高一上半期数学试题含答案

合集下载

2024-2025学年高一上学期期中模拟考试数学试题(天津专用,测试范围:人教A版2019)含解析

2024-2025学年高一上学期期中模拟考试数学试题(天津专用,测试范围:人教A版2019)含解析

2024-2025学年高一数学上学期期中模拟卷(天津)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教A版2019必修第一册第一章~第三章5.难度系数:0.6。

第Ⅰ卷一、单项选择题:本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.B .()21x f x x-=【解析】由题意得:根据图像可得:函数为偶函数,当时,∵y=当时,易得:当时,易得第Ⅱ卷二、填空题:本题共6小题,每小题5分,共30分.7+在[]()1,1m m >上的最大值为,解得:133x =-,22x =,x 7+在[],21m m -上的最大值为,解得:3332m -≤≤.)1>上最大值()2A f m m ==-()()210f m f m A =->=>,3⎤⎥,故答案为:333,⎡⎤-⎢⎥.16.(14分)17.(15分)已知函数()()221R f x x mx m m =+-+∈.(1)若2m =,求函数()f x 在区间[]2,1-上的最大和最小值;(2)解不等式()21f x x <+.【解析】(1)解:当2m =时,可得()223f x x x =+-,则函数()y f x =表示开口向上的抛物线,且对称轴为1x =-,所以函数()y f x =在[]2,1--上单调递减,在[1,1]-上单调递增,所以,当1x =-时,函数()f x 取得最小值,最小值为()14f -=-,又因为()()23,10f f -=-=,所以函数的最大值为0,综上可得,函数()y f x =的最大值为0,最小值为4-.(7分)(2)解:由不等式()21f x x <+,即22121x mx m x +-+<+,即不等式2(2)2(0)(2)x m x m x m x +--=-<+,当2m =-时,不等式即为2(2)0x -<,此时不等式的解集为空集;当2m -<时,即2m >-时,不等式的解集为2m x -<<;当2m ->时,即2m <-时,不等式的解集为2x m <<-,综上可得:当2m =-时,不等式的解集为空集;当2m >-时,不等式的解集为(),2m -;当2m <-时,不等式的解集为()2,m -.(15分)18.(15分)19.(15分)某公司决定在公司仓库外借助一侧原有墙体,建造一间墙高为3米,底面积为24平方米,且背面靠墙的长方体形状的应急室,由于此应急室后背靠墙,无需建造费用,因此甲工程队给出的报价为:应急室正面墙体每平方米的报价400元,侧面墙体每平方米的报价均为300元,屋顶和地面及其他报价共20.(16分)10,。

四川省成都市树德中学2023-2024学年高一上学期期中数学试题 扫描版含答案

四川省成都市树德中学2023-2024学年高一上学期期中数学试题 扫描版含答案

树德中学高2023级高一上学期半期数学试题命题人:常勇审题人:邓连康、韦莉、梁刚一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合{}22,a a 中实数a 的取值范围是()。

A .{}0,2a a a ==或B .{}0,2a a a ==且C .{}0,2a a a ≠≠或D .{}0,2a a a ≠≠且2.下列四组函数中,表示相同函数的一组是()。

A .()11f x x x +⋅-=,()21g x x =-B .()2f x x =,()()2g x x=C .10()1,0x f x x ≥⎧=⎨-<⎩,,,0()1,0xx x g x x ⎧≠⎪=⎨⎪=⎩D .()1f x =,()0g x x=3.荀子曰:“故不积跬步,无以至千里;不积小流,无以成江海.“这句来自先秦时期的名言.此名言中的“积跬步”是“至千里”的()。

A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.树德中学2023年秋季运会亮点之一----师生火炬传递,火炬如图(1)所示,数学建模活动时将其抽象为图(2)所示的几何体.假设火炬装满燃料,燃烧时燃料以均匀的速度消耗,记剩余燃料的高度为h ,则h 关于时间t 的函数的大致图象可能是()。

A .B .C .D .5.满足{}1A ⊆ {}1,2,3,4的集合A 的个数为()。

A .7B .8C .15D .166.已知函数321x y x +=-,(],x m n ∈的最小值为8,则实数m 的取值范围是()。

A .()0,1B .()1,2C .(]1,2D .[)1,27.定义在R 上函数()y f x =满足以下条件:①函数()1y f x =+是偶函数;②对任意12,(,1]x x ∈-∞,当12x x ≠时都有()()2211)(0()x x f x f x -->,则()0f ,32f ⎛⎫⎪⎝⎭,()3f -的大小关系为()。

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。

考试用时120分钟。

注意事项:1.考查范围:必修第一册第一章至第三章第二节。

2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将答题卡交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。

