生产管理--年产五万吨合成氨变换工段工艺初步 精品

合集下载

合成氨变换工段工艺设计

合成氨变换工段工艺设计

合成氨变换工段工艺设计合成氨是化工工业中的重要原料,广泛应用于制取尿素、硝化铵等农业肥料,以及制取氨水、氨盐、化肥、染料等合成工艺中。

合成氨变换工段是合成氨生产中的关键环节,其工艺设计对合成氨的产量、质量以及能耗等方面有重要影响。

一、工艺概述合成氨的变换反应器是将反应物氮气和氢气通过催化剂的作用,在一定条件下发生气相合成反应,生成合成氨。

反应器通常采用固定床催化剂反应器,催化剂的选择和催化剂床层的设计都是工艺设计的重要环节。

冷凝器主要用于对反应产生的氨气进行冷凝回收,常见的冷凝器有直接冷凝器和间接冷凝器两种形式,工艺设计中需要根据具体情况选择适用的冷凝方式。

循环气压缩机主要用于将反应器中未反应的气体通入新的循环,提高气相合成反应的转化率。

在工艺设计中,需要考虑压缩机的压比、功率消耗等参数。

氨气的分离净化装置主要用于对合成氨中的杂质进行去除,提高合成氨的纯度。

常用的分离净化装置有吸附装置、膜分离装置等,具体的工艺设计需要根据生产要求和经济效益进行选择。

二、工艺参数及控制合成氨的变换工段的工艺参数主要包括反应温度、反应压力、空速、催化剂活性等。

这些参数直接影响合成氨的产率、选择性和能耗。

反应温度是合成氨变换反应的重要参数,通过控制温度可以提高反应速率和转化率,但过高的温度会导致副反应的发生,降低合成氨的选择性。

反应压力主要用于控制氨气的产量和能耗,压力越高产氨越多,但能耗也相应增加。

空速是指单位时间内通过反应器的氮气体积,可以通过调控压力和进气量来实现,过小的空速会影响反应的效果,而过大会导致固定床催化剂的床层冲击和阻力升高,影响反应转化率。

催化剂活性主要指催化剂的活性组分含量和粒径等参数,这些参数会影响合成氨的选择性和催化剂的寿命。

在工艺设计中,需要考虑这些参数的合理选择和控制,以提高合成氨的产量和质量,并降低能耗。

三、能耗控制合成氨的变换工段是合成氨生产中的能耗重点。

能耗的控制主要体现在压力控制、催化剂选择和热交换等方面。

合成氨变换脱碳甲烷化

合成氨变换脱碳甲烷化

603.3 33.8 180.9
3.3
3
1066
507
1573.6
低温变换炉物料衡算
低变出口CO含量为0.5%
设低变炉出口干气总量为VKmol/h 则在低变炉中变换掉的CO为: n’co=33.8-0.005V V=入口干气量+低变炉中变换掉的CO 解得 V=538.7Kmol/h n’co=31.1Kmol/h
所以 A总=N+ nN 2 + n Ar + nH 2 + nCO + nCH + X H O =∑V进-A4+0.0847A总
4
2
A1 为低变炉出口气体中水气量
A3 为吸收塔塔顶出口气体中水气量
吸收塔出口气体组成计算 吸收塔塔顶出口气要求CO2含量为0.1% 。 设随CO2气体被吸收损失的N2、 H2气量为被吸收CO2量 的0.91%,在脱碳过程中CO2被吸收量为xKmol/h 。


低温甲醇洗涤法
物理吸收法 利用不同气体在溶液中溶解度的 差异来除去二氧化碳的
脱 碳 方 法
物理-化学吸 收法 化学吸收法
DEA改良热钾碱法
利用二氧化碳是酸性气体,可与 碱性化合物反应的特性来将其吸收
综合了两种吸收的方法,将其合 在一套生产工艺中。
甲烷化
经CO变换和CO2脱除后的原料气中尚含有少量残余的CO 和CO2。为了防止对氨合成催化剂的毒害。因此,原料气在 进入合成工序前,必须进行原料气的最终净化,即精制过 程。 甲烷化法是在催化剂存在下使少量 CO、CO2与H2反应生CH4和H2O的一种净 化工艺。 甲烷化反应如下: CO+3H2→CH4+H2O △H=-206.20298kJ/mol CO2+4H2→CH4+2H2O △H=-165.10298kJ/mol

