概率论基础知识归纳 第一章
概率论基础知识
对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。
概率论知识点
第一章 随机事件及其概率§1.1 随机事件及其运算随机现象:概率论的基本概念之一。
是人们通常说的偶然现象。
其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果.例如,投掷一枚五分硬币,可能“国徽”向上,也可能“伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一.指在科学研究或工程技术中,对随机现象在相同条件下的观察。
对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。
样本空间: 概率论术语。
我们将随机试验E 的一切可能结果组成的集合称为E 的样本空间,记为Ω。
样本空间的元素,即E 的每一个结果,称为样本点。
随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E 的样本空间Ω的子集为E 的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生的,称为必然事件.空集Ø不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生,称为不可能事件.互斥事件(互不相容事件): 若事件A 与事件B 不可能同时发生,亦即ΦB A = ,则称事件A 与事件B 是互斥(或互不相容)事件。
互逆事件: 事件A 与事件B 满足条件ΦB A = ,Ω=B A ,则称A 与B 是互逆事件,也称A 与B 是对立事件,记作A B =(或B A =)。
互不相容完备事件组:若事件组n A A A ,,21满足条件ΦA A j i = ,(n 1,2j i, =),Ω== n 1i i A,则称事件组n A A A ,,21为互不相容完备事件组(或称n A A A ,,21为样本空间Ω的一个划分)。
第1章 概率论基础知识
1.1.2 条件概率与概率乘法公式
1 条件概率
例 1.1.1 一个包装箱里有6件产品。假设其中有4件是一级品, 2件为二级品。若随机实验E是“从包装箱中随机抽取1件产 品”,则明显地,抽到二级品的概率是1/3。 若事件A是“第一次抽取并抽到二级品”,事件B是“第二 次抽取并抽到二级品”,那么在事件A发生的条件下,再从 剩下的5件产品中抽取1件,事件B发生即“第二次抽到二级 品”的概率就是1/5。 我们称这样的概率为“事件A发生的条件下,事件B发生的 概率”,简称为“事件B的条件概率”,记为P{B|A}. 本例中P{B|A}=1/5。
2 基本事件
一次随机实验的可能结果,称为基本事件或基本随机事件。
3 样本空间
所有基本事件组成的集合,称为样本空间或基本空间。
4 随机事件
随机事件简称事件,是指基本事件的集合。
5 相容事件与不相容事件
在一次随机实验中不可能同时发生的事件,称为不相容事件, 反之称为相容事件。
6.概率(Probability)
为对比条件概率与非条件概率的区别,现在来看上例中P(B) 等于多少? 由于B指的是“第二次抽到二级品” 的事件,而这时A可能发 生,也可能不发生(即A的对立事件Ac发生)。这样事件B就 可以表示成:B=AB+AcB。注意到AB与AcB是互不相容的。 因此 2 1 4 2 1 c P( B) P( AB ) P( A B) 6 5 6 5 3 注意到事件A的概率也是P(A)=1/3. 于是有如下的表达式:
P{B | A} P( AB) P{ A | B}P( B) P( A) P( B) P( B) P( A) P( A) P( A)
2. 相互独立事件的概率乘法公式
(完整版)概率论知识点总结
概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为或。
A B ⊇B A ⊆相等关系:若且,则称事件A 与事件B 相等,记为A =B 。
A B ⊇B A ⊆事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。
记为 A ∪B 。
事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。
用交并补可以表示为。
B A B A =-互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时可记为A +B 。
B A ⋃对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为。
对立事件的性质:A 。
Ω=⋃Φ=⋂B A B A ,事件运算律:设A ,B ,C 为事件,则有(1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律): B A B A ⋂=⋃BA B A ⋃=⋂第二节 事件的概率概率的公理化体系:(1)非负性:P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性:两两不相容时⋃⋃⋃⋃n A A A 21++++=⋃⋃⋃⋃)()()()(2121n n A P A P A P A A A P 概率的性质:(1)P(Φ)=0(2)有限可加性:两两不相容时n A A A ⋃⋃⋃ 21)()()()(2121n n A P A P A P A A A P +++=⋃⋃⋃ 当AB=Φ时P(A∪B)=P(A)+P(B)(3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型,其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)(2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B).)()()|(B P AB P B A P =乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设是一个完备事件组,则P(B)=∑P()P(B|)n A A A ,,,21 i A i A 贝叶斯公式:设是一个完备事件组,则n A A A ,,,21 ∑==)|()()|()()()()|(j j i i i i A B P A P A B P A P B P B A P B A P 第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则与B ,A 与,与均相互独立A B A B 总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
第一章-概率论的基础知识
组合(不放回抽样):从含有n个元素的集合中 随机抽取k个,共有
n A n! k Cn k k ! k !(n k )!
k n
种取法.