高一数学上学期半期考试试题含解析 试题

高一数学上学期半期考试试题含解析 试题

智才艺州攀枝花市创界学校一中办学一共同体二零二零—二零二壹高一数学上学期半期考试试题〔含解析〕一、选择题〔一共60分,每一小题5分,每个小题有且仅有一个正确之答案〕,,那么等于〔)A. B. C. D.【答案】D【解析】【分析】根据集合交集的定义,找到集合A、B的公一共元素即可.【详解】那么应选D【点睛】此题考察集合运算,对于A,B两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集,记作A∩B.所以找出A、B的公一共元素是求交集的关键.,,那么满足条件的集合的个数为〔〕A.4B.8C.9D.16【答案】B【解析】根据集合A、B、C的关系,集合C中必然包含集合A中的元素,集合B一共有五个元素,只需要确定集合的子集个数,即为集合C的所有可能,所以集合C有种可能.【详解】集合C为:,,,,,,应选B【点睛】此题考察集合之间的关系以及集合子集个数的求法,首先需要确定集合中的元素,然后根据集合的特点确定集合子集个数,一般一个集合里有N个元素〔可以是数〕,那么它所有子集的数目是,所有真子集数目(子集除去本身),所有非空子集数目是〔子集除去空集〕,所有非空真子集数目〔子集除去本身和空集〕.3.集合A=[0,8],集合B=[0,4],那么以下对应关系中,不能看作从A到B的映射的是A.f:x→y=xB.f:x→y=xC.f:x→y=xD.f:x→y=x【答案】D【解析】试题分析:D选项里面的映射不能使集合A中的每一个元素都在集合B中找到一个元素与之对应,例如集合A 中的元素6就不能在集合B中找到一个元素与之对应.考点:运用映定义判断对应关系是否为映射.4.以下各组函数表示同一函数的是〔〕A. B.C. D.【答案】C试题分析:A中两函数定义域不同;B中两函数定义域不同;C中两函数定义域一样,对应关系一样,是同一函数;D中两函数定义域不同考点:判断两函数是否同一函数5.那么等于(〕A.π+1B.0C.2D.【答案】A【解析】【分析】此题可以根据分段函数解析式,由内到外,依次求解函数值,即可求得答案.【详解】f(-2)=0,f(0)=,应选A【点睛】此题主要考察了函数值的求解问题,解答题目的过程中要准确把握分段函数的分段条件,正确选择相应的解析式计算求值是解答的关键,着重考察了推理与运算才能.6.以下函数中,既是奇函数又是增函数的是()A. B. C. D.【答案】B【解析】【分析】根据奇函数定义先判断出奇偶性,然后根据单调性定义判断单调性即可.【详解】A.非奇非偶函数;B.奇函数且是单调递增函数;C.奇函数但在定义域上不是增函数;D.奇函数,单调递减函数;【点睛】此题主要考察函数的奇偶性和单调性,结合初等函数的奇偶性和单调性判断出原函数的性质,主要考察了推理才能。

四川省内江市2024-2025学年高一上学期期中考试数学试题(含答案)

四川省内江市2024-2025学年高一上学期期中考试数学试题(含答案)

