小学六年级奥数讲义之精讲精练第37讲 对策问题含答案

合集下载

第37讲第12章工资与就业-第2节

第37讲第12章工资与就业-第2节

第二节就业与失业【本节知识点】【知识点1】就业与就业统计【知识点2】失业与失业统计【知识点3】失业率统计与劳动力市场的存量一流量模型【知识点4】失业的类型及其成因【本节内容精讲】【知识点1】就业与就业统计一、就业的基本含义(1)劳动者必须要既有劳动能力,还要有劳动意愿(2)劳动者所参加的劳动必须是某种形式的社会劳动,而不能是家庭劳动(3)劳动必须能够获得报酬或收入,而不能是公益性或义务性的劳动二、国际劳工组织所定义的就业人口第一种人是正在工作的人,即在规定时期内正在从事有报酬的工作的人。

其中包括私营企业员工以及政府雇员。

第二种人是虽然有工作,但是却由于某种特殊原因暂时脱离了工作状态的人。

如因疾病、工伤、休假、旷工或者因气候不良、机器损坏等原因而临时停工的人。

第三种人是雇主和自雇用人员,或者是正在协助家庭经营企业或农场,但是却并不领取劳动报酬的人。

三、充分就业与非充分就业2003年,就业人员指在男16-60岁,女16-55岁的法定劳动年龄内,从事一定的社会经济活动,并取得合法劳动报酬或经营收入的人员。

其中,劳动报酬达到和超过当地最低工资标准的,为充分就业;劳动时间少于法定工作时间,且劳动报酬低于当地最低工资标准、高于城市居民最低生活保障标准,本人愿意从事更多工作的,为不充分就业。

例题精讲【例题•单选】下列选项中,关于就业的描述,表述错误的是()。

A.公益性劳动不属于就业B.劳动者必须既要有劳动能力,还要有劳动意愿C.劳动必须能够获得报酬或收入D.家庭劳动也属于就业【答案】D【解析】劳动者所参加的劳动必须是某种形式的社会劳动,而不是家庭劳动,故D选项错误。

【知识点2】失业与失业统计失业人员是在规定的劳动年龄内,具有劳动能力,但在调查期内无职业并以某种方式寻找工作的人。

具体包括:(1)16周岁以上各类学校毕业或肄业的学生中,初次寻找工作但是尚未找到工作者;(2)企业宣告破产后尚未找到工作的人员;(3)被企业终止、解除劳动合同或辞退后,尚未找到工作的人员;辞去原单位工作后尚未找到工作的人员;符合失业人员定义的其他人员。

六年级奥数分册第37周 对策问题【推荐】

六年级奥数分册第37周  对策问题【推荐】

第三十七周对策问题专题简析:同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

例题1:两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?例题2:有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

你认为先取的能胜,还是后取的能胜?怎样取法才能取胜?从结局开始,倒推上去。

(小升初培优讲义)专题37 解决问题的策略-六年级一轮复习(知识点精讲+达标检测)(教师版)

(小升初培优讲义)专题37  解决问题的策略-六年级一轮复习(知识点精讲+达标检测)(教师版)

