中考专题翻折问题

合集下载

专题31 几何变换之翻折模型--2024年中考数学核心几何模型重点突破(学生版)

专题31 几何变换之翻折模型--2024年中考数学核心几何模型重点突破(学生版)

专题31几何变换之翻折模型【理论基础】翻折和折叠问题其实质就是对称问题,翻折图形的性质就是翻折前后图形是全等的,对应的边和角都是相等的。

以这个性质为基础,结合圆的性质,三角形相似,勾股定理设方程思想来考查。

那么碰到这类题型,我们的思路就要以翻折性质为基础,结合题中的条件,或利用三角形相似,或利用勾股定理设方程来解题。

对于翻折和折叠题型分两个题型来讲,一类题型就是直接计算型,另一类是涉及到分类讨论型,由浅入深难度逐步加大,,掌握好分类讨论型的翻折问题,那么拿下中考数学翻折题型就没问题了。

解决翻折题型的策略1.利用翻折的性质:①翻折前后两个图形全等。

对应边相等,对应角相等②对应点连线被对称轴垂直平分2.结合相关图形的性质(三角形,四边形等)3.运用勾股定理或者三角形相似建立方程。

翻折折叠题型(一),直接计算型,运用翻折的性质,结合题中的条件,或利用三角形相似,或利用勾股定理设方程来解题。

一般难度小,我们要多做一些这些题型,熟练翻折的性质,以及常见的解题套路。

翻折折叠题型(二),分类讨论型,运用翻的性质,结合题中的条件,或利用三角形相似,或利用勾股定理设方程来解题。

般难度较大,需要综合运用题中的条件,多种情况讨论分析,需要准确的画图,才能准确分析。

【例1】如图,在ABC 中,点D 是线段AB 上的一点,过点D 作DE ∥AC 交BC 于点E ,将BDE 沿DE 翻折,得到B DE ' ,若点C 恰好在线段B D '上,若90BCD ∠=︒,DC :3CB '=:2,AB =CE 的长度为()A.42B 722C.32D522【例2】如图,点E是菱形ABCD的边CD上一点,将ADE沿AE折叠,点D的对应点F恰好在边BC上,设DE k CE=.(1)若点F与点C重合,则k=__________.(2)若点F是边BC的中点,则k=__________.【例3】(1)发现:如图①所示,在正方形ABCD中,E为AD边上一点,将△AEB沿BE 翻折到△BEF处,延长EF交CD边于G点,求证:△BFG≌△BCG.(2)探究:如图②,在矩形ABCD中,E为AD边上一点,且AD=8,AB=6.将△AEB 沿BE翻折到△BEF处,延长EF交BC边于G点,延长BF交CD边于点H,且FH=CH,直接写出AE的长.一、单选题1.一张正方形的纸片,如图进行两次对折,折成一个正方形,从右下角的顶点,沿斜虚线剪去一个角剪下的实际是四个小三角形,再把余下的部分展开,展开后的这个图形的内角和是()度.A .1080︒B .360︒C .180︒D .900︒2.如图,四边形ABCD 为平行四边形,若将△ACB 沿对角线AC 翻折得到△ACE ,连接ED ,则图中与∠CAD 度数一定相等(除∠CAD 外)的角的个数有()A .2个B .4个C .5个D .7个3.如图,点D ,E 是正△ABC 两边上的点,将△BDE 沿直线DE 翻折,点B 的对应点恰好落在边AC 上,当AC =5AF 时,BD BE的值是()A .23B .34C .35D .574.如图,在△ABC 中,AB <AC ,∠C =45°,AB =5,BC =D 在AC 上运动,连接BD ,把△BCD 沿BD 折叠得到BC D '△,BC '交AC 于点E ,C D AB '∥,则图中阴影部分的面积是()A .78B .127C .52D .2075.如图,正方形ABCD 中,AB =4,延长DC 到点F (0<CF <4),在线段CB 上截取点P ,使得CP =CF ,连接BF 、DP ,再将△DCP 沿直线DP 折叠得到△DEP .下列结论:①若延长DP ,则DP ⊥FB ;②若连接CE ,则CE FB ∥;③连接PF ,当E 、P 、F 三点共线时,CF =4;④连接AE 、AF 、EF ,若△AEF 是等腰三角形,则CF =﹣4;其中正确有()A .4个B .3个C .2个D .1个6.已知:如图,在Rt △ABC 中,∠A =90°,AB =8,tan ∠ABC =32,点N 是边AC 的中点,点M 是射线BC 上的一动点(不与B ,C 重合),连接MN ,将△CMN 沿MN 翻折得△EMN ,连接BE ,CE ,当线段BE 的长取最大值时,sin ∠NCE 的值为()A B C D 7.如图,ABCD 中,对角线AC 与BD 相交于点E ,15ADE ∠=︒,BD =将ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B ',恰好BE B E '⊥,若点F 为BC 上一点,则B F '的最短距离是()A .1B 2C 3D 58.如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点M 处,折痕为AP ;再将PCM △,ADM △分别沿PM ,AM 折叠,此时点C ,D 落在AP 上的同一点N 处.下列结论不.正确的是()A .M 是CD 的中点B .MN AP⊥C .当四边形APCD 是平行四边形时,3AB MN=D .AD BC∥二、填空题9.如图,在直角坐标系xOy 中,一次函数22y x =-+的图象与x 轴相交于点A ,与y 轴相交于点B .将ABO 沿直线AB 翻折得到ABC .若点C 在反比例函数(0)k y k x=≠的图象上,则k =____________.10.如图,在Rt △ABC 中,∠A =90°,AB 3AC =4,点D 是AB 的中点,点E 是边BC 上一动点,沿DE 所在直线把△BDE 翻折到△B ′DE 的位置,B ′D 交边BC 于点F ,若△CB ′F 为直角三角形,则CB ′的长为______.11.如图,将ABCD 沿对角线AC 折叠,使点B 落在点B '处,若138∠=︒,231∠=︒,则D ∠=___.12.如图,90POQ ∠=︒,定长为a 的线段端点A ,B 分别在射线OP ,OQ 上运动(点A ,B 不与点O 重合),C 为AB 的中点,作OAC 关于直线OC 对称的OA C '△,A O '交AB 于点D ,当OBD 是等腰三角形时,OBD ∠的度数为______.13.如图,抛物线y =2x ﹣2x ﹣3与x 轴相交于A ,B 两点,点C 在对称轴上,且位于x 轴的上方,将△ABC 沿直线AC 翻折得到△A B 'C ,若点B '恰好落在抛物线的对称轴上,则点C 的坐标为_____.14.四边形ABCD 为平行四边形,己知AB 13,BC =6,AC =5,点E 是BC 边上的动点,现将△ABE 沿AE 折叠,点B ′是点B 的对应点,设CE 长为x ,若点B ′落在△ADE 内(包括边界),则x 的取值范围为____________.15.如图,点A 、B 分别在平面直角坐标系xOy 的y 轴正半轴、x 轴正半轴上,且OA =4,OB =3,将△AOB 沿AB 折叠,O 的落点为P ,若双曲线y =k x过点P ,则k =________.16.如图,过点A 折叠边长为2的正方形ABCD ,使B 落在B ',连接D B ',点F 为D B '的中点,则CF 的最小值为_____.三、解答题17.如图,四边形ABCD 中,AC AD =,90BAC ∠=︒,45BDC ∠=︒.(1)求∠ABC 的度数;(2)把 BCD 沿BC 翻折得到 BCE ,过点A 作AF BE ⊥,垂足为F ,求证:2BE AF =;(3)在(2)的条件下,连接DE ,若四边形ABCD 的面积为45,10BC =,求DE 的长.18.(1)[初步尝试]如图①,在三角形纸片ABC 中,∠ACB =90°,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,则AM 与BM 的数量关系为____18____;(2)[思考说理]如图②,在三角形纸片ABC 中,AC =BC =6,AB =10,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,求AM BM的值;(3)[拓展延伸]如图③,在三角形纸片ABC 中,AB =9,BC =6,∠ACB =2∠A ,将△ABC 沿过顶点C 的直线折叠,使点B 落在边AC 上的点B '处,折痕为CM .①求线段AC 的长;②若点O 是边AC 的中点,点P 为线段OB '上的一个动点,将△APM 沿PM 折叠得到A PM ' ,点A 的对应点为点A ',A M '与CP 交于点F ,求PF MF 的取值范围.19.综合与实践在数学教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动——折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD ,使AD 与BC 重合,折痕为EF ,把纸片展平:再一次折叠纸片,使点A 落在EF 上的点N 处,并使折痕经过点B ,折痕为BM ,把纸片展平,连接AN ,如图①;(1)折痕BM 所在直线是否是线段AN 的垂直平分线?请判断图中ABN 是什么特殊三角形?请写出解答过程.(2)继续折叠纸片,使点A 落在BC 边上的点H 处,并使折痕经过点B ,得到折痕BG ,把纸片展平,如图②,求∠GBN 的度数.(3)拓展延伸:如图③,折叠矩形纸片ABCD ,使点A 落在BC 边上的点A '处,并且折痕交BC 边于点T ,交AD 边于点S ,把纸片展平,连接AA '交ST 于点O ,连接AT ;求证:四边形SATA '是菱形.20.图,一张矩形纸片ABCD ,点E 在边AB 上,将△BCE 沿直线CE 对折,点B 落在对角线AC 上,记为点F .(1)若AB =4,BC =3,求AE 的长.(2)连接DF ,若点D ,F ,E 在同一条直线上,且DF =2,求AE 的长.21.如图1,在△ABC 中,BC =6,P 是BC 边的一点,且不与B ,C 重合,将△APB 沿AP 折叠得'APB △,过点C 作AP 垂线,垂足为D ,连接DB BB B C '',,.(1)AB 和'AB 的数量关系是,AP 与'BB 的位置关系是;(2)如图2,当四边形'BDCB 是平行四边形时,求BP 的长;(3)在(2)的条件下,若BD =CD ,求证:223AB AC AD DP -=⋅.22.矩形ABCD 满足BC =2AB ,E 、F 分别为AD 、BC 边上的动点,连接EF ,沿EF 将四边形DEFC 翻折至四边形GEFH .(1)①如图1,若点G 落在矩形ABCD 内,当∠BFE =57°时,直接写出∠AEG =.②如图2,若点G 落在AB 边上,当G 为AB 中点时,直接写出sin ∠BFH =.(2)如图3,若点G 落在AB 边上,且满足AB =nAG ,①求BH DF 的值(用含n 的代数式表示);②在E 、F 运动的过程中,直接写出DE CF AG+的值(用含n 的代数式表示)23.小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在ABCD 中,AN 为BC 边上的高,AD m AN=,点M 在AD 边上,且BA BM =,点E 是线段AM 上任意一点,连接BE ,将ABE △沿BE 翻折得FBE .(1)问题解决:如图①,当60BAD ∠=︒,将ABE △沿BE 翻折后,使点F 与点M 重合,则AM AN =______;(2)问题探究:如图②,当45BAD ∠=︒,将ABE △沿BE 翻折后,使EF BM ∥,求ABE ∠的度数,并求出此时m 的最小值;(3)拓展延伸:当30BAD ∠=︒,将ABE △沿BE 翻折后,若EF AD ⊥,且AE MD =,根据题意在备用图中画出图形,并求出m 的值.24.【问题情境】:数学活动课上,同学们开展了以折叠为主题的探究活动,如图1,已知矩形纸片()ABCD AD AB >,其中宽8AB =.(1)【动手实践】:如图1,威威同学将矩形纸片ABCD 折叠,点A 落在BC 边上的点M 处,折痕为BN ,连接MN ,然后将纸片展平,得到四边形ABMN ,则折痕BN 的长度为______.(2)【探究发现】:如图2,胜胜同学将图1中的四边形ABMN 剪下,取AN 边中点E ,将ABE △沿BE 折叠得到A BE ' ,延长BA '交MN 于点F .点Q 为BM 边的中点,点P 是边MN 上一动点,将MQP △沿PQ 折叠,当点M 的对应点M '落在线段BF 上时,求此时tan PQM ∠的值;(3)【反思提升】:明明同学改变图2中Q 点的位置,即点Q 为BM 边上一动点,点P 仍是边MN 上一动点,按照(2)中方式折叠MQP △,使点M '落在线段BF 上,明明同学不断改变点Q 的位置,发现在某一位置QPM ∠与(2)中的PQM ∠相等,请直接写出此时BQ 的长度.。

2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解

2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解

2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(试题部分)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A .B .C .D .7.(2024·河北·中考真题)如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D .10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A .B .C .D .12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A .B .C .D .13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .24.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x =>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .25.(2024·黑龙江绥化·中考真题)如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠= .26.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为 .27.(2024·内蒙古呼伦贝尔·中考真题)如图,点()0,2A −,()1,0B ,将线段AB 平移得到线段DC ,若90ABC ∠=︒,2BC AB =,则点D 的坐标是 .28.(2024·浙江·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与A B ''关于过点O 的直线l 对称,点B 的对应点B '在线段OC 上,A B ''交CD 于点E ,则B CE '与四边形OB ED '的面积比为29.(2024·江苏苏州·中考真题)如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .三、解答题30.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________. 31.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值; (2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm 的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)32.(2024·吉林长春·中考真题)图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作四边形ABCD ,使其是轴对称图形且点C 、D 均在格点上.(1)在图①中,四边形ABCD 面积为2;(2)在图②中,四边形ABCD 面积为3;(3)在图③中,四边形ABCD 面积为4.33.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A −,()2,3B −,()5,2C −.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π) 34.(2024·吉林·中考真题)图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.35.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围; ②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可). 36.(2024·北京·中考真题)在平面直角坐标系xOy 中,O 的半径为1,对于O 的弦AB 和不在直线AB 上的点C ,给出如下定义:若点C 关于直线AB 的对称点C '在O 上或其内部,且ACB α∠=,则称点C 是弦AB 的“α可及点”.(1)如图,点()0,1A ,()1,0B .①在点()12,0C ,()21,2C ,31,02C ⎛⎫ ⎪⎝⎭中,点___________是弦AB 的“α可及点”,其中α=____________︒;②若点D 是弦AB 的“90︒可及点”,则点D 的横坐标的最大值为__________;(2)已知P 是直线y =且存在O 的弦MN ,使得点P 是弦MN 的“60︒可及点”.记点P 的横坐标为t ,直接写出t 的取值范围.2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(答案详解)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查轴对称图形,掌握轴对称图形的定义:如果一个图形沿某一条直线对折,对折后的两部分是完全重合的,那么就称这样的图形为轴对称图形是解题的关键.【详解】解:A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选C.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】本题考查了中心对称图形与轴对称图形的概念,正确掌握中心对称图形与轴对称图形定义是解题关键.中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重台,这样的图形叫做轴对称图形.根据定义依次对各个选项进行判断即可.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.【答案】A【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A.该标点符号是轴对称图形,故此选项符合题意;B.该标点符号不是轴对称图形,故此选项不符合题意;C.该标点符号不是轴对称图形,故此选项不符合题意;D.该标点符号不是轴对称图形,故此选项不符合题意.故选:A.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm【答案】A【分析】本题考查平移的性质,利用平移的性质将阴影部分的周长转化为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,由此解答即可.【详解】解:由图可得:阴影部分的周长为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,∴阴影图形的周长是:480280220440cm⨯+⨯−⨯=,故选:A.6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A.B.C.D.【答案】A【分析】本题主要考查了轴对称图形,根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形可得答案.【详解】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C. 不是轴对称图形,故此选项不符合题意;D. 不是轴对称图形,故此选项不符合题意;故选:A.7.(2024·河北·中考真题)如图,AD与BC交于点O,ABO和CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥ 【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键. 根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形【答案】A【分析】本题考查了命题与定理的知识,多边形外角性质,菱形性质及轴对称图形的特点,解题的关键是掌握这些基础知识点.【详解】解:A 、两点之间,线段最短,正确,是真命题,符合题意;B 、菱形的对角线互相垂直,不一定相等,选项错误,是假命题,不符合题意;C 、正五边形的外角和为360︒,选项错误,是假命题,不符合题意;D 、直角三角形不一定是轴对称图形,只有等腰直角三角形是轴对称图形,选项错误,是假命题,不符合题意;故选:A .9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D . 【答案】B【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A.不是轴对称图形,不符合题意;B.是轴对称图形,符合题意;C.不是轴对称图形,不符合题意;D.不是轴对称图形,不符合题意;故选:B.10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的定义是解题的关键.【详解】解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形,也是中心对称图形,故符合题意;C、不是轴对称图形,也不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B.11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是()A.B.C.D.【答案】B【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A.图案不成轴对称,故不符合题意;B.图案成轴对称,故符合题意;C.图案不成轴对称,故不符合题意;D.图案不成轴对称,故不符合题意;故你:B.13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题主要考查了轴对称图形和中心对称图形,根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B 、既是轴对称图形又是中心对称图形,故B 选项符合题意;C 、是轴对称图形,不是中心对称图形,故C 选项不合题意;D 、是轴对称图形,不是中心对称图形,故D 选项不合题意.故选:B .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D . 【答案】C【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−【答案】A【分析】本题考查了一次函数与坐标轴的交点坐标,点的对称,属于简单题,求交点坐标是解题关键.16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒ 由对称的性质得OAB ODC ≌,由全等三角形的性质即可判断;OH ,可得 GOD ∠=,即可判断;掌握轴对称的性质是解题的关键.A.OE OF ⊥,90︒,点的中点,OAB 与ODC 都是等腰三角形,由对称得OAB ODC ≌,F 分别是底边AB ,,结论正确,故不符合题意;O 作GM OH ⊥,90GOD DOH ∴∠+∠=︒,90BOH DOH ∠+∠=︒,GOD BOH ∴∠=∠,由对称得GOD COH ∴∠=∠,同理可证AOD ∠∴故选:B 17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q −,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98−+−,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .【答案】()3,4【分析】本题考查了坐标与图形变化-平移.利用点平移的坐标规律,把A 点的横坐标加2,纵坐标加3即可得到点B 的坐标. 【详解】解:∵点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B , ∴点B 的坐标为()12,13++,即()3,4.故答案为:()3,4.19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .【答案】()1,4【分析】本题考查坐标与图形,三角形全等的性质.利用数形结合的思想是解题的关键.根据点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,画出图形,结合图形的对称性可直接得出()1,4D .【详解】解:∵点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,∴AD BC =,AC BD =,∴可画图形如下,由图可知点C 、D 关于线段AB 的垂直平分线2x =对称,则()1,4D .故答案为:()1,4.20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .【答案】3【分析】本题考查了折叠的性质和勾股定理,熟练掌握勾股定理是解题的关键. 设CE x =,则8AE BE x ==−,根据勾股定理求解即可.【详解】解:由折叠的性质,得AE BE =,设CE x =,则8AE BE x ==−,由勾股定理,得222BC CE BE +=,∴()22248x x +=−,解得3x =.故答案为:3.21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .出A EF A B C ''''∽,根据对应边上的中线比等于相似比,利用面积公式进行求解即可.【详解】解:∵等腰ABC 中,30ABC ∠=︒,AD 为中线,AD BC ⊥,BD CD =,∵将ABC 沿其底边中线,C BC B '∥∴A EF A B C ''''∽,EF A D B C A G'=''', 13AA AD '=,3223DA AD A G '='=2EF A D '22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .∵4AB =,30ABC ∠=︒,在ABCD Y ∴122AH AB ==,AD BC ∥,∴24AA AH '==,AA AD '⊥,∵5AD =,23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .【答案】()3,10【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=︒,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,。