2024级高一上期半期考试数学试题数学试题共4页.满分150分.考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.第Ⅰ卷(选择题,共58分)一、单选题(本大题共8 小题,每小题5 分,共40 分.在每小题给出的四个选项中,只有一项符合题目要求).1 .已知集合A = {x | -1 < x ≤2}, B = {x | -2 < x ≤1} ,则A U B = ( )A .{x | -1 < x < 1}B .{x | -1 < x ≤1}C .{x | -2 < x < 2}D .{x | -2 < x ≤2}2 .函数f的定义域为 ( )D.3 .已知集合A 满足A ≤{0, 1, 2, 3} ,则满足条件的集合A 的个数为 ( )A .8B .10C .14D .164 .已知函数f(x) 满足f(x + 2) = 3x + 4 ,则f (2) =()A .-2B .1C .4D .75 .下列命题为真命题的是 ( )A .若a > b,则a2 > b2B .若a > b,则ac2 > bc2C .若a > b ,则D .若a > b > 0 ,则6 .已知x>3 ,则对于y = x +下列说法正确的是 ( )A.y 有最大值7 B.y 有最小值7 C.y 有最小值4 D.y 有最大值47 .设x, y ∈R ,下列说法中错误的是 ()A .“ x > 1”是“ x2> 1”的充分不必要条件B .“ x > 1 ,y > 1 ”是“x + y > 2,xy > 1 ”的充要条件C .“ xy = 0 ”是“ x 2 + y 2 = 0 ”的必要不充分条件D .“ x 2 ≠ 4”是“x ≠ 2”的充分不必要条件8 .当x ∈(一1, 1) 时,不等式2kx 2 一 kx 一 恒成立,则k 的取值范围是 ()A .(一3, 0)B .[一3, 0)C .D . 二、多选题(本大题共 3 小题,每小题 6 分,共 18 分.在每小题给出的四个选项中,有两项或两项以上符合题目要求).9 .已知p :“ x ∈ R ,x 2一 (a + 1)x + 1 > 0 恒成立”为真命题,下列选项可以作为p 的 充分条件的有 ()A .一3 < a < 0B .a ≤ 一3或a ≥ 1C .0 < a < 1D .一3 < a < 110 .下列说法正确的是 ()A . 1+x . 1x 与y = 1x 2 表示同一个函数B .已知函数f (x ) 的定义域为[一3, 1] ,则函数f (2x 一1) 的定义域为[一1, 1]C .函数y = x +的值域为[0, +∞)D .已知函数满足f = x ,则f = 一11.已知集合{x x 2 + ax +b = 0,a > 0}有且仅有两个子集,则下面正确的是 ()A .a 2 一 b 2 ≤ 4B .C .若不等式x 2 + ax 一 b < 0 的解集为(x 1, x 2 ) ,则x 1x 2 > 0D .若不等式x 2 + ax + b < c 的解集为(x 1, x 2 ) ,且= 4 ,则 c = 4第Ⅱ卷(非选择题,共 92 分)三、填空题(本大共 3 小题 ,每小题 5 分,满分 15 分).12 .命题“x > 0, 2x 2 + x +1 > 0”的否定是 .13 .设函数f (x ) ,g (x )分别由下表给出:x 1 一 x 2x1234f(x)1313g (x)3232则满足f(g(x)) = g(f(x))的x的值为.14.设函数0,若f则实数a的取值范围是.四、解答题(本题共计5 小题,共77 分,解答应写出文字说明,证明过程或演算步骤).15 .(13 分)已知函数(1)在如图给定的直角坐标系内画出f (x) 的图象;(2)求不等式f (x) > 1 的解集.16 .(15 分)已知函数f (x) = x2 一2bx + 3, b ∈R.(1)若函数f (x ) 的图象经过点(4, 3) ,求实数b的值;(2)在(1)的条件下,求不等式f (x) < 0的解集;(3)解关于x 的不等式2x2 + (1一2a) x 一a > 0 .17 .(15 分)通过技术创新,某公司的汽车特种玻璃已进入欧洲市场.2023 年,该种玻璃售价为25 欧元/平方米,销售量为80 万平方米,销售收入为2000 万欧元.(1)据市场调查,若售价每提高1 欧元/平方米,则销售量将减少2 万平方米;要使销售收入不低于2000 万欧元,试问:该种玻璃的售价最多提高到多少欧元/ 平方米?(2)为提高年销售量,增加市场份额,公司将在2024 年对该种玻璃实施二次技术创新和营销策略改革:提高价格到m 欧元/平方米(其中m > 25 ),其中投入万欧元作为技术创新费用,投入500万欧元作为固定宣传费用,投入2m 万欧元作为浮动宣传费用,试问:该种玻璃的销售量n (单位/万平方米)至少达到多少时,才可能使2024 年的销售收入不低于2023 年销售收入与2024 年投入之和?并求出此时的售价.18 .(17 分)命题p :任意x ∈R, x2 一2mx 一5m > 0 成立;命题q : 3x ∈[0, 4], x2 一2x 一3 + m ≥0 成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题p, q 至少有一个为真命题,求实数m 的取值范围;19.(17 分)问题:正实数a, b 满足a + b = 1 ,求的最小值.其中一种解法是:+2 ≥3 +2当且仅当且a + b = 1 时,即a = 一1且b = 2 一时取等号.学习上述解法并解决下列问题:(1)若正实数x, y 满足x + y = 1 ,求的最小值;(2)若实数a, b, x, y 满足一试比较a2一b2 和(x 一y )2的大小,并指明等号成立的条件;(3)求代数式3m一5 一一2 的最小值,并求出使得M 最小的m的值.2024级高一上期半期考试数学参考答案单选题1~5:DDDCD 6~8:BBD多选题9:ACD 10:ABD 11:ABD填空题12 . 3x > 0, 2x 2 + x +1≤ 0 13 .2 或 4 14 . (-∞, 解答题15 .(满分 13 分)解:(1)当-1 ≤ x ≤ 2 时:x- 1012f (x )232- 1当2 < x ≤ 5 时:x25f (x )-12………………………………………………………………………………………………(1 分)图像如下:………………………………………………( 2 ) 令f (x ) > 1 则(6分)1 〔 1)当-1 ≤ x ≤2 时,f (x ) > 13 - x 2> 1,……………………………………………………(7 分)所以x 2 - 2 < 0 ,解得- 2 ≤ x≤ · 2 ,………………………………………………………(8分)所以-1≤ x < ·2 ; …………………………………………………………………………(9 分)当2 < x ≤ 5 时,f (x ) > 1 x - 3 > 1 ,……………………………………………………(10 分)解得x > 4 ,所以4 < x ≤ 5 ;………………………………………………………………(11 分)综上, -1≤ x < ·2 或4 < x ≤ 5 ……………………………………………………………(12 分)所以f (x )> 1 的解集为[-1, ) (4, 5].