大学化学课件第二章--物质结构基础

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、卢瑟福的行星式原子模型
行星模型的失败在于:按经典物理学,一个绕核急 速旋转的电子,必定要连续不断地发射辐射能,直到 电子落入原子核,使原子失去原有特性,但事实上不 存在这种情形,电子不出现“塌陷”问题。
矛盾:1. 核外电子不会毁灭 2. 原子光谱是不连续的,是线状的
四、氢原子光谱
1.光和电磁辐射
一、古希腊的原子(元素)理论
公元前5世纪,古希腊哲学家留基波(Leu Cippus )和德谟克里特(Domo Critus)提出: 物质是由最微小、最坚硬、不可入、不可分的微粒 组成,并将这种微粒定义为“原子”。宇宙万物是 由不同数目、不同形状的原子按不同的排列方式而 构成的。
二、道尔顿的原子理论
量的轨道上运动,且不辐射能量。 ②轨道的能量(量子化)假设:离核最近,能量最
低—基态;离核越远,能量越高—激发态;轨道能量 量子化。
③能量的吸收与释放假设:电子获得能量从低能级 跃迁到高能级;从激发态回到基态释放光能,光的频 率取决于轨道间的能量差。
玻尔理论
玻尔的假说解决了如下几个问题: (1)激发态原子为什么会发射出光射线。 (2)原子辐射能量的不连续性,氢光谱波长的不连 续性。 (3)比较好地说明了氢光谱线频率的规律性(即里 德堡公式)。
大学化学
中国矿业大学化工学院
第二章 物质结构基础(上)
要点:
原子结构:氢原子光谱,微观粒子的波粒二象 性,海森堡测不准关系,薛定谔方程与量子数, 多电子原子核外电子的排布与元素周期律。 分子结构:共价键理论,分子间作用力和氢键。
关键:电子具有量子性、统计性和波粒二象性
16:50
Βιβλιοθήκη Baidu
第二章 物质结构基础(上)
§2-1 氢原子光谱和波尔理论 §2-2 原子的量子力学模型 §2-3 原子核外电子结构 §2-4 元素基本性质的周期性变化
16:50
§2-1 氢原子光谱和波尔理论
原子结构理论的发展简史 一、古代希腊的原子(元素)理论 二、道尔顿的原子理论 三、卢瑟福的行星式原子模型 四、氢原子光谱 五、玻尔理论


黄绿
青蓝

连续光谱
四、氢原子光谱
2. 氢原子光谱实验示意图
16:50
五、玻尔理论
玻尔为了解释原子光谱, 将普朗克量子论应用于含核原 子模型,根据辐射的不连续性 和氢原子光谱有间隔的特性, 推论原子中电子的能量也不可 能是连续的,而是量子化的。
玻尔理论
三点假设: ①定态轨道假设:核外电子只能在有确定半径和能
1808年,英国化学家道尔 顿(John Dalton)建立了原 子论。几乎统一解释了当时 所有的化学现象和经验定律 。
二、道尔顿的原子理论
基本要点: 物质的最小组成单位为原子,原子不能创造、不能 毁灭、不能分割; 同种元素的原子其形状、质量和性质均相同,不同 元素的原子则不同; 原子以简单的比例结合成化合物。 缺陷: 不能解释同位素的发现;没有说明原子和分子的区 别;未能阐释原子的具体组成和结构。
波尔模型是带心铁环状原子,后来实验测定的是球形 原子。
返回
§2-2 原子的量子力学模型
一、微观粒子的波粒二象性 二、核外电子运动状态的描述 三、原子轨道和电子云的图像
一、微观粒子的波粒二象性
1、光的波粒二象性
惠更斯的波动学 光是发光体在周围空间里引起的弹性振动而形成
的一种波,不同波长的波产生不同颜色的光,白光 则是各种单色波混合形成的,波动性表现为:光的 干涉、衍射和偏振。
玻尔理论的成功之处与局限性
玻尔理论可以很好地解释氢原子光谱,当电子从n = 3,4,5,6轨道跳回n = 2的轨道时,可以计算出四个 波长恰好为可见光区的四条谱线波长。
玻尔理论虽然引入了量子理论,但没有摆脱经典力 学的束缚,他的电子绕核运动的固有轨道的观点不符合 微观粒子运动的特性,不能解释多电子的原子光谱。
一、微观粒子的波粒二象性
粒子性 波动性
宏观粒子
实物微粒
服从牛顿力学, 不服从牛顿力学,
有可预测的运动 无法预测运动规
轨道

无波动性
有波动性,其分 布具有几率性
一、微观粒子的波粒二象性
2、测不准原理
在经典力学中,我们能准确 地同时测定一个宏观物体的位 置和动量。
1927年,德国物理学家海森 堡指出,对于波粒二象性的微 粒而言,不可能同时准确测定 它们在某瞬间的位置和速度(或 动量)。
一、微观粒子的波粒二象性
如果微粒的运动位置测得愈准确,则相应的速 度愈不易测准,反之亦然。这就是测不准原理。
测不准原理其中的一种表达形式为:物质的坐 标位置的不确定度ΔX和动量的不确定度ΔP的乘 积,遵循下面的关系式:
光的传播
一、微观粒子的波粒二象性
牛顿的微粒说 1887年人们发现了光电效应,说明光具有粒
子性。光源是微粒源,不同种类的微粒有不同 的颜色,白光则是各种不同微粒的混合物。微 粒性表现有:光的透射、反射和折射。
一、微观粒子的波粒二象性
爱因斯坦的光子学说 光既有波动性,又有粒子
性:波粒二象性,成功解释 光电效应。
三、卢瑟福的行星式原子模型
卢瑟福(E.Rutherford)提出含核原子模型。他 认为原子的中心有一个带正电的原子核(atomic nucleus),电子在它的周围旋转,由于原子核和 电子在整个原子中只占有很小的空间,因此原子 中绝大部分是空的。
Flash 播放影片
三、卢瑟福的行星式原子模型
原子的直径约为10-10 m,电子的直径约为10-15 m ,原子核的直径约在10-16 m-10-14 m之间。电子的 质量极小,原子的质量几乎全部集中在核上。但卢 瑟福的理论不能精确指出原子核上的正电荷数。
p

h

一、微观粒子的波粒二象性
德布罗依的假设 1924年,法国物理学家德布罗意提出了实物微
粒 (静止质量不等于零的微粒,如电子、中子、质 子、原子和分子等实物微粒) 也有波动性的假设。 这意味着实物微粒运动也具有波动性,与其相适 应的波长为:
= h/p = h/mv
实物微粒波也称为德布罗意波。电子衍射实验证实 了德布罗意的假设,后来采用中子、质子、氢原子和 氦原子等粒子流,也同样能观察到衍射现象,充分证 明了实物微粒具有波动性。由此可见,波粒二象性是 微观体系的普遍现象。
相关文档
最新文档