中考数学翻折问题考点类型

中考数学翻折问题考点类型

中考数学翻折问题考点类型·最新说明:本文档整理了中考数学翻折问题的考点类型、试题类型、难度系统等内容,详细讲解了各种类型题目的解法和技巧,本文是翻折问题的专项训练,望对老师和同学们有所帮助。

目录一、知识与方法 (3)二、典型题 (4)一、知识与方法1. 轴对称的定义把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,对应点叫对称点,直线叫对称轴,两个图形关于某条直线对称也叫轴对称.2. 轴对称的性质(1)关于某条直线对称的两个图形是全等形;(2)对称轴这条直线是对应点连线段的垂直平分线.3. 轴折叠两侧的部分对应相等,如①对应角相等、②对应边相等、③折痕上的点到对应点的距离相等;4. 对应点的连线段被折痕所在直线垂直平分,这会出现垂直于中点;5. 折叠问题中,常常结合角平分线、等腰三角形、三线合一、设未知数解勾股定理等综合知识点;6. 在平面直角坐标系中出现折叠,常常还会用到求解析式法、两点间距离公式、中点坐标公式等。

二、典型题【题1】如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠EFG 的值为.【解析】如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB∴∠HDE=∠DAB=60°,∵点E是CD中点,∴DE=CD=2在Rt△DEH中,DE=2,∠HDE=60°∴DH=1,HE=,∴AH=AD+DH=5在Rt△AHE中,AE==2∵折叠,∴AN=NE=,AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴BE⊥CD,∵BC=4,EC=2,∴BE=2∵CD ∥AB ,∴∠ABE =∠BEC =90°在Rt △BEF 中,EF 2=BE 2+BF 2=12+(AB ﹣EF )2.∴EF =,∴sin ∠EFG ===,故答案为:【点评】“对应点的连线段被折痕所在直线垂直平分”,“三线合一”,“转化目标角”【题2】如图,在矩形ABCD 中,AB =3,BC =4,点E 是边AB 上一点,且AE =2EB ,点P 是边BC 上一点,连接EP ,过点P 作PQ ⊥PE 交射线CD 于点Q .若点C 关于直线PQ 的对称点正好落在边AD 上,求BP 的值.【解析】过点P 作PE ⊥AD 于点E ,∴∠PEC '=90°∵矩形ABCD 中,AB =3,BC =4∴∠EAB =∠B =∠C =∠QDC '=90°,CD =AB =3∴四边形CPED 是矩形∴DE =PC ,PE =CD =3∵AE =2EB ,∴AE =2,EB =1设BP =x ,则DE =PC =4﹣x∵点C 与C '关于直线PQ 对称∴△PC 'Q ≌△PCQ ∴PC '=PC =4﹣x ,C 'Q =CQ ,∠PC 'Q =∠C =90°∵PE ⊥PQ法2:亦可过C`作C`G ⊥BC ,连接CC`∴∠BPE+∠CPQ=90°又∵∠BEP+∠BPE=90°∴∠BEP=∠CPQ∴△BEP∽△CPQ同理可证:△PEC'∽△C'DQ∴,,∴CQ==x(4﹣x)∴C'Q=x(4﹣x),DQ=3﹣x(4﹣x)=x2﹣4x+3∴,∴C'D=3x,EC'=∵EC'+C'D=DE,∴,解得:x1=1,x2=∴BP的值为1或【题3】如图,矩形OABC中,OA=4,AB=3,点D在边BC上,且CD=3DB,点E是边OA上一点,连接DE,将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,则OE的长为_________.【解析】连接A′D,AD,∵四边形OABC是矩形,∴BC=OA=4,OC=AB=3,∠C=∠B=∠O=90°,∵CD=3DB,∴CD=3,BD=1,法2:亦可过D作DG⊥AO,连接AA`∴CD =AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A ′恰好落在边OC 上, ∴A ′D =AD ,A ′E =AE , 在Rt △A ′CD 与Rt △DBA 中,,∴Rt △A ′CD ≌Rt △DBA (HL ),∴A ′C =BD =1,∴A ′O =2,∵A ′O 2+OE 2=A ′E 2,∴22+OE 2=(4﹣OE )2,∴OE =,【点评】“对应点的连线段被折痕垂直平分”,“全等相似”,“十字架”,“勾股定理解方程”【题4】如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为 .【解析】连接BF ,∵BC =6,点E 为BC 的中点,∴BE =3,又∵AB =4,∴AE ==5,∴BH =,则BF =, 法2:亦可过E 作EG ⊥FC ;或者过F 作MN 分别垂直AD 和BC∵FE=BE=EC,∴∠BFC=90°,根据勾股定理得,CF===.故答案为:.【题5】如图,将边长为6的正方形纸片ABCD对折,使AB与DC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N(1)若CM=x,则CH=(用含x的代数式表示);(2)求折痕GH的长.【解析】(1)∵CM=x,BC=6,∴设HC=y,则BH=HM=6﹣y,故y2+x2=(6﹣y)2,整理得:y=﹣x2+3,∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴=,∴=,解得:HC=﹣x2+2x,故答案为:﹣x2+3或﹣x2+2x;(2)方法一:∵四边形ABCD为正方形,∴∠B=∠C=∠D=90°,设CM=x,由题意可得:ED=3,DM=6﹣x,∠EMH=∠B=90°,故∠HMC+∠EMD=90°,∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴=,即=,解得:x1=2,x2=6,当x=2时,∴CM=2,∴DM=4,∴在Rt△DEM中,由勾股定理得:EM=5,∴NE=MN﹣EM=6﹣5=1,∵∠NEG=∠DEM,∠N=∠D,∴△NEG∽△DEM,∴=,∴=,解得:NG=,由翻折变换的性质,得AG=NG=,过点G作GP⊥BC,垂足为P,则BP=AG=,GP=AB=6,当x=2时,CH=﹣x2+3=,∴PH=BC﹣HC﹣BP=6﹣﹣=2,在Rt△GPH中,GH===2.当x=6时,则CM=6,点H和点C重合,点G和点A重合,点M在点D处,点N在点A处.MN同样经过点E,折痕GH的长就是AC的长.所以,GH长为6.方法二:有上面方法得出CM=2,连接BM,可得BM⊥GH,则可得∠PGH=∠HBM,在△GPH和△BCM中,∴△GPH≌△BCM(SAS),∴GH=BM,∴GH=BM==2.【题6】已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图①,当∠BOP=30°时,求点P的坐标;(2)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,求m(用含有t的式子表示);(3)在(2)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果).【解析】(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴=,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴=,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,在△PC′E和△OC′B′中,,∴△PC′E≌△OC′B′(AAS),∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴=,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).1.如图,在菱形纸片ABCD中,AB=15,tan∠ABC=,将菱形纸片沿折痕FG 翻折,使点B落在AD边上的点E处,若CE⊥AD,则cos∠EFG的值为.【解析】如图,过点A作AH⊥BC于点H,连接BE,过点P作PE⊥AB,∵AB=15,tan∠ABC=,∴AH=9,BH=12,∴CH=3,∵四边形ABCD是菱形,∴AB=BC=15,AD∥BC,∵AH⊥BC,∴AH⊥AD,且AH⊥BC,CE⊥AD,∴四边形AHCE是矩形∴EC=9,AE=CH=3,∴BE===3,∵将菱形纸片沿折痕FG翻折,使点B落在AD边上的点E处,∴BF=EF,BE⊥FG,BO=EO=∵AD∥BC,∴∠ABC=∠P AE,∴tan∠ABC=tan∠P AE=,且AE=3,∴AP=,PE=,∵EF2=PE2+PF2,∴EF2=+(15﹣EF+)2,∴EF=,∴FO===∴cos∠EFG==,故答案为:2.如图,在菱形ABCD中,AB=5,tan D=,点E在BC上运动(不与B,C重合),将四边形AECD沿直线AE翻折后,点C落在C′处,点D′落在D处,C′D′与AB交于点F,当C′D'⊥AB时,CE长为.【解析】如图,作AH⊥CD于H,交BC的延长线于G,连接AC′.由题意:AD=AD′,∠D=∠D′,∠AFD′=∠AHD=90°,∴△AFD′≌△AHD(AAS),∴∠F AD′=∠HAD,∵∠EAD′=∠EAD,∴∠EAB=∠EAG,∴=(角平分线的性质定理,可以用面积法证明)∵AB∥CD,AH⊥CD,∴AH⊥AB,∴∠BAG=90°,∵∠B=∠D,∴tan B=tan D==,∴=,∴AG=,∴BG===,∴BE:EG=AB:AG=4:3,∴EG=BG=,在Rt△ADH中,∵tan D==,AD=5,∴AH=3,CH=4,∴CH=1,∵CG∥AD,∴=,∴CG=,∴EC=EG﹣CG=﹣=.故答案为.3.如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D 的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=5.【解析】∵折叠,∴△ADE≌△AD'E,∴AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,∵四边形ABCD是矩形,∴AB∥CD,∴∠DEA=∠EAB,∴∠EAB=∠AEB,∴AB=BE,∴D'B=BE﹣D'E=AB﹣1,在Rt△ABD'中,AB2=D'A2+D'B2,∴AB2=9+(AB﹣1)2,∴AB=5故答案为:54.如图,矩形ABCD中,AB=8,BC=10,点N为边BC的中点,点M为AB边上任意一点,连接MN,把△BMN沿MN折叠,使点B落在点E处,若点E 恰在矩形ABCD的对称轴上,则BM的长为5或.【解析】①当E在矩形的对称轴直线PN上时,如图1此时∠MEN=∠B=90°,∠ENB=90°,∴四边形BMEN是矩形.又∵ME=MB,∴四边形BMEN是正方形.∴BM=BN=5.②当E在矩形的对称轴直线FG上时,如图2,过N点作NH⊥FG于H点,则NH=4.根据折叠的对称性可知EN=BN=5,∴在Rt△ENH中,利用勾股定理求得EH=3.∴FE=5﹣3=2.设BM=x,则EM=x,FM=4﹣x,在Rt△FEM中,ME2=FE2+FM2,即x2=4+(4﹣x)2,解得x=,即BM=.故答案为5或.5.如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为.【解析】∵△CDG∽△A'EG,A'E=4∴A'G=2∴B'G=4由勾股定理可知CG'=则CB'=由△CDG∽△CFB'设BF=x∴解得x=故答案为6.如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是上一点.将扇形AOB沿EF对折,使得折叠后的圆弧恰好与半径OB相切于点G.若OE=4,则O到折痕EF的距离为2.【解析】过点G作O′G⊥OB,作AO′⊥O′G于O′,如图,连结OO′交EF于H,则四边形AOGO′为矩形,∴O′G=AO=6,∵沿EF折叠后所得得圆弧恰好与半径OB相切于点G,∴与所在圆的半径相等,∴点O′为所在圆的圆心,∴点O与点O′关于EF对称,∴OO′⊥EF,OH=HO′,设OH=x,则OO′=2x,∵∠EOH=∠O′OA,∴Rt△OEH∽Rt△OO′A,∴=,即=,解得x=2,即O到折痕EF的距离为2.故答案为2.7.如图,矩形ABCD中,AD=4,O是BC边上的点,以OC为半径作⊙O交AB 于点E,BE=AE,把四边形AECD沿着CE所在的直线对折(线段AD对应A′D′),当⊙O与A′D′相切时,线段AB的长是.【解析】设⊙O与A′D′相切于点F,连接OF,OE,则OF⊥A′D′,∵OC=OE,∴∠OCE=∠OEC,∵四边形ABCD是矩形,∴∠A=∠B=A′=90°,由折叠的性质得:∠AEC=∠A′EC,∴∠B+∠BCE=∠A′EO+∠OEC,∴∠OEA′=∠B=90°,∵OE=OF,∴四边形A′FOE是正方形,∴A′E=AE=OE=OC,∵BE=AE,设BE=3x,AE=5x,∴OE=OC=5x,∵BC=AD=4,∴OB=4﹣5x,在R t BOE中,OE2=BE2+OB2,∴(5x)2=(3x)2+(4﹣5x)2,解得:x=,x=4(舍去),∴AB=8x=.故答案为:.9.如图,矩形ABCD中,AB=2BC,E是AB上一点,O是CD上一点,以OC 为半径作⊙O,将△ADE折叠至△A′DE,点A′在⊙O上,延长EA′交BC延长线于F,且恰好过点O,过点D作⊙O的切线交BC延长线于点G.若FG=1,则AD=2,⊙O半径=.【解析】作OH⊥DG于H,如图,设DA=x,则AB=2x,∵△ADE折叠至△A′DE,∴DA′=DA=x,∠DA′E=∠A=90°,∴DA′与⊙O相切,在△ODA′和△OCF中∴△DOA′≌△FOC.∴DA′=CF=x,∵DG是⊙O的切线,OH⊥DG,∴H点为切点,∴DH=DA′=x,GH=GC=CF+GF=x+1,在Rt△DCG中,∵DC2+CG2=DG2,∴(2x)2+(x+1)2=(x+x+1)2,解得x1=0(舍去),x2=2,∴AD=2,设⊙O的半径为r,则OC=OA′=r,OD=2x﹣r=4﹣r,在Rt△DOA′中,∵DA′2+OA′2=DO2,∴22+r2=(4﹣r)2,解得r=,即⊙O的半径为.故答案为2,.10.如图1,在△ABC中,AC=6,BC=8,AB=10,分别以△ABC的三边AB,BC,AC为边在三角形外部作正方形ABDE,BCIJ,AFGC.如图2,作正方形ABDE 关于直线AB对称的正方形ABD′E′,AE′交CG于点M,D′E′交IC于点N点D′在边IJ上.则四边形CME′N的面积是24.【解析】∵正方形ABDE关于直线AB对称的正方形ABD′E′,∴AE′=AB=10,∠E′AB=90°,∠AE′N=90°,∵AC=6,BC=8,AB=10,∴AC2+BC2=AB2,∴△ACB为直角三角形,∴AC2=BC•MC,∴MC==,∵∠MAC=∠NAE′,∴Rt△ACM∽Rt△AE′N,∴=,即=,∴E′N=,∴四边形CME′N的面积=S△AE′N﹣S△ACM=×10×﹣×6×=24.故答案为24.11.如图,菱形ABCD中,∠A=60°,将纸片折叠,点A,D分别落在A′,D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为.【解析】设BC与D′F交于点K.CF=a,D′K=b,∵四边形ABCD是菱形,∠A=60°,∴∠C=60°,∠D′=∠D=120°,∵KF⊥CD,∴∠KFC=90°,∴∠FKC=∠BKD′=30°,∴∠KBD′=180°﹣∠D′﹣∠BKD′=30°,∴BD′=b,BK=b,KC=2a,KF=a,∵BC=CD=D′F+CF,∴b+2a=b+a+a,∴(﹣1)a=(﹣1)b,∴a=b,∴==,故答案为.12.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=﹣1.【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故答案为:﹣1.13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B 落在点F处,连接AF,当线段AF=AC时,BE的长为.【解析】连接AD,作EG⊥BD于G,如图所示:则EG∥AC,∴△BEG∽△BAC,∴==,设BE=x,∵∠ACB=90°,AC=3,BC=4,∴AB==5,∴==,解得:EG=x,BG=x,∵点D是边BC的中点,∴CD=BD=2,∴DG=2﹣x,由折叠的性质得:DF=BD=CD,∠EDF=∠EDB,在△ACD和△AFD中,,∴△ACD≌△AFD(SSS),∴∠ADC=∠ADF,∴∠ADF+∠EDF=×1880°=90°,即∠ADE=90°,∴AD2+DE2=AE2,∵AD2=AC2+CD2=32+22=13,DE2=DG2+EG2=(2﹣x)2+(x)2,∴13+(2﹣x)2+(x)2=(5﹣x)2,解得:x=,即BE=;故答案为:.14.在正方形ABCD中,(1)如图1,若点E,F分别在边BC,CD上,AE,BF交于点O,且∠AOF=90°.求证:AE=BF.(2)如图2,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G.若DC=5,CM=2,求EF的长.【解析】(1)如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∵∠AOF=90°,∴∠BAE+∠OBA=90°,又∵∠FBC+∠OBA=90°,∴∠BAE=∠CBF,在△ABE和△BCF中∵,∴△ABE≌△BCF(ASA).∴AE=BF.(2)由折叠的性质得EF⊥AM,过点F作FH⊥AD于H,交AM于O,则∠ADM=∠FHE=90°,∴∠HAO+∠AOH=90°、∠HAO+∠AMD=90°,∴∠POF=∠AOH=∠AMD,又∵EF⊥AM,∴∠POF+∠OFP=90°、∠HFE+∠FEH=90°,∴∠POF=∠FEH,∴∠FEH=∠AMD,∵四边形ABCD是正方形,∴AD=CD=FH=5,在△ADM和△FHE中,∵,∴△ADM≌△FHE(AAS),∴EF=AM===.15.如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,∠BFC=90°,求的值.【解析】如图,延长EF交CB于M,连接CM,∵四边形ABCD是正方形,∴AD=DC,∠A=∠BCD=90°,∵将△ADE沿直线DE对折得到△DEF,∴∠DFE=∠DFM=90°,在Rt△DFM与Rt△DCM中,,∴Rt△DFM≌Rt△DCM,∴MF=MC,∴∠MFC=∠MCF,∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,∴∠MFB=∠MBF,∴MB=MC,设MF=MC=BM=a,AE=EF=x,∵BE2+BM2=EM2,即(2a﹣x)2+a2=(x+a)2,解得:x=a,∴AE=a,∴==3.16.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为18°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.【解析】(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠F AE,∴∠DAE=∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF===8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt△CEG和△FEG中,,∴Rt△CEG≌△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,即CG的长为.17.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为23°.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D 的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.【解析】(1)如图1中,∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=46°,由翻折不变性可知,∠DBE=∠EBC=∠DBC=23°,故答案为23.(2)【画一画】,如图2中,【算一算】如图3中,∵AG=,AD=9,∴GD=9﹣=,∵四边形ABCD是矩形,∴AD∥BC,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,CF==,∴BF=BC﹣CF=,由翻折不变性可知,FB=FB′=,∴DB′=DF﹣FB′=﹣=3.【验一验】如图4中,小明的判断不正确.理由:连接ID,在Rt△CDK中,∵DK=3,CD=4,∴CK==5,∵AD∥BC,∴∠DKC=∠ICK,由折叠可知,∠A′B′I=∠B=90°,∴∠IB′C=90°=∠D,∴△CDK∽△IB′C,∴==,即==,设CB′=3k,IB′=4k,IC=5k,由折叠可知,IB=IB′=4k,∴BC=BI+IC=4k+5k=9,∴k=1,∴IC=5,IB′=4,B′C=3,在Rt△ICB′中,tan∠B′IC==,连接ID,在Rt△ICD中,tan∠DIC==,∴tan∠B′IC≠tan∠DIC,∴B′I所在的直线不经过点D.。