年产五万吨合成氨合成工段工艺设计

年产五万吨合成氨合成工段工艺设计

合成氨是一种重要的化工原料,在农业、化肥、医药等领域具有广泛的应用。

年产五万吨合成氨合成工段的工艺设计需要确保生产效率、降低成本以及保护环境。

下面将介绍一种可能的工艺设计方案,并详细阐述其主要步骤和操作过程。

工艺设计方案:1.原料准备:气体原料包括天然气、汽油等,液体原料包括氨水和硫酸。

将气体原料经过净化处理后,与液体原料进行混合。

2. 混合反应器:将混合后的原料进入混合反应器中,进行催化合成反应。

合成反应通常使用铁催化剂,反应温度为400-500°C,压力为150-300 atm。

3.分离系统:将反应后的混合气体通过冷却器进行冷却,使其达到饱和水蒸气状态。

然后进入分离塔,其中含有若干个塔盘。

通过升温和降压,氨气和氮气分别从塔顶和塔底分离出来。

氨气经过冷凝器冷却,得到液氨产品。

4.副产物处理:除了氨气外,还产生了一些副产物,如甲烷、一氧化碳等。

这些副产物需要进行处理,如通过燃烧转化为二氧化碳和水蒸气。

5.产品处理:将液氨产品进行浓缩、脱水等处理,使其达到合适的纯度要求。

然后进行分装、储存和运输等环节。

在整个合成氨合成工段中,合成反应器是最关键的部分。

其选用合适的催化剂和反应条件,可以保证高效率、高选择性的合成氨反应。

此外,适当的分离系统和副产物处理方式,能够最大程度地回收和利用原料,减少能源消耗和环境污染。

整个工艺设计需要考虑到安全性、经济性和环境性能。

安全性方面,需要对原料进行严格的净化处理,防止催化剂中毒等问题的发生。

经济性方面,需要优化工艺参数,提高产量和纯度,降低生产成本。

环境性能方面,需要优化副产物处理方式,减少废气和废水的排放。

综上所述,年产五万吨合成氨合成工段的工艺设计需要综合考虑多个因素,包括催化剂的选择、反应条件的控制、分离系统的设计、副产物处理方式等。

只有通过优化这些环节,才能够实现高效、稳定、安全和环保的合成氨生产。

年产五万吨合成氨合成工段工艺设计

年产五万吨合成氨合成工段工艺设计

年产五万吨合成氨合成工段工艺设计一、引言合成氨是一种重要的化工原料,广泛应用于农业、工业和化工等领域。

合成氨的生产工艺是通过氮气和氢气在一定条件下进行催化反应,生成氨气。

年产五万吨合成氨合成工段工艺设计是一个重要的工程项目,本文将对该工艺设计进行详细介绍。

二、工艺流程1. 原料准备:氮气和氢气是合成氨的原料,氮气主要来自空分设备,氢气主要来自蒸汽重整装置。

2. 原料净化:氮气和氢气需要经过净化处理,去除其中的杂质和水分,以保证反应的纯净度和稳定性。

3. 反应器设计:合成氨的反应器通常采用催化剂床层式反应器,反应器的设计需要考虑到反应条件、催化剂选择、温度控制等因素。

4. 热力平衡:合成氨反应是一个放热反应,需要进行热力平衡设计,确保反应器内温度的稳定。

5. 催化剂再生:催化剂在反应过程中会逐渐失活,需要定期进行再生或更换。

6. 产品分离:合成氨反应生成的氨气需要进行分离和纯化,得到符合工业标准的合成氨产品。

三、工艺参数1. 反应温度:合成氨反应的适宜温度为350-550摄氏度,需要根据具体情况进行调整。

2. 反应压力:合成氨反应的适宜压力为100-300大气压,过高或过低的压力都会影响反应效果。

3. 催化剂选择:常用的合成氨催化剂有铁、铑、铑铁等,需要根据反应条件选择合适的催化剂。

4. 原料比例:氮气和氢气的摩尔比需要按照化学方程式进行精确控制,以确保反应的充分进行。

5. 反应速率:合成氨反应的速率受到温度、压力、催化剂活性等因素的影响,需要进行精确的反应速率控制。

四、设备选型1. 反应器:合成氨反应器需要选择耐高温、耐压的材料制造,通常采用碳钢或不锈钢材料。

2. 分离设备:合成氨反应产生的氨气需要通过冷凝、吸附等方式进行分离,需要选择适宜的分离设备。

3. 催化剂再生装置:催化剂再生装置需要具备高温高压下的操作能力,通常采用氢气再生或空气再生的方式。

4. 热力平衡设备:合成氨反应需要进行热力平衡设计,需要选择适宜的换热器、冷凝器等设备。

年产五万吨合成氨变换工段工艺初步

年产五万吨合成氨变换工段工艺初步

四川理工学院毕业设计题目年产五万吨合成氨变换工段工艺初步设计系别化学工程与工艺专业无机化工 011指导教师教研室主任学生姓名接受任务日期 2005年2月28日完成任务日期 2005年6月1日四川理工学院毕业论文任务书材料与化学工程系无机化工专业2001-1 班题目年产五万吨合成氨变换工段工艺初步设计起迄日期2005年 2 月25 日起至2005 年 6 月1日止指导老师教研室主任〔签名〕系主任〔签名〕学生姓名批准日期2005 年 2 月25 日接受任务日期2005 年 2 月25 日完成任务日期2005 年 6 月 1 日一、设计〔论文〕的要求:1、说明书包括前言,合成氨变换工段工序原理,工艺条件及工艺流程确定,以及主要设备的选择说明,对本设计的评述。

2、计算局部包括物料衡算,热量衡算,有效能利用率计算,主要设备计算。

3、图纸带控制点的工艺流程图。

二、设计〔论文〕的原始数据:天然气成分:以鸿化厂的实际工作数据为依据来进行。

年工作日330天,其余数据自定。

三、参考资料及说明:?化工工艺设计手册?〔上、下册〕、?氮肥工艺设计手册?理化数据、?化肥企业产品能平衡?、?小合成氨厂工艺技术与设计手册?、?合成氨工学?、?化工制图?、?化工原理?、?化学工程?、?化工设计概论?以及关于氮肥的其他相关杂志。

目录1.前言 (4)2.工艺原理 (4)3.工艺条件 (5)4.工艺流程确实定 (6)5.主要设备的选择说明 (6)6.对本设计的综述 (6)第一章变换工段物料及热量衡算 (8)第一节中变物料及热量衡算 (8)1.确定转化气组成 (8)2.水汽比确实定 (8)3.中变炉一段催化床层的物料衡算 (9)4.中变炉一段催化床层的热量衡算 (11)5.中变炉催化剂平衡曲线 (13)6. 最正确温度曲线的计算 (14)7.操作线计算 (15)8.中间冷淋过程的物料和热量计算 (16)9.中变炉二段催化床层的物料衡算 (17)衡算 (18)第二节低变炉的物料与热量计算 (19)第三节废热锅炉的热量和物料计算 (24)第四节主换热器的物料与热量的计算 (26)第五节调温水加热器的物料与热量计算 (28)第二章设备的计算 (29)1. 低温变换炉计算 (29)2. 中变废热锅炉 (31)参考文献及致谢 (35)前言氨是一种重要的化工产品,主要用于化学肥料的生产。

产五万吨合成氨合成工段工艺设计方案

产五万吨合成氨合成工段工艺设计方案

目录中文摘要 (1)英文摘要 (2)1 引言 (3333)1.1 氨的基本用途 (3333)1.2 合成氨技术的发展趋势 (4444)1.3 合成氨常见工艺方法 (4444)1.3.1 高压法 (5555)<1.3.2 中压法 (5555)1.3.3 低压法 (5555)1.4 设计条件 (5555)1.5 物料流程示意图 (6666)2 物料衡算 (7777)2.1 合成塔入口气组成 (7777)2.2 合成塔出口气组成 (7777)2.3 合成率计算 (8888)《2.4 氨分离器出口气液组成计算 (8888)2.5 冷交换器分离出的液体组成 (11111111)2.6 液氨贮槽驰放气和液相组成的计算 (12121212)2.7 液氨贮槽物料衡算 (14141414)2.8 合成循环回路总物料衡算 (15151515)3 能量衡算错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

3.1 合成塔能量衡算错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

3.2废热锅炉能量衡算错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

~3.3 热交换器能量衡算错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

3.4 软水预热器能量衡算错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

3.5 水冷却器和氨分离器能量衡算错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

3.6 循环压缩机能量衡算错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

3.7 冷交换器与氨冷器能量衡算错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

3.8 合成全系统能量平衡汇总错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

错误!未定义书签。

4 设备选型及管道计算错误!未定义书签。

【精编完整版】年产5200吨合成氨厂变换工段列管式热交换器的工艺设计_毕业论文任务书

【精编完整版】年产5200吨合成氨厂变换工段列管式热交换器的工艺设计_毕业论文任务书

(此文档为word格式,下载后您可任意编辑修改!)化工原理课程设计任务书设计题目:年产5200 吨合成氨厂变换工段列管式热交换器的工艺设计一.基础数据1.半水煤气的组成(体积%)H 36.69 CH 0.31CO 32.07 HS 0.2CO 8.75 O 0.2N 21.782.水蒸汽饱和半水煤气时的体积比为 1.2:1 ;饱和水蒸汽后湿混合煤气压力为7.45 kgfcm (绝);温度为144 ℃;要求经热交换器后温度达到378 ℃后再进变换炉。