专题37解决问题的策略(1)对应法:对应是数学中各类数量间最常见的存在形式。

有一个量,必然有一个与之对应的量或串。

(2)转化法:当题中出现多个单位“1”时,我们可以把不同的单位“1”转化成统一的单位“1”,再进行分析、思考、解答。

(3)假设法:假设法是数学中思考问题的一种常用方法和解题策略。

有些数量关系比较隐蔽或数量之间以建立直接联系的问题,如果对某一个已知数量或未知数量作特定的假设,可以使题中的数量关系于明朗化,从而找到解题的途径。

(4)分数可以转化成比,把比当分数。

(5)抓住不变量的方法:一些较复杂的分数问题中,会出现许多数量前后发生变化的。

这时的解题思维是:在这些变化中抓住不变的量,将不变的量作为标准,有目的地转化数量关系,来找到解题的线索。

不变的量可能是某一部分量,也可以是和、差不变,视题目具体情况而定。

(6)还原法:有些数学问题的答案需要从最后的结果出发,运用加法与减法、乘法与除法的互逆关系,从后往前一步步地推算,逐步使问题得到解决。

能够运用还原法的问题的基本件征是:叙述某一未知量,经过一系列的已知变化,最后成为另一个已知数量,要求出原来的未知量。

[提示]还原的基本途径是从最后一个已知数开始,逐步逆推回去。

原来加的,还原时就诚;原来诚的,还原时就加;原来秦的,还原时就除;原来除的,还原时就乘。

(7)方程法:在解任何问题时,列方程都是一种不能忽视的备用方法。

【例1】某校选出男教师的111和12名女教师参加合唱比赛,剩下的男教师人数是剩下的女教师人数的2倍,已知学校共有男、女教师156名。

男教师有多少名?【点拨分析】此题中数量变化多样,条件复杂,我们可利用列表的方法来帮助分析、解答。

通过分析可得出女教师减少12名后所占的分率(或份数)。

而156名是教师总数,当女教师减少12名后,总数也相应地减少12名,是(156-12)名,它是原有男教师和变化后女数师的人数和。

【答案】解法一(156-12)÷[(1−111)÷2+1]=99(名)解法二(156-12)÷(11+11−1)2×11=99(名)答:男教师有99名。

西师大版六年级上册数学教案37:问题解决 第3课时

西师大版六年级上册数学教案37:问题解决  第3课时

西师大版六年级上册数学教案37:问题解决第3课时教学内容:本课时主要围绕问题解决的主题,通过具体的实例,引导学生学习解决问题的方法和策略。

教学内容包括以下几个方面:1. 问题的提出和问题的分析2. 解决问题的方法和策略3. 解决问题的实践与运用教学目标:1. 让学生掌握解决问题的方法和策略,能够运用所学知识解决实际问题。

2. 培养学生的逻辑思维能力和创新思维能力。

3. 培养学生合作学习和自主学习的习惯。

教学难点:1. 问题的提出和问题的分析。

2. 解决问题的方法和策略的掌握。

3. 解决问题的实践与运用。

教具学具准备:1. 教学课件或者黑板。

2. 学生学习用品。

教学过程:1. 导入:通过一个实际问题,引导学生思考解决问题的方法和策略。

2. 新课导入:通过讲解问题的提出和问题的分析,让学生了解解决问题的方法和策略。

3. 实例讲解:通过具体的实例,让学生了解解决问题的方法和策略的运用。

4. 练习:通过练习,让学生巩固所学知识,提高解决问题的能力。

5. 总结:通过总结,让学生掌握解决问题的方法和策略。

板书设计:1. 问题解决2. 副第3课时3. 正文:包括教学目标、教学内容、教学难点、教具学具准备、教学过程、作业设计、课后反思等内容。

作业设计:1. 课后练习题:设计一些实际问题,让学生运用所学知识解决问题。

2. 思考题:设计一些思考题,让学生深入思考解决问题的方法和策略。

课后反思:1. 教学过程中,学生的参与度和学习效果如何?2. 教学难点是否讲解清楚,学生是否掌握了解决问题的方法和策略?3. 教学过程中,是否注重培养学生的逻辑思维能力和创新思维能力?4. 教学过程中,是否注重培养学生的合作学习和自主学习的习惯?5. 作业设计是否合理,是否能够达到巩固所学知识,提高解决问题能力的目的?以上就是对西师大版六年级上册数学教案37:问题解决第3课时的教学内容、教学目标、教学难点、教具学具准备、教学过程、板书设计、作业设计、课后反思的详细描述。