2023年中考数学【选择题】讲练必考重点03 几何变换之翻折问题

2023年中考数学【选择题】讲练必考重点03 几何变换之翻折问题

【选择题】必考重点03 几何变换之翻折问题几何变换中的折叠问题,是江苏各地中考中常考的题型,难度多为一般或者较难。

几何的翻折问题,本质上考查的是轴对称的性质,常和矩形相结合。

在解题时,首先要明确折叠前后的图形全等,折叠前后的对应边、对应角相等,对称轴垂直平分对应点之间的连线,在结合矩形、菱形、三角形等的性质,运用勾股定理,列出方程,求出相应的线段长度。

【2022·江苏连云港·中考母题】如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:①GF ∥EC ;②AB ;③GE DF ;④OC ;⑤△COF ∽△CEG .其中正确的是( )A .①②③B .①③④C .①④⑤D .②③④【考点分析】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案. 【思路分析】由折叠的性质知∠FGE =90°,∠GEC =90°,点G 为AD 的中点,点E 为AB 的中点,设AD =BC =2a ,AB =CD =2b ,在Rt △CDG 中,由勾股定理求得b ,然后利用勾股定理再求得DF =FO =【2021·江苏苏州·中考母题】如图,在平行四边形ABCD 中,将ABC 沿着AC 所在的直线翻折得到AB C ',B C '交AD 于点E ,连接B D ',若60B ∠=︒,45ACB ∠=︒,AC =B D '的长是( )A.1BC D 【考点分析】本题考查翻折变换、等腰三角形的性质、勾股定理、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【思路分析】利用平行四边形的性质、翻折不变性可得△AEC 为等腰直角三角形,根据已知条件可得CE 得长,进而得出ED 的长,再根据勾股定理可得出B D ';1.(2022·江苏苏州·二模)如图把一张矩形纸片ABCD 沿对角线AC 翻折,点B 的对应点为B ′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .BC =12ACB .AE =CEC .AD =DE D .∠DAE =∠CAB2.(2022·江苏南京·二模)如图,矩形ABCO ,点A 、C 在坐标轴上,点B 的坐标为()2,4-.将△ABC 沿AC 翻折,得到△ADC ,则点D 的坐标是( )A.612,55⎛⎫⎪⎝⎭B.65,52⎛⎫⎪⎝⎭C.312,25⎛⎫⎪⎝⎭D.35,22⎛⎫⎪⎝⎭3.(2022·江苏泰州·一模)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=11,EN=2,则FO的长为()A B C D4.(2022·江苏宿迁·三模)已知长方形纸条ABCD,点E、G在AD边上,点F、H在BC边上.将纸条分别沿着EF、GH折叠,如图,当DC恰好落在EA'上时,1∠与2∠的数量关系是()A.12135∠+∠=︒B.2115∠-∠=︒C.1290∠+∠=︒D.22190∠-∠=︒5.(2022·江苏苏州·二模)如图①,②,③,④,两次折叠等腰三角形纸片ABC,先使AB与AC重合,折痕为AD,展平纸片:再使点A与点C重合,折痕为EF,展平纸片,AD、EF交于点G.若5cmAB AC==,6cmBC,则DG的长为()A.3cm4B.7cm8C.1cm D.7cm66.(2022·江苏·苏州中学二模)如图,菱形ABCD中,点E在AD上,将△ABE沿着BE翻折,点A恰好落在CD上的点F处.若∠A=65°,则∠DFE的度数为()A.85︒B.82.5︒C.65︒D.50︒7.(2022·江苏扬州·二模)如图,在矩形ABCD中,2AB=,BC=E是BC的中点,将ABE△沿直线AE翻折,点B落在点F处,连结CF,则tan ECF∠的值为()A B C.23D8.(2022·江苏苏州·模拟)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC 边上的点F处,若3AB=,5BC=,则tan FEC∠的值为().A.12B.35C.34D.459.(2022·江苏苏州·一模)如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C.且S△BEF=1,则k的值为()A.18B.20C.24D.2810.(2022·江苏·江阴市第一初级中学一模)如图,把三角形纸片ABC沿DE折叠,当点A落在四边形BCDE外部时,则∠A与∠1、∠2之间的数量关系是()A.2∠A=∠1-∠2B.3∠A=2(∠1-∠2)C.3∠A=2∠1-∠2D.∠A=∠1-∠211.(2022·江苏·无锡市天一实验学校二模)已知:如图,在Rt△ABC中,∠A=90°,AB=8,tan∠ABC=32,点N是边AC的中点,点M是射线BC上的一动点(不与B,C重合),连接MN,将△CMN沿MN 翻折得△EMN,连接BE,CE,当线段BE的长取最大值时,sin∠NCE的值为()A B C D12.(2022·江苏省南菁高级中学实验学校九年级)如图,在ABC 中,点D 是线段AB 上的一点,过点D 作DE ∥AC 交BC 于点E ,将BDE 沿DE 翻折,得到B DE ',若点C 恰好在线段B D '上,若90BCD ∠=︒,DC :3CB '=:2,AB =CE 的长度为( )A.B C .D 13.(2022·江苏·九年级专题练习)如图,在△ABC 中,90ACB ∠=,点D 是AB 的中点,将△ACD 沿CD 对折得△A ′CD .连接BA ',连接AA ′交CD 于点E ,若14cm AB =,4cm BA '=,则CE 的长为( )A .4cmB .5cmC .6cmD .7cm14.(2022·江苏·宜兴市树人中学九年级)如图,在△ABC 中,点D 是线段AB 上的一点,过点D 作DE ∥AC 交BC 于点E ,将△BDE 沿翻折,得到△B 'DE ,若点C 恰好在线段B 'D 上,若∠BCD =90°,DC :CB '=3:2,AB =CE 的长度为( )A.B .4C .D .615.(2022·江苏·九年级专题练习)如图①,AB =5,射线AM ∥BN ,点C 在射线BN 上,将△ABC 沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上,点P ,Q 分别在射线AM 、BN 上,PQ ∥AB .设AP =x ,QD =y .若y 关于x 的函数图象(如图②)经过点E (9,2),则cos B 的值等于( )A.25B.12C.35D.71016.(2022·江苏·苏州市吴江区铜罗中学九年级期中)如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC′,DC'与AB交于点E,连接AC′,若AD=AC′=2,BD=3,则点D到BC的距离为()A B C D17.(2022·江苏南通·九年级)如图,AB为⊙O的一条弦,C为⊙O上一点,OC∥AB.将劣弧AB沿弦AB 翻折,交翻折后的弧AB交AC于点D.若D为翻折后弧AB的中点,则∠ABC=()A.110°B.112.5°C.115°D.117.5°18.(2022·江苏南京·九年级专题练习)如图,在矩形纸片ABCD中,点E、F分别在矩形的边AB、AD 上,将矩形纸片沿CE、CF折叠,点B落在H处,点D落在G处,点C、H、G恰好在同一直线上,若AB=6,AD=4,BE=2,则DF的长是()A .2B .74C D .319.(2022·江苏·宿迁青华中学九年级期末)如图,四边形ABCD 内接于O ,AB AD =,3BC =.劣弧BC 沿弦BC 翻折,刚好经过圆心O .当对角线BD 最大时,则弦AB 的长为( )A B .C .32D .【选择题】必考重点03 几何变换之翻折问题几何变换中的折叠问题,是江苏各地中考中常考的题型,难度多为一般或者较难。

中考数学折叠,旋转问题专题含答案

中考数学折叠,旋转问题专题含答案

【经典例题1】如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.【解析】(1)连接AO,如右图1所示,∵CD为⊙O的直径,AB⊥CD,AB=8,∴AG==4,∵OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+42=(5k)2,解得,k=1或k=﹣1(舍去),∴5k=5,即⊙O的半径是5;(2)如图2所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=15°,由对称性可知,∠DCM=30°,S阴影=S弓形CBM,连接OM,则∠MOD=60°,∴∠MOC=120°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=5×,∴S阴影=S扇形OMC﹣S△OMC==,即图中阴影部分的面积是:.练习1-1如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB 的中点D,连接AC,CD.则下列结论中错误的是()A.AC=CD B.+=C.OD⊥AB D.CD平分∠ACB 【解析】A、过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;B、∵AC=CD',∴,由折叠得:,∴=,故②正确;C、∵D为AB的中点,∴OD⊥AB,故③正确;D、延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:D.练习1-2如图,AB是⊙O的弦,点C在上,点D是AB的中点.将在沿AC 折叠后恰好经过点D,若⊙O的半径为2,AB=8.则AC的长是()A.6B.C.2D.4【解析】如图,延长BO交⊙O于E,连接AE,OA,OD,OC,BC,作CH⊥AB 于H.∵AD=DB,∴OD⊥AB,∴∠ADO=90°,∵OA=2,AD=DB=4,∴OD==2,∵BE是直径,∴∠BAE=90°,∵AD=DB,EO=OB,∴OD∥AE,AE=2OD=4,∴AE=AD,∴=,∴=,∴∠CAE=∠CAH=45°,∴∠BOC=2∠CAB=90°,∴BC=OC=2,∵CH⊥AB,∴∠CAH=∠ACH=45°,∴AH=CH,设AH=CH=x,则BH=8﹣x,在Rt△BCH中,∵CH2+BH2=BC2,∴x2+(8﹣x)2=(2)2,∴x=6或2(舍弃),在Rt△ACH中,∵AC=,∴AC=6.故选:A.练习1-3在扇形AOB中,∠AOB=75°,半径OA=12,点P为AO上任一点(不与A、O重合).(1)如图1,Q是OB上一点,若OP=OQ,求证:BP=AQ.(2)如图2,将扇形沿BP折叠,得到O的对称点O'.①若点O'落在上,求的长.②当BO'与扇形AOB所在的圆相切时,求折痕的长.(注:本题结果不取近似值)【解析】(1)证明:∵BO=AO,∠O=∠O,OP=OQ,∴△BOP≌△AOQ(SAS).∴BP=AQ.(2)解:①如图1,点O'落在上,连接OO',∵将扇形沿BP折叠,得到O的对称点O',∴OB=O'B,∵OB=OO',∴△BOO'是等边三角形,∴∠O'OB=60°.∵∠AOB=75°,∴∠AOO'=15°.∴的长为.②BO'与扇形AOB所在的圆相切时,如图2所示,∴∠OBO'=90°.∴∠OBP=45°.过点O作OC⊥BP于点C,∵OA=OB=12,∠COB=∠OBP=45°,∴.又∵∠AOB=75°,∠COB=45°,∴∠POC=30°,∴.∴.∴折痕的长为.旋转类【经典例题2】如图1,在锐角△ABC中,AB=5,AC=42,∠ACB=45∘. 计算:求BC的长;操作:将图1中的△ABC绕点B按逆时针方向旋转,得到△A1BC1.如图2,当点C1在线段CA的延长线上时。

初中数学几何培优小专题:翻折之直角三角形存在性

初中数学几何培优小专题:翻折之直角三角形存在性

中考数学翻折专题训练直角三角形存在性问题1.(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM 的长为.2.(2020•郑州二模)如图,矩形ABCD中,AB=3,BC=4,对角线AC,BD相交于点O,点E是AD边上一动点,将△AEO沿直线EO折叠,点A落在点F处,线段EF,OD相交于点G.若△DEG是直角三角形,则线段DE的长为.3.(2020•恩施市校级模拟)如图,在矩形ABCD中,AB=4,BC=6,E是BC的中点,连接AE,P是边AD 上一动点,沿过点P的直线将矩形折叠,使点D落在AE上的点D′处,当△APD′是直角三角形时,PD=.4.(2020•洛阳一模)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2,BD平分∠ABC,点E是边AB上一动点(不与A、B重合),沿DE所在的直线折叠∠A,点A的对应点为F,当△BFC是直角三角形且BC为直角边时,则AE的长为.5.(2020春•二七区校级月考)如图,在矩形ABCD中,AB:BC=3:4,点E是对角线BD上一动点(不与点B,D重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点G,F分别在直线AD与BC上,当△DEF为直角三角形时,CN:BN的值为.6.(2019•临颍县一模)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点E、F分别在边AC、BC上,连接EF,沿EF折叠该三角形,使点C的对应点D落在边AB上.若△BDF是直角三角形,则CF的长为.7.(2019•包河区一模)如图,在矩形ABCD中,AD=4,AC=8,点E是AB的中点,点F是对角线AC上一点,△GEF与△AEF关于直线EF对称,EG交AC于点H,当△CGH中有一个内角为90°时,则CG的长为.8.(2018秋•蜀山区校级期中)如图,矩形ABCD中,AB=3,AD=9,将△ABE沿BE翻折得到△A′BE,点A落在矩形ABCD的内部,且∠AA′G=90°,若以点A′、G、C为顶点的三角形是直角三角形,则AE=.9.(2019秋•川汇区期末)如图,在矩形ABCD中,已知AB=2,点E是BC边的中点,连接AE,△AB′E和△ABE关于AE所在直线对称,若△B′CD是直角三角形,则BC边的长为.10.(2019秋•建湖县期中)如图,长方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=5,AD=BC =13,点E为射线AD上的一个动点,若△ABE与△A'BE关于直线BE对称,当△A'BC为直角三角形时,AE 的长为.11.(2020•梁园区校级二模)如图所示,在矩形ABCD中,AB=2,AD=2,对角线AC与BD交于点O,E 是AD边动点,作直线OE交BC于点G,将四边形DEGC沿直线EG折叠,点D落在点D′处,点C落在点C′处,ED′交AC于F,若△AEF是直角三角形,则AE=.12.(2020•望城区模拟)如图,在矩形ABCD中,AB=3,BC=4,点E为射线CB上一动点(不与点C重合),将△CDE沿DE所在直线折叠,点C落在点C′处,连接AC′,当△AC′D为直角三角形时,CE的长为.13.(2020•宜城市模拟)如图,矩形ABCD 中,AB =8,AD =6,E 为AB 边上一点,将△BEC 沿着CE 翻折,使点B 落在点F 处,连接AF ,当△AEF 为直角三角形时,BE = .14.(2020•沈阳)如图,在矩形ABCD 中,AB =6,BC =8,对角线AC ,BD 相交于点O ,点P 为边AD 上一动点,连接OP ,以OP 为折痕,将△AOP 折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F .若△PDF 为直角三角形,则DP 的长为 .15.如图,在三角形ABC 中,∠C=90°,AC=3,BC=4,D,E 分别是AB ,BC 上的动点,将BDE Δ沿着直线DE 翻折得到FDE Δ,使点F 落在射线AC 上,当BE 的长为 时,ADF Δ是直角三角形。

翻折问题

翻折问题

问题1:翻折跟什么有关?这是我们第一个要搞清楚的。

翻折,即是折叠,折叠首先是一种轴对称,在作轴对称图形这一节,我们学习的第一种方法就是折叠。

问题2:折痕是什么?折痕所在直线就是折叠前后两个图形的对称轴,沿某一条直线折叠,这条直线就是对称轴并且连接任意一对对应点的线段都被对称轴垂直平分。

问题3:折叠前后,两个图形的关系?折叠前后的两个图形关于折痕对称且全等,折叠后的图形与原图形的形状、大小完全相同。

即,每组对应边相等,每组对应角相等。

问题4:解决折叠问题的关键是什么?折叠问题是近几年中考中常考的一个问题,解决此类问题的关键是找出隐藏的条件(翻折前后的线段相等,角相等)。

例1、如图,把平行四边形ABCD,沿对角线BD折叠,如图,观察图形,回答下列问题:Array (1)图中有全等三角形吗?请举例说明。

(2)图中有轴对称图形吗?若有,对称轴是那条直线?(3)图中有哪些角与∠DBC相等?(4)判断图中重叠部分△DBE的形状?并进行简要的说明。

折叠求角问题1、如图,将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为()A.15° B.30° C.45° D.60°2、如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A´处,若∠A´BC=20°,则∠A´BD的度数为().A 15°B 20°C 25°D 30°折叠求线段问题1、如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在 AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.12 B.2 C.3 D.42、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使AC恰好落在斜边AB上,且点C与点E重合,则CD的长为____。