3.变换率为90 % ;变换炉出口变换气温度为480 ℃,压力为7.15 kgfcm (绝)。

4.每年估计大修、中修两个月,年工作日按300天计。

5.每生产一吨氨需耗半水煤气量为3562 标准米。

6.要求热交换器管、壳程的压力降均小于250 毫米水柱。

二.设计范围1.列管热交换器传热面积;2.列管热交换器结构及工艺尺寸;3.绘制列管热交换器结构图。

目录摘要 (5)一.概述 (6)二.热交换器设计的主要因素 (6)三.列管式换热器的设计步骤 (7)3.1.物料衡算 (7)3.1.1.净化前组成 (7)3.1.2.净化后组成 (8)3.1.3.混合后组成 (9)3.1.4.变换气组成 (10)3.2.热量衡算及物性数据 (11)3.2.1.冷、热流体的摩尔流率 (11)3.2.2.冷流体的物性参数 (11)3.2.2.1.冷流体的定性温度 (11)3.2.2.2.冷流体的比热 (12)3.2.2.2.1.常压下,各气体在时的比热 (12)3.2.2.2.2.常压下,混合气在时的比热 (12)3.2.2.2.3.比热的校正 (12)3.2.2.3.冷流体的黏度 (13)3.2.2.3.1.各气体在时的黏度 (13)3.2.2.3.2.混合气在时的黏度 (13)3.2.2.4.冷流体的导热系数………………………………………………………143.2.2.4.1.各气体在时的导热系数 (14)3.2.2.4.2.混合气在时的导热系数 (14)3.2.2.5.冷流体的密度……………………………………………………………143.2.2.5.1.各气体在时的密度 (14)3.2.2.5.2.混合气在时的密度 (15)3.2.2.6.冷流体的吸热量…………………………………………………………153.2.2.7.冷流体的平均摩尔质量…………………………………………………153.2.3.热流体的物性参数…………………………………………………………153.2.3.1.热流体的出口温度T2 (15)3.2.3.2.热流体的定性温度………………………………………………………163.2.3.3.热流体的比热……………………………………………………………163.2.3.4.热流体的黏度……………………………………………………………163.2.3.4.1.各气体在时的黏度 (17)3.2.3.4.2.变换气在时的黏度 (17)3.2.3.5.热流体的导热系数………………………………………………………173.2.3.5.1.各气体在时的导热系数 (17)3.2.3.5.2.变换气在时的导热系数 (17)3.2.3.6.热流体的密度 (18)3.2.3.6.1.各气体在时的密度 (18)3.2.3.6.2.变换气在时的密度 (18)3.2.3.7.热流体的平均摩尔质量 (18)3.2.4.冷、热流体的物性表 (18)3.3.冷热流体的流程安排 (19)3.4.管、壳程数的确定 (19)3.5.传热平均温差的计算 (19)3.6.估算传热面积 (20)3.7.结构设计 (20)3.7.1.管程设计—确定换热管规格、管数和布管 (20)3.7.2.设置拉杆 (21)3.7.3.确定管程流速 (22)3.7.4.壳程设计 (22)3.7.4.1.确定换热管长度 (22)3.7.4.2.管外传热面积的设计值A。

年产50万吨合成氨中变换工段设计

年产50万吨合成氨中变换工段设计

年产50万吨合成氨中变换工段设计[摘要]变换工段工序是合成氨生产中关键的一步,其主要任务是将变换气中的一氧化碳转化为二氧化碳。

本设计采用中串低工艺流程。

首先对工艺流程和工艺条件进行简单说明;然后对全厂布置进行合理的设计;其次根据工艺参数对中变炉、低变炉、饱和热水塔等主要设备进行物料、热量衡算;再次对变换炉、换热器进行总体结构设计和计算;最后对变换炉进行强度校核。

[关键词]中串低;变换工段;工艺设计The Design of the Conversion Section in the Production of the 500 thousand tons Synthetic Ammoniaper yearAbstract: Conversion section is the key step in the Synthetic Ammonia production, the main task is transform the Carbon monoxide in the feed gas to Carbon dioxide.This design uses high and low temperature shift in series process. Firstly, simply introduce the process and process conditions; Secondly carries on the reasonable design to the entire factory arrangement; Next according to the parameters to calculate the material and heat balance of the main equipment such as medium temperature shift furnace、low temperature shift furnace and Saturated hot water tower.; Then design and calculate overall structure of the shift converter and the heat interchanger. Finally carries on the intensity examination to the shift converter.Key word: low and medium temperature; conversion section; process design;目录1 概述 (1)1.1目的和意义 (1)1.2合成氨工业概况 (1)1.2.1基本现状 (1)1.2.2发展趋势 (1)1.2.3应用领域 (2)1.3变换工艺介绍 (2)1.3.1中温变换工艺 (2)1.3.2中串低变换工艺 (2)1.3.3中低低变换工艺 (2)1.3.4全低变工艺 (3)1.4变换工艺的选择 (3)1.4.1工艺原理 (3)1.4.2工艺条件 (3)1.4.3工艺流程确定 (3)1.4.4主要设备的选择说明 (4)2 全厂总平面布置 (5)2.1全场总平面布置的任务 (5)2.2全厂总平面设计的原则 (5)2.3全厂总平面布置内容 (5)2.4全厂平面布置的特点 (5)2.5全厂人员编制 (6)3 物料与热量衡算 (8)3.1已知条件及计算基准 (8)3.2中温变换炉物料及热量计算 (8)3.2.1水汽比的确定 (8)3.2.2中变炉CO的实际变换率的求取 (8)3.2.3中变炉催化剂平衡曲线 (9)3.2.4最佳温度曲线的计算 (10)3.2.5中变炉一段催化床层的物料及热量衡算 (10)3.2.6中变炉二段催化床层的物料及热量衡算 (13)3.3低变炉的物料及热量衡算 (17)3.3.1低变炉物料计算 (17)3.3.2出低变炉的变换气温度估算: (19)3.3.3低变炉的热量衡算 (19)3.3.4低变催化剂操作线计算 (20)3.3.5低变炉催化剂平衡曲线 (20)3.4饱和热水塔的热量和物料衡算 (22)3.4.1 饱和塔的热量和物料衡算 (22)3.4.2热水塔的物料和热量衡算 (24)3.5主换热器的物料与热量的衡算 (25)3.6中间变换器物料与热量衡算 (26)4 设备的计算 (28)4.1中温变换炉的计算 (28)4.1.1触媒用量的计算 (28)4.1.2第一段床层触媒用量 (28)4.1.3 第二段床层触媒用量 (29)4.1.4 触媒直径的计算 (30)4.1.5中变炉进出口管径的选择 (31)4.2低温变换炉的计算 (32)4.2.1催化剂用量计算 (32)4.2.2催化剂床层阻力 (33)4.3主换热器的计算 (33)4.3.1传热面积的计算 (33)4.3.2设备直径与管板的确定 (34)4.3.3传热系数的验算 (34)4.3.4壳侧对流传热系数计算 (35)4.3.5总传热系数核算 (37)4.3.6其他换热器的选择 (37)4.4泵的选择 (38)5 变换炉机械设计及校核 (40)5.1变换炉筒体和裙座壁厚计算 (40)5.2变换炉的质量载荷计算 (40)5.2.1塔壳和裙座的质量 (40)5.2.2封头质量 (40)5.2.3 裙座质量 (41)5.2.4塔内构件质量 (41)5.2.5人孔、法兰、接管与附属物质量 (41)5.2.6保温材料质量 (41)5.2.7平台、扶梯质量 (41)5.2.8操作时塔内物料质量 (41)5.3地震载荷计算 (42)5.3.1计算危险截面的地震弯矩 (42)5.4风载荷计算 (43)5.4.1风力计算 (43)5.4.2风弯矩计算 (45)5.5各种载荷引起的轴向应力 (45)5.5.1计算压力引起的轴向应力 (45)5.5.2操作质量引起的轴向压应力 (45)5.5.3最大弯矩引起的轴向应力 (45)5.6筒体和裙座危险截面的强度与稳定性校核 (46)5.6.1筒体的强度与稳定性校核 (46)5.6.2裙座的稳定性校核 (46)5.7裙座和筒体水压试验应力校核 (47)5.7.1筒体水压试验应力校核 (47)5.7.2裙座水压试验应力校核 (48)5.8基础环设计 (48)5.8.1基础环尺寸 (48)5.8.2基础环尺寸的应力校核 (48)5.8.3基础环厚度 (49)5.9地脚螺栓计算 (49)5.9.1地脚螺栓承受的最大拉应力 (49)5.9.2地脚螺栓直径 (49)总结 (52)设备一览表 (53)符号说明 (54)参考文献 (55)致谢 (56)附图说明........................................................... 错误!未定义书签。