小学奥数精讲对策问题

小学奥数精讲对策问题

小学奥数精讲——对策问题告诉你本讲的重点、难点对策问题涉及的课本知识并不多,只是技巧性比较强,诀窍是控制,往往在游戏中运用较多,而用数学的观点和方法来研究取胜策略就是对策问题.看老师画龙点晴,教给你解题诀窍【例1】桌上放着100根火柴棒,甲、乙二人轮流取,每次取1—3根,规定谁取到最后1根谁获胜.假定双方都采用最佳方法,甲先取,谁一定获胜?给出一种获胜方法.分析与解我们可以从结果想起,谁能让火柴棒最后剩4根,谁就获胜.这是因为对方不论拿走几根,剩下的必能一次拿完,依照这个原则,只要让剩下的火柴棒的根数是4的倍数,就可以保证获胜.由于100就是4的倍数,所以后取的人获胜.100÷(3+1)=25(没有余数)答:乙后取一定获胜.如果甲拿n根,乙就拿(4-n)根,这样乙一定可以拿到最后1根而获胜.【例2】有一排500个空格’预先在左边第1格中放一枚棋子,然后由甲、乙两人轮流走.甲先乙后.每人走时,可以将棋子向右移动1~6格,规定谁将棋子走到最后1格谁输.甲为了必胜,第一步走几格?以后怎样走?分析与解本题要注意两个问题,一是在左边的第1格中已经有一枚棋子,空格只有499个;二是谁走到最后1格谁输,那么,要控制取胜就必须保证自己能将最后1格留给对方,自己就要能走到倒数第二格中.这样一共能走的格子数只有500-1-1=498格.498÷7=71...1.所以,甲第一步走1格,以后,乙走n格,甲就走(7-n)格,甲一定获胜.【例3】甲、乙二人轮流在黑板上写1~10的自然数,规定不能在黑板上写已写过的数的因数,并不重复,最后无数可写的人失败.如果甲先写,双方都采用最佳方案,那么谁一定获胜?给出一种获胜方法.分析与解甲先写,甲一定获胜,甲必须先写6,这样6的因数1,2,3,6就不能再写了.将剩下的六个数分为4和5,7和9,8和10三组,当乙写这六个数中的某数时,甲就写与它同组的另一数,必可获胜.【例4】在一个3×3的方格纸(右图)中,甲、乙两人轮流往方格中写1,3,4,5,6,7,8,9,10这九个数中的一个,数字不能重复.最后甲的得分是上、下两行六个数之和,乙的得分是左、右两列六个数之和,得分多者为胜.请你为甲找出一种必胜的方法.分析与解由于甲的得分是上、下两行六个数之和,乙的得分是左、右两列六个数之和,所以四个角的方格里所填的数是公用的,真正决定甲乙得分的是a,b,c,d这四个位置.甲要想必胜,要把最小的数。

小学六年级奥数第37讲 对策问题(含答案分析)

小学六年级奥数第37讲 对策问题(含答案分析)

第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?【例题2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

《小学奥数》小学六年级奥数讲义之精讲精练第37讲 对策问题含答案

《小学奥数》小学六年级奥数讲义之精讲精练第37讲 对策问题含答案

第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?【例题2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

对策问题五六年级奥数知识讲解

对策问题五六年级奥数知识讲解
2.有1999个球,甲、乙两人轮流取 球,每人每次至少取一个,最多取5 个,取到最后一个球的人为输。如果 甲先取,那么谁将获胜?
3、有100根火柴,甲乙两人轮流玩火 柴游戏,规定每人每次可取10根以内 的任何火柴(包括10根),以谁取完 火柴使对手无火柴可取者胜,如果甲 先取,问谁一定能获胜?他怎样才能 获胜?
请同学们想一想,如果在上面玩法中,两堆 火柴数目一开始就相同,例如两堆都是35根火 柴,那么先取者还能获胜吗?
例7 有3堆火柴,分别有1根、2根与3根火柴。 甲先乙后轮流从任意一堆里取火柴,取的 根数不限,规定谁能取到最后一根或最后 几根火柴就获胜。如果采用最佳方法,那 么谁将获胜?
分析与解:根据例6的解法,谁在某次取过火柴之 后,恰好留下两堆数目相等的火柴,谁就能取胜。
对策问题五六年级奥数
智取火柴
在数学游戏中有一类取火柴游戏, 它有很多种玩法,由于游戏的规 则不同,取胜的方法也就不同。 但不论哪种玩法,要想取胜,一 定离不开用数学思想去推算。
例1 桌子上放着60根火柴,甲、乙二 人轮流每次取走1~3根。规定谁取走 最后一根火柴谁获胜。如果双方都采 用最佳方法,甲先取,那么谁将获胜?
分析与解:本例是例3的变形,但应注意, 一开始棋子已占一格,棋子的右面只有 1111-1=1110(个)空格。由例3知,只 要甲始终留给乙(1+7=)8的倍数加1格, 就可获胜。
(111-1)÷(1+7)=138……6,
所以甲第一步必须移5格,还剩下1105 格,1105是8的倍数加1。以后无论乙移几 格,甲下次移的格数与乙移的格数之和是 8,甲就必胜。因为甲移完后,给乙留下 的空格数永远是8的倍数加1。
由例3看出,在每次取1~n根火柴,取到最后 一根火柴者为输的规定下,谁能做到总给对方留 下(1+n)的倍数加1根火柴,谁将获胜。