中考折叠问题(原创)

中考折叠问题(原创)

05月26日 教案+习题中考折叠问题1、中考中折叠问题每年必考。

有时出现在选择填空,有时候出现在压轴题。

2、折叠对象有三角形、矩形、正方形、梯形等;3、考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;4、解题时,灵活运用轴对称性质和背景图形性质。

5、轴对称性质——①折线是对称轴,折线两边图形全等②对应点连线垂直对称轴③对应边平行或交点在对称轴上。

ABC 的边AB 、BC 上,将△BDE 沿直线DE 翻折,使点B 落在B 1处,DB 1、EB 1分别交边AC 于点F 、G .若∠ADF=80°,则∠CGE= .例2.(2011·贺州)把一张矩形纸片ABCD 按如图方式折叠,使顶点B 和顶点D 重合,折痕为EF .若BF =4,FC =2,则∠DEF 的度数是_ .例3.(2011昭通,8,3)如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点处,折痕为EF ,若,那么∠ABE 的度数为 ____________C '︒='∠125C EF ABC EF A’D (B )例4. 如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB=4,BC=5,则tan ∠AFE 的值为( ) A .43 B.35C .34 D .45例5.如图.将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为 ( ) A.15° B.30° C. 45° D.60°例6、(2011•广元)如图,M 为矩形纸片ABCD 的边AD 的中点,将纸片沿BM 、CM 折叠,使点A 落在A 1处,点D 落在D 1处.若∠A 1MD1=40°,则∠BMC 的度数为 .例1、(2011•河北)如图,在△ABC 中,∠C=90°,BC=6,D ,E 分别在 AB 、AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为( )A 、B 、2C 、3D 、4例2.如图所示,已知在三角形纸片ABC 中,BC =3, 6AB =, ∠BCA=90°在AC 上取一点E ,以BE 为折痕,使AB 的 一部分与BC 重合,A 与BC 延长线上的点D 重合,则 D E的长度为 () A.6B.3C.D.例3、(2011•衡阳)如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,将△ABC 折叠,使点CA E DCFC'BAC D与点A 重合,折痕为DE ,则△ABE 的周长为 .例4.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片 使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .6 例5、(2011•泸州)如图,在Rt △ABC 中,∠ABC=90°,∠C=60°,方向翻折过去,使点C 落在BA 上的点C ′,折痕为BE ,则EC 的长度是( A 、 B 、 C 、 D 、例6.将长8 cm ,宽4 cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长等于 cm . 例7.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为 ( ) (A ) (B )(C ) (D )6例8、(2011•潼南县)如图,在△ABC 中,∠C=90°,点D 在AC 上,将△BCD 沿着直线BD 翻折,使点C 落在斜边AB 上的点E 处,DC=5cm ,则点D 到斜边AB 的距离是 cm .例9、(2011•巴彦淖尔)如图,AD 是△ABC 的中线,∠ADC=60°,BC=6,把△ABC 沿直线AD 折叠,点C 落在C ′处,连接BC ′,那么BC ′的长为 .例10.将一块直角三角形纸片ABC 折叠,使点A 与点C 重合, 展开后平铺在桌面上(如图所示).若∠C =90°,BC =8cm , 则折痕DE 的长度是 cm .例11、(2011•天水)如图,有一矩形纸片ABCD ,AB=8,AD=6.将纸片折叠,使得AD 边落322323B C在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为( )A 、6B 、4C 、2D 、1例12.如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1重合,则AC =cm . ABC 中,∠C=90°,BC=6cm ,AC=8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′点,那么△ADC ′的面积是.例1.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE 。

中考专题翻折问题

中考专题翻折问题

翻折问题翻折问题是近几年中考中常考的一个问题,解决此类问题的关键是找出隐藏的条件翻折前后的线段相等,角相等1 将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=3,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为2A.3B.2 C.3 D.32.小许拿了一张正方形的纸片如图甲,沿虚线对折一次得图乙.•再对折一次得图丙.然后用剪刀沿图丙中的虚线虚线与底边平行剪去一个角.打开后的形状是• .3.如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是CB AD4.一张矩形纸片按如图甲或乙所示对折,然后沿着图丙中的虚线剪下,得到①,•②两部分,将①展开后得到的平面图形是 .A 三角形B 矩形C 菱形D 梯形5 如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是…6如图,在梯形ABCD 中,DC ∥AB ,将梯形对折,使点D 、C 分别 落在AB 上的点D '、C ',折痕为EF ,若CD =3cm,EF =4cm,则D A '+C B '为………………………………………………… A .2mB .3mC .4mD .5m7.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是…A .3cmB .4cmC .5cmD .6cm8 将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =6,则BC 的长为 A .1B .2错误!C .2错误!D .129如图,两张宽为1cm 的矩形纸条交叉叠放,其中重叠部分 部分是四边形ABCD,已知∠BAD=30°则重叠部分的 面积是 cm 2A .B .C .D .N M FEDCBAl321S 4S 3S 2S 110.在直线l 上依次摆放着七个正方形如图所示;已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______;11如图,一张矩形纸片ABCD 的长AD=9cm,宽AB=3cm,现将其折叠,使点D 与点B 重合,则BE=________12已知,一张矩形纸片ABCD 的边长分别为9cm 和3cm,把顶点A 和C 叠合在一起,得折痕EF如图.1猜想四边形AECF 是什么四边形,并证明你的猜想. 2求折痕EF 的长.C'FE D CB(D)A13 如图,矩形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 的E 点上,BG =10.1当折痕的另一端F 在AB 边上时,如图1.求△EFG 的面积. 2当折痕的另一端F 在AD 边上时,如图2.证明四边形BGEF 为菱形,并求出折痕GF 的长.HA BCDEF G图2ABCDE FG H (A)(B)A BCDE F G图1历年中考题集:12008烟台红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠在一起如图,则重叠四边形的面积为_______2.cm2.如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH =3厘米,EF =4厘米,则边AD 的长是___________厘米.32007德州如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于 A .43B .33C .42D .84.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为 A .5cm B .8cm C .9cm D .10cm5.把长为8cm,宽为2cm 的矩形按虚线对折,按图中的斜线剪出一个直角梯形,展开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是A .)13210(+cmB .)1310(+cmC .22cmD .18cm6将矩形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =60,则∠CFD = A 、20 B 、30 C 、40 D 、507 2012南京市,6,2如图,在菱形纸片ABCD 中,∠A=600,将纸片折叠,点A 、D 分别落在点A`、D`处,且A`D`经过点B,EF 为折痕,当D`F⊥CD 时,DFCF的值为 A.213- B.63 C.6132- D.813+B F C E DAA O D EB F CH DE GFE A`D`DCBA82012,黔东南州,8如图,矩形ABCD 边AD 沿拆痕AE 折叠,使点D 落在BC 上的F 处,已知AB=6,△ABF 的面积是24,则FC 等于A 、1B 、2C 、3D 、49、2012河北省9,3分如图4,在□ABCD 中,∠A=70°,将□ABCD 折叠,使点D,C 分别落在点F,E 处,点F,E 都在AB 所在的直线上,折痕为MN,则∠AMF 等于A.70° B.40° C.30° D.20°10 2012贵州遵义,10,3分如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE,延长BG 交CD 于F 点,若CF=1,FD=2,则BC 的长为A .32B .26C .25D .2311 2012湖北武汉,7,3分如图,矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE,点A 恰好落在边BC 的点F 处.若AE =5,BF =3,则CD 的长是 A .7 B .8 C .9 D .10122012四川达州,14,3分将矩形纸片ABCD,按如图所示的方式折叠,点A 、点C 恰好落在对角线BD 上,得到菱形BEDF.若BC=6,则AB 的长为 .13 如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4, 点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点 A 的落点记为P .1当AE =5,P 落在线段CD 上时,PD = ;2当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .14如图,在直角梯形纸片ABCD 中,AB DC ∥,90A ∠=,CD AD >,将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E 处,折痕为DF .连接EF 并展开纸片.1求证:四边形ADEF 是正方形;2取线段AF 的中点G ,连接EG ,如果BG CD =,试说明四边形GBCE 是等腰梯形.当我被上帝造出来时,上帝问我想在人间当一个怎样的人,我不假思索的说,我要做一个伟大的世人皆知的人;于是,我降临在了人间;我出生在一个官僚知识分子之家,父亲在朝中做官,精读诗书,母亲知书答礼,温柔体贴,父母给我去了一个好听的名字:李清照;ECBDAG F小时侯,受父母影响的我饱读诗书,聪明伶俐,在朝中享有“神童”的称号;小时候的我天真活泼,才思敏捷,小河畔,花丛边撒满了我的诗我的笑,无可置疑,小时侯的我快乐无虑;“兴尽晚回舟,误入藕花深处;争渡,争渡,惊起一滩鸥鹭;”青春的我如同一只小鸟,自由自在,没有约束,少女纯净的心灵常在朝阳小,流水也被自然洗礼,纤细的手指拈一束花,轻抛入水,随波荡漾,发髻上沾着晶莹的露水,双脚任水流轻抚;身影轻飘而过,留下一阵清风;可是晚年的我却生活在一片黑暗之中,家庭的衰败,社会的改变,消磨着我那柔弱的心;我几乎对生活绝望,每天在痛苦中消磨时光,一切都好象是灰暗的;“寻寻觅觅冷冷清清凄凄惨惨戚戚”这千古叠词句就是我当时心情的写照;最后,香消玉殒,我在痛苦和哀怨中凄凉的死去;在天堂里,我又见到了上帝;上帝问我过的怎么样,我摇摇头又点点头,我的一生有欢乐也有坎坷,有笑声也有泪水,有鼎盛也有衰落;我始终无法客观的评价我的一生;我原以为做一个着名的人,一生应该是被欢乐荣誉所包围,可我发现我错了;于是在下一轮回中,我选择做一个平凡的人;我来到人间,我是一个平凡的人,我既不着名也不出众,但我拥有一切的幸福:我有温馨的家,我有可亲可爱的同学和老师,我每天平凡而快乐的活着,这就够了;天儿蓝蓝风儿轻轻,暖和的春风带着春的气息吹进明亮的教室,我坐在教室的窗前,望着我拥有的一切,我甜甜的笑了;我拿起手中的笔,不禁想起曾经作诗的李清照,我虽然没有横溢的才华,但我还是拿起手中的笔,用最朴实的语言,写下了一时的感受:人生并不总是完美的,每个人都会有不如意的地方;这就需要我们静下心来阅读自己的人生,体会其中无尽的快乐和与众不同;“富不读书富不久,穷不读书终究穷;”为什么从古到今都那么看重有学识之人那是因为有学识之人可以为社会做出更大的贡献;那时因为读书能给人带来快乐;自从看了丑小鸭这篇童话之后,我变了,变得开朗起来,变得乐意同别人交往,变得自信了……因为我知道:即使现在我是只“丑小鸭”,但只要有自信,总有一天我会变成“白天鹅”的,而且会是一只世界上最美丽的“白天鹅”……我读完了这篇美丽的童话故事,深深被丑小鸭的自信和乐观所折服,并把故事讲给了外婆听,外婆也对童话带给我们的深刻道理而惊讶不已;还吵着闹着多看几本名着;于是我给外婆又买了几本名着故事,她起先自己读,读到不认识的字我就告诉她,如果这一面生字较多,我就读给她听整个一面;渐渐的,自己的语文阅读能力也提高了不少,与此同时我也发现一个人读书的乐趣远不及两个人读的乐趣大,而两个人读书的乐趣远不及全家一起读的乐趣大;于是,我便发展“业务”带动全家一起读书……现在,每每遇到好书大家也不分男女老少都一拥而上,争先恐后“抢书”,当我说起我最小应该让我的时候,却没有人搭理我;最后还把书给撕坏了,我生气地哭了,妈妈一边安慰我一边对外婆说:“孩子小,应该让着点;”外婆却不服气的说:“我这一把年纪的了,怎么没人让我呀”大家人你一言我一语,谁也不肯相让……读书让我明白了善恶美丑、悲欢离合,读一本好书,犹如同智者谈心、谈理想,教你辨别善恶,教你弘扬正义;读一本好书,如品一杯香茶,余香缭绕;读一本好书,能使人心灵得到净化;书是我的老师,把知识传递给了我;书是我的伙伴,跟我诉说心里话;书是一把钥匙,给我敞开了知识的大门;书更是一艘不会沉的船,引领我航行在人生的长河中;其实读书的真真乐趣也就在于此处,不是一个人闷头苦读书;也不是读到好处不与他人分享,独自品位;更不是一个人如痴如醉地沉浸在书的海洋中不能自拔;而是懂得与朋友,家人一起分享其中的乐趣;这才是读书真正之乐趣呢这所有的一切,不正是我从书中受到的教益吗我阅读,故我美丽;我思考,故我存在;我从内心深处真切地感到:我从读书中受到了教益;当看见有些同学宁可买玩具亦不肯买书时,我便想到培根所说的话:“世界上最庸俗的人是不读书的人,最吝啬的人是不买书的人,最可怜的人是与书无缘的人;”许许多多的作家、伟人都十分喜欢看书,例如毛泽东主席,他半边床上都是书,一读起书来便进入忘我的境界;书是我生活中的好朋友,是我人生道路上的航标,读书,读好书,是我无怨无悔的追求;。