…………………………………………………(13 分)16 .(满分 15 分)解:(1)因为f (x ) = x 2 - 2bx + 3 的图象经过点(4, 3),所以f (4) = 42 - 8b + 3 = 3 ,则b = 2 ; ……………………………………………………(2 分)(2)由(1)得f (x ) = x 2 - 4x + 3 = (x -1)(x - 3) < 0 ,…………………………………(4 分)解得1 < x < 3 ,………………………………………………………………………………(5 分)所以不等式f (x )< 0 的解集为{x 1 < x < 3 };………………………………………………(6 分)(3):2x 2 + (1 - 2a )x - a > 0, : (x - a )(2x +1 )> 0 ,………………………………………(8 分)当a > - 时,不等式的解集为;…………………………………… 当a < - 时,不等式的解集为;…………………………………… 当a = - 时,不等式的解集为 .……………………………………………… 综上所述:当a > - 时,不等式的解集为当a < - 时,不等式的解集为{x ∣x < a 或x > -当a = - 2 时,不等式的解集为{l x x ≠ - 2,} ………………………………………………(15 分)17 .(满分 15 分)〔-5 < m < 0l m ≥ -5解:(1)设该种玻璃的售价提高到x (x ≥ 25) 欧元/平方米,……………………………(1 分)则有80 - 2(x - 25)x ≥ 2000 ,……………………………………………………………(3 分)解得:25 ≤ x ≤ 40 ,…………………………………………………………………………(4 分)所以该种玻璃的售价最多提高到 40 欧元/平方米. …………………………………………(5 分)(2) 由题mn ≥2000 + 500 + 2m +m 2 -600) , ………………………………………(7 分)整理得:mn ≥1500 + 2m + m 2 ,…………………………………………………………(8 分)除以m 得:n ≥m + 2 ,………………………………………………………… 由基本不等式得:当且仅当 m ,即m = 30 > 25 时,等号成立,…………………………………(14 分)所以该种玻璃的销售量n 至少达到 102 万平方米时,才可能使2024 年的销售收入不低于2023年销售收入与2024 年投入之和,此时的售价为 30 欧元/平方米.………………………(15 分)18 .(满分 17 分)解:(1)对于命题p : 对任意x ∈ R ,不等式x 2 - 2mx - 5m > 0恒成立,则有Δ = 4m 2 + 4× 5m = 4m ( m + 5) < 0,……………………………………………………(2 分)解的-5 < m < 0 ;……………………………………………………………………………(3 分)综上,当p 为真时,实数m 的取值范围是{m | -5 < m < 0}………… …………………(4 分)(2)对于命题q : 存在x ∈[0, 4] ,使得不等式x 2 - 2x - 3 + m ≥ 0 成立,只需(x 2 - 2x - 3 + m )max ≥ 0 ,而x 2 - 2x - 3 + m = (x -1)2 + m - 4 ,………………………(6 分): x = 4, (x 2 - 2x - 3+ m )max = 9 + m - 4 = m + 5 ,: m + 5 ≥ 0 ,则m ≥ -5 ,………………(8 分)所以当命题q 为真时,实数m 的取值范围是m ≥ -5 ,……………………………………(9 分)从而当命题p 为假命题, q 为真命题时,m ≤ -5 或m ≥ 0 且m ≥ -5 ,则m ≥ 0 或m = -5 ;................................(11 分)当命题p 为真命题,q 为假命题时,-5 < m < 0 且m < -5 ,无解;...............(13 分)当命题p 为真命题,q 为真命题时,{ ,则-5 < m < 0 ;……………………(15 分)综上所述:m ≥ -5 .…………………………………………………………………………(16分)此时x , y 也满足 所以当命题p ,q 至少有一个为真命题时,实数m 的取值范围是{m | m ≥ 5}…………(17 分)19 .(满分 17 分)解:(1)因为x > 0, y > 0 且x + y = 1,所以 ≥ 5 + 2 = 5 + 26 ,………………… 当且仅当 即x = - 2, y = 3 - 时取等号,…………………………………(3 分)y x 所以x + y 的最小值是5 + 2 6 .……………………………………………………………(4 分),当且仅当 时,所以x 2 + y 2 - ≤ x 2 + y 2 -2 = 且x , y 同号时等号成立,所以a 2 -b 2 ≤ (x - y )2,2 2x a 2 - y b 2 = 1 . …………………………………………………………………(9 分)x = 3m - 5, y = m - 2 ,由 则x 2 - y 2 = (3m -5) -( m - 2) = 2m -3 > 0,………………………………………………(12 分)因为x > 0, y > 0 ,所以x > y ,构造由x 2 - 3y 2 = 1 ,可得M = ·3m - 5 - ·m - 2 = x - y3同正,………………………………………………………(15 分).……………………………………………………(17分)3又由取等号时 x 2= 3y 2 且x , y 结合x 2 - 3y 2 = 1 ,解得 ,可得m ≥ 2 ,………………………(11 分),………………………………………(13 分)…………………………………(14 分)因此a 2 = 1, b 2 = 所以 时,…………………(16 分),…………………(8 分)等号成立, ……(7 分)( )xy x y xy x y ………(6 分)M 取得最小值≤ + - = -由(2)知当且仅当(3)令,即 2 2x 2=2。