合成氨变换工段工艺设计

合成氨变换工段工艺设计

合成氨变换工段工艺设计1. 引言合成氨是一种重要的化工原料,在农业、化工和医药等行业广泛应用。

合成氨的生产过程中,合成氨变换工段是一个关键的工艺环节。

本文将介绍合成氨变换工段的工艺设计。

2. 工艺流程合成氨变换工段的工艺流程包括进料处理、反应器设计、温度控制和产品回收四个重要环节。

2.1 进料处理合成氨的主要原料是氮气和氢气,进料处理环节主要包括氮气和氢气的纯化和混合。

氮气和氢气需要通过特定的纯化设备去除杂质,以确保反应的纯度和效果。

然后,纯化后的氮气和氢气按照一定比例进行混合。

2.2 反应器设计反应器是合成氨变换工段的核心设备,根据反应器设计的不同,可以分为固定床反应器和流化床反应器两种。

固定床反应器是一种较为常见的反应器形式,氮气和氢气催化反应产生合成氨。

固定床反应器需要考虑催化剂的选择、填充物的设计以及反应器的传热设计等因素。

流化床反应器是近年来逐渐应用的一种反应器形式,其优点包括更好的热传递性能和更好的反应效果。

流化床反应器需要考虑反应器的气固分离、催化剂的循环和再生等因素。

2.3 温度控制温度对合成氨反应的影响非常重要,合适的反应温度可以提高反应速率和选择性。

在合成氨变换工段中,需要通过控制进料气体的温度和反应器的温度来实现对反应的控制。

温度控制还需要考虑热量的平衡问题,包括进料气体的预热和产物蒸汽的回收利用等。

2.4 产品回收合成氨变换工段的最终目标是获得高纯度的合成氨产品。

在产品回收环节中,需要进行氨的冷凝和气液分离。

冷凝过程中需要考虑温度和压力的控制,以确保氨的高效冷凝。

气液分离过程中,可以采用吸收液的方式将氨从气相中吸收出来,再进行后续处理和精制。

3. 设备选择合成氨变换工段的设备选择主要包括反应器、纯化设备、冷凝器和分离器等。

反应器的选择需要考虑反应速率、选择性和热传导等因素。

常用的反应器材料有不锈钢、镍基合金等。

纯化设备的选择需要考虑氮气和氢气的纯度要求以及生产规模等因素。

年产万吨合成氨变换工段工艺设计终稿

年产万吨合成氨变换工段工艺设计终稿
合成氨变换工段是指CO与水蒸气反应生成CO2和H2的过程。在合成氨工艺流程中起着非常重要的作用。在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%[2]。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下: 。由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。
Abstract:This design was mainly for the synthetic ammonia plant shift conversion section.The technological process used the middle temperature changefirst ,and then used the low temperature change .Process calculation mainly included material balance, energy balance and equipmentselection.
变换过程需在高温高压使用催化剂条件下进行,因此变换工序是合成氨生产的高成本工序,其成本降低对合成氨成本的降低有重要意义。
1.3
1.
我国的氮肥工业自20世纪50年代以来,不断发展壮大,目前合成氨产量已跃居世界第一位,已掌握了以焦炭、无烟煤、焦炉气、天然气及油田伴生气和液态烃多种原料生产合成氨、尿素的技术,形成了特有的煤、石油、天然气原料并存和大、中、小生产规模并存的生产格局。目前合成氨总生产能力为5000万吨/年左右[3],氮肥工业已基本满足了国内需求,在与国际接轨后,具备与国际合成氨产品竞争的能力,今后发展重点是调整原料和产品结构,进一步改善经济性。

年产5万吨合成氨、20万吨碳酸氢铵工艺介绍.(125页)

年产5万吨合成氨、20万吨碳酸氢铵工艺介绍.(125页)