2021年中考真题精选5——翻折、旋转

2021年中考真题精选5——翻折、旋转

2021年中考真题精选5 ——翻折、旋转1.(2021•宿迁)如图,折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB=8,AD=4,则MN的长是()A.B.2C.D.42.(2021•苏州)如图,在平行四边形ABCD中,将△ABC沿着AC所在的直线折叠得到△AB′C,B′C交AD于点E,连接B′D,若∠B=60°,∠ACB=45°,AC=,则B′D的长是()A.1B.C.D.3.(2021•扬州)如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.+B.3C.2+D.+4.(2021•河南)如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为()A.(2,0)B.(2,0)C.(2+1,0)D.(2+1,0)5.(2021•衡阳)如图,矩形纸片ABCD,AB=4,BC=8,点M、N分别在矩形的边AD、BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①四边形CMPN是菱形;②点P与点A重合时,MN=5;③△PQM的面积S的取值范围是4≤S≤5.其中所有正确结论的序号是()A.①②③B.①②C.①③D.②③6.(2021•武汉)如图,AB是⊙O的直径,BC是⊙O的弦,先将沿BC翻折交AB于点D,再将沿AB翻折交BC于点E.若=,设∠ABC=α,则α所在的范围是()A.21.9°<α<22.3°B.22.3°<α<22.7°C.22.7°<α<23.1°D.23.1°<α<23.5°7.(2021•广西)如图,矩形纸片ABCD,AD:AB=:1,点E,F分别在AD,BC上,把纸片如图沿EF折叠,点A,B的对应点分别为A′,B′,连接AA′并延长交线段CD于点G,则的值为()A.B.C.D.8.(2021•台州)如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.(36)cm2B.(36)cm2C.24cm2D.36cm29.(2021•丽水)如图,在Rt△ABC纸片中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC上,连结DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD平分∠EFB,则AD的长为()A.B.C.D.10.(2021•通辽)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于M,N两点,当B′为线段MN的三等分点时,BE的长为()A.B.C.或D.或11.(2021•自贡)如图,在正方形ABCD中,AB=6,M是AD边上的一点,AM:MD=1:2.将△BMA沿BM对折至△BMN,连接DN,则DN的长是()A.B.C.3D.12.(2021•自贡)如图,直线y=﹣2x+2与坐标轴交于A、B两点,点P是线段AB上的一个动点,过点P作y轴的平行线交直线y=﹣x+3于点Q,△OPQ绕点O顺时针旋转45°,边PQ扫过区域(阴影部分)面积的最大值是()A.πB.πC.πD.π13.(2021•宜宾)如图,在矩形纸片ABCD中,点E、F分别在矩形的边AB、AD上,将矩形纸片沿CE、CF折叠,点B落在H处,点D落在G处,点C、H、G恰好在同一直线上,若AB=6,AD=4,BE=2,则DF的长是()A.2B.C.D.314.(2021•南充)如图,在矩形ABCD中,AB=15,BC=20,把边AB沿对角线BD平移,点A′,B′分别对应点A,B给出下列结论:①顺次连接点A′,B′,C,D的图形是平行四边形;②点C到它关于直线AA′的对称点的距离为48;③A′C﹣B′C的最大值为15;④A′C+B′C的最小值为9.其中正确结论的个数是()A.1个B.2个C.3个D.4个15.(2021•鄂尔多斯)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将边BC沿CN折叠,使点B落在AB上的点B′处,再将边AC沿CM折叠,使点A落在CB′的延长线上的点A′处,两条折痕与斜边AB分别交于点N、M,则线段A′M的长为()A.B.C.D.16.(2021•阜新)如图,弧长为半圆的弓形在坐标系中,圆心在(0,2).将弓形沿x轴正方向无滑动滚动,当圆心经过的路径长为2021π时,圆心的横坐标是()A.2020πB.1010π+2020C.2021πD.1011π+2020 17.(2021•桂林)如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是.18.(2021•东营)如图,正方形纸片ABCD的边长为12,点F是AD上一点,将△CDF沿CF折叠,点D落在点G处,连接DG并延长交AB于点E.若AE=5,则GE的长为.19.(2021•大连)如图,在菱形ABCD中,∠BAD=60°,点E在边BC上,将△ABE沿直线AE翻折180°,得到△AB′E,点B的对应点是点B′.若AB′⊥BD,BE=2,则BB′的长是.20.(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.21.(2021•盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=__________时,△AEC′是以AE为腰的等腰三角形.22.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.23.(2021•江西)如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为.24.(2021•河南)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A 落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为.25.(2021•杭州)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF=度.26.(2021•达州)如图,在边长为6的等边△ABC中,点E,F分别是边AC,BC上的动点,且AE=CF,连接BE,AF交于点P,连接CP,则CP的最小值为.27.(2021•资阳)将一张圆形纸片(圆心为点O)沿直径MN对折后,按图1分成六等份折叠得到图2,将图2沿虚线AB剪开,再将△AOB展开得到如图3的一个六角星.若∠CDE=75°,则∠OBA的度数为.28.(2021•成都)如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.29.(2021•凉山州)如图,将△ABC绕点C顺时针旋转120°得到△A'B'C,已知AC=3,BC=2,则线段AB扫过的图形(阴影部分)的面积为.30.(2021•威海)如图,先将矩形纸片ABCD沿EF折叠(AB边与DE在CF的异侧),AE交CF于点G;再将纸片折叠,使CG与AE在同一条直线上,折痕为GH.若∠AEF=α,纸片宽AB=2cm,则HE=cm.31.(2021•泰安)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE 上的点G处,连接DE,若DE=EF,CE=2,则AD的长为.32.(2021•海南)如图,在矩形ABCD中,AB=6,AD=8,将此矩形折叠,使点C与点A重合,点D落在点D′处,折痕为EF,则AD′的长为,DD′的长为.33.(2021•本溪)如图,将正方形纸片ABCD沿PQ折叠,使点C的对称点E落在边AB上,点D的对称点为点F,EF交AD于点G,连接CG交PQ于点H,连接CE.下列四个结论中:①△PBE~△QFG;②S△CEG=S△CBE+S四边形CDQH;③EC平分∠BEG;④EG2﹣CH2=GQ•GD,正确的是(填序号即可).34.(2021•广东)如图,边长为1的正方形ABCD中,点E为AD的中点.连接BE,将△ABE沿BE折叠得到△FBE,BF交AC于点G,求CG的长.35.(2021•乐山)在等腰△ABC中,AB=AC,点D是BC边上一点(不与点B、C重合),连结AD.(1)如图1,若∠C=60°,点D关于直线AB的对称点为点E,连结AE,DE,则∠BDE =;(2)若∠C=60°,将线段AD绕点A顺时针旋转60°得到线段AE,连结BE.①在图2中补全图形;②探究CD与BE的数量关系,并证明;(3)如图3,若=k,且∠ADE=∠C.试探究BE、BD、AC之间满足的数量关系,并证明.36.(2021•临沂)如图,已知正方形ABCD,点E是BC边上一点,将△ABE沿直线AE折叠,点B落在F处,连接BF并延长,与∠DAF的平分线相交于点H,与AE,CD分别相交于点G,M,连接HC.(1)求证:AG=GH;(2)若AB=3,BE=1,求点D到直线BH的距离;(3)当点E在BC边上(端点除外)运动时,∠BHC的大小是否变化?为什么?37.(2021•菏泽)在矩形ABCD中,BC=CD,点E、F分别是边AD、BC上的动点,且AE=CF,连接EF,将矩形ABCD沿EF折叠,点C落在点G处,点D落在点H 处.(1)如图1,当EH与线段BC交于点P时,求证:PE=PF;(2)如图2,当点P在线段CB的延长线上时,GH交AB于点M,求证:点M在线段EF的垂直平分线上;(3)当AB=5时,在点E由点A移动到AD中点的过程中,计算出点G运动的路线长.38.(2021•重庆)在等边△ABC中,AB=6,BD⊥AC,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.(1)将线段EF绕点E逆时针旋转60°得到线段EG,连接FG.①如图1,当点E与点B重合,且GF的延长线过点C时,连接DG,求线段DG的长;②如图2,点E不与点A,B重合,GF的延长线交BC边于点H,连接EH,求证:BE+BH=BF;(2)如图3,当点E为AB中点时,点M为BE中点,点N在边AC上,且DN=2NC,点F从BD中点Q沿射线QD运动,将线段EF绕点E顺时针旋转60°得到线段EP,连接FP,当NP+MP最小时,直接写出△DPN的面积.39.(2021•贵港)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是;(2)如图2,当∠BAC=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE的长.40.(2021•本溪)在▱ABCD中,∠BAD=α,DE平分∠ADC,交对角线AC于点G,交射线AB于点E,将线段EB绕点E顺时针旋转α得线段EP.(1)如图1,当α=120°时,连接AP,请直接写出线段AP和线段AC的数量关系;(2)如图2,当α=90°时,过点B作BF⊥EP于点,连接AF,请写出线段AF,AB,AD之间的数量关系,并说明理由;(3)当α=120°时,连接AP,若BE=AB,请直接写出△APE与△CDG面积的比值.41.(2021•吉林)如图①,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的中线,点E为射线BC上一点,将△BDE沿DE折叠,点B的对应点为点F.(1)若AB=a.直接写出CD的长(用含a的代数式表示);(2)若DF⊥BC,垂足为G,点F与点D在直线CE的异侧,连接CF,如②,判断四边形ADFC的形状,并说明理由;(3)若DF⊥AB,直接写出∠BDE的度数.42.(2021•北京)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.43.(2021•鄂尔多斯)旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.(1)尝试解决:如图①,在等腰Rt△ABC中,∠BAC=90°,AB=AC,点M是BC上的一点,BM=1cm,CM=2cm,将△ABM绕点A旋转后得到△ACN,连接MN,则AM =cm.(2)类比探究:如图②,在“筝形”四边形ABCD中,AB=AD=a,CB=CD,AB⊥BC 于点B,AD⊥CD于点D,点P、Q分别是AB、AD上的点,且∠PCB+∠QCD=∠PCQ,求△APQ的周长.(结果用a表示)(3)拓展应用:如图③,已知四边形ABCD,AD=CD,∠ADC=60°,∠ABC=75°,AB=2,BC=2,求四边形ABCD的面积.44.(2021•徐州)如图1,正方形ABCD的边长为4,点P在边AD上(P不与A、D重合),连接PB、PC.将线段PB绕点P顺时针旋转90°得到PE,将线段PC绕点P逆时针旋转90°得到PF,连接EF、EA、FD.(1)求证:①△PDF的面积S=PD2;②EA=FD;(2)如图2,EA、FD的延长线交于点M,取EF的中点N,连接MN,求MN的取值范围.45.(2021•毕节市)如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为△ABC内一点,将线段AD绕点A逆时针旋转90°得到AE,连接CE,BD的延长线与CE交于点F.(1)求证:BD=CE,BD⊥CE;(2)如图2,连接AF,DC,已知∠BDC=135°,判断AF与DC的位置关系,并说明理由.。

中考数学试卷翻折题及答案

中考数学试卷翻折题及答案

已知直角三角形ABC,∠C=90°,AB=10,AC=8,BC=6。

将直角三角形ABC沿斜边AB翻折,使点C落在斜边AB上,设C'为C在AB上的投影,连接CC',求证:∠AC'C=90°。

二、解题过程:证明:1. 由于直角三角形ABC沿斜边AB翻折,点C落在斜边AB上,设C'为C在AB上的投影。

2. 根据翻折的性质,得到CC'垂直于AB,即∠C'AB=90°。

3. 因为∠C=90°,所以∠AC'B=90°。

4. 在直角三角形AC'B中,根据勾股定理,得到AC'B=√(AC^2+BC^2)=√(8^2+6^2)=10。

5. 由于AC=AB,所以∠AC'B=∠AC'B'。

6. 根据等腰三角形的性质,得到∠C'AB=∠C'BA。

7. 由于∠C'AB=90°,所以∠C'BA=90°。

8. 因此,∠AC'C=∠C'BA=90°。

综上所述,得证∠AC'C=90°。

三、答案:证明过程如下:1. 根据翻折的性质,得到CC'垂直于AB,即∠C'AB=90°。

2. 因为∠C=90°,所以∠AC'B=90°。

3. 在直角三角形AC'B中,根据勾股定理,得到AC'B=√(AC^2+BC^2)=√(8^2+6^2)=10。

4. 由于AC=AB,所以∠AC'B=∠AC'B'。

5. 根据等腰三角形的性质,得到∠C'AB=∠C'BA。

6. 由于∠C'AB=90°,所以∠C'BA=90°。

7. 因此,∠AC'C=∠C'BA=90°。

中考复习专题折叠压轴题(无答案)

中考复习专题折叠压轴题(无答案)

中考专题:折叠问题折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。

折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。

图形折叠问题中题型的变化比较多,主要有以下几点:1.图形的翻折部分在折叠前和折叠后的形状、大小不变,是全等形;2.图形的翻折部分在折叠前和折叠后的位置关于折痕成轴对称;3.将长方形纸片折叠,三角形是否为等腰三角形;4.解决折叠问题时,要抓住图形之间最本质的位置关系,从而进一步发现其中的数量关系;5.充分挖掘图形的几何性质,将其中的基本的数量关系,用方程的形式表达出来,并迅速求解,这是解题时常用的方法之一。

折叠问题数学思想:(1)思考问题的逆向(反方向),(2)从一般问题的特例人手,寻找问题解决的思路;(3)把一个复杂问题转化为解决过的基本问题的转化与化归思想;(4)归纳与分类的思想(把折纸中发现的诸多关系归纳出来,并进行分类);(5)从变化中寻找不变性的思想.用“操作”、“观察”、“猜想”、“分析”的手段去感悟几何图形的性质是学习几何的方法。

折叠问题主要有以下题型:题型1:动手问题此类题目考查学生动手操作能力,它包括裁剪、折叠、拼图,它既考查学生的动手能力,又考查学生的想象能力,往往与面积、对称性质联系在一起.题型2:证明问题动手操作的证明问题,既体现此类题型的动手能力,又能利用几何图形的性质进行全等、相似等证明.题型3:探索性问题此类题目常涉及到画图、测量、猜想证明、归纳等问题,它与初中代数、几何均有联系.此类题目对于考查学生注重知识形成的过程,领会研究问题的方法有一定的作用,也符合新课改的教育理论。

典型例题一.折叠后求度数例1.将一张长方形纸片按如图所示的方式折叠,BC、BD为折痕,则∠CBD的度数为()A.600B.750C.900D.950练习1.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB =65°,则∠AED′等于()A.50°B.55°C.60°D.65°2.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠1=_______°,∠2=_______°A3. 用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE ,其中∠BAC =度。

中考一轮复习 数学专题15 图形的旋转、翻折(对称)与平移(学生版)

中考一轮复习 数学专题15 图形的旋转、翻折(对称)与平移(学生版)