(1) 摸球问题 例1:设盒中有4个白球,2个红球,现从盒中
任抽2个球,分别在放回抽样与不放回抽样的
情况下求
(1)取到两只白球的概率。
AB
“A发生必导致B发生”。
2.和事件: (p4) AB
AB发生“事件A与B 至少有一个发生”
i 2’n个事件A1, A2,…, An至少有一个发生 A发生 i 1
n
3. 积事件(p4) :AB=AB
A与B同时发生 AB发生
3’n个事件A1, A2,…, An同时发生 A1A2…An发生
容的事件,即AiAj=,(ij), i , j=1, 2, …, 有
P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。( p8) 称为概率的公理化定义
概率的性质 P(8-9) (1) P() 0 (2) 有限可加性:设A1,A2,…,An , 是n个两两互 不相容的事件,即AiAj= ,(ij), i , j=1, 2, …, n , 则有 P( A1 A2 … An)= P(A1) +P(A2)+… +P(An); (3) 单调不减性:若事件AB,则 P(A)≥P(B) A S , P( A) 1
解:
P( A B) 0.6 ,
求 P( AB )
P( AB) P( A B) P( A) P( AB)
P( A) [ P( A) P( B) P( A B)]
0.4 (0.4 0.3 0.6) 0.3
第一章概率论基础知识
n
可列个事件A1, A2,…, An …至少有一个发生,记 作
n 1
Ai
积事件 :A与B同时发生,记作 A∩B=AB
n个事件A1, A2,…, An同时发生,记作
A A A A
i 1 2 i 1
n
n
可列个事件A1, A2,…, An , …同时发生,记作
A A A A
P( Ai Aj ) P( Ai )P( Aj )
则称 A1 , A2 ,, An 两两相互独立.
(i, j 1,2,, n; i j) ,
第二部分
随机变量及其分布
在随机试验中,如果把试验中观察的对象与实数 对应起来,即建立对应关系X,使其对试验的每 个结果e,都有一个实数X(e)与之对应,
若随机变量X的分布律为: X 1 P p
当一个事件仅包含一个样本点时,称为基本事件。
必然事件S :包含所有的样本点,每次试验它总是 发生。
不可能事件Φ :空集,不包含任何样本点,每次试 验总是不发生。
例 :将一颗骰子连掷两次,依次记录所得点则 所有可能出现的结果即该试验的样本空间
(1,1) (1, 2) (1, 6) (2, 2) (2, 6) (2,1) S (6, 2) (6, 6) (6,1) • 其中有36个可能的结果,即36个样本点 • 每做一次试验,这36个样本点必有一个且仅有) P ( Ai ) P ( B | Ai )
i 1
n
贝叶斯公式
定理 1.2 (贝叶斯公式)设 A1, A2 ,, An 是 的一个划分,如果 P( Ak ) 0, k 1,2,, n , 则对任意事件 B ,只要 P( B) 0 ,就有
概率论与数理统计基础知识
从集合的角度看
B
A
事件是由某些样本点所构成的一个集合.一个事件发 生,当且仅当属于该事件的样本点之一出现.由此可 见,样本空间Ω作为一个事件是必然事件,空集Ø作 为一个事件是不可能事件,仅含一个样本点的事件称 为基本事件.
2. 几点说明
⑴ 随机事件可简称为事件, 并以大写英文字母
A, B, C,
基本事件 实例
由一个样本点组成的单点集.
“出现1点”, “出现2点”, … , “出现6点”.
必然事件 随机试验中必然会出现的结果. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能出现的结果. 实例 上述试验中 “点数大于6” 就是不可能事件. 必然事件的对立面是不可能事件,不可能事 件的对立面是必然事件,它们互称为对立事件.
说明 1. 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行的 “调查”、“观察”或 “测量” 等. 2. 随机试验通常用 E 来表示. 实例 “抛掷一枚硬币,观 察正面,反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行; (2) 试验的所有可能结果: 字面、花面; (3) 进行一次试验之前不能 确定哪一个结果会出现. 故为随机试验.