一、氨的性质和用途
1、氨的性质 分子式为NH3,是一种无色气体,有强烈的刺 激气味。极易溶于水,常温常压下1体积水可 溶解700倍体积氨。氨对地球上的生物相当重 要,它是所有食物和肥料的重要成分。氨也是 所有药物直接或间接的组成。氨有很广泛的用 途,同时它还具有腐蚀性等危险性质。由于氨 有广泛的用途,氨是世界上产量最多的无机化 合物之一,多于八成的氨被用于制作化肥。
二、碳酸氢铵介绍
1、碳铵简介
碳酸氢铵,又称碳铵,是一种碳酸盐,含氮17.7% 左右。可作为氮肥,由于其可分解为NH3、CO2和H2O 三种气体而消失,故又称气肥。生产碳铵的原料是氨、 二氧化碳和水。碳酸氢铵为无色或浅粒状,板状或柱状 结晶体,碳铵是无(硫)酸根氮肥,其三个组分都是作 物的养分,不含有害的中间产物和最终分解产物,长期 施用不影响土质,是最安全的氮肥品种之一。
4、压缩
在氨合成过程中,原料气净化和氨的合成均 是在一定的压力下进行的,因此对气体进行压缩, 以达到所需的压力,同时完成原料气的输送。
压缩机是将低压气体提升为高压的一种从动 的流体机械。是化工系统生产的心脏,它从吸气 管吸入低压的气体,通过电机运转带动活塞对其 进行压缩后,达到所需的压力后,将高压气体放
2、合成氨生产的流程
氨的生产过程,粗略的讲可分成四步:原料的生产; 原料气的净化;氨的合成;氨的分离。除氨的合成外,其 它过程的转化率和分离率都比较高。由于氨合成的转化率 较低,反应后的气体经氨分离后循环返回合成塔。氨生产 的原则流程:
3、以煤为原料生产合成氨
以煤为原料占合成氨生产的主导地位其 中第一个步骤是通过各种工艺手段将煤进 行气化。
4.1 原料气压缩 4台4M25-190/20压缩机
由洗氨脱萘来的焦炉气(40℃,0.03MPaG), 首先通过焦炉气气液分离器分离掉其中夹带的水 分后分别进入原料气压缩机的一段入口,经压缩 后,气体被压缩至0.8MPa(G)后从二段出口经管道 汇总后去变换、变脱工序。

年产五万吨合成氨合成工段工艺设计

年产五万吨合成氨合成工段工艺设计

目录中文摘要 (1)英文摘要 (2)1 引言 (3)1.1 氨的基本用途 (3)1.2 合成氨技术的发展趋势 (4)1.3 合成氨常见工艺方法 (4)1.3.1 高压法 (5)1.3.2 中压法 (5)1.3.3 低压法 (5)1.4 设计条件 (5)1.5 物料流程示意图 (6)2 物料衡算 (8)2.1 合成塔入口气组成 (8)2.2 合成塔出口气组成 (8)2.3 合成率计算 (9)2.4 氨分离器出口气液组成计算 (10)2.5 冷交换器分离出的液体组成 (13)2.6 液氨贮槽驰放气和液相组成的计算 (13)2.7 液氨贮槽物料衡算 (16)2.8 合成循环回路总物料衡算 (17)3 能量衡算 (28)3.1 合成塔能量衡算 (28)3.2废热锅炉能量衡算 (31)3.3 热交换器能量衡算 (32)3.4 软水预热器能量衡算 (33)3.5 水冷却器和氨分离器能量衡算 (34)3.6 循环压缩机能量衡算 (36)3.7 冷交换器与氨冷器能量衡算 (37)3.8 合成全系统能量平衡汇总 (39)4 设备选型及管道计算 (41)4.1 管道计算 (41)4.2 设备选型 (43)结论 (43)致谢 (45)参考文献 (46)年产五万吨合成氨合成工段工艺设计摘要:本次课程设计任务为年产五万吨合成氨工厂合成工段的工艺设计,氨合成工艺流程一般包括分离和再循环、氨的合成、惰性气体排放等基本步骤,上述基本步骤组合成为氨合成循环反应的工艺流程。

其中氨合成工段是合成氨工艺的中心环节。

新鲜原料气的摩尔分数组成如下:H2 73.25%,N225.59%,CH41.65%,Ar 0.51%合成操作压力为31MPa,合成塔入口气的组成为NH3(3.0%),CH4+Ar(15.5%),要求合成塔出口气中氨的摩尔分数达到17%。