六年级奥数 第37讲 对策问题

六年级奥数  第37讲 对策问题

第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?【例题2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

(word完整版)小学六年级奥数题附答案(2021年整理)

(word完整版)小学六年级奥数题附答案(2021年整理)

(word完整版)小学六年级奥数题附答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)小学六年级奥数题附答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)小学六年级奥数题附答案(word版可编辑修改)的全部内容。

小学六年级奥数题1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3。

甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款4。

由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了."小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时。

有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运。

最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7。

一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

六年级下册数学试题-小升初专题培优:策略问题(含答案)全国通用

六年级下册数学试题-小升初专题培优:策略问题(含答案)全国通用

小升初——策略问题小学数学中的对策问题,主要是研究在两人的游戏过程中如何使自己取胜的策略问题。

对策问题研究的是一个“活的”对手,因而在考虑问题时往往需要设想对手可能采取的各种方案,并使己方的策略能在对手所采取的各种可能的方案中都占据有利的局面。

把这种局面称作“胜局”,那么在一种游戏规则下,是否存在“胜局”?怎样找寻胜局和如何把握胜局就成了研究对策问题的关键。

概括起来,我们把用数学的观点和方法来研究取胜的策略叫做对策问题。

对策问题的3个最基本要素:①局中人:在一场竞赛或争斗中的参与者,他们为了在对策中取得最终胜利,必须制定出对付对手的行动计划,就把这种有决策权的参加者称为局中人。

局中人并不是特指某一个人,而是指参加竞争的各个阵营。

则称只有两个局中人的对策问题为“双人对策”,而多于两个局中人的对策问题为“多人对策”。

对策问题的3个最基本要素:②策略:所谓策略,是指某一局中人的一个“自始至终通盘筹划”的可行方案,在一局对策中,各个局中人可以有一个策略,也可以有多个策略。

③一局对策的得失:在一局对策中,必有胜利者和失败者,竞赛的成绩有好有差,我们称之为“得失”。

每个局中人在一局对策中的得失与全体局中人所采取的策略的优劣有着直接的关系。

在解决策略性问题时,常常会结合对称性和数论中的知识,并采用逆推的思想和方法。

神父的诡计:一艘不大的船只在海上遇到了风暴,摆在船上25位乘客面前的路只有两条:要么全部乘客与船只同归于尽;要么牺牲一部分人的生命,把他们抛进大海,减轻船的载重量,船及其他人还有得救的可能,但是这样做至少得把一半以上的人抛进海里。

大家都同意走第二条路,然而谁也不愿意自动跳进海里。

乘客里有11个基督徒,其中一个是神父,于是大家就公推神父出个主意。

奸诈的神父想了一下,就让大家坐成一个环形,并且从他依序报数,“1、2、3”,规定报到“3”的人就被抛进海里,下一个继续由“1”报起,同时声称这是上帝的旨意,大家的命运都由上帝来安排,不得抗拒。

六年级下册奥数第37讲 对策趣味题

六年级下册奥数第37讲  对策趣味题

第37讲对策趣味题讲义知识要点同学们都熟“田忌与齐王赛马”的故事,这个故事分们的启示是:田忌采取了“扬长避短”的策略,取得了胜利。

生活中的许多事都蕴含着数学道理,小至下棋、打桥牌、玩游戏,大至体育比赛、军事较量等,人们在竟赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竟争的双方都要制定出自己的策略,这就是所谓“知已知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法例1、两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止,谁移走最后一根就算准输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

练习:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁定能取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数。

把两人报的数累加起来,谁先报到88谁就获胜。

问:先报数者的获胜策略是什么?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后格谁胜。

先移者确保获胜的方法是什么?例2、有1987枚棋子。

甲、乙两人分别轮流取棋子,每次最少取1枚,最多取4枚,不能不取,取到最后一枚的为胜者。

现在两人通过抽签决定谁先取。

你认为先取的能胜,还是后取的能胜?怎样才能取胜?练习:1、甲、乙两人轮流从1993枚棋子中取走1枚或2枚或3枚,谁取到最后一枚就是胜利者,你认为先取的能获胜,还是后取的能获胜,应采取什么策略?2、有1997根火柴,甲、乙两人轮流取火柴,每人每次可取1至10根,谁能取到最后一根谁为胜利者,甲先取,乙后取。