福建龙岩市一级校联盟(九校)联考2022-2023学年高一上学期期中考试数学试题答案

福建龙岩市一级校联盟(九校)联考2022-2023学年高一上学期期中考试数学试题答案

龙岩市一级校联盟(九校)联考2022—2023学年第一学期半期考高一数学试题参考答案一、单项选择题:12345678A CB AC BD C 二、多项选择题9101112ACDAC ABD BD 三、填空题:13.114.()2,315.416.(,1)-∞-四、解答题17.解: {}41014<<=⎭⎬⎫⎩⎨⎧<--=x x x x x A ,…………2分又 {}{}29100110U x x x x x =--<=-<<,…………3分{}26B x x =<<,{}61<<=⋃∴x x B A ………………5分{}24A B x x ∴⋂=<<………………7分{}()()()11610U U U C A C B C A B x x x ∴⋂=⋃=-<≤≤<或………………10分18.解:(1)()0>x f 的解集为{}1,2<>x x x 或,02=+-∴n mx x 的两根为1和2,…………………2分∴由韦达定理得:⎩⎨⎧=⋅=+n m 2121,…………………4分解得:⎩⎨⎧==23n m .…………………6分(2)选①:26m n -= ,()002≤+-≤∴n mx x x f 即为,()()023≤+-∴m x m x ︒1当0=m 时,原不等式的解集为{}0=x x ;…………………8分︒2当0>m 时,m m 32<-,原不等式的解集为{}m x m x 32<<-;………10分︒3当0<m 时,m m 32>-,原不等式的解集为{}m x m x 23-<<.………12分选②:1+=n m ,()()0102≤++-≤∴n x n x x f 即为,()()01≤--∴x n x ︒1当1=n 时,原不等式的解集为{}1=x x ;…………………………8分︒2当1>n 时,原不等式的解集为{}n x x <<1;……………………10分︒3当1<n 时,原不等式的解集为{}1<<x n x .………………………12分19.解:(1) ()()2253m f x m m x =-+是幂函数,13522=+-∴m m ,…………………………1分解得221或=m …………………………3分又()f x 为偶函数,故()f x 2x =;…………………………5分(2)方法一:由在区间]1,1[-,函数()x f 的图象总在函数2-=kx y 图象的上方,可知2],1,1[2->-∈∀kx x x 恒成立即02],1,1[2>+--∈∀kx x x 恒成立设]1,1[,2)(2-∈+-=x kx x x g ,则0)(min >x g ①当12≥k ,即2≥k 时,021)1()(min >+-==k g x g ,解得3<k ,故32<≤k ;…………………………7分②当12-≤k ,即2-≤k 时,021)1()(min >++=-=k g x g ,解得3->k ,故23-≤<-k ;…………………………9分③当121<<-k ,即22<<-k 时,0224)2()(22min >+-==k k k g x g ,解得2222<<-k ,故22<<-k ;…………………………11分综上所述,k 的取值范围是)3,3(-.…………………………12分方法二:如图,画出()f x 的图象,2y kx =-的图象过定点(0,2)-.………6分当2y kx =-的图象过点(1,1)时,2y kx =-的图象与()f x 的图象有交点,此时21,k -=得k =3.………8分当2y kx =-的图象过点(1,1)-时,2y kx =-的图象与()f x 的图象有交点,此时21,k --=得 3.k =-………10分由图可得,k 的取值范围为(3,3).-………12分20.解:(1)依题可设,kx y =1,将8.0,81==y x 代入,解得x y 1.01=…………………………2分又因为xxy +=52002所以5200)100(1.021++-=+=x x x y y y …………………………4分故1000,52001.010<<++-=x x x x y …………5分(没有定义域的扣1分)(3)51000)5(2005.0)5(1.01052001.010+-++++-=++-=x x x x x x y ]51000)5(1.0[5.210+++-=x x ………………………7分51000)5(1.025.210+∙+-≤x x 5.1951025.210=⨯-=………………………9分当且仅当51000)5(1.0+=+x x 时,等号成立此时95=x ………………………10分答:分配给发展特色产业项目资金为95百万元,分配给生态治理项目资金为5百万元时,可使收益总和达到最大,最大值是195.5百万元.………………………12分21.解(1)依题意有()()0f x f x +-=即22log log 011x m x m x x +-++=+-+……………2分2221log 11m x -∴=-,所以22111m x m -=-∴=±……………4分若1,()0m f x ==)1-≠x (为非奇非偶函数,故舍去……………5分1m ∴=-……………6分(2)令12()111x g x x x -==-++,则)(x g y =在区间173,15⎡⎤--⎢⎥⎣⎦上单调递增故17(3)2,(1615g g -=-=,()f x ∴的值域为[]1,4…………………………………8分又因为⎦⎤⎢⎣⎡--∈∀1517,3,21x x 12)()(21-<-c x f x f 恒成立213c ∴->,……………………………………………10分213c ∴->或213c -<-解得21c c ><-或所以实数c 的取值范围为(,1)(2,)-∞-+∞ .……………12分22.解:(1)当0a =时,21()32f x x =-+,22()3122f x x x =-+……………1分由22323122x x x -+>-+,得02x <<,由21232322+-≤+-x x x ,得20≥≤x x 或⎪⎩⎪⎨⎧<+-≥+-=∴2,232,2123)(22x x x x x x f ………………………………………4分故函数()x f 的单调递减区间为[]0,2(注意开区间也可以)……………5分(2)令)()(21x f x f =,得2222363236(2)3122x ax a x a x a a -+-+=-++++,得x a =或2x a =+2222363236(2)3122x ax a x a x a a -+-+>-++++得2a x a <<+2222363236(2)3122x ax a x a x a a -+-+<-++++得x a <或2x a >+222236(2)3122,2()3632,2x a x a a x a f x x ax a x a ⎧-++++≥+⎪∴=⎨-+-+<+⎪⎩……………………………8分121a a ≥-∴+≥ ,又因为函数2363)(221+-+-=a ax x x f 关于直线x a =对称,故⎪⎪⎩⎪⎪⎨⎧<≤--+-≥+-=⎪⎪⎩⎪⎪⎨⎧<≤-≥==211,16321,23211),1(21),0()()(22min a a a a a a f a f a g x f 所以45)21()(max ==g a g ……………………………10分令x t 2=,由]1,0[∈x ,得]2,1[∈t ,由[]1,0,1a x ∀≥-∃∈,有2()4224x x g a m +≤-++成立可知45)(424],2,1[max 2=≥++-∈∃a g m t t t 故45)424(max 2≥++-m t t ……………………………11分又1=t 时,mm t t 21)424(max 2+=++-所以4521≥+m ,解得81≥m ……………………………12分。

湖北省四校2024-2025学年高一上学期期中考试数学试题(含答案)

湖北省四校2024-2025学年高一上学期期中考试数学试题(含答案)

2024-2025学年上学期高一期中考试数学试题注意事项:1.答卷前,考生务必将姓名、准考证号等在答卷上填写清楚2.选择题答案用2B 铅笔在答题卷把对应题目的答案标号涂黑,非选择题用0.5mm 黑色签字笔在每题对应的答题区内做答,答在试卷上无效。