通过查阅相关文献和资料,设计了年产五万吨合成氨厂合成工段的工艺流程,并借助CAD技术绘制了该工艺的管道及仪表流程图和设备布置图。

五万吨合成氨变换工段工艺初步设计

五万吨合成氨变换工段工艺初步设计

五万吨合成氨变换工段工艺初步设计合成氨(NH3)是一种广泛应用于肥料生产、化工工业和能源领域的重要中间体。

在这个问题中,我们将进行五万吨合成氨的变换工段工艺初步设计。

1.工艺选择合成氨的常见工艺路线包括谷氨酸法、煤气化法、重整法和协同催化法等。

鉴于规模和技术可行性,我们将选取协同催化法作为工艺路线。

2.原料准备合成氨的主要原料是氮气(N2)和氢气(H2)。

N2可通过空分设备分离出来,而H2可通过天然气蒸汽重整装置或制氢装置生产。

原料气体经过净化步骤去除杂质,确保质量符合要求。

3.催化反应催化反应采用协同催化剂,具体是煤基催化剂和铁基催化剂的组合。

反应器采用固定床反应器,进料气体在催化剂上进行反应。

反应条件包括压力、温度和气体配比等,根据实际情况进行确定。

常用的反应条件为高压(3-10MPa)、高温(350-550℃)和适当的氮氢比例。

4.产品分离反应生成的氨气通过冷却、减压和吸附等步骤进行分离。

氨气与水通过冷却器进行热交换,降低温度。

然后通过分离器进行减压,使氨气从溶液中析出。

氨气回收后,通过吸附剂去除残余的杂质,以达到纯度的要求。

最后,通过压缩机将氨气压缩到适当的压力,以供应下游工艺。

5.傍热回收在冷却和减压过程中,需要高能量输入。

为了节约能源,可以采用傍热回收技术,将部分废热回收利用。

具体的方案包括采用换热器进行热交换和采用适当的废热锅炉等。

6.废水处理合成氨过程中会产生废水,其中含有氨氢离子和少量的有机物。

为了达到环保要求,需要进行废水处理。

常见的废水处理方法包括中和、沉淀、过滤和氨气脱除等步骤。

7.安全措施在合成氨生产过程中,需要采取一系列安全措施,包括定期检查设备,防止泄漏和爆炸,储存和运输氨气等。

同时,要培训和教育操作人员,提升他们的安全意识。

8.自动化控制合成氨生产是一个复杂的过程,需要精确的控制和监测。

可以采用自动化控制系统,实时监控反应温度、压力、流量等参数,并进行相应的调整,以保证产品质量和工艺的稳定运行。

产五万吨合成氨合成工段工艺设计方案

产五万吨合成氨合成工段工艺设计方案

产五万吨合成氨合成工段工艺设计方案合成氨是一种重要的化工原料,广泛应用于农业、化肥、制药等领域。

在合成氨的工艺设计方案中,需要考虑到原料选择、反应条件、反应器类型、废气处理等方面。

以下是一种可能的合成氨工艺设计方案:1.原料选择:合成氨的主要原料为氮气和氢气,可以通过液化天然气蒸馏得到纯净氢气,通过空气分离装置分离得到高纯度氮气。

2.反应条件:合成氨的反应通常在高温高压下进行,最常用的反应条件是200-300摄氏度,20-50兆帕的压力。

这种条件能够提高反应速度和产率。

3.反应器类型:合成氨的反应器有多种类型,常用的是催化剂床层反应器。

床层反应器中催化剂填充在固定床层中,氮气和氢气通过床层与催化剂接触反应生成氨气。

4.反应步骤:合成氨的反应是一个复杂的多步骤反应过程,其中包括氮气与氢气的吸附、表面反应和脱附步骤。

其中最关键的步骤是氮气和氢气通过催化剂表面的化学反应生成氨气。

5.废气处理:在合成氨的过程中,会产生大量的废气,其中含有未反应的氮气和氢气,还有其他杂质气体。

为了环境保护和资源利用,需要对废气进行处理。

一种常用的废气处理方法是通过吸收剂吸收废气中的氨气,再经过一系列的处理步骤,使其达到环保标准。

总结:合成氨的工艺设计方案需要考虑到原料选择、反应条件、反应器类型以及废气处理等方面。

通过合理的设计可以提高合成氨的产率和纯度,同时减少对环境的影响。

同时,必须对工艺流程进行严格的控制和监测,确保安全和稳定性。

这只是一个可能的合成氨工艺设计方案,实际的工艺设计还需要根据具体的情况进行调整和优化。

年产万吨合成氨变换工段工艺设计终稿

年产万吨合成氨变换工段工艺设计终稿

合成氨是一种重要的化工原料,用于生产化肥、烟火药、染料等多种产品。

年产万吨合成氨变换工段的工艺设计是合成氨生产过程中的重要环节,对生产效率和产品质量有着重要影响。

本文将针对年产万吨合成氨变换工段的工艺设计进行详细描述。

首先,年产万吨合成氨变换工段的主要反应是氮气与氢气的结合生成氨气,这是一个放热反应,需要在适当的条件下进行。

工艺设计中需要考虑到反应的速率、平衡和选择合适的催化剂以提高反应效率。

为了保证反应的连续性和稳定性,需要选择合适的反应器。

一般采用固定床反应器,在反应器内放置合适的催化剂,通过控制反应物的供给速率和控制温度,使反应物在反应器内进行有效的转化。

其次,变换工段还需要考虑气体的分离和净化问题。

在变换反应中,除了生成氨气外,还会伴随着一些不完全反应产物、杂质气体和催化剂颗粒等。

这些物质需要通过各种分离和净化操作进行处理,以获得纯度较高的合成氨。

常见的分离和净化操作包括压缩、冷却、洗涤、吸附等。

此外,工艺设计中还需考虑能量的回收和利用。

合成氨生产是一个能量密集型的过程,能源消耗占据了生产成本的很大比重。

因此,在工艺设计中需要考虑能源的回收和利用,以提高能源利用效率。

常见的能量回收和利用方法包括余热回收、废气利用等。

最后,工艺设计中还需要考虑安全和环境因素。

合成氨生产过程中涉及高压、高温、易燃易爆等危险因素,需要采取相应的安全措施来确保生产的安全性。

同时,工艺设计还需要考虑环境保护,减少污染物的排放,采取合适的处理措施进行废气、废水、废渣等的处理。

综上所述,年产万吨合成氨变换工段的工艺设计需要考虑反应速率、催化剂选择、反应器设计、气体分离与净化、能量回收利用、安全和环境等多个方面的因素。

只有充分考虑到这些因素,才能设计出高效、安全、环保的合成氨生产工艺,确保产品质量和生产效率的提高。

年产50万吨合成氨中变换工段设计

年产50万吨合成氨中变换工段设计

合成氨的变换工段是氨的生产过程中的重要环节,其设计与优化对于氨的产量和质量有着重要影响。

下面是一个关于年产50万吨合成氨中变换工段设计的1200字以上的介绍。

1.变换工段的作用和原理变换工段是合成氨工艺中的核心环节,其主要作用是将气态的合成气(由氮气和氢气组成)转化为合成氨。

这一过程是通过在催化剂的作用下,将氮气和氢气通过一系列反应逐步转化为合成氨。

其中最主要的反应是氮气与氢气的催化剂反应,也称为哈伯—波克反应。

2.变换反应的热力学和动力学特性合成氨的变换反应是一个热力学上的放热反应,即在常温下会产生大量的热量。

这一特性对于反应器的设计和操作有着重要影响。

同时,反应速率也是变换反应的重要特性之一、在变换工段中,反应速率的控制是通过反应器的温度、压力和催化剂的选择来实现的。

3.反应器的选择和设计在变换工段中,常用的反应器有固定床反应器和流化床反应器两种。

固定床反应器是将催化剂填充在反应器内,通过气流将气体输入反应器进行反应。

而流化床反应器则是将催化剂以固体颗粒的形式悬浮在气流中进行反应。

两种反应器都有各自的优点和适用范围,具体的选择需要考虑到反应条件、催化剂的活性和成本等因素。

4.反应条件的优化反应条件是指反应器中温度、压力和气体流速等因素的控制。

这些条件对于反应速率和产物质量有着重要的影响。

通常,较高的反应温度和压力可以促进反应速率,但同时也会增加能耗和催化剂磨损等问题。

因此,需要在考虑反应速率的基础上综合考虑能耗和催化剂寿命等因素,寻找最优的反应条件。

5.催化剂的选择和优化催化剂是变换反应中的关键因素,其选择和优化对于反应速率和产物质量有着至关重要的影响。