将下列事件均表示为样本空间的子集. (1) 试验 E2 中(将一枚硬币连抛三次,考虑正反 面出现的情况),随机事件: A=“至少出现一个正面” B=“三 次出现同一面” C=“恰好出现一次正面” (2) 试验 E6 中(在一批灯泡中任取一只,测试其 寿命),D=“灯泡寿命不超过1000小时”
(1)由S2= {HHH, HHT, HTH, THH,HTT,THT, TTH,TTT}; 故: A={HHH, HHT, HTH, THH,HTT,THT, TTH}; B={HHH,TTT} C={HTT,THT,TTH} (2) D={x: x<1000(小时)}。
概率论基础讲义全
概率论基础知识第一章随机事件及其概率随机事件§几个概念1、随机实验:满足下列三个条件的试验称为随机试验|;(1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。
例如:曰:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况;E3:观察某电话交换台在某段时间内接到的呼唤次数2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件:常记为A,B, C例如,在E i中,A表示掷出2点”,B表示掷出偶数点”均为随机事件3、必然事件与不可能事件:每次试验必发生的事情称为必然事件,记为Q。
每次试验都不可能发生的事情称为不可能事件,记为①。
例如,在E i中,掷出不大于6点”的事件便是必然事件,而掷出大于6点”的事件便是不可能事件,以后,随机事件,必然事件和不可能事件统称为事件4、基本事件:试验中直接观察到的最简单的结果称为基本事件。
例如,在曰中,掷出1点”,掷出2点”,……,掷'出6点”均为此试验的基本事件由基本事件构成的事件称为复,例如,在E i中掷出偶数点”便是复合事件5、样本空间:从集合观点看,称构成基本事件的元素为样本点,常记为e.例如,在E i中,用数字1, 2,......,6表示掷出的点数,而由它们分别构成的单点集{1}, {2}, (6)便是E i中的基本事件。
在E2中,用H表示正面,T表示反面,此试验的样本点有(H , H),( H , T),( T, H ),( T, T),其基本事件便是{ ( H, H) }, { ( H , T) }, { (T, H ) }, { (T, T) }显然,任何事件均为某些样本点构成的集合。
例如,在E i中掷出偶数点”的事件便可表为{2, 4, 6}。
试验中所有样本点构成的集合称为样本空间。
记为Qo例如,在E i 中,Q={1 , 2, 3, 4, 5, 6}在E2 中,Q={ ( H , H),( H , T),( T, H),( T, T) }在E s 中,Q={0 , 1, 2,……}例1, 一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种此试验样本空间所有样本点的个数为N Q=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京)若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为10)=452(组合)例2 .随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。
概率论第一章总结
第一章随机事件及其概率一、内容提要 (一).随机事件的概率1.随机试验:(i )在相同的条件下可以重复进行;(ii )试验有多种可能结果(iii )所有可能结果可以明确,但试验前不能事先预知哪个结果出现。
记为E2.随机事件:与随机试验结果有关的命题, 简称事件.记为A,B,C……不可能事件和必然事件也视为为随机事件分别记为 φ和Ω.3.基本事件:按照试验的目的和要求所确定的随机试验E 的一个直接可能结果ω称为基本事件或样本点.4.样本空间(基本事件集):试验E 的所有样本点ω构成的集合称为E 的样本空间或基本事件集,记为Ω.即 Ω.={ω}(二).随机事件的关系和运算1.事件的包含: 若事件A 发生必然导致B 发生.则称A 包含于B 记作 A ⊂B.2.事件的相等:对两个事件A,B.若A ⊂B.且B ⊂A.则称A 与B 相等.记作A=B3.事件的并:“事件A 与B 中至少有一个发生”的事件称为A 与B 的并(或和),记作A B 。
“n 个事件中至少有一个发生”的事件称为这个事件的并(或和).记作12....n A A A 简记为1n i i A =4.事件的差: “事件A 发生而B 不发生”的事件称为A 与B 的差记作A-B5.事件的交(积): “事件A 与B 都发生” 的事件称为A 与B 的交(积).记作A Bn 个事件12,...n AA A 都发生”的事件称为这个事件的交(或积).记作12...n A A A .6. 事件的互斥(互不相容):事件A 与事件B 不能同时发生,则称互斥.即AB φ=7. 事件的互逆(对立): 事件A 与事件B 必有一个发生,但不能同时发生,则称A 与B 互逆,记作A B =或B A = 即满足A B =Ω AB φ=8.