专题15 图形的旋转、翻折(对称)与平移一、单选题1.(2022·广东)在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( ) A .()3,1 B .()1,1- C .()1,3 D .()1,1-2.(2022·广西)如图,在△ABC 中,点A (3,1),B (1,2),将△ABC 向左平移2个单位,再向上平移1个单位,则点B 的对应点B ′的坐标为( )A .(3,-3)B .(3,3)C .(-1,1)D .(-1,3)3.(2020·山东菏泽)在平面直角坐标系中,将点()3,2P -向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A .()0,2-B .()0,2C .()6,2-D .()6,2--4.(2020·四川自贡)在平面直角坐标系中,将点()2,1向下平移3个单位长度,所得点的坐标是( ) A .(),-11 B .(),51 C .(),24 D .(),-225.(2021·四川雅安)如图,将ABC 沿BC 边向右平移得到DEF ,DE 交AC 于点G .若:3:1BC EC =.16ADG S =△.则CEG S △的值为( )A .2B .4C .6D .86.(2021·浙江丽水)四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是 (−1,b ),(1,b ),(2,b ),(3.5,b ),平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( )A .将B 向左平移4.5个单位B .将C 向左平移4个单位 C .将D 向左平移5.5个单位 D .将C 向左平移3.5个单位7.(2022·四川南充)如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△,点B '恰好落在CA 的延长线上,3090∠=︒∠=︒,B C ,则BAC '∠为( )A .90︒B .60︒C .45︒D .308.(2022·山东青岛)如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''',则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--9.(2022·内蒙古呼和浩特)如图,ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到EDC △,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F .若BCD α∠=,则EFC ∠的度数是(用含α的代数式表示)( )A .1902α︒+B .1902α︒-C .31802α︒-D .32α 10.(2022·四川内江)如图,在平面直角坐标系中,点B 、C 、E 在y 轴上,点C 的坐标为(0,1),AC =2,Rt△ODE 是Rt△ABC 经过某些变换得到的,则正确的变换是( )* 本号资料皆来源于微信:数学A .△ABC 绕点C 逆时针旋转90°,再向下平移1个单位B .△ABC 绕点C 顺时针旋转90°,再向下平移1个单位C .△ABC 绕点C 逆时针旋转90°,再向下平移3个单位D .△ABC 绕点C 顺时针旋转90°,再向下平移3个单位11.(2022·黑龙江绥化)如图,线段OA 在平面直角坐标系内,A 点坐标为()2,5,线段OA 绕原点O 逆时针旋转90°,得到线段OA ',则点A '的坐标为( )A .()5,2-B .()5,2C .()2,5-D .()5,2-12.(2021·四川广安)如图,将ABC 绕点A 逆时针旋转55︒得到ADE ,若70E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为( )A .65︒B .70︒C .75︒D .80︒13.(2020·湖北黄石)在平面直角坐标系中,点G 的坐标是()2,1-,连接OG ,将线段OG 绕原点O 旋转180︒,得到对应线段OG ',则点G '的坐标为( )A .()2,1-B .()2,1C .()1,2-D .()2,1--14.(2020·四川攀枝花)如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π15.(2022·天津)如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A .AB AN = B .AB NC ∥ C .AMN ACN ∠=∠D .MN AC ⊥16.(2022·江苏扬州)如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:△AFE DFC △△;△DA 平分BDE ∠;△CDF BAD ∠=∠,其中所有正确结论的序号是( )A .△△B .△△C .△△D .△△△17.(2021·黑龙江牡丹江)如图,△AOB 中,OA =4,OB =6,AB =,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(﹣4,2)B .(4)或(﹣4) C .(﹣2)或(2) D .(2,﹣2,18.(2021·广东广州)如图,在Rt ABC 中,90C ∠=︒,6AC =,8BC =,将ABC 绕点A 逆时针旋转得到A B C ''',使点C '落在AB 边上,连结BB ',则sin BB C ''∠的值为( )A .35B .45CD 19.(2021·河南)如图,OABC 的顶点(0,0)O ,(1,2)A ,点C 在x 轴的正半轴上,延长BA 交y 轴于点D .将ODA 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D 落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为( )A .0)B .C .1,0)D .1,0)20.(2020·海南)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .21.(2020·山东菏泽)如图,将ABC 绕点A 顺时针旋转角α,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠等于( )A .2α B .23α C .α D .180α︒-22.(2020·山东聊城)如图,在Rt ABC △中,2AB =,30C ∠=︒,将Rt ABC △绕点A 旋转得到Rt A B C '''∆,使点B 的对应点B '落在AC 上,在B C ''上取点D ,使2B D '=,那么点D 到BC 的距离等于( ).A .21⎫+⎪⎪⎝⎭B 1C 1D 123.(2020·山东枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB 绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是( )A .(1,2-+B .()C .(2+D .(- 二、填空题 24.(2022·山东临沂)如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''',若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是_____________.25.(2021·辽宁鞍山)如图,△ABC 沿BC 所在直线向右平移得到△DEF ,若EC =2,BF =8,则BE =___.26.(2021·湖南湘潭)在平面直角坐标系中,把点()2,1A -向右平移5个单位得到点A ',则点A '的坐标为____. 27.(2021·吉林长春)如图,在平面直角坐标系中,等腰直角三角形AOB 的斜边OA 在y 轴上,2OA =,点B 在第一象限.标记点B 的位置后,将AOB 沿x 轴正方向平移至111AO B 的位置,使11A O 经过点B ,再标记点1B 的位置,继续平移至222A O B △的位置,使22A O 经过点1B ,此时点2B 的坐标为__________.28.(2021·湖南怀化)如图,在平面直角坐标系中,已知(2,1)A -,(1,4)B -,(1,1)C -,将ABC 先向右平移3个单位长度得到111A B C △,再绕1C 顺时针方向旋转90︒得到221A B C △,则2A 的坐标是____________.29.(2022·山东潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO 绕原点O 逆时针旋转75︒,再沿y 轴方向向上平移1个单位长度,则点B ''的坐标为___________.30.(2020·江苏镇江)如图,在△ABC 中,BC =3,将△ABC 平移5个单位长度得到△A 1B 1C 1,点P 、Q 分别是AB 、A 1C 1的中点,PQ 的最小值等于_____.31.(2020·广东广州)如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为_______.32.(2020·湖南湘西)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO重叠部分的面积为CODE 向右平移的距离为___________.33.(2022·湖南永州)如图,图中网格由边长为1的小正方形组成,点A 为网格线的交点.若线段OA 绕原点O 顺时针旋转90°后,端点A 的坐标变为______.34.(2021·湖北随州)如图,在Rt ABC 中,90C ∠=︒,30ABC ∠=︒,BC =ABC 绕点A 逆时针旋转角α(0180α︒<<︒)得到AB C ''△,并使点C '落在AB 边上,则点B 所经过的路径长为______.(结果保留π)35.(2020·广西)以原点为中心,把()3,4M 逆时针旋转90°得到点N ,则点N 的坐标为______. 36.(2022·广西贺州)如图,在平面直角坐标系中,OAB 为等腰三角形,5OA AB ==,点B 到x 轴的距离为4,若将OAB 绕点O 逆时针旋转90︒,得到OA B ''△,则点B '的坐标为__________.37.(2022·湖北随州)如图1,在矩形ABCD 中,8AB =,6AD =,E ,F 分别为AB ,AD 的中点,连接EF .如图2,将△AEF 绕点A 逆时针旋转角()090θθ<<︒,使EF AD ⊥,连接BE 并延长交DF 于点H ,则△BHD 的度数为______,DH 的长为______. 本@号资料皆来源于微信*:数学38.(2021·四川巴中)如图,把边长为3的正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,DE 与BC 交于点P ,ED 的延长线交AB 于点Q ,交OA 的延长线于点M .若BQ :AQ =3:1,则AM =__________.9(0)0αα︒<<︒得到AB C ''△,连接BB ',CC ',则CAC '△与BAB '△的面积之比等于_______.40.(2020·四川眉山)如图,在Rt ABC 中,90BAC ∠=︒,2AB =.将ABC 绕点A 按顺时针方向旋转至11AB C △的位置,点1B 恰好落在边BC 的中点处,则1CC 的长为________.41.(2020·山东烟台)如图,已知点A (2,0),B (0,4),C (2,4),D (6,6),连接AB ,CD ,将线段AB 绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为_____.42.(2020·甘肃天水)如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF ∆绕点A 顺时针旋转90︒得到ABG ,若3DF =,则BE 的长为__________.三、解答题43.(2022·安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点均为格点(网格线的交点).(1)将△ABC 向上平移6个单位,再向右平移2个单位,得到111A B C △,请画出111A B C △﹔(2)以边AC 的中点O 为旋转中心,将△ABC 按逆时针方向旋转180°,得到222A B C △,请画出222A B C △.44.(2022·黑龙江牡丹江)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 与△DEF 关于点O 成中心对称,△ABC 与△DEF 的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O 的位置;(2)将△ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,请画出△A 1B 1C 1; (3)在网格中画出格点M ,使A 1M 平分△B 1A 1C 145.(2021·黑龙江哈尔滨)如图,方格纸中每个小正方形的边长均为1个单位长度,ABC ∆的顶点和线段DE 的端点均在小正方形的顶点上.(1)在方格纸中将ABC ∆向上平移1个单位长度,再向右平移2个单位长度后得到MNP ∆;(点A 的对应点是点M ,点B 的对应点是点N ,点C 的对应点是点P ),请画出MNP ∆;(2)在方格纸中画出以DE 为斜边的等腰直角三角形DEF (点F 在小正方形的顶点上).连接FP ,请直接写出线段FP 的长.46.(2021·安徽)图,在每个小正方形的边长为1个单位的网格中,ABC 的顶点均在格点(网格线的交点)上.(1)将ABC 向右平移5个单位得到111A B C △,画出111A B C △;(2)将(1)中的111A B C △绕点C 1逆时针旋转90︒得到221A B C △,画出221A B C △.47.(2022·湖南)如图所示的方格纸(1格长为一个单位长度)中,AOB ∆的顶点坐标分别为(3,0)A ,(0,0)O ,(3,4)B .(1)将AOB ∆沿x 轴向左平移5个单位,画出平移后的△111AO B (不写作法,但要标出顶点字母); (2)将AOB ∆绕点O 顺时针旋转90︒,画出旋转后的△222A O B (不写作法,但要标出顶点字母); (3)在(2)的条件下,求点B 绕点O 旋转到点2B 所经过的路径长(结果保留)π.48.(2022·黑龙江)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标; (3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π).49.(2020·四川巴中)如图所示,ABC 在边长为1cm 的小正方形组成的网格中.(1)将ABC 沿y 轴正方向向上平移5个单位长度后,得到111A B C △,请作出111A B C △,并求出11A B 的长度; (2)再将111A B C △绕坐标原点O 顺时针旋转180°,得到222A B C △,请作出222A B C △,并直接写出点2B 的坐标; (3)在(1)(2)的条件下,求线段AB 在变换过程中扫过图形的面积和.50.(2022·江苏常州)如图,点A 在射线OX 上,OA a =.如果OA 绕点O 按逆时针方向旋转(0360)<≤︒n n 到OA ',那么点A '的位置可以用(),︒a n 表示.(1)按上述表示方法,若3a =,37n =,则点A '的位置可以表示为______;(2)在(1)的条件下,已知点B 的位置用()3,74︒表示,连接A A '、A B '.求证:A A A B ''=.51.(2021·黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABO 的三个顶点坐标分别为()()()1,3,4,3,00,0A B --.(1)画出ABO 关于x 轴对称的11A B O ,并写出点1A 的坐标;(2)画出ABO 绕点O 顺时针旋转90︒后得到的22A B O ,并写出点2A 的坐标; (3)在(2)的条件下,求点A 旋转到点2A 所经过的路径长(结果保留π).52.(2021·青海西宁)如图,正比例函数12y x =与反比例函数(0)ky x x =>的图象交于点A ,AB x ⊥轴于点B ,延长AB 至点C ,连接OC .若2cos 3BOC ∠=,3OC =.(1)求OB的长和反比例函数的解析式;(2)将AOB绕点О旋转90°,请直接写出旋转后点A的对应点A'的坐标.53.(2021·江苏淮安)如图,方格纸上每个小正方形的边长均为1个单位长度,△ABC的顶点A、B、C都在格点上(两条网格线的交点叫格点).请仅用无刻度的直尺按下列要求画图,并保留画图痕迹(不要求写画法).(1)将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B1,点C的对应点为C1,画出△AB1C1;(2)连接CC1,△ACC1的面积为;*本号资料皆来源于微信:数学第*六感(3)在线段CC1上画一点D,使得△ACD的面积是△ACC1面积的15.54.(2021·辽宁阜新)下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于 y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .55.(2021·贵州毕节)如图1,在Rt ABC 中,90BAC ∠=︒,AB AC =,D 为ABC 内一点,将线段AD 绕点A 逆时针旋转90°得到AE ,连接CE ,BD 的延长线与CE 交于点F . (1)求证:BD CE =,BD CE ⊥;(2)如图2.连接AF ,DC ,已知135BDC ∠=︒,判断AF 与DC 的位置关系,并说明理由.56.(2021·内蒙古通辽)已知AOB 和MON △都是等腰直角三角形OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =; (2)将MON △绕点O 顺时针旋转.△如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;△当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.57.(2021·湖南衡阳)如图,点E 为正方形ABCD 外一点,90AEB =︒∠,将Rt ABE △绕A 点逆时针方向旋转90︒得到,ADF DF 的延长线交BE 于H 点.(1)试判定四边形AFHE 的形状,并说明理由; (2)已知7,13BH BC ==,求DH 的长.58.(2021·北京)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明; (2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明.59.(2021·浙江嘉兴)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.60.(2021·四川阿坝)如图,Rt ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到DEC ,点D 落在线段AB 上,连接BE .(1)求证:DC 平分ADE ∠;(2)试判断BE 与AB 的位置关系,并说明理由:(3)若BE BD =,求tan ABC ∠的值.61.(2020·湖南邵阳)已知:如图△,将一块45°角的直角三角板DEF 与正方形ABCD 的一角重合,连接,AF CE ,点M 是CE 的中点,连接DM .(1)请你猜想AF 与DM 的数量关系是__________.(2)如图△,把正方形ABCD 绕着点D 顺时针旋转α角(090a ︒<<︒).△AF 与DM 的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM 到点N ,使MN DM =,连接CN )△求证:AF DM ⊥;△若旋转角45α=︒,且2EDM MDC ∠=∠,求AD ED 的值.(可不写过程,直接写出结果)62.(2020·江苏常州)如图1,点B 在线段CE 上,Rt△ABC △Rt△CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. △请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;△如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.63.(2020·福建)如图,ADE ∆由ABC ∆绕点A 按逆时针方向旋转90︒得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求BDE ∠的度数;(2)F 是EC 延长线上的点,且∠=∠CDF DAC .△判断DF 和PF 的数量关系,并证明;△求证:=EP PC PF CF.64.(2020·甘肃金昌)如图,点M ,N 分别在正方形ABCD 的边BC ,CD 上,且45MAN ∠=︒,把ADN △绕点A 顺时针旋转90︒得到ABE △.(1)求证:AEM △△ANM .(2)若3BM =,2DN =,求正方形ABCD 的边长.。

中考数学折叠典型问题

中考数学折叠典型问题

中考数学折叠典型问题中考数学折叠典型问题一.解答题(共4小题)1.(2009•天津)已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.2.已知一个直角三角形AOB,其中∠AOB=90°,OA=2,OB=4.将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(1)如图1,若折叠后使点B与点O重合,则点D的坐标为_________;(2)如图2,若折叠后使点B与点A重合,求点C的坐标;(3)如图3,若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式.3.(2009•恩施州)如图,在△ABC中,∠A=90°,BC=10,△ABC的面积为25,点D为AB边上的任意一点(D不与A、B重合),过点D作DE∥BC,交AC于点E.设DE=x,以DE为折线将△ADE翻折(使△ADE落在四边形DBCE所在的平面内),所得的△A'DE与梯形DBCE重叠部分的面积记为y.(1)用x表示△ADE的面积;(2)求出0<x≤5时y与x的函数关系式;(3)求出5<x<10时y与x的函数关系式;(4)当x取何值时,y的值最大,最大值是多少?4.(2009•长沙)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(﹣3,0)、C(0,),且当x=﹣4和x=2时二次函数的函数值y相等.(1)求实数a,b,c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.中考数学折叠典型问题参考答案与试题解析一.解答题(共4小题)1.(2009•天津)已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.分析:(Ⅰ)因为折叠后点B与点A重合,那么BC=AC,可先设出C点的坐标,然后表示出BC,AC,在直角三角形OCA中,根据勾股定理即可求出C点的纵坐标,也就求出了C点的坐标;(Ⅱ)方法同(Ⅰ)用OC表示出BC,B′C然后在直角三角形OB′C中根据勾股定理得出x,y的关系式.由于B′在OA上,因此有0≤x≤2,由此可求出y的取值范围;(Ⅲ)根据(Ⅰ)(Ⅱ)的思路,应该先得出OB″,OC的关系,知道OA,OB的值,那么可以通过证Rt△COB″∽Rt△BOA来实现.∠B″CO和∠CB″D是平行线B″D,OB的内错角,又因为∠OBA=∠CB″D,因此∠B″CO=∠OBA,即CB″∥BA,由此可得出两三角形相似,得出OC,OB″的比例关系,然后根据(1)(2)的思路,在直角三角形OB″C中求出OC的值,也就求出C点的坐标了.解答:解:(Ⅰ)如图①,折叠后点B与点A重合,则△ACD≌△BCD.设点C的坐标为(0,m)(m>0),则BC=OB﹣OC=4﹣m.∴AC=BC=4﹣m.在Rt△AOC中,由勾股定理,AC2=OC2+OA2,即(4﹣m)2=m2+22,解得m=.∴点C的坐标为(0,);(Ⅱ)如图②,折叠后点B落在OA边上的点为B′,∴△B′CD≌△BCD.∵OB′=x,OC=y,∴B'C=BC=OB﹣OC=4﹣y,在Rt△B′OC中,由勾股定理,得B′C2=OC2+OB′2.∴(4﹣y)2=y2+x2,即y=﹣x2+2.由点B′在边OA上,有0≤x≤2,∴解析式y=﹣x2+2(0≤x≤2)为所求.∵当0≤x≤2时,y随x的增大而减小,∴y的取值范围为≤y≤2;(Ⅲ)如图③,折叠后点B落在OA边上的点为B″,且B″D∥OC.∴∠OCB″=∠CB″D.又∵∠CBD=∠CB″D,∴∠OCB″=∠CBD,∵CB″∥BA.∴Rt△COB″∽Rt△BOA.∴,∴OC=2OB″.在Rt△B″OC中,设OB″=x0(x0>0),则OC=2x0.由(Ⅱ)的结论,得2x0=﹣x02+2,解得x0=﹣8±4.∵x0>0,∴x0=﹣8+4.∴点C的坐标为(0,8﹣16).2.已知一个直角三角形AOB,其中∠AOB=90°,OA=2,OB=4.将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(1)如图1,若折叠后使点B与点O重合,则点D的坐标为(1,2);(2)如图2,若折叠后使点B与点A重合,求点C的坐标;(3)如图3,若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式.分析:(1)由CD为△OAB的中位线,可求D点坐标;(2)设OC=m,由折叠的性质可知,△ACD≌△BCD,则BC=AC=4﹣m,OA=2,在Rt△AOC中,利用勾股定理求m的值;(3)由折叠的性质可知,△B′CD≌△BCD,依题意设OB′=x,OC=y,则B′C=BC=OB﹣OC=4﹣y,在Rt△B′OC中,由勾股定理,建立y与x之间的函数关系式.解答:解:(1)由折叠的性质可知,BC=OC,CD⊥OB,则CD为△OAB的中位线,所以D(1,2),故答案为:(1,2);(2)如图2,折叠后点B与点A重合,则△ACD≌△BCD,设C点坐标为(0,m)(m>0),则BC=OB﹣OC=4﹣m,于是AC=BC=4﹣m,在Rt△AOC中,由勾股定理,得AC2=OC2+OA2,即(4﹣m)2=m2+22,解得m=,所以C(0,);(3)如图3,折叠后点BB落在边OA上的点为B′,则△B′CD≌△BCD,依题意设OB′=x,OC=y,则B′C=BC=OB﹣OC=4﹣y,在Rt△B′OC中,由勾股定理,得B′C2=OC2+OB′2,即(4﹣y)2=y2+x2,即y=﹣x2+2,由点B′在边OA上,有0≤x≤2,所以,函数解析式为y=﹣x2+2(0≤x≤2).3.(2009•恩施州)如图,在△ABC中,∠A=90°,BC=10,△ABC的面积为25,点D为AB边上的任意一点(D不与A、B重合),过点D作DE∥BC,交AC于点E.设DE=x,以DE为折线将△ADE翻折(使△ADE落在四边形DBCE所在的平面内),所得的△A'DE与梯形DBCE重叠部分的面积记为y.(1)用x表示△ADE的面积;(2)求出0<x≤5时y与x的函数关系式;(3)求出5<x<10时y与x的函数关系式;(4)当x取何值时,y的值最大,最大值是多少?分析:(1)由于DE∥BC,可得出三角形ADE和ABC相似,那么可根据面积比等于相似比的平方用三角形ABC的面积表示出三角形ADE的面积.(2)由于DE在三角形ABC的中位线上方时,重合部分的面积就是三角形ADE的面积,而DE在三角形ABC中位线下方时,重合部分就变成了梯形,因此要先看0<x≤5时,DE的位置,根据BC的长可得出三角形的中位线是5,因此自变量这个范围的取值说明了A′的落点应该在三角形ABC之内,因此y就是(1)中求出的三角形ADE的面积.(3)根据(2)可知5<x<10时,A′的落点在三角形ABC外面,可连接AA1,交DE于H,交BC于F,那么AH就是三角形ADE的高,A′F就是三角形A′DE的高,A′F就是三角形A′MN的高,那么可先求出三角形A′MN的面积,然后用三角形ADE的面积减去三角形A′MN的面积就可得出重合部分的面积.求三角形A′MN的面积时,可参照(1)的方法进行求解.(4)根据(2)(3)两个不同自变量取值范围的函数关系式,分别得出各自的函数最大值以及对应的自变量的值,然后找出最大的y的值即可.解答:解:(1)∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,即S△ADE=x2;(2)∵BC=10,∴BC边所对的三角形的中位线长为5,∴当0<x≤5时,y=S△ADE=x2;(3)5<x<10时,点A′落在三角形的外部,其重叠部分为梯形,∵S△A′DE=S△ADE=x2,∴DE边上的高AH=A'H=x,由已知求得AF=5,∴A′F=AA′﹣AF=x﹣5,由△A′MN∽△A′DE知=()2,S△A′MN=(x﹣5)2.∴y=x2﹣(x﹣5)2=﹣x2+10x﹣25.(4)在函数y=x2中,∵0<x≤5,∴当x=5时y最大为:,在函数y=﹣x2+10x﹣25中,当x=﹣=时y最大为:,∵<,∴当x=时,y最大为:.4.(2009•长沙)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(﹣3,0)、C(0,),且当x=﹣4和x=2时二次函数的函数值y相等.(1)求实数a,b,c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.考点:二次函数综合题;二次函数图象上点的坐标特征;二次函数图象与几何变换.专题:压轴题.分析:(1)由题意和图形可求出函数的表达式;(2)结合抛物线内部几何关系和性质求出t值及P点坐标;(3)假设成立(1)若有△ACB∽△QNB则有∠ABC=∠QBN,寻找相似条件,判断是否满足.解答:解:(1)∵C(0,)在抛物线上∴代入得c=,∵x=﹣4和x=2时二次函数的函数值y相等,∴顶点横坐标x==﹣1,∴,又∵A(﹣3,0)在抛物线上,∴=0由以上二式得a=,b=,c=;(2)由(1)y==∴B(1,0),连接BP交MN于点O1,根据折叠的性质可得:01也为PB中点.设t秒后有M(1﹣t,0),N(1﹣,),O1)设P(x,y),B(1,0)∵O1为P、B的中点可得,,即P()∵A,C点坐标知lAC:y=,P点也在直线AC上代入得t=,即P();(3)假设成立;①若有△ACB∽△QNB,则有∠ABC=∠QBN,∴Q点在x轴上,AC∥QN但由题中A,C,Q,N坐标知直线的一次项系数为:则△ACB不与△QNB相似.②若有△ACB∽△QBN,则有 (1)设Q(﹣1,y),C(0,),A(﹣3,0),B(1,0),N()则CB=2,AB=4,AC=2代入(1)得y=2或.当y=2时有Q(﹣1,2)则QB=4⇒不满足相似舍去;当y=时有Q(﹣1,)则QB=⇒.∴存在点Q(﹣1,)使△ACB∽△QBN.综上可得:(﹣1,).。

