解?②无解? ③有无数多解?④是正数解?

例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数? 例3己知方程a(x-2)=b(x+1)-2a无解。问a和b应满足什么关系? 例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解? 第三部分典题精练

1. 根据方程的解的定义,写出下列方程的解: ① (x +1)=0, ②x 2 =9, ③|x |=9, ④|x |=-3, ⑤3x +1=3x -1, ⑥x +2=2+x 2. 关于x 的方程ax =x +2无解,那么a __________ 3. 在方程a (a -3)x =a 中, 当a 取值为____时,有唯一的解; 当a ___时无解; 当a _____时,有无数多解; 当a ____时,解是负数。 4. k 取什么整数值时,下列等式中的x 是整数? ① x = k 4 ②x =16-k ③x =k k 32+ ④x =123+-k k 5. k 取什么值时,方程x -k =6x 的解是 ①正数? ②是非负数? 6. m 取什么值时,方程3(m +x )=2m -1的解 ①是零? ②是正数? 7. 己知方程 2 2 1463+= +-a x 的根是正数,那么a 、b 应满足什么关系?

数学培优讲义(均值不等式)

数学培优讲义 均值不等式 均值不等式是高中数学的必修内容,它作为几个重要不等式之一在高考、数学竞赛中都有广泛的应用。本节主要内容是两个、三个或n 个(n ∈N +)正数的算术平均数不小于它的几何平均数,借助均值不等式证明其它不等式以及求函数的最值。主要的手段是合理地构造定和、定积、巧妙地利用等号的成立条件来实现证明和求最值。 定理1、),(222R b a ab b a ∈≥+ 推论1、),(2+∈≥+R b a ab b a 2 2??? ??+≤b a ab 推论2、 ),,(33+∈≥++R c b a abc c b a 3 3??? ??++≤c b a abc 推论3、 ),...,,(......212121+∈≥+++R a a a a a a n a a a n n n n (等号成立的条件是n a a a =???==21) 例 题 分 析 例1、已知a 1,a 2,…, a n 是n 个正数,满足a 1.a 2…a n =1 求证:(1+ a 1)(1+ a 2)…(1+ a n )n 2≥ 练习1、已知a 1,a 2,…, a n 是n 个正数,满足a 1.a 2…a n =1 求证:(2+ a 1)(2+ a 2)…(2+ a n )n 3≥ 练习2、设a >b >0,那么a 2+)(1 b a b -的最小值是_____

例2、(1)的最大值;求函数设)cos 1(2sin ,0αα πα+=<> 练习2、设a >b >c ,证明 4≥--+--c b c a b a c a 练习3、设X 1, X 2…X n +∈R ,求证≥++++-1221322221...X X X X X X X X n n n X 1+ X 2+…+ X n 练习4、的最小值,求设xz y z x y z x z y x ++-- ->>)(272

初中数学竞赛——二次函数与不等式

第8讲 二次函数与不等式 典型例题 一. 一元二次不等式 【例1】 解不等式: (1)24210x x +-≥; (2)2310x x x - -- ! 【例3】 解关于x 的不等式:2256>x ax a +. ~

【例4】 若一元二次不等式20>ax bx c ++的解时13<ax ab x b +++的解是12<

【例9】 若不等式2(2)2(2)40x x a a x a ?-+-??+??的整数解恰好有两个,求a 的取值范围.

@ 二. 高次不等式和分式不等式 【例13】 解不等式:22(45)(2)0x x x ++. ~ 【例15】 解不等式:23(2)(1)(1)(2)0

【例16】— 【例17】解不等式: 3 2 > x x - - . 【例18】解不等式: 2 2 32 23 < x x x x -+ -- . · 【例19】解不等式: 2 2 911 7 21 x x x x -+ -+ ≥. …

高中奥林匹克数学竞赛讲座三角恒等式和三角不等式

高中奥林匹克数学竞赛讲座 三角恒等式和三角不等式 知识、方法、技能 三角恒等变形,既要遵循代数式恒等变形的一般法则,又有三角所特有的规律. 三角恒等式包括绝对恒等式和条件恒等式两类。证明三角恒等式时,首先要观察已知与求证或所证恒等式等号两边三角式的繁简程度,以决定恒等变形的方向;其次要观察已知与求证或所证恒等式等号两边三角式的角、函数名称、次数以及结构的差别与联系,抓住其主要差异,选择恰当的公式对其进行恒等变形,从而逐步消除差异,统一形式,完成证明.“和差化积”、“积化和差”、“切割化弦”、“降次”等是我们常用的变形技巧。当然有时也可以利用万能公式“弦化切割”,将题目转化为一个关于2 tan x t =的代数恒等式的证明问题. 要快捷地完成三角恒等式的证明,必须选择恰当的三角公式. 为此,同学们要熟练掌握 上图为三角公式脉络图,由图可见两角和差的三角函数的公式是所有三角公式的核心和基础. 此外,三角是代数与几何联系的“桥梁”,与复数也有紧密的联系,因而许多三角问题往往可以从几何或复数角度获得巧妙的解法. 三角不等式首先是不等式,因此,要掌握证明不等式的常用方法:配方法、比较法、放缩法、基本不等式法、数学归纳法等. 其次,三角不等式又有自己的特点——含有三角式,因而三角函数的单调性、有界性以及图象特征等都是处理三角不等式的锐利武器. 三角形中有关问题也是数学竞赛和高考的常见题型. 解决这类问题,要充分利用好三角

形内角和等于180°这一结论及其变形形式. 如果问题中同时涉及边和角,则应尽量利用正弦定理、余弦定理、面积公式等进行转化,实现边角统一. 求三角形面积的海伦公式 )](2 1 [))()((c b a p c p b p a p p S ++= ---=其中,大家往往不甚熟悉,但十分有用. 赛题精讲 例1:已知.cos sin )tan(:,1||),sin(sin A A A -= +>+=ββ βαβαα求证 【思路分析】条件涉及到角α、βα+,而结论涉及到角βα+,β.故可利用 αβαβββαα-+=-+=)()(或消除条件与结论间角的差异,当然亦可从式中的“A ” 入手. 【证法1】 ),sin(sin βαα+=A ),sin()sin(βαββα+=-+∴A ), cos(sin ))(cos sin(), sin(sin )cos(cos )sin(βαβββαβαββαββα+=-++=+-+A A . cos sin )tan(, 0)cos(, 0cos ,1||A A A -= +≠+≠-∴>ββ βαβαβ从而 【证法2】 αβαβββαβααββββ sin )sin(cos sin )sin() sin(sin cos sin sin sin -++= +- = -A ). tan(sin )cos(sin )sin(])sin[()sin(cos sin )sin(βαββαβ βαββαβαββ βα+=++=-+-++= 例2:证明:.cos 64cos 353215cos 77cos 7x x x ocs x x =+++ 【思路分析】等号左边涉及角7x 、5x 、3x 、x 右边仅涉及角x ,可将左边各项逐步转化为x sin 、 x cos 的表达式,但相对较繁. 观察到右边的次数较高,可尝试降次. 【证明】因为,cos 33cos cos 4,cos 3cos 43cos 3 3 x x x x x x +=-=所以 从而有x x x x x 226cos 9cos 3cos 63cos cos 16++= = )2cos 1(2 9 )2cos 4(cos 326cos 1x x x x +++++

相关文档
最新文档