完备事件组:若事件12,,,n A A A 必有一个发生,且12,,,n A A A 两两互不相容,即 12,n A A A =Ω ,且(, 1.2...,,)i j A A i j n i j φ==≠(三).概率的概念1.概率的古典定义:设E 为古典概型,其样本空间Ω包含n 样本点,事件A 含k 样本点,则称k/n 为 事件A 的概率,记作()/P A k n =2.概率的统计定义设在相同条件下重复进行同一试验,n 次试验中事件A 发生的次数为μ,如果随着试验次数的增大,事件A 发生的频率/n μ 仅在某个常数(01)p p << 附近有 微小变化,则称数p 是事件A 的概率, 即()P A p =.3.概率的公理化定义设A 为随机事件, ()P A 为定义在所有随机事件组成的集合上的实函数且满足下列三条公理:公理1 对任一事件A,有0()1P A ≤≤公理2 ()1P Ω= ()0P φ=公理3.对于两两互斥的可数个随机事件12,,,n A A A ..., 有1212(......)()()...()...n n P A A A P A P A P A =++++ 则()P A 称为事件A 的概率.(四).概率的性质1. ()1P Ω= ()0P φ=2. 对任意两个事件A ,B.有()()()()P A B P A P B P AB =+-若AB φ=,则()()()P A B P A P B =+3.对任意事件A,有()1(P A P A =-)4.对任意个事件12,,...,n A A A .有12(...)n P A A A 11()()n i i j i i j n P A P A A =≤<≤=-∑∑+1()i j k i j k n P A A A ≤<<≤∑-...+12(1)(...)n n P A A A -(-1)若i j A A φ= (,1,2...,)i j n i j =≠ 则121(...)()n n i i P A A A P A ==∑5.若B A ⊂,则()()()P A B P A P B -=-,且()()P A P B ≥(五).条件概率、 乘法公式1.条件概率 设A ,B 为随机试验E 的两个事件。
第一章概率论基础知识
P{x1Xx2}P{x1Xx2}P{Xx1} F(x2)F(x1)P{Xx1}
2020/12/26
■分布函数的性质
⑴ 单调不减性:若x1 x2,则 F(x1) F(x2)
⑵ 归一 性:对任意实数x, 0Fx1,且
F ( )lim F (x)0,F( )lim F(x)1 ;
解 由题意可知 RX{0,1,2,3},则 X 的分布律为
X0
1
2
3
p k p 3 C31(1p)p2 C32(1p)2p (1 p )3
2020/12/26
将 p 1/2带入可得 X 的分布律为
X0
1
2
3
pk 1
3
3
1
8
8
8
8
2020/12/26
2.常用的离散型随机变量
(1) (0—1)分布 定义1 如果随机变量X的分布律为
x
x
⑶ 右连续性:对任意实数 X F (x 0 ) lim F (t) F (x ).
t x
具有上述三个性质的实函数,必是某个随机变量的分 布函数。故该三个性质是分布函数的充分必要性质。
2020/12/26
例1 已知 F xA arcx tB a,n求 A,B。
解
FAB0
2
FAB1
A1
F'xfx
2020/12/26
例1 设X 的分布函数为 Fx1e2x, x0
0, x0
求 P X 2 ,P X 3 ,fx .
解 PX2F2 1e4
P X31PX31F3 e 6
fxFx
2e
2
x
概率论知识点
(10)加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
(11)减法公式
P(A-B)=P(A)-P(AB)
当B A时,P(A-B)=P(A)-P(B)
当A=Ω时,P( )=1- P(B)
(12)条件概率
定义 设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。
泊松分布
设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
若事件、相互独立,则可得到与、与、与也都相互独立。
必然事件和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足P(ABC)=P(A)P(B)P(C)
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。
,
Z=max,min(X1,X2,…Xn)
若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:
概率论第一章知识点总结
概率论第一章知识点总结
概率论第一章主要介绍了以下几个知识点:
1. 随机试验:指具有以下三个特征的试验:可以进行多次独立重复;每次试验只有两个可能结果中的一个发生;每次试验发生的概率相同。
2. 样本空间:随机试验的所有可能结果构成的集合称为样本空间,通常用S表示。
3. 事件:样本空间的任意子集称为事件,通常用A、B等大写字母表示。
4. 概率:事件A发生的概率定义为P(A)=n(A)/n(S),其中n(A)表示事件A中元素的个数,n(S)表示样本空间中元素的个数。