甲有获胜的可能吗?获胜的策略是什么?3、盒子里有47粒珠子,两人轮流取,每次最多取5粒,最少取1粒,谁最先把盒子的珠子取完,谁就胜利,小明和小红来玩这个取珠子的游戏,小明先取,小红后取,谁胜?取胜的策略是什么?例3、在黑板上写有999个数:2,3,4,…,1000。

西师大版六年级数学上册教案37:解决问题(三)-课堂活动

西师大版六年级数学上册教案37:解决问题(三)-课堂活动

西师大版六年级数学上册教案37:解决问题(三)课堂活动我今天要上的课程是西师大版六年级数学上册的第三十七课,主要内容是解决问题的方法和技巧。

这一节课我们将会学习如何通过图示和方程来解决实际问题。

我的教学目标是希望学生们能够通过图示和方程来解决实际问题,提高他们的解决问题的能力。

同时,我也希望他们能够通过这一节课的学习,提高他们的逻辑思维能力和创新思维能力。

在教学过程中,我将会遇到一些难点和重点。

难点在于如何让学生们理解并掌握图示和方程的解题方法,重点则是如何让学生们能够灵活运用这些方法来解决实际问题。

为了上好这一节课,我已经准备了一些教具和学具,包括黑板、粉笔、PPT、练习题等。

在板书设计上,我会用简洁明了的语言来概括图示和方程的解题方法,并将其列在黑板上,以便学生们随时查阅。

至于作业设计,我将会布置一些有关图示和方程的练习题,让学生们通过实际操作来巩固所学的知识。

同时,我也会设计一些创新题,让学生们通过创新思维来解决问题,提高他们的创新能力。

在课后反思及拓展延伸方面,我会通过观察学生们在课堂上的表现和作业的完成情况来评估自己的教学效果,并根据实际情况进行调整和改进。

同时,我也会鼓励学生们通过阅读相关书籍和参加相关活动来拓展自己的知识面,提高自己的综合素质。

重点和难点解析:在上述教案中,有几个重要的细节需要特别关注。

我选择了西师大版六年级数学上册第三十七课“解决问题(三)”作为教学内容,这一节课的主要内容是教授学生如何通过图示和方程来解决实际问题。

这是本节课的重点,也是学生们的学习难点。

我希望通过本节课的教学,学生们能够掌握图示和方程的解题方法,提高他们的解决问题的能力。

这是本节课的教学目标,也是我教学的重点。

在教学过程中,我将会遇到一些难点和重点。

难点在于如何让学生们理解并掌握图示和方程的解题方法,重点则是如何让学生们能够灵活运用这些方法来解决实际问题。

这是我在教学过程中需要特别关注和解决的难题。

六年级奥数举一反三第37讲 对策问题含答案

六年级奥数举一反三第37讲 对策问题含答案

第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?【例题2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

小学六年级奥数第37讲 对策问题(含答案分析)

小学六年级奥数第37讲 对策问题(含答案分析)

第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?【例题2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

六年级数学奥数举一反三小升初数学对策问题37

六年级数学奥数举一反三小升初数学对策问题37

3、在黑板上写n—1(n>3)个数:2,3,4,……,n。甲、乙两人轮流 在黑板上擦去一个数。如果最后剩下的两个数互质,则乙胜,否则甲胜。 N分别取什么值时:(1)甲必胜?(2)乙必胜?必胜的策略是什么?
小学数学六年级奥数举一反三
【例题4】甲、乙两人轮流在黑板上写下不超过10的自然数,规定禁止在 黑板上写已写过的数的约数,最后不能写的人为失败者。如果甲第一个 写,谁一定获胜?写出一种获胜的方法。 【思路导航】 这里关键是第一次写什么数,总共只有10个数,可通过归纳试验。甲不 能写1,否则乙写6,乙可获胜;甲不能写3,5,7,否则乙写8,乙可获 胜;甲不能写4,9,10,否则乙写6,乙可获胜。因此,甲先写6或8,才 有可能获胜。 甲可以获胜。如甲写6,去掉6的约数1,2,3,6,乙只能写4,5,7,8, 9,10这六个数中的一个,将这六个数分成(4,5),(7,9),(8, 10)三组,当乙写某组中的一个数,甲就写另一个数,甲就能获胜。
小学数学六年级奥数举一反三
【练习4】
1、甲、乙两人轮流在黑板上写上不超过14的自然数。书写规则是:不允 许写黑板上已写过的数的约数,轮到书写人无法再写时就是输者。现甲 先写,乙后写,谁能获胜?应采取什么对策? 2、甲、乙两人轮流从分别写有3,4,5,……,11的9张卡片中任意取走 一张,规定取卡人不能取已取过的数的倍数,轮到谁无法再取时,谁就 输。现甲先取,乙后取,甲能否必然获绳?应采取的对策是什么?
小学数学六年级奥数举一反三
【练习1】 1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。每人每 次可以拿1至3根,不许不拿,乙让甲先拿。问:谁能一定取胜?他要取 胜应采取什么策略?
2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的 数累加起来,谁先报到88,谁就获胜。问:先报数者有必胜的策略吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?【例题2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