第Ⅰ卷(选择题共58分)一、单选题:本题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列说法正确的有( )A .10以内的质数组成的集合是B .与是同一个集合C :方程的解集是D .集合中的元素是的三边长,则一定不是等腰三角形2.命题:p :,的否定为( )A .,B .,C .,D .,3.已知函数的定义域为,则函数的定义域为( )A .B .C .D .4下列函数中,既是奇函数,又在区间上是减函数的是( )A .B .C .D .5下列说法正确的是( )A .若,则B .若a ,b ,,则C .若,则D .若,,则6.不等式的一个必要不充分条件是( )A .B .C .D .7已知,,且恒成立,则实数m 的取值范围是( )A .B .C .D .{}0,2,3,5,7∅{}02210xx -+={}1,1{},,M a b c =ABC ∆ABC ∆x ∀∈R 0x x +≥x ∃∈R 0x x +≥x ∃∈R 0x x +<x ∃∈R 0x x +≤x ∀∈R 0x x +<()f x []0,1()1f x +[]0,1[]1,0-{}0[]1,2()0,+∞y x=3y x =2y x =3y x=-22acbc >a b>()0,m ∈+∞b b m a a m+<+a b >11a b<a b >x y >ax by>22530x x --<132x -<<16x -<<102x -<<132x <<0a >0b >211a b+=a b m +≥(,3-∞(],6-∞(,3-∞+(],7-∞8.今有一台坏天平,两臂长不等,其余均精确,有人要用它称物体的质量,他将物体放在左右托盘各称一次,记两次称量结果分别为a ,b ,设物体的真实质量为G ,则( )A .B .C .D二、选择题:本题共3小题,每小题6分,共18分。

上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)

上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)