5. 概率的性质:对于任意事件A和B,有以下性质:
(1) 0 ≤ P(A) ≤ 1
(2) P(S) = 1
(3) P(A∪B) = P(A) + P(B) - P(A∩B)
(4) 若A和B互不相容(即A∩B=),则P(A∪B) = P(A) + P(B) 6. 条件概率:事件B在事件A发生的条件下发生的概率称为条件概率,记为P(B|A),计算公式为P(B|A) = P(A∩B) / P(A)。
7. 乘法公式:对于任意事件A1,A2,…,An,有P(A1∩A2∩…∩An) = P(A1)P(A2|A1)P(A3|A1∩A2)…P(An|A1∩A2∩…∩An-1)。
8. 全概率公式和贝叶斯公式:全概率公式和贝叶斯公式是基于条件概率的重要公式,用于计算复杂事件的概率。
其中全概率公式为:
P(B) = Σi=1,2,…,nP(Ai)P(B|Ai),贝叶斯公式为:P(Aj|B) = P(Aj)P(B|Aj)/Σi=1,2,…,nP(Ai)P(B|Ai)。
概率论第一章 概率论简介
3、随机变量函数的数字特征
设随机变量X和Y的函数关系为:Y=g(X)
E[Y ]
ypY ( y)dy
g(x) p(x)dx E[g(x)]
D[Y ] E{[g(X ) E(g(X ))]2}
[g
(x)
mY
]2
p(x)dx
D[g
(x)]
即计算Y的数学期望、方差不需要pY(y), 只要知道px(x)即可。
两个随机变量不相关,则它们不一定互相独立。
正交
若随机变量X、Y的相关矩为零,即
RXY 0
则称X、Y互相正交。
对于互相正交的随机变量,若其中一个随机变 量的数学期望为0,则二者一定不相关。
XY RXY E[ X ]E[Y ] 0
§ 1.5 随机变量的函数
设有一确定的实函数y=g(x)及随机变量X,定义 一个新的随机变量Y=g(X),称随机变量Y是随 机变量X的函数。
假定一个y值有两个x值与之对应,则有
设y=g(x)的反函数为f1(y),f2(y),根据等 概率原理有:
pY ( y)dy pX (x1)dx1 pX (x2 )dx2
于是:pY ( y)
pX (x1) •
dx1 dy
pX (x2 ) •
dx2 dy
pX ( f1( y))• f1'( y) pX ( f2 ( y))• f2 '( y)
(
x,
y)dxdy
二维随机变量X和Y的n+k阶联合中心矩为:
nk E{(X E[X ])n (Y E[Y ])k}
(x
E[
X
])n
(
y
E[Y
])k
pXY
(x,
概率论基础知识
则 A 与 B 便是互不相容的。
7、对立:称事件 A 不发生的事件为 A 的对立事件,记为 显然
,A∩ =φ
例如,从有 3 个次品,7 个正品的 10 个产品中任取 3 个,若令 A={取得的 3 个产品中至少有一个次品},则 ={取得的 3 个产品均为正品}。
第 4 页 共 73 页
而 P(B)=3P(A)=
概率论基础知识
定义 1:在古典概型中,设其样本空间Ω所含的样本点总数,即试验的基本事件总数为 NΩ而事件 A 所 含的样本数,即有利于事件 A 发生的基本事件数为 NA,则事件 A 的概率便定义为:
例 1,将一枚质地均匀的硬币一抛三次,求恰有一次正面向上的概率。 解:用 H 表示正面,T 表示反面,则该试验的样本空间
若 A B,则 A∪ B=B, A∩ B=A A-B=A-AB= A
等等。
第 3 页 共 73 页
概率论基础知识
例 3,从一批产品中每次取一件进行检验,令 Ai={第 i 次取得合格品},i=1,2,3,试用事件的运算符号表示 下列事件。A={三次都取得合格品}B={三次中至少有一次取得合格品}C={三次中恰有两次取得合 格品}D={三次中最多有一次取得合格品}
2048 4040 12000 24000 30000
概率论基础知识
1061 2148 6019 12012 14994
0.5180 0.5069 0.5016 0.5005 0.4998
定义 2:在相同条件下,将试验重复 n 次,如果随着重复试验次数 n 的增大,事件 A 的频率 fn(A)越来越 稳定地在某一常数 p 附近摆动,则称常数 p 为事件 A 的概率,即 P(A)=p 不难证明频率有以下基本性质:
第1章-概率论基本知识1
P ( X xk ) pk ,
x1 p1 x2 p2
… …
k 1, 2 ,...
… …
X pk
xk pk
分布列
常见离散型随机变量的分布
0-1分布 若随机变量X只可能取0和1两个值,其概率分 布为 P(X=1)= p,P(X=0)=1-p (0<p<1) 则称X服从参数为p的0-1分布。 二项分布 若随机变量X的概率分布为
3.右连续
F(x+0)=F(x)
1.2.3 离散型随机变量
离散型随机变量 定义 1.6 如果随机变量X的全不可能取值只有有限多个 或可列无穷多个,则称X为离散型随机变量。
定义 1.7 设 xk(k=1,2,…) 是离散型随机变量 X 所取的一切可能 值,pk是X取值xk的概率,则称 为离散型随机变量X的概率分布或分布律。
1 { X x} X x k k 1
{ X x} { X x} { X x}
{ x1 X x 2 } { X x 2 } { X x1 }