你认为先取的能胜,还是后取的能胜?怎样取法才能取胜?从结局开始,倒推上去。

不妨设甲先取,乙后取,剩下1至4粒,甲可以一次拿完。

如果剩下5粒棋子,则甲不能一次拿完,乙胜。

因此甲想取胜,只要在某一时刻留下5粒棋子就行了。

不妨设甲先取,则甲能取胜。

甲第一次取2粒,以后无论乙拿几粒,甲只要使自己的粒数与乙拿的粒数之和正好等于5,这样,每一轮后,剩下的棋子粒数总是5的倍数,最后总能留下5粒棋子,因此,甲先取必胜。

练习2:1、甲、乙两人轮流从1993粒棋子中取走1粒或2粒或3粒,谁取到最后一粒的是胜利者,你认为先取的能获胜,还是后取的能获胜,应采取什么策略?2、有1997根火柴,甲、乙两人轮流取火柴,每人每次可取1至10根,谁能取到最后一根谁为胜利者,甲先取,乙后取。

甲有获胜的可能吗?取胜的策略是什么?3、盒子里有47粒珠子,两人轮流取,每次最多取5粒,最少取1粒,谁最先把盒子的珠子取完,谁就胜利,小明和小红来玩这个取珠子的游戏,先名先、小红后,谁胜?取胜的策略是什么?【例题3】在黑板上写有999个数:2,3,4,……,1000。

甲、乙两人轮流擦去黑板上的一个数(甲先擦,乙后擦),如果最后剩下的两个数互质,则甲胜,否则乙胜。

谁必胜?必胜的策略是什么?甲先擦去1000,剩下的998个数,分为499个数对:(2,3),(4,5),(6,7), (998)999)。

可见每一对数中的两个数互质。

如果乙擦去某一对中的一个,甲则接着擦去这对中的另一个,这样乙、甲轮流去擦,总是一对数、一对数地擦,最后剩下的一对数必互质。

所以,甲必胜。

练习3:1、甲、乙两人轮流从分别写有1,2,3,……,99的99张卡片中任意取走一张,先取卡的人能否保证在他取走的第97张卡片时,使剩下的两张卡片上的数一个是奇数,一个是偶数?2、两个人进行如下游戏,即两个人轮流从数列1,2,3,……,100,101勾去九个数。

经过这样的11次删除后,还剩下两个数。

如果这两个数的差是55,这时判第一个勾数的人获胜。

问第一个勾数的人能否获胜?获胜的策略是什么?3、在黑板上写n—1(n>3)个数:2,3,4,……,n。

甲、乙两人轮流在黑板上擦去一个数。

如果最后剩下的两个数互质,则乙胜,否则甲胜。

N分别取什么值时:(1)甲必胜?(2)乙必胜?必胜的策略是什么?【例题4】甲、乙两人轮流在黑板上写下不超过10的自然数,规定禁止在黑板上写已写过的数的约数,最后不能写的人为失败者。

如果甲第一个写,谁一定获胜?写出一种获胜的方法。

这里关键是第一次写什么数,总共只有10个数,可通过归纳试验。

甲不能写1,否则乙写6,乙可获胜;甲不能写3,5,7,否则乙写8,乙可获胜;甲不能写4,9,10,否则乙写6,乙可获胜。

因此,甲先写6或8,才有可能获胜。

甲可以获胜。

如甲写6,去掉6的约数1,2,3,6,乙只能写4,5,7,8,9,10这六个数中的一个,将这六个数分成(4,5),(7,9),(8,10)三组,当乙写某组中的一个数,甲就写另一个数,甲就能获胜。