合成氨的变换反应通常采用铁基催化剂或铁铬双金属催化剂。

催化剂的活性和稳定性是选择催化剂的两个主要指标。

而在实际操作中,催化剂的中毒和失效问题也需要考虑。

综上所述,年产50万吨合成氨中变换工段的设计是一个复杂而重要的工作。

需要综合考虑反应速率、能耗、催化剂选择和产物质量等多个因素,并通过合理的反应器设计和反应条件的优化来实现高效的合成氨生产。

合成氨变换工段

合成氨变换工段

合成氨变换工段简介合成氨是一种重要的化工原料,被广泛应用于化肥、染料、药品等行业。

合成氨的生产过程中,合成气通过催化剂进行反应生成合成氨。

合成氨变换工段是合成氨生产过程中的核心环节之一,它负责将合成气转化为合成氨。

本文将对合成氨变换工段进行详细介绍。

工艺流程合成氨变换工段的工艺流程一般包括以下几个步骤:1.压缩空气:首先,从空气中去除水分和杂质,然后通过压缩机将空气压缩至一定压力。

2.空气预热:将压缩空气通过预热器进行预热,以提高进入变换器的温度。

3.氨合成催化剂床:进入变换器的压缩空气通过氨合成催化剂床,与合成气反应生成合成氨。

4.变换气冷却:将产生的合成氨与未反应的合成气进行冷凝,使其转化为液体。

5.氨液分离:通过分离器,对冷凝后的液体进行分离,分离出合成氨液体。

6.氨液提纯:对合成氨液体进行进一步的提纯处理,以去除杂质。

7.氨液蒸发:通过蒸发器,对提纯后的合成氨液体进行蒸发,使其变为气体。

8.氨气冷却:将蒸发出的氨气进行冷却,使其降至适宜的温度。

设备介绍合成氨变换工段涉及到的主要设备有:•压缩机:用于将空气压缩至所需压力。

•预热器:对压缩空气进行预热,提高进入变换器的温度。

•变换器:包含氨合成催化剂床,用于将压缩空气与合成气反应生成合成氨。

•冷却器:用于对合成氨和未反应的合成气进行冷凝,转化为液体。

•分离器:分离冷凝后的液体中的合成氨。

•提纯装置:对合成氨液体进行提纯处理。

•蒸发器:对提纯后的合成氨液体进行蒸发,转化为气体。

•冷却设备:用于对蒸发的氨气进行冷却。

操作要点在合成氨变换工段的操作过程中,需要注意以下几个要点:1.控制变换器温度:变换器温度对合成氨的产率和选择性有重要影响,需要控制在适宜的范围内。

2.控制压力和流量:合成氨变换反应的压力和流量也是影响反应效果的重要参数,需要进行精确的控制。

3.定期更换催化剂:催化剂是合成氨反应的核心,需要定期检查和更换,确保反应活性和选择性。

4.控制冷却器温度:冷却器温度对冷凝效果有重要影响,需要根据实际情况进行调整和控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川理工学院毕业设计题目年产五万吨合成氨变换工段工艺初步设计系别化学工程与工艺专业无机化工 011指导教师教研室主任学生姓名接受任务日期 20XX年2月28日完成任务日期 20XX年6月1日四川理工学院毕业论文任务书材料与化学工程系无机化工专业2001-1 班题目年产五万吨合成氨变换工段工艺初步设计起迄日期20XX年 2 月25 日起至20XX 年 6 月1日止指导老师教研室主任(签名)系主任(签名)学生姓名批准日期20XX 年 2 月25 日接受任务日期20XX 年 2 月25 日完成任务日期20XX 年 6 月 1 日一、设计(论文)的要求:1、说明书包括前言,合成氨变换工段工序原理,工艺条件及工艺流程确定,以及主要设备的选择说明,对本设计的评述。

2、计算部分包括物料衡算,热量衡算,有效能利用率计算,主要设备计算。

3、图纸带控制点的工艺流程图。

二、设计(论文)的原始数据:天然气成分:以鸿化厂的实际工作数据为依据来进行。

年工作日330天,其余数据自定。

三、参考资料及说明:《化工工艺设计手册》(上、下册)、《氮肥工艺设计手册》理化数据、《化肥企业产品能平衡》、《小合成氨厂工艺技术与设计手册》、《合成氨工学》、《化工制图》、《化工原理》、《化学工程》、《化工设计概论》以及关于氮肥的其他相关杂志。

目录1.前言 (4)2.工艺原理 (4)3.工艺条件 (5)4.工艺流程的确定 (6)5.主要设备的选择说明 (6)6.对本设计的综述 (6)第一章变换工段物料及热量衡算 (8)第一节中变物料及热量衡算 (8)1.确定转化气组成 (8)2.水汽比的确定 (8)3.中变炉一段催化床层的物料衡算 (9)4.中变炉一段催化床层的热量衡算 (11)5.中变炉催化剂平衡曲线 (13)6. 最佳温度曲线的计算 (14)7.操作线计算 (15)8.中间冷淋过程的物料和热量计算 (16)9.中变炉二段催化床层的物料衡算 (17)10.中变炉二段催化床层的热量衡算 (18)第二节低变炉的物料与热量计算 (19)第三节废热锅炉的热量和物料计算 (24)第四节主换热器的物料与热量的计算 (26)第五节调温水加热器的物料与热量计算 (28)第二章设备的计算 (29)1. 低温变换炉计算 (29)2. 中变废热锅炉 (31)及致谢 (35)前言氨是一种重要的化工产品,主要用于化学肥料的生产。

合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。

合成氨的生产主要分为:原料气的制取;原料气的净化与合成。

粗原料气中常含有大量的C,由于CO是合成氨催化剂的毒物,所以必须进行净化处理,通常,先经过CO变换反应,使其转化为易于清除的CO2和氨合成所需要的H2。

因此,CO变换既是原料气的净化过程,又是原料气造气的继续。

最后,少量的CO用液氨洗涤法,或是低温变换串联甲烷化法加以脱除。

变换工段是指CO与水蒸气反应生成二氧化碳和氢气的过程。

在合成氨工艺流程中起着非常重要的作用。

目前,变换工段主要采用中变串低变的工艺流程,这是从80年代中期发展起来的。

所谓中变串低变流程,就是在B107等Fe-Cr系催化剂之后串入Co-Mo 系宽温变换催化剂。

在中变串低变流程中,由于宽变催化剂的串入,操作条件发生了较大的变化。

一方面入炉的蒸汽比有了较大幅度的降低;另一方面变换气中的CO含量也大幅度降低。

由于中变后串了宽变催化剂,使操作系统的操作弹性大大增加,使变换系统便于操作,也大幅度降低了能耗。

工艺原理:一氧化碳变换反应式为:CO+H2O=CO2+H2+Q (1-1)CO+H2 = C+H2O (1-2)其中反应(1)是主反应,反应(2)是副反应,为了控制反应向生成目的产物的方向进行,工业上采用对式反应(1—1)具有良好选择性催化剂,进而抑制其它副反应的发生。

一氧化碳与水蒸气的反应是一个可逆的放热反应,反应热是温度的函数。

变换过程中还包括下列反应式:H 2+O2=H2O+Q工艺条件1.压力:压力对变换反应的平衡几乎没有影响。

但是提高压力将使析炭和生成甲烷等副反应易于进行。

单就平衡而言,加压并无好处。

但从动力学角度,加压可提高反应速率。

从能量消耗上看,加压也是有利。

由于干原料气摩尔数小于干变换气的摩尔数,所以,先压缩原料气后再进行变换的能耗,比常压变换再进行压缩的能耗底。

具体操作压力的数值,应根据中小型氨厂的特点,特别是工艺蒸汽的压力及压缩机投各段压力的合理配置而定。

一般小型氨厂操作压力为0.7-1.2MPa,中型氨厂为1.2~1.8Mpa 。

本设计的原料气由小型合成氨厂天然气蒸汽转化而来,故压力可取1.7MPa. 1.温度:变化反应是可逆放热反应。

从反应动力学的角度来看,温度升高,反应速率常 数增大对反应速率有利,但平衡常数随温度的升高而变小,即 CO 平衡含量增大,反应推动力变小,对反应速率不利,可见温度对两者的影响是相反的。