2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题(第1-6题每題4分,第7-12题每题5分,满分54分)1.若,,则______.2.不等式的解集是______.3.已知,则______.4.不等式“”是“”______的条件.5.已知集合,集合,若集合M 满足,则这样的集合M 共有______个.6.已知,那么等于______.7.已知,,则用m ,n 表示______.8.若关于x 的不等式恰有两个整数解,则a 的取值范围是______.9.命题“任意,为真命题,则实数a 的取值范围是______.10.碳14是透过宇宙射线撞击空气中的氨14原子所产生.碳14原子经过衰变转变为氨原子.由于其半衰期达5730年,经常用于考古年代鉴定,半衰期(Half-life )是指放射性元素的原子核有半数发生衰变时所需要的时间,对北京人遗址中某块化石鉴定时,碳14含量约为原来的1%,则这块化石距今约为______万年.(四舍五入到0.1万年)11.已知,,,,,若且,,中各元素的和为256,则集合______.12.已知实数a ,b 满足,且,则的最小值为______.二、单选题(本大题共4题,满分20分)13.已知集合,,则( )A .B .C .D .14.关于x 的不等式的解集是,那么()A .1B .C .12D .{}|31A x x =-≥{}|15B x x =<<A B = 304x x -≤+12510a b ==11a b +=23x x ≤|2|1x -<{}2,3,5,8A ={}2,3,5,8,13,21B =A M B ⊂⊆()223350x x x -+=>1133x x -+9log 5m =3log 7n =35log 9=()22120x a x a -++<x ∈R ()()222240a x a x -+--<β14235{,,,,}A a a a a a =4222221235{,,,},B a a a a a =51234a a a a a <<<<i a ∈Z 1,2,3,4,5i ={}14,B a a A = 1410a a +=22a >A B A =11a b -<<<2a b +=1311a ab ++-4|,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}|14Q x x =-≤≤P Q = {}1,2,4{}0,1,3{}|03x x ≤≤{}|14x x -≤≤2x ax b ≤-{}4log a b =344315.若,,则下列不等式中一定成立的是()A .B .C .D .16.定义集合运算;将称为集合A 与集合B 的对称差,命题甲::命题乙:则下列说法正确的是( )A .甲乙都是真命题B .只有甲是真命题C .只有乙是真命题D ,甲乙都不是真命题三、解答题(本大题共有5题,满分76分)17.已知集合,,若,,则实数a 、b 、c 的值为.18.设关于x 的方程的两个实根分别是,.(1)求实数p 的取值范围;(2)求的取值范围.19.近几年来,“盲盒文化”广为流行,这种文化已经在中国落地生根,并发展处具有中国特色的盲盒经济,某盲盒生产及销售公司今年初用98万购进一批盲盒生产线,每年可有50万的总收入,已知生产此盲盒x 年(x 为正整数)所用的各种费用总计为万元(1)该公司第几年首次盈利(总收入超过总支出,今年为第一年)?(2)该公司第几年年平均利润最大,最大是多少?20.某天数学课上,你突然惊醒,发现黑板上有如下内容:(1)老师请你模仿例题,研究,上的最小值;(提示:,当且仅当时,等号成立);(2)研究,上的最小值;(3)当时,求,的最小值.21.已知有限集,如果A 中的元素满足,就称A 为“完美集”.x a m -<y a n -<2x y m -<2x y n -<x y n m-<-x y n m -<+{}|A B x x A x B -=∈∉且()()A B A B B A ∆=-- ()()()A B C A B A C ∆=∆ △()()()A B C A B A C ∆=∆ {}2|0A x x ax b =++={}2|150B x x cx =++={}3,5A B = {}3A B = 22lg lg 30x x p -+=αβlog log βαβα+2210x x +44x x -()0,x ∈+∞a b c d +++≥a b c d ===3139x x -()0,x ∈+∞0a >3x ax -()0,x ∈+∞{}()12,,2,,n A a a a n n ⋅⋅⋅=≥∈N ()1,2,,i a i n =⋅⋅⋅1212n n a a a a a a ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯(1)判断:集合是否是“完美集”并说明理由:(2)、是两个不同的正数,且是“完美集”,求证:、至少有一个大于2;(3)若为正整数,求:“完美集”A .2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题1.【答案】【解析】由题意知,,所以.2.【答案】【解析】,解得或,所以不等式的解集为.3.【答案】【解析】若,可得,,.4.【答案】必要不充分【解析】,,由于是的真子集,所以“”是“”的必要不充分条件.5.【答案】3【解析】因为集合,所以集合M 中包含2,3,5,8且至少包含13,21中的一个元素,所以或或,所以满足条件的M 个数为3.6.【解析】由,因,故,即得,.7.【答案】【解析】由,,可得,,又由{11---+1a 2a {}12,a a 1a 2a i a ()1,4(),4A =-∞()1,4A B = ()[),43,-∞-+∞ ()()34030440x x x x x -+≤⎧-⎪≤⇔⎨++≠⎪⎩4x <-3x ≥()[),43,-∞-+∞ 1-12510b a ==2log 10a =-5log 10b =-()521111lg 5lg 2lg101log 10log 10a b ⎛⎫+=-+=-+=-=- ⎪⎝⎭{}{}23|0|3x x x x x ≤=≤≤{}{}3|21|1x x x x -<=<<{}|13x x <<{}3|0x x ≤≤23x x ≤21x -<A M B ⊂⊆{}2,3,5,8,13M ={}2,3,5,8,21{}2,3,5,8,13,212112233332527x x x x --⎛⎪+=++⎫⎝⎭+ ==0x >11330x x -+>1133x x -+=22m n+9log 5m =3log 7n =31log 52m =3log 7n =8.【答案】【解析】令,解得或.当,即时,不等式,解得,则不等式中的两个整数解为2和3,有,解得;当,即时,不等式无解,所以不符合题意;当,即时,不等式解得,则不等式中的两个整数解为0和,有,解得.综上,a 的取值范围是9.【答案】【解析】因为“任意,”为真命题,所以不等式在上恒成立,当时,,显然成立,当时,有,解得,综上所述,实数a 的取值范围是.10.【答案】3.8【解析】设第n 个半衰期结束时,碳14含为,由题意可得,第一个半衰期结束时,碳14含量为,第二个半衰期结束时,碳14含量为;以此类推,为以首项,公比为的等比数列,所以第n 个半衰期结束时,碳14含量为,335333log 922log 9log 35log 5log 72m n===++3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或()22120x a x a -++=1x =2x a =21a >12a >()22120x a x a -++<12x a <<324a <≤322a <≤21a =12a =()22120x a x a -++<12a =21a <12a <()22120x a x a -++<21a x <<1-221a -≤<-112a -≤<-3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或(]2,2-x ∈R ()()222240a x a x -+--<()()222240a x a x -+--<R 2a =40-<2a ≠()()220421620a a a -<⎧⎪⎨∆=-+-<⎪⎩22a -<<(]2,2-n a 112a =214a ={}n a 112a =12q =12n n a ⎛⎫= ⎪⎝⎭令,解得所以这块化石距今约为年,即约为3.8万年:11.