中考数学翻折专题

中考数学翻折专题

《翻折专题习题集》1.(2019南充)如图,正方形MNCB在宽为2的矩形纸片一端,对折正方形MNCB得到折痕AE,再翻折纸片,使AB与AD重合,以下结论错误的是()A.AB2=10+2B.=C.BC2=CD•EH D.sin∠AHD=2.(2019乐山)如图,在边长为的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A.B.1C.D.3.(2019河南)如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为.4.(2019泰安)如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.5.(2019重庆B卷)如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8B.4C.2+4D.3+26.(2019攀枝花)如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AC,现在有如下4个结论:①∠EAC=45°;②FG=FC;③FC∥AG;④S△GFC=14.其中正确结论的个数是()A.1B.2C.3D.47.(2019兰州)如图,边长为的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=()A.B.C.﹣1D.﹣18.(2019黄石)如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时=()A.B.C.D.9.(2019邵阳)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED 等于()A.120°B.108°C.72°D.36°10.(2019随州)如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.给出下列判断:①∠EAG=45°;②若DE=a,则AG∥CF;③若E为CD的中点,则△GFC的面积为a2;④若CF=FG,则DE=(﹣1)a;⑤BG•DE+AF•GE=a2.其中正确的是.(写出所有正确判断的序号)11.(2019长春)如图,有一张矩形纸片ABCD,AB=8,AD=6.先将矩形纸片ABCD折叠,使边AD落在边AB上,点D落在点E处,折痕为AF;再将△AEF沿EF翻折,AF与BC相交于点G,则△GCF的周长为.12.(2019海南)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.2113.(2019包头)如图,在平面直角坐标系中,已知A(﹣1,0),B(0,2),将△ABO沿直线AB翻折后得到△ABC,若反比例函数y=(x<0)的图象经过点C,则k=.14.(2019深圳)如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF =.15.(2019通辽)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是.16.(2019铜仁)如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF ∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是()A.2B.3C.4D.517.(2019桂林)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为()A.B.C.D.18.(2019内江)如图,在菱形ABCD中,simB=,点E,F分别在边AD、BC上,将四边形AEFB沿EF翻折,使AB的对应线段MN经过顶点C,当MN⊥BC时,的值是.19..(2019宁夏)如图,AB是⊙O的弦,OC⊥AB,垂足为点C,将劣弧沿弦AB折叠交于OC的中点D,若AB=2,则⊙O的半径为.20.(2019龙东)一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC 边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE 是直角三角形时,则CD的长为.21.(2019咸宁)如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是(把正确结论的序号都填上).22.(2019大连)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为()A.2B.4C.3D.223.(2019天水)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么sin∠EFC的值为.24.(2019甘肃省)如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为.25..(2019江西省)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.26.(2019青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.27.(2019潍坊)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.28.(2019资阳)如图,在△ABC中,已知AC=3,BC=4,点D为边AB的中点,连结CD,过点A作AE⊥CD于点E,将△ACE沿直线AC翻折到△ACE′的位置.若CE′∥AB,则CE′=.29.(2019天津)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为.30.(2019杭州)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.31.(2019衢州)如图,在平面直角坐标系中,O为坐标原点,▱ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DE与BC交于点F.若y=(k≠0)图象经过点C,且S△BEF=1,则k的值为.32.(2019重庆A卷)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.33.(2019葫芦岛)如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.34.(2019淮安)如图,在矩形ABCD中,AB=3,BC=2,H是AB的中点,将△CBH沿CH折叠,点B落在矩形内点P处,连接AP,则tan∠HAP=.35.(2019连云港)如图,在矩形ABCD中,22AD AB=.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①CMP∆是直角三角形;②点C、E、G不在同一条直线上;③6PC MP=;④2BP AB=;⑤点F是CMP∆外接圆的圆心,其中正确的个数为()36.(2019衡阳)如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.37.(2019岳阳)操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF 上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.(1)如图1,求证:BE=BF;(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;(3)类比探究:若DE=a,CF=b.①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)38.(2019连云港)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求AEF∠的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将APN∆沿着AN翻折,点P落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P S'的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B C''恰好经过点A,C N'交AD于点F.分别过点A、F作AG MN⊥,FH MN⊥,垂足分别为G、H.若52AG=,请直接写出FH的长.39.(2019盐城)如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B'处,如图③,两次折痕交于点O;(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④.【探究】(1)证明:OBC OED∆≅∆;(2)若8OB为y,求y关于x的关系式.AB=,设BC为x,240.(2019扬州)如图,已知等边ABC∆的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把ABC∆沿直线1折叠,点B的对应点是点B'.(1)如图1,当4PB=时,若点B'恰好在AC边上,则AB'的长度为;(2)如图2,当5PB=时,若直线1//AC,则BB'的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,ACB∆'的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当6PB=时,在直线1变化过程中,求ACB∆'面积的最大值.折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②(一)填一填,做一做:(1)图②中,∠CMD=.线段NF=(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.(二)填一填(3)图③中阴影部分的周长为.(4)图③中,若∠A′GN=80°,则∠A′HD=°.(5)图③中的相似三角形(包括全等三角形)共有对;(6)如图④点A′落在边ND上,若=,则=(用含m,n的代数式表示).动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,的值是.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.43.(2019郴州)如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE∽△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.中考大神。

专题33 中考几何折叠翻折类问题(解析版)

专题33 中考几何折叠翻折类问题(解析版)

专题33 中考几何折叠翻折类问题1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。

3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。

(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。

(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。

这对解决问题有很大帮助。

(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。

(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。

一般试题考查点圆最值问题。

(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。

【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。

中考复习9——翻折中的全等及相似

中考复习9——翻折中的全等及相似

中考复习9——翻折中的全等及相似一、正方形中的翻折例1、已知边长为1的正方形ABCD中,点E为AD的中点,连接BE,将△ABE沿BE折叠得到△FBE,BF交AC于点G.(1)求CG的长;(2)求tan∠DEF的值.例2、如图,将正方形ABCD折叠,使点A落在DC边上的G点处,折痕为EF,已知BF=1,AE=2,AG与EF相交于点H.(1)①直接写出正方形ABCD的边长;②如图1,求证:EF=AG;(2)求证:BH=AB.(3)直接写出tan∠BHE的值.归纳:翻折中常见的模型有:.二、矩形的翻折例3、在矩形ABCD 中,AB BC =k E 是AB 上一点,将矩形沿DE 折叠,使点A 落在点P 处.(1)如图1,若点P 恰好在BC 边上,连AP .①求AP DE 的值(用k 表示); ②若tan ∠BAP=12,求tan∠ADP 的值;(2)如图2,AB=8,AD=12,若点E 是AB 边的中点,EP 的延长线交BC 于点F.求BF 的长.图1 图2例4、(1)证明推断:如图(1),在正方形ABCD 中,点E ,Q 分别在边BC ,AB 上,DQ ⊥AE 于点O ,点G ,F 分别在边CD ,AB 上,GF ⊥AE .①求证:DQ =AE ; ②推断:GF AE 的值为____;(2)类比探究:如图(2),在矩形ABCD 中,BC AB =k(k 为常数).将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形FEPG ,EP 交CD 于点H ,连接AE 交GF 于点O.试探究GF 与AE 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,当k =23时,若tan∠CGP =34,GF =2√10,求CP 的长.例5.已知矩形ABCD,F为DC边上一点,连接AF,把△ADF沿AF折叠,使点D恰好落在BC上的点E 处.,求tan∠EAF的值;(1)如图1,若tan∠AEB=12(2)如图2,在AD边上取点G,使DG=CE,连接GF与BD交于点H,求证:GF⊥BD.图1 图2例6、如图,折叠矩形ABCD,使点D落在边AB的M点处,折痕为EF,AB=1,AD=2.(1)设AM的长为t,试用含有t的式子表示四边形CDEF的面积.(2)若DM和EF交于点P,Q是MN的中点,求PM+PQ的最小值.三角形中的翻折例7、如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=2,D是边AB上一点.连接CD,将△ACD沿直线CD折叠,点A落在E处,当点E在△ABC的内部(不含边界)时,AD长度的取值范围是____________.例8、如图,直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点D在边AB上,以CD为折痕将△CBD 折叠得到△CFD,CF与边AB交于点E,当DF⊥AB时,BD的长是.例9、在Rt△ABC中,∠C=90°,sinA=35,M,N分别是AC,BC上两个动点.将△MNC沿MN折叠得到对应的△MNP.(1)当点P在斜边AB上时.①如图1,若M是AC的中点,则BPAP的值是;②如图2,若P是AB的中点,求MCNC的值.(2)如图3,若MP⊥AB,MCAC =14,求CNBC的值.图1 图2 图3。

31.中考数学专题 翻折变换数学母题题源系列(解析版)

31.中考数学专题 翻折变换数学母题题源系列(解析版)

【母题原题一】【2019·广东深圳】如图在正方形ABCD 中,1BE =,将BC 沿CE 翻折,使点B 对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使点D 对应点落在对角线AC 上,求EF =__________.【解析】作FM AB ⊥于点M ,由折叠可知:1EXEB AX ===,AE =1AM DF YF ===,∴正方形边长1,1AB FM EM ===,∴EF ===.【名师点睛】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是正确寻找直角三角形解决问题,学会利用参数构建方程解决问题.【母题原题二】【2019·江苏淮安】如图,在矩形ABCD 中,3AB =,2BC =,H 是AB 的中点,将CBH∆专题06 翻折变换沿CH 折叠,点B 落在矩形内点P 处,连接AP ,则tan HAP ∠=__________.【答案】43【解析】如图,连接PB ,交CH 于E , 由折叠可得,CH 垂直平分BP ,BH PH =,又∵H 为AB 的中点,∴AH BH =,∴AH PH BH ==, ∴HAP HPA ∠=∠,HBP HPB ∠=∠, 又∵180HAP HPA HBP HPB ︒∠+∠∠+∠=+, ∴90APB ︒∠=,∴90APB HEB ︒∠=∠=, ∴AP HE ∥,∴BAP BHE ∠=∠, 又∵Rt BCH △中,4tan 3BC BHC BH ∠==, ∴4tan 3HAP ∠=,故答案为:43.【名师点睛】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.【母题原题三】【2019·江苏扬州】将一个矩形纸片折叠成如图所示的图形,若∠ABC =26°,则∠ACD = __________.【答案】128°. 【解析】如图,延长DC 到F ,∵矩形纸条折叠,∴∠ACB=∠BCF,∵AB∥CD,∴∠BCF=∠ABC=26°,∴∠ACF=52°,∵∠ACF+∠ACD=180°,∴∠ACD=128°,故答案为:128°.【名师点睛】本题考查了折叠的性质,平行线的性质,熟练掌握相关知识是解题的关键.【母题原题四】【2019·山西】综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是__________,AEBE的值是__________;(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:__________.【答案】(1)67.5°;(2)四边形EMGF是矩形,理由见解析;(3)菱形FGCH或菱形EMCH(一个即可).【解析】(1)∵四边形ABCD是正方形,∴∠B =90°,∠ACB =12∠BCD =45°,∠BAC =12∠BAD =45°, ∵折叠,∴∠BCE =12∠BCA =22.5°,BE =EN ,∠ENC =∠B =90°, ∴∠BEC =90°-22.5°=67.5°,∠ANE =90°, 在Rt △AEN 中,sin ∠EAN =ENAE,∴2EN AE =,∴AE EN ,∴AE AE BE EN ==故答案为:67.5°(2)四边形EMGF 是矩形,理由如下:∵四边形ABCD 是正方形,∴∠B =∠BCD =∠D =90°, 由折叠可知:∠1=∠2=∠3=∠4=22.5°,CM =CG , ∠BEC =∠NEC =∠NFC =∠DFC =67.5°, 由折叠可知:MH 、GH 分别垂直平分EC ,FC ,∴MC =ME ,GC =GF ,∴∠5=∠1=22.5°,∠6=∠4=22.5°,∴∠MEF =∠GFE =90°, ∵∠MCG =90°,CM =CG ,∴∠CMG =45°,又∵∠BME =∠1+∠5=45°,∴∠EMG =180°-∠CMG -∠BME =90°, ∴四边形EMGF 是矩形;(3)如图所示,四边形EMCH 是菱形,理由如下:由(2)∠BME =45°=∠BCA ,∴EM ∥AC ,∵折叠,∴CM =CH ,EM =CM ,∴EM =CH ,∴EM =CH , ∴四边形EMCH 是平行四边形, 又CM =EM ,∴平行四边形EMCH 是菱形.(同理四边形FGCH 是菱形,如图所示:).【名师点睛】本题考查了折叠的性质,正方形的性质,矩形的判定,菱形的判定,解直角三角形等,正确把握相关知识是解题的关键.【母题原题五】【2019·江苏徐州】如图,将平行四边形纸片ABCD 沿一条直线折叠,使点A 与点C 重合,点D 落在点G 处,折痕为EF .求证: (1)ECB FCG ∠=∠; (2)EBC FGC △≌△.【答案】(1)见解析;(2)见解析.【解析】(1)∵四边形ABCD 是平行四边形,∴∠A BCD =∠, 由折叠可得,A ECG ∠=∠, ∴BCD ECG ∠=∠,∴BCD ECF ECG ECF ∠-∠=∠-∠, ∴ECB FCG ∠=∠;(2)∵四边形ABCD 是平行四边形, ∴D B ∠=∠,AD BC =,由折叠可得,D G ∠=∠,AD CG =, ∴B G ∠=∠,BC CG =, 又ECB FCG ∠=∠,∴(ASA)EBC FGC △≌△.【名师点睛】本题考查了平行四边形的性质,折叠的性质,全等三角形的判定,熟练掌握平行四边形的性质以及折叠的性质是解题的关键.【母题原题六】【2019·江苏常州】如图,把平行四边形纸片ABCD 沿BD 折叠,点C 落在点C '处,BC '与AD 相交于点E .(1)连接AC ',则AC '与BD 的位置关系是__________; (2)EB 与ED 相等吗?证明你的结论.【答案】(1)AC BD '∥;(2)EB 与ED 相等,见解析. 【解析】(1)连接AC ', 在平行四边形ABCD 中,AD BC =,ADB CBD ∠=∠,∵把平行四边形纸片ABCD 沿BD 折叠,点C 落在点C '处, ∴'AD BC =,CBD C'BD ∠=∠, ∴'ADB C BD ∠=∠,∴ED EB =,∴AE C E '=,∴EAC'EC A EBD EDB '∠=∠=∠=∠, ∴AC BD '∥,故答案为:AC BD '∥; (2)EB 与ED 相等.由折叠可得,CBD C BD '∠=∠, ∵AD BC ∥,∴ADB CBD ∠=∠, ∴EDB EBD ∠=∠,∴BE DE =.【名师点睛】本题主要考查了折叠问题以及平行四边形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【命题意图】这类试题主要考查几何图形中与折叠有关的问题,涉及三角形全等,勾股定理,平行四边形的判定及性质等.【方法总结】翻折问题的解决通常需要借助轴对称的相关知识,要弄清翻折前后的边、角的对应情况,将待求线段或角与已知线段、角归结到一起,对问题进行分析处理.1.【浙江省临海市2019届九年级中考3月模拟数学试题】如图,△ABC纸片中,AB=BC>AC,点D是AB 边的中点,点E在边AC上,将纸片沿DE折叠,使点A落在BC边上的点F处.则下列结论成立的个数有①△BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位线;④BF+CE=DF+DE.A.1个B.2个C.3个D.4个【答案】B【解析】①根据折叠知AD=DF,所以BD=DF,即△BDF一定是等腰三角形.因为∠B不一定等于45°,所以①错误;②连接AF,交DE于G,根据折叠知DE垂直平分AF,又点D是AB边的中点,在△ABF中,根据三角形的中位线定理,得DG∥BF.进一步得E是AC的中点.由折叠知AE=EF,则EF=EC,得∠C= ∠CFE.又∠DFE=∠A=∠C,所以∠DFE=∠CFE,正确;③在②中已证明正确;④根据折叠以及中位线定理得右边=AB,要和左边相等,则需CE=CF,则△CEF应是等边三角形,显然不一定,错误.故选B.【名师点睛】考查了三角形中位线定理,正确利用折叠所得对应线段之间的关系以及三角形的中位线定理是解题的关键.2.【黑龙江省哈尔滨市十七中2018–2019学年九年级下学期二模数学试题】如图,在ABCD 中,E 为边CD 上一点,将ADE △沿AE 折叠至AD'E △处,'AD 与CE 交于点F ,若52B ∠=︒,20DAE ∠=︒,则'FED ∠的大小为A .20°B .30°C .36°D .40°【答案】C【解析】∵四边形ABCD 是平行四边形,∴52D B ∠=∠=︒, 由折叠的性质得:52D'D ∠=∠=︒,20EAD'DAE ∠=∠=︒,∴522072AEF D DAE ∠=∠+∠=︒+︒=︒,180108AED'EAD'D'∠=︒-∠-∠=︒, ∴1087236FED'∠=︒-︒=︒;故选C .【名师点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF 和∠AED ′是解决问题的关键.3.【山东省济南市历城区中考数学模拟试题】如图(1),在△ABC 中,D 、E 分别是AB 、AC 的中点,将△ADE 沿线段DE 向下折叠,得到图(2).下列关于图(2)的四个结论中,不一定成立的是A .点A 落在BC 边的中点B .∠B +∠1+∠C =180° C .△DBA 是等腰三角形D .DE ∥BC【答案】A【解析】根据题意可知DE是三角形ABC的中位线,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A错,BA≠C A.故选A.【名师点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.4.【山东省淄博市张店区2018届3月份九年级中考模拟试卷】有一张平行四边形纸片ABCD,已知∠B=70°,按如图所示的方法折叠两次,则∠BCF的度数等于A.55°B.50°C.45°D.40°【答案】B【解析】由折叠可得,∠CED=90°=∠BCE,又∵∠D=∠B=70°,∴∠DCE=20°,由折叠可得,∠DCF=3×20°=60°,∴∠BCF=50°,故选B.【名师点睛】本题主要考查了折叠问题以及平行四边形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.【甘肃省民勤县第六中学2019届九年级下学期第三次诊断考试数学试题】如图,在矩形ABCD中,AB=8,BC=6,M为AD上一点,将△ABM沿BM翻折至△EBM,ME和BE分别与CD相交于O,F两点,且OE=OD,则AM的长为__________.【答案】4.8 【解析】如图所示:∵四边形ABCD 是矩形,∴∠D =∠A =∠C =90°,AD =BC =6,CD =AB =8, 根据题意得:△ABP ≌△EBP , ∴EP =AP ,∠E =∠A =90°,BE =AB =8,在△ODP 和△OEG 中,D EOD OE DOP EOG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ODP ≌△OEG (ASA ), ∴OP =OG ,PD =GE ,∴DG =EP , 设AP =EP =x ,则PD =GE =6–x ,DG =x , ∴CG =8–x ,BG =8–(6–x )=2+x , 根据勾股定理得:BC 2+CG 2=BG 2, 即62+(8–x )2=(x +2)2,解得x =4.8,∴AP =4.8;故答案为:4.8.6.【河南省平顶山市2019届九年级中考数学三模试题】在菱形ABCD 中,AB =2,∠BAD =120°,点E ,F 分别是边AB ,BC 边上的动点,沿EF 折叠△BEF ,使点B 的对应点B ′始终落在边CD 上,则A 、E 两点之间的最大距离为__________.【答案】2【解析】如图,作AH⊥CD于H.∵四边形ABCD是菱形,∠BAD=120°,∴AB∥CD,∴∠D+∠BAD=180°,∴∠D=60°,∵AD=AB=2,∴AH=AD•sin60°=∵B,B′关于EF对称,∴BE=EB′,当BE的值最小时,AE的值最大,==BE的值最小,根据垂线段最短可知,当EB'AH∴AE的最大值=2,故答案为2【名师点睛】本题考查翻折变换,菱形的性质,解直角三角形,垂线段最短等知识,解题的关键是灵活运用所学知识解决问题.7.【2019年山东省聊城市莘县中考数学三模试卷】如图,在矩形ABCD中,BC=4,点E是AD的中点,将矩形ABCD沿直线BE折叠,点A对应点为点A',延长BA',交边DC于点F.若点F是DC的三等分点,则CD的长为__________.或【解析】如图,连接EF,∵四边形ABCD 是矩形,∴AB =CD ,∠A =∠D =90°,∵点E 是AD 中点,∴AE =DE ,∵将矩形ABCD 沿直线BE 折叠,∴AB =A 'B ,∠BA 'E =∠A =90°,AE =A 'E ,∴A 'E =DE ,EF =EF ,∴Rt △A 'EF ≌Rt △DEF (HL ),∴DF =A 'F ,设AB =CD =3x =A 'B ,若DF =x ,∴A 'F =x ,CF =2x ,∴BF =4x ,在Rt △BCF 中,BF 2=CF 2+BC 2,∴16x 2=4x 2+16,∴x =3,∴CD =3x若DF =2x ,则CF =x ,同理可得:CD ,或【名师点睛】考查了折叠问题,矩形的性质,勾股定理,利用分类思想解决问题是本题的关键. 8.【河北省张家口市桥西区2019届九年级中考6月模拟数学试题】如图,在平行四边形ABCD 中,AD DB ⊥,垂足为点D ,将平行四边形ABCD 折叠,使点B 落在点D 的位置,点C 落在点G 的位置,折痕为EF . (1)求证:ADE GDF △≌△;(2)若AE BD =,求CFG ∠的度数;(3)连接CG ,求证:四边形BCGD 是矩形.【答案】(1)见解析;(2)60°;(3)见解析.【解析】(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,AD ∥BC ,∠A =∠C ,由折叠可知,BC =DG ,CF =FG ,∠G =∠C ,EF 垂直平分BD ,∴∠A =∠G ,AD =DG ,又∵AD⊥BD,∴EF∥AD∥BC,∴点E、F分别平分AB、CD,∴AE=BE=12AB=12CD=CF=DF,∴AE=FG,∴△ADE≌△GDF;(2)∵AE=BD,AE=BE=12AB,∴BD=12AB,∴sin A=12BDAB,∴∠A=30°,∵DF=CF=FG,∴∠FDG=∠DGF=∠A=30°,∴∠CFG=∠FDG+∠DGF=60°;(3)如图,连接CG.由折叠可知,BC=DG,BC∥DG,∴四边形BCGD是平行四边形,∵AD⊥BD,AD∥BC,∴BC⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形.【名师点睛】本题属于四边形综合题,主要考查了全等三角形的判定,含30°角的直角三角形的性质,平行四边形的判定以及矩形的判定,解题时注意:有一个角为直角的平行四边形是矩形.9.【2019年江苏省连云港市灌南县、海州区、连云区中考数学二模试卷】如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N 处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.【答案】(1)证明见解析;(2)当∠BAE=30°时,四边形AECF是菱形.【解析】(1)∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∠B=∠D=90°,∠BAC=∠DCA.由翻折的性质可知:∠EAB=12∠BAC,∠DCF=12∠DCA.∴∠EAB=∠DCF.在△ABE和△CDF中B DAB CDEAB DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△CDF(ASA),∴DF=BE,∴AF=EC,又∵AF∥EC,∴四边形AECF是平行四边形;(2)当∠BAE=30°时,四边形AECF是菱形,理由:由折叠可知,∠BAE=∠CAE=30°,∵∠B=90°,∴∠ACE=90°–30°=60°,即∠CAE=∠ACE,∴EA=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形.【名师点睛】本题主要考查了菱形的判定,全等三角形的判定和性质,折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.10.【2019年广东省汕头市澄海区中考数学一模试卷】如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连接CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC ∥AD ,即BC ∥DG ,由折叠可知,BC =DG ,∴四边形BCGD 是平行四边形,∵AD ⊥BD ,∴∠CBD =90°,∴四边形BCGD 是矩形;(2)由折叠可知:EF 垂直平分BD ,∴BD ⊥EF ,DP =BP ,∵AD ⊥BD ,∴EF ∥AD ∥BC ,∴1AE PD BE BP==,∴AE =BE , ∴DE 是Rt △ADB 斜边上的中线,∴DE =AE =BE ,∵AE =BD ,∴DE =BD =BE ,∴△DBE 是等边三角形,∴∠EDB =∠DBE =60°,∵AB ∥DC ,∴∠DBC =∠DBE =60°,∴∠EDF =120°.【名师点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度.。