因而存在着最佳反应温对一定催化剂及气相组成,从动力学角度推导的计算式为Tm=1212ln 1E E E E RT T e e-+式中Tm 、Te —分别为最佳反应温度及平衡温度,最佳反应温度随系统组成和催化剂的不同而变化。

1.汽气比:水蒸汽比例一般指H 2O/CO 比值或水蒸汽/干原料气.改变水蒸汽比例是工业变换反应中最主要的调节手段。

增加水蒸汽用量,提高了CO 的平衡变换率,从而有利于降低CO 残余含量,加速变换反应的进行。

由于过量水蒸汽的存在,保证催化剂中活性组分Fe 3O 4的稳定而不被还原,并使析炭及生成甲烷等副反应不易发生。

但是,水蒸气用量是变换过程中最主要消耗指标,尽量减少其用量对过程的经济性具有重要的意义,蒸汽比例如果过高,将造成催化剂床层阻力增加;CO 停留时间缩短,余热回收设备附和加重等,所以,中(高)变换时适宜的水蒸气比例一般为:H 2O/CO=3~5,经反应后,中变气中HO/CO可达15以上,不必再添加蒸汽即可满足低温变换的要求。

2工艺流程确定目前的变化工艺有:中温变换,中串低,全低及中低低4种工艺。

本设计参考四川省自贡市鸿鹤化工厂的生产工艺,选用中串低工艺。

转化气从转化炉进入废热锅炉,在废热锅炉中变换气从920℃降到330℃,在废热锅炉出口加入水蒸汽使汽气比达到3到5之间,以后再进入中变炉将转换气中一氧化碳含量降到3%以下。

再通过换热器将转换气的温度降到180℃左右,进入低变炉将转换气中一氧化碳含量降到0.3%以下,再进入甲烷化工段。

主要设备的选择说明中低变串联流程中,主要设备有中变炉、低变炉、废热锅炉、换热器等。

低变炉选用C6型催化剂,计算得低变催化剂实际用量10.59m3。

以上设备的选择主要是依据所给定的合成氨系统的生产能力、原料气中碳氧化物的含量以及变换气中所要求的CO浓度。

对本设计评述天然气变换工段工序是合成氨生产中的第一步,也是较为关键的一步,因为能否正常生产出合格的压缩气,是后面的所有工序正常运转的前提条件。

因此,必须控制一定的工艺条件,使转化气的组成,满足的工艺生产的要求。

在本设计中,根据已知的天然气组成,操作条件,采用了中变串低变的工艺流程路线。

首先对中,低变进行了物料和热量衡算,在计算的基础上,根据计算结果对主要设备选型,最终完成了本设计的宗旨。

设计中一共有中温废热锅炉,中变炉,主换热器,调温水换热器,低变炉几个主要设备。

由于天然气变换工段工序是成熟工艺,资料较多,在本设计中,主要参考了《小合成氨厂工艺技术与设计手册》和《合成氨工艺学》这两本书。

由于时间有限,设计可能不完善,请各位老师指出。

谢谢!第一章变换工段物料及热量衡算第一节中温变换物料衡算及热量衡算1.确定转化气组成:已知条件中变炉进口气体组成:计算基准:1吨氨计算生产1吨氨需要的变化气量:(1000/17)×22.4/(2×22.56)=2920.31 M3(标) 因为在生产过程中物量可能回有消耗,因此变化气量取2962.5 M3(标)年产5万吨合成氨生产能力:日生产量:50000/330=151.52T/d=6.31T/h要求出中变炉的变换气干组分中CO%小于2%进中变炉的变换气干组分:假设入中变炉气体温度为335摄氏度,取出炉与入炉的温差为30摄氏度,则出炉温度为365摄氏度。

P=1.75Mpa.进中变炉干气压力中2.水汽比的确定:考虑到是天然气蒸汽转化来的原料气,所以取H2O/CO=3.5故V=1973.52m3(标) n(水)=88.1kmol(水)因此进中变炉的变换气湿组分:中变炉CO 的实际变换率的求取:假定湿转化气为100mol ,其中CO 基含量为8.16%,要求变换气中CO 含量为 2%,故根据变换反应:CO+H 2O =H 2+CO 2,则CO 的实际变换率为:X %=()a a a a Y Y Y Y '+'-1×100=74% 式中Ya 、'a Y 分别为原料及变换气中CO 的摩尔分率(湿基) 则反应掉的CO 的量为:8.16×74%=6.04 则反应后的各组分的量分别为: H 2O %=28.56%-6.04%+0.48%=23% CO %=8.16% -6.04%=2.12% H 2% =39.8%+6.04%-0.48%=45.36% CO 2%=6.86%+6.04%=12.9% 中变炉出口的平衡常数:K= (H 2%×CO 2%)/(H 2O %×CO %)=12查《小合成氨厂工艺技术与设计手册》可知K=12时温度为397℃。

中变的平均温距为397℃-365℃=32℃ 中变的平均温距合理,故取的H 2O/CO 可用。

3.中变炉一段催化床层的物料衡算假设CO 在一段催化床层的实际变换率为60%。

因为进中变炉一段催化床层的变换气湿组分:假使O 2与H 2 完全反应,O 2 完全反应掉 故在一段催化床层反应掉的CO 的量为:60%×563.86=338.318M 3(标)=15.1koml出一段催化床层的CO 的量为:563.86-338.318=225.545 M3(标)=10.069koml故在一段催化床层反应后剩余的H2的量为:2750.68+338.318-2×16.29=3056.41 M3(标)=136.447koml故在一段催化床层反应后剩余的CO2的量为:474+338.318=812.318 M3(标)=36.26koml出中变炉一段催化床层的变换气干组分:剩余的H2O的量为:1973.52-338.318+2×16.29=1667.79M3(标)=74.45koml 所以出中变炉一段催化床层的变换气湿组分:对出中变炉一段催化床层的变换气的温度进行计算:已知出中变炉一段催化床层的变换气湿组分的含量(%):对出变炉一段催化床层的变换气温度进行估算:根据:K=(H2%×CO2%)/(H2O%×CO%)计算得K=6.6查《小合成氨厂工艺技术与设计手册》知当K=6.6时t=445℃设平均温距为30℃,则出变炉一段催化床层的变换气温度为:445℃-30℃=415℃4.中变炉一段催化床层的热量衡算以知条件:进中变炉温度:335℃出变炉一段催化床层的变换气温度为:415℃反应放热Q:在变化气中含有CO,H2O,O2,H2这4种物质会发生以下2种反应:CO +H2O=CO2+H2(1-1)O 2 + 2H2= 2 H2O (1-2)这2个反应都是放热反应。

相关文档
最新文档