1.2.2 随机变量的分布函数 设X是一个随机变量,称
F ( x ) P ( X x ),
x
则称X为连续型随机变量, f(x)称为X的概率密度函 数,简称为概率密度或分布密度。
概率密度的性质
(1) f ( x ) 0;
(3) P ( a X b ) f ( x ) dx;
a
( 2) f ( x ) dx 1;
b
( 4 ) P ( X x ) 0;
•基本事件 •复合事件 •必然事件 •不可能事件
随机事件之间的关系
《概率论与数理统计》第一章知识点
第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。
概率论第一章总结
概率论与数理统计第一章总结1.随机事件在试验的结果中,可能发生也可能不发生的事件成为随机事件,通常用字母A ,B ,C 等表示。
在每次试验的结果中,如果某事件一定发生,则称为必然事件。
相反,如果某事件一定不发生,则称为不可能事件。
2.样本空间随机试验的每一个可能的结果称为样本点,所有样本点组成的集合称为样本空间。
任一随机事件A 都是样本空间的一个子集,必然事件A 就等于样本空间,不可能事件是不包含任何样本点的空集,基本事件就是仅包含单个样本点的子集。
3.事件的关系及运算(1)事件的包含与相等: (2)事件的和(或并): (3)事件的积(或交): (4)事件的差: (5)互不相容事件: (6)对立事件: (7)事件满足以下运算规律:交换律,结合律,分配率,德摩根定律4.随机事件的频率与概率的定义及性质设随机事件A 在n 次试验中发生了a 次,则a/n 称为随机事件A 发生的频率。
概率的公理化定义:(1) 非负性(2) 规范性(3) 有限可加性(4) 可列可加性概率的重要性质:(1) (2)P (Φ)=0(3)若A 、B 互斥, 则P (A +B )=P (A )+P (B )(4)A ⊂ B ,则 P (B -A )=P (B )-P (A )(5)加法公式:P (A +B )=P (A )+P (B )-P(AB )5.古典概型两个特征:有限性,等可能性。
设在古典概型中,试验的基本事件的总数为N ,随机事件A 包含其中的M 个基本事件,则随机事件A 的概率为:P (A )=M/N(生日模型,抽签模型,分配模型)6. 几何概型两个特征:无限性,等可能性。
(蒙特卡罗法)7. 条件概率与乘法公式A B 或B A⊂⊃ A B A B或+ AB A B 或A B-ΦAB = A A 与()1()P A P A =-条件概率若P(B)>0,乘法公式:P (AB )=P (B )P (A |B )P (A 1A 2…An )= P (A 1) P (A 2|A 1) P (A3| A 1A 2) P (A 4| A 1A 2A 3) …P (An | A 1A 2…An -1)(波利亚罐模型)8. 全概率公式与贝叶斯公式(1) 全概率公式:(全概率公式用来求较复杂事件的概率.)(敏感性问题调查)(2) 贝叶斯公式:(贝叶斯公式用来求后验概率)9.随机事件的独立性两两独立与相互独立的关系:相互独立一定两两独立,两两独立不一定相互独立多个事件相互独立的必要条件:10.伯努利概型若在试验E 的样本空间S 只有两个基本事件 且每次试验中 我们称这只有两个对立的试验结果的试验为伯努里试验。
概率论与数理统计知识总结之第一章
n
P(Bi|A)=P(A|BJP(Bi)/、P(A|Bj)P(Bj)
1
先验概率:
根据以往数据分析得到的概率
后验概率:
在得到信息之后再重新加以修正的概率
设代B,C为事件,则有
交换律:
A B=B A; A ' B=B * A.
结合律:
A (B C)= (A B) C;
A' (B ~C) =(A一B厂C.
分配律:
A (B一C) =(A B厂(A C);
A一(B C)=(A一B) (A一C).
德摩根律:
A一B = A「B;
A B = A _ B.
频率与概率
生、B不发生时事件A-B发生
5.若^8=,则称事件A与B是互不相容的,或互斥的。这指的是事件A与
事件B不能同时发生。基本事件是两两互不相容的。
6.若A一B=S且^8=,则称事件A与事件B互为逆事件。又称事件A与事件B互为对立事件。这指的是对每次试验而言,事件A,B中必有一个发性质:
1.非负性:P(B| A) M)
2.规范性:对于必然事件S,有P(S|A)=1
3.可列可加性:设B,B2,••是两两互不相容的事件,则有
P(UBiI 2、P(Bi|A)
i4
对于任意事件B,C,有
P(BUC|A)=P(B|A)+P(C|A)-P(BC|A)
乘法定理:
设P(A)>0,则有P(AB)=P(B|A)P(A)
P(A -A2-…一An)=P(A1) + P(A2)+…+P(An)
3.设A,B是两个事件,若A B,则有
P(B-A)=P(B)-P(A),P(B) >P(A)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如,在 E1 中,“掷出 1 点”,“掷出 2 点”,……,“掷出 6 点”均为此试验的基本事件。 由基本事件构成的事件称为复合事件,例如,在 E1 中“掷出偶数点”便是复合事件。 5、样本空间:从集合观点看,称构成基本事件的元素为样本点,常记为 e.