初三数学旋转翻折等几何试题及答案

初三数学旋转翻折等几何试题及答案

旋转、平移、翻转等问题讨论答案例1、已知P为等边△ABC内一点,PA=2,PB=,PC=4.求△ABC中∠APB的度数.解:将△PBC绕点B顺时针旋转60°得到△P′BA,连接PP′.则△PBC≌△P′BA.∴BP=BP′=.而∠PBP′=60°,∴△PBP′是等边三角形,∴∠2=60°,PP′=BP =.∵,∴,∴∠1=90°.故∠APB=∠1+∠2=150°.例2、如图所示,已知P为正方形ABCD的对角线AC上一点,(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1)求证:BP=PD;(2)如图,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明.(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.答案:(1)证明△APB≌△APD(SAS)得BP=PD.(2)解:不是总有BP=DP.理由:若旋转角为45°,则点P在BC上.∵正方形ABCD中∠DCP=90°,∴PD>DC.∵DC=BC,∴PD>BC.∵BC>PB,∴PD>PB.(3)解:BE=DF始终成立.证明:∵正方形ABCD和正方形PECF中,∠BCD=∠ECF=90°,∴∠1=∠2.∵CE=CF,CB=CD,∴△CBE≌△CDF.∴BE=DF.例3、如图,将△ABC绕点C(0,-1)旋转180°得到△ABC,设点A的坐标为(a,b),则点A的坐标为()A.B.C.D.例4、如图,在坐标平面内,△ABC的三个顶点坐标分别为A(0,5),B(-20,-10),C(5,-10).(1)求△ABC的面积.(2)如何把△ABC平移到△A′B′O的位置,使点C与原点O重合,点B′在x轴的负半轴上?(3)求△A′B′O的顶点A′、B′的坐标.解:(1)因为B、C两点的坐标分别为(-20,-10)、(5,-10),所以BC∥x轴,BC=|5-(-20)|=25.设BC与y轴相交于点D,则点D的坐标为(0,-10).又点A坐标为(0,5),AD是△ABC的高,故AD=|5-(-10)|=15.所以,△ABC的面积(2)由(1),得BC∥x轴,由此可知将BC边平移到B′O,与把点C平移到点O的规律相同.因为点C的坐标为(5,-10),所以由点C往左平移5个单位,向上平移10个单位可与点O重合.所以,将△ABC向左平移5个单位,向上平移10个单位即可到达△A′B′O的位置.(3)根据平移的规律,得点A′的坐标为(0-5,5+10),点B′的坐标为(-20-5,-10+10),即点A′、B′的坐标分别为A′(-5,15)、B′(-25,0).点拨:已知三角形的三个顶点,求三角形面积这类问题中,本例(1)是特殊情形,其中有两个顶点的纵坐标(或横坐标)相等,即有一边平行于坐标轴.因此,它的底边和高可直接利用公式d=|x2-x1|或d=|y2-y1|求出.本例(2)、(3)的图形,在平移前后对应点的坐标的变化规律:每一点的横坐标都比原来增加(或减小)同一个数,纵坐标也都比原来增加(或减少)同一个数.如本例(2),由平移前后的对应点C和O的坐标变化分析出△ABC的平移规律;本例(3)再按这个平移规律分别求出A、B的对应点A′、B′的坐标.例5、(天津市中考题)在平面直角坐标系中,已知线段AB的两个端点分别是A(-4,-1),B(1,1),将线段AB平移后得到线段,若点的坐标为(-2,2),则点的坐标为()A.(4,3)B.(3,4)C.(-1,-2)D.(-2,-1)例6、如图,已知Rt△ABC中,∠C=90°,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.(1)若平移距离为3,求△ABC与△A′B′C′的重叠部分的面积;(2)若平移距离为x(),求△ABC与△A′B′C′的重叠部分的面积y,并写出y与x的关系式.显示答案解:(1)由题意CC′=3,BB′=3,所以BC′=1,又由题意易得重叠部分是一个等腰直角三角形,所以其面积为.(2)(0≤x≤4)例7、如图所示,A、B两点在l的两侧,在l上找一点C,使C到A、B的距离之差最大.分析:以l为对称轴作A点的对称点A′,作直线A′B交l于C点,则C为所求作的点.证明:在l上异于C点,找一点C′,连接C′A,C′B∵A,A′关于l轴对称,∴l为AA′的垂直平分线,则CA=CA′.∴CA-CB=CA′-CB=A′B.又∵C′在l上,在△A′BC′中,C′A′-C′B<A′B,∴C′A′-C′B<CA-CB.例8、在直角坐标系中,已知点A(4,0)和B(0,3),若有一个直角三角形与Rt△ABO全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程).解:(-4,0),(-4,3),(4,-3),(0,-3),(4,3),.例9、如图所示,AD为△ABC的高,∠B=2∠C,用轴对称证明CD=AB+BD.显示答案证明:作点B关于AD的对称点E,连接AE,因为AD⊥BC,所以E点在BC上.由轴对称性质知,BD=DE,AB=AE,∠1=∠B.因为∠1=∠2+∠C,∠B=∠1=2∠C.所以∠2=∠C,所以 AE=CE.所以CD=BD+AB.例10、下列投影中,不属于中心投影的是()A.晚上路灯下小孩的影子B.舞台上灯光下演员的影子C.阳光下树的影子D.电影屏幕上演员的影子解:太阳光是平行光,不是点光源发出的光线,故选C.例11、一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A.B.C. D.例12、与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树.晚上,幕墙反射路灯灯光形成了那盆花的影子,树影是路灯灯光形成的,如下图所示,你能确定此时路灯光源的位置吗?解:过盆花及其影子顶端作直线,作反射面法线,并作∠2=∠1,得光线l1,过树及其影子顶端作直线l2,两线交于点O,则O处为灯光位置.例13、如图,不透明的圆锥体DEC放在直线BP所在水平面上,且BP过底面圆的圆心,圆锥高为,底面半径为2m,某光源位于点A处,照射圆锥体在水平面上留下的影长BE=4m.(1)求∠B的度数;(2)若∠ACP=2∠B,求光源A距平面的高度.隐藏答案解:(1)设圆心为O,连DO,则DO⊥BP,在△BOD中,BO=BE+EO=4+2=6(m),Welcome To Download欢迎您的下载,资料仅供参考!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

翻折问题
翻折问题是近几年中考中常考的一个问题,解决此类问题的关键是找出隐藏的条件(翻折前后的线段相等,角相等)
1 将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,
∠BAE=30°,AB=3,折叠后,点C落在AD边上的C1
处,并且点B落在EC1边上的B1处.则BC的长为()
2
A.3B.2 C.3 D.3
2.小许拿了一张正方形的纸片如图甲,沿虚线对折一次得图乙.•再对折一次得图丙.然后用剪刀沿图丙中的虚线(虚线与底边平行)剪去一个角.打开后的形状是(• ).
3.如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是 ( )
C
B A
D
4.一张矩形纸片按如图甲或乙所示对折,然后沿着图丙中的虚线剪下,得到①,•②两部分,将①展开后得到的平面图形是( ).
(A )三角形 (B )矩形 (C )菱形 (D )梯形
5 如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是…( )
6如图,在梯形ABCD 中,DC ∥AB ,将梯形对折,使点D 、C 分别 落在AB 上的点D '、C ',折痕为EF ,若CD =3cm ,EF =4cm ,则
D A '+C B '为…………………………………………………( ) A .2m
B .3m
C .4m
D .5m
7.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的
中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是…( )
A .3cm
B .4cm
C .5cm
D .6cm
8 将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =6,则BC 的长为( ) A .1
B .2 2
C .2 3
D .12
9如图,两张宽为1cm 的矩形纸条交叉叠放,其中重叠部分 部分是四边形ABCD,已知∠BAD=30°则重叠部分的 面积是 cm 2
A .
B .
C .
D .
N
M
F
E
D
C B
A
l
321S 4S 3
S 2
S 1
10.在直线l 上依次摆放着七个正方形(如图所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______。

11如图,一张矩形纸片ABCD 的长AD=9cm ,宽AB=3cm ,现将其折叠,使点D 与点B 重合,
则BE=________
12已知,一张矩形纸片ABCD 的边长分别为9cm 和3cm ,把顶点A 和C 叠合在一起,得折痕
EF (如图).
(1)猜想四边形AECF 是什么四边形,并证明你的猜想. (2)求折痕EF 的长.
C'
F
E D C
B(D)
A
13 如图,矩形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 的
E 点上,BG =10.
(1)当折痕的另一端F 在AB 边上时,如图(1).求△EFG 的面积. (2)当折痕的另一端F 在AD 边上时,如图(2).证明四边形BGEF 为菱形,并求出折痕GF 的长.
H
A B
C
D
E
F G
A B
C
D
E F G
图(1)
图(2)
A
B
C
D
E F
G H (A)(B)
历年中考题集: 1(2008烟台)红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为_______2
.cm
2.如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =3厘米,EF =4厘米,则边AD 的长是___________厘米. 3(2007德州)如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于( ) A .43
B .33
C .42
D .8
4.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为( ) A .5cm B .8cm C .9cm D .10cm
5.把长为8cm ,宽为2cm 的矩形按虚线对折,按图中的斜线剪出一个直角梯形,展开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是( )
A .)13210(+cm
B .)1310(+cm
C .22cm
D .18cm
6将矩形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =60,则∠CFD =( ) A 、20 B 、30 C 、40 D 、50
7 (2012南京市,6,2)如图,在菱形纸片ABCD 中,∠A=600
,将纸片折叠,点A 、D 分别落在点A`、D`处,且A`D`经过点B ,EF 为折痕,当D`F⊥CD 时,
DF
CF
的值为( ) A.
213- B.63 C.6132- D.8
1
3+
B F C E D

A O D E
B F C
H D
E G
F
E A`
D`
D
C
B
A
8(2012,黔东南州,8)如图,矩形ABCD 边AD 沿拆痕AE 折叠,使点D 落在BC 上的F 处,已知AB=6,△ABF 的面积是24,则FC 等于( )
A 、1
B 、2
C 、3
D 、4
9、(2012河北省9,3分)如图4,在□ABCD 中,∠A=70°,将□ABCD 折叠,使点D ,C 分
别落在点F ,E 处,(点F ,E 都在AB 所在的直线上),折痕为MN ,则∠AMF 等于 ( )
A.70° B.40° C.30° D.20°
10 (2012贵州遵义,10,3分)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE,延长BG 交CD 于F 点,若CF=1,FD=2,则BC 的长为( )
A .32.26.5.2311 (2012湖北武汉,7,3分)如图,矩形ABCD 中,点E 在边A
B 上,将矩形ABCD 沿直线DE ,点A 恰好落在边B
C 的点F 处.若AE =5,BF =3,则C
D 的长是 A .7 B .8 C .9 D .10
12(2012四川达州,14,3分)将矩形纸片ABCD ,按如图所示的方式折叠,点A 、点C 恰好落在对角线BD 上,得到菱形BEDF.若BC=6,则AB 的长为 .
13 如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4, 点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点 A 的落点记为P .
(1)当AE =5,P 落在线段CD 上时,PD = ;
(2)当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .
14如图,在直角梯形纸片ABCD 中,AB DC ∥,90A ∠=,CD AD >,将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E 处,折痕为DF .连接EF 并展开纸片.
(1)求证:四边形ADEF 是正方形;
(2)取线段AF 的中点G ,连接EG ,如果BG CD =,试说明四边形GBCE 是等腰梯形.
E
C
B
D
A G F。

相关文档
最新文档