练习4:1、甲、乙两人轮流在黑板上写上不超过14的自然数。

书写规则是:不允许写黑板上已写过的数的约数,轮到书写人无法再写时就是输者。

现甲先写,乙后写,谁能获胜?应采取什么对策?DC B A 37-12、甲、乙两人轮流从分别写有3,4,5,……,11的9张卡片中任意取走一张,规定取卡人不能取已取过的数的倍数,轮到谁无法再取时,谁就输。

现甲先取,乙后取,甲能否必然获绳?应采取的对策是什么?3、甲、乙两人轮流在2004粒棋子中取走1粒,3粒,5粒或7粒棋子。

甲先取,乙后取,取到最后一粒棋子者为胜者。

甲、乙两人谁能获胜?【例题5】有一个3×3的棋盘以及9张大小为一个方格的卡片如图37-1所示,9张卡片分别写有:1,3,4,5,6,7,8,9,10这几个数。

小兵和小强两人做游戏,轮流取一张卡片放在9格中的一格,小兵计算上、下两行6个数的和;小强计算左、右两列6个数的和,和数大的一方取胜。

小兵一定能取胜吗?如图37-1所示,由于4个角的数是两人共有的,因而和数的大小只与放在A ,B ,C ,D 这4个格中的数有关。

小兵要获胜,必须采取如下策略,尽可能把大数填入A 或C 格,尽可能将小数填入B 格或D 格。

由于1+10<3+9,即B+D <A+C ,小兵应先将1放在B 格,如小强把10放进D 格,小兵再把9放进A 格,这时不论小强怎么做,C 格中一定是大于或等于3的数,因而小兵获胜。

如小强把3放进A 格,小兵只需将9放到C 格,小兵也一定获胜。

练习5:1、在5×5的棋盘的右上角放一枚棋子,每一步只能向左、想下或向左下对角线走一格。

两人交替走,谁为胜者。

必胜的策略是什么?2、甲、乙两人轮流往一个圆桌面上放同样大小的硬币,规则是每人每次只能放一枚,硬币不能重叠,谁放完最后一枚硬币而使对方再无处可放,谁就获胜。

如果甲先放,那么他怎样才能取胜?3、两人轮流在3×3的方格中画“√”和“×”,规定每人每次至少画一格,至多画三格,所有的格画满后,谁画的符号总数为偶数,谁就获胜。

谁有获胜的策略?第37周对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。

先移者确保获胜的方法是什么?【例题2】有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

你认为先取的能胜,还是后取的能胜?怎样取法才能取胜?从结局开始,倒推上去。

不妨设甲先取,乙后取,剩下1至4粒,甲可以一次拿完。

如果剩下5粒棋子,则甲不能一次拿完,乙胜。

因此甲想取胜,只要在某一时刻留下5粒棋子就行了。

不妨设甲先取,则甲能取胜。

甲第一次取2粒,以后无论乙拿几粒,甲只要使自己的粒数与乙拿的粒数之和正好等于5,这样,每一轮后,剩下的棋子粒数总是5的倍数,最后总能留下5粒棋子,因此,甲先取必胜。

练习2:1、甲、乙两人轮流从1993粒棋子中取走1粒或2粒或3粒,谁取到最后一粒的是胜利者,你认为先取的能获胜,还是后取的能获胜,应采取什么策略?2、有1997根火柴,甲、乙两人轮流取火柴,每人每次可取1至10根,谁能取到最后一根谁为胜利者,甲先取,乙后取。

甲有获胜的可能吗?取胜的策略是什么?3、盒子里有47粒珠子,两人轮流取,每次最多取5粒,最少取1粒,谁最先把盒子的珠子取完,谁就胜利,小明和小红来玩这个取珠子的游戏,先名先、小红后,谁胜?取胜的策略是什么?【例题3】在黑板上写有999个数:2,3,4,……,1000。

甲、乙两人轮流擦去黑板上的一个数(甲先擦,乙后擦),如果最后剩下的两个数互质,则甲胜,否则乙胜。

谁必胜?必胜的策略是什么?甲先擦去1000,剩下的998个数,分为499个数对:(2,3),(4,5),(6,7), (998)999)。

可见每一对数中的两个数互质。

如果乙擦去某一对中的一个,甲则接着擦去这对中的另一个,这样乙、甲轮流去擦,总是一对数、一对数地擦,最后剩下的一对数必互质。

相关文档
最新文档