击中目标”的事件,则 AUB 表示“目标被击中”的事件。 推广:
有限个
钻石卡高级辅导系统——全程、全方位、系统化解决考研所有问题,成功率趋近 100% -2-
无穷可列个
4、积:称事件 A 与事件 B 同时发生的事件为 A 与 B 的积事件,简称为积,记为 A B 或 AB。 例如,在 E3 中,即观察某电话交换台在某时刻接到的呼唤次数中,令 A={接到偶数次呼唤},B={接到奇 数次呼唤},则 A B={接到 6 的倍数次呼唤}
解,不难看出有如下一些关系:
钻石卡高级辅导系统——全程、全方位、系统化解决考研所有问题,成功率趋近 100% -4-
二 事件的概率
§1 概率的定义 所谓事件 A 的概率是指事件 A 发生可能性程度的数值度量,记为 P(A)。规定 P(A)≥0,P(Ω)=1。 1、古典概型中概率的定义 古典概型:满足下列两条件的试验模型称为古典概型。 (1)所有基本事件是有限个; (2)各基本事件发生的可能性相同; 例如:掷一匀称的骰子,令 A={掷出 2 点}={2},B={掷出偶数总}={2,4,6}。此试验样本空间为 Ω={1,2,3,4,5,6},于是,应有 1=P(Ω)=6P(A),即 P(A)= 。
若 A B,则 A∪ B=B, A∩ B=A A-B=A-AB= A
等等。
例 3,从一批产品中每次取一件进行检验,令 Ai={第 i 次取得合格品},i=1,2,3,试用事件的运算符号表示下列 事件。A={三次都取得合格品}B={三次中至少有一次取得合格品}C={三次中恰有两次取得合格品} D={三次中最多有一次取得合格品}
§3 事件的运算规律
1、交换律 A∪B=B∪A; A∩B=B∩A
2、结合律 (A∪B)∪C=A∪(B∪C) ;(A∩B)∩C=A∩(B∩C)
3、分配律 A∩(B∪C)=(A∩B)∪(A∩C), A∪(B∩C)=(A∪B)∩(A ∪C)
4、对偶律
此外,还有一些常用性质,如
A∪ B A,A∪B B(越求和越大);A∩B A,A∩B B(越求积越小)。
钻石卡高级辅导系统——全程、全方位、系统化解决考研所有问题,成功率趋近 100% -5-
(2)无放回地取球:从袋中取三次球,每次取一个,看后不再放回袋中,再取下一个球; (3)一次取球:从袋中任取 3 个球。在以上三种取法中均求 A={恰好取得 2 个白球}的概率。 解:(1)有放回取球 NΩ=8×8×8=83=512 (袋中八个球,不论什么颜色,取到每个球的概率相等)
,
, 例 5(分组问题)将一幅 52 张的朴克牌平均地分给四个人,分别求有人手里分得 13 张黑桃及有人手里有 4 张 A 牌的概率各为多少? 解:令 A={有人手里有 13 张黑桃},B={有人手里有 4 张 A 牌}
钻石卡高级辅导系统——全程、全方位、系统化解决考研所有问题,成功率趋近 100% -7-
正面(A)出现次数 nA
正面(A)出现的 频率
德·摩尔根 浦丰 皮尔逊 皮尔逊 维尼
2048 4040 12000 24000 30000
1061 2148 6019 12012 14994
0.5180 0.5069 0.5016 0.5005 0.4998
定义 2:在相同条件下,将试验重复 n 次,如果随着重复试验次数 n 的增大,事件 A 的频率 fn(A)越来越稳 定地在某一常数 p 附近摆动,则称常数 p 为事件 A 的概率,即 P(A)=p 不难证明频率有以下基本性质:
钻石卡高级辅导系统——全程、全方位、系统化解决考研所有问题,成功率趋近 100% -6-
先从 N 个盒子里选 n 个盒子,然后在 n 个盒子里 n 个球全排列
故 属于分球问题的一个实例: 全班有 40 名同学,向他们的生日皆不相同的概率为多少?令 A={40 个同学生日皆不相同},则有
故 (可以认为有 365 个盒子,40 个球) 例 4(取数问题) 从 0,1,……,9 共十个数字中随机的不放回的接连取四个数字,并按其出现的先后排成一列,求下列事 件的概率:(1) 四个数排成一个偶数;(2) 四个数排成一个四位数;(3) 四个数排成一个四位偶数; 解:令 A={四个数排成一个偶数},B={四个数排成一个四位数},C={四个数排成一个四位偶数}
Ω={(H,H,H)(H,H,T)(H,T,H)(T,H,H)(H,T,T)(T,H,T)(T,T,H)(T,T,T)}。
可见 NΩ=8 令 A={恰有一次出现正面},则 A={(H,T,T)(T,H,T)(T,T,H)}
可见,令 NA=3 故
例 2,(取球问题)袋中有 5 个白球,3 个黑球,分别按下列三种取法在袋中取球。 (1)有放回地取球:从袋中取三次球,每次取一个,看后放回袋中,再取下一个球;
而 P(B)=3P(A)=
定义 1:在古典概型中,设其样本空间Ω所含的样本点总数,即试验的基本事件总数为 NΩ而事件 A 所含的 样本数,即有利于事件 A 发生的基本事件数为 NA,则事件 A 的概率便定义为:
例 1,将一枚质地均匀的硬币一抛三次,求恰有一次正面向上的概率。 解:用 H 表示正面,T 表示反面,则该试验的样本空间
于是
,故
不难证明,古典概型中所定义的概率有以下三条基本性质: 1° P(A)≥0 2° P(Ω)=1
3° 若 A1,A2,……,An 两两互不相容,则
2、概率的统计定义
频率:在 n 次重复试验中,设事件 A 出现了 nA 次,则称: 稳定性。示例见下例表
为事件 A 的频率。频率具有一定的
试验者
抛硬币次数 n
例 2.随机地将 15 名新生平均分配到三个班级中去,观察 15 名新生分配的情况。此试验的样本空间所有样 本点的个数为
第一种方法用组合+乘法原理;第二种方法用排列 §2 事件间的关系与运算
1、包含:“若事件 A 的发生必导致事件 B 发生,则称事件 B 包含事件 A,记为 A B 或 B A。 例如,在 E1 中,令 A 表示“掷出 2 点”的事件,即 A={2} B 表示“掷出偶数”的事件,即 B={2,4, 6}则
在 E3 中,Ω={0,1,2,……} 例 1,一条新建铁路共 10 个车站,从它们所有车票中任取一张,观察取得车票的票种。
此试验样本空间所有样本点的个数为 NΩ=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京)
若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为
(组合)
(先从三个球里取两个白球,第一次取白球有五种情况,第二次取白 球还有五种情况<注意是有放回>,第三次取黑球只有三种情况)
(2)无放回取球
故
(3)一次取球
故
属于取球问题的一个实例: 设有 100 件产品,其中有 5%的次品,今从中随机抽取 15 件,则其中恰有 2 件次品的概率便为
(属于一次取球模型) 例 3(分球问题)将 n 个球放入 N 个盒子中去,试求恰有 n 个盒子各有一球的概率(n≤N)。 解: 令 A={恰有 n 个盒子各有一球},先考虑基本事件的总数
3° 若 A1,A2,……,An……两两互不相容,则
(可列可加性,简称可加性)
则称 P(A)为 A 的概率
4、几何定义 定义 4:假设Ω是 Rn(n=1,2,3)中任何一个可度量的区域,从Ω中随机地选择一点,即Ω中任何一点都有同 样的机会被选到,则相应随机试验的样本空间就是Ω,假设事件 A 是Ω中任何一个可度量的子集,则
钻石卡高级辅导系统——全程、全方位、系统化解决考研所有问题,成功率趋近 100% -8-
1°
2°
3° 若 A1,A2,……,两两互不相容,则
3、概率的公理化定义 (数学定义) 定义 3:设某试验的样本空间为Ω,对其中每个事件 A 定义一个实数 P(A),如果它满足下列三条公理: 1° P(A) ≥0(非负性) 2° P(Ω)=1(规范性)
2、相等:若 A B 且 B A,则称事件 A 等于事件 B,记为 A=B
例如,从一付 52 张的扑克牌中任取 4 张,令 A 表示“取得到少有 3 张红桃”的 事件;B 表示“取得至多有一张不是红桃”的事件。显然 A=B
3、和:称事件 A 与事件 B 至少有一个发生的事件为 A 与 B 的和事件简称为和,记为 A B,或 A+B 例如,甲,乙两人向目标射击,令 A 表示“甲击中目标”的事件,B 表示“乙
解:A=A1A2A3
表
示方法常常不唯一,如事件B又可表为
或
例 4,一名射手连续向某一目标射击三次,令Ai={第 i 次射击击中目标} , i=1,2,3,试用文字叙述下列事件:
解: A3-A2={第三次击中目标但第二次未击中目标}
A1A2A3={三次射击都击中目标}
例 5,下图所示的电路中,以 A 表示“信号灯亮”这一事件,以 B,C,D 分别表示继电器接点,Ⅰ,Ⅱ,Ⅲ, 闭合,试写出事件 A,B,C,D 之间的关系。
P(A)==ū(A)/ P(B-A)=P(B)-P(A) ——差的概率等于概率之差 证: 因为:A B 所以:B=A∪(B-A)且 A∩(B-A)=φ,由概率可加性 得 P(B)=P[A∪(B-A)]=P(A)+P(B-A) 即 P(B-A)=P(B)-P(A)
A 与 B 便是互不相容的。
7、对立:称事件 A 不发生的事件为 A 的对立事件,记为 显然
,A∩ =φ
例如,从有 3 个次品,7 个正品的 10 个产品中任取 3 个,若令 A={取得的 3 个 产品中至少有一个次品},则 ={取得的 3 个产品均为正品}。