【答案】【解析】由,且,得到只可能,即或0,当时,,而,故舍去,则,又,∴,且,∴或,①若时,,不合题意;②若时,此时,,因,从而,又,则,当时,无整数解,当时,,所以,综上,12.【解析】因为,所以,,因为,所以,由,所以所以,11%2n n a ⎛⎫== ⎪⎝⎭2212lg102log 10 6.6410.301lg 2n ---===≈-5730 6.6438047.2⨯={}1,3,5,9,11{}14,A B a a = 12345a a aa a <<<<211a a =1a =11a =0410a ={}14,A B a a = =Z 1a =11410a a +=49a =()24923i a a i ==≤≤23a =33a =33a =22a =23a ={}531,3,,9,A a a ={}22531,9,,81,B a a =22353513981256a a a a +++++++=2255331620a a a a +++-=234a a a <<339a <<3a =4,6,7,85a 35a =511a ={}1,3,5,9,11A ={}1,3,5,9,11A =1-11a b -<<<10a +>10b ->2a b +=()()112a b ++-=2a b +=()32131133111111b a a b a b a b -+=+=+-+-+-+-()()13113311311211a b a b a b ⎡⎤⎢-+-=+++--⎡⎤⎣⎦+-+⎥⎣⎦()31111133432312112a b a b ⎛+- =+++-≥⎝⎛⎫ ⎪⎝+-=+-=- +⎭-当且仅当,即,二、单选题13.【答案】B 【解析】若,则是4的正因数,而4的正因数有1,2,4,所以,因为,所以,故选:B .14.【答案】D【解析】即,因为解集为,则根据韦达定理知,即,则故选:D .15.【答案】D 【解析】运用绝对值三角不等式,由于,,运用不等式性质得到故,故选:D .16.【答案】B【解析】对于甲,,故命题甲正确;对于乙,如图所示:所以,,故命题乙不正确三、解答题17.【答案】,,()31111a b a b +-=+-2a =-+4b =-41y x =+y ∈N 1x +{}4|,0,1,31P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N {}|14Q x x =-≤≤{}0,1,3P Q = 2x ax b ≤-20x ax b -+≤{}42424a b =⨯⎧⎨=⎩816a b =⎧⎨=⎩32844log log 16log 23a b ===x y x a a y x a a y -=--≤-++-x a m -<y a n -<x a a y m n-+-<+x y m n -<+()()()()A B C A B B C B C A B C A B C ∆=-=- ()()()()()()A B A C A B A C A B A C =-=∆ ()()()A B C A B A C ∆≠∆ ()A B C ∆ ()()A B A C ∆ 6a =-9b =8c =-【解析】因为,所以,所以,得,所以,所以,即有且只有一个实根,所以,,解得,,综上可得,,,.18.【答案】(1);(2)【解析】(1)因为,即,设,则关于t 的方程:的两根为和,所以,解得.(2)由韦达定理,得,所以因为且,所以或,所以或,所以的取值范围为19.【答案】(1)第3年:(2)第7年平均利润最大,为12万元【解析】(1)设利润为y ,则,由整理得,,解得,由于,所以,所以第3年首次盈利.(2)首先,由(1)得平均利润万元,{}3AB = 3B ∈93150c ++=8c =-{}{}28150|3,5B x x x =-+=={}3A =20x ax b ++=3x =33a +=-33b ⨯=6a =-9b =6a =-9b =8c =-1,3⎛⎤-∞ ⎥⎝⎦()[),22,-∞-+∞ 22lg lg 30x x p -+=2lg 2lg 30x x p -+=lg t x =2230t t p -+=lg αlg β()22120p ∆=-≥-13p ≤lg lg 2lg lg 3pαβαβ+=⎧⎨=⎩22lg lg lg lg log log lg lg lg lg αββαβαβααβαβ++=+=2(lg lg )2lg lg 4642lg lg 33p p pβααβαβ+--===-31p ≤30p ≠443p ≥403p<4223p -≥4223p-<-log log αββα+()[),22,-∞-+∞ ()()22*509821024098y x x x x x x =-++=-+-∈N 2240980x x -+->220490x x -+<1010x -<<x *∈N {}|317x x x *∈∈≤≤N {}|317x x x *∈∈≤≤N 4924024012y x x x ⎛⎫=-++≤-⨯+= ⎪⎝⎭当且仅当,万元时等号成立,综上,第7年,平均利润最大,为12万元20.【答案】(1):(2);(3)【解析】(1)因为,利用,于是,,当且仅当时,取得最小值.(2)因为,利用,得到,于是,,当且仅当时,取得最小值.(3)因为利用,得到,于是,,当且仅当时,取得最小值21.【解析】(1)由,,则集合是“完美集”.(2)若、是两个不同的正数,且是“完美集”,设,根据根和系数的关系知,和相当于的两根,由,解得或(舍去),所以,又,均为正数所以、至少有一个大于2.(3)不妨设A中,49x x=7x =3-6-0x >a b c d +++≥41114x x ++≥+444111434433x x x x x x -=+++--≥--=-1x =3-0x >a b c ++≥313339x x ++≥331133363363699x x x x x x -=++--≥--=-3x =6-0x >a b c ++≥3x ax +≥33x ax x ax -=-≥x =((112-+-+=-(112--=-{11--+1a 2a {}12,a a 12120a a a a t +=⋅=>1a 2a 20x tx t -+=240t t ∆=->4t >0t <124a a ⋅>1a 2a 1a 2a 312n a a a a <<<⋅⋅⋅<由,得,当时,即有,又为正整数,所以,于是,则无解,即不存在满足条件的“完美集”;当时,,故只能,,求得,于是“完美集”A 只有一个,为.当时,由,即有,而,又,因此,故矛盾,所以当时不存在完美集A ,综上知,“完美集”A 为1212n n n a a a a a n a a ⋅⋅⋅=++⋅⋅<⋅+121n n a a a -⋅⋅<⋅2n =12a <i a 11a =2211a a +=⨯2a 3n =123a a <11a =2a =23a =3{}1,2,34n ≥()1211231n a a a n n -⋅⋅⋅≥⨯⨯⨯⋅⋅⋅⨯-()1231n n n ≥⨯⨯⨯⋅⋅⋅⨯-()()()221242220n n n n n n ---=-+-=--+<()()()121231n n n n --≤⨯⨯⨯⋅⋅⋅⨯-()1231n n n <⨯⨯⨯⋅⋅⋅⨯-4n ≥{}1,2,3。

四川省成都市2023-2024学年高一上学期期中数学试题(含答案)

四川省成都市2023-2024学年高一上学期期中数学试题(含答案)

成都2023-2024学年度上期高2026届半期考试数学试题(答案在最后)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.全称量词命题“5,lg 4x x x ∀∈+≠R ”的否定是()A.x ∃∈R ,5lg 4x x +=B.x ∀∈R ,5lg 4x x +=C.x ∃∈R ,5lg 4x x +≠D.x ∀∉R ,5lg 4x x +≠【答案】A 【解析】【分析】全称量词命题的否定是存在量词命题.【详解】“5,lg 4x x x ∀∈+≠R ”的否定是“x ∃∈R ,5lg 4x x +=”.故选:A .2.下列命题为真命题的是()A.若33a bc c<,则a b < B.若a b <,则33<ac bc C.若a b <,c d <,则a c b d -<- D.若a c b d -<-,c d <,则a c b d+<+【答案】D 【解析】【分析】举反例可判断选项A 、B 、C ,由不等式的性质可判断选项D.【详解】对于选项A ,当1c =-时,若33a bc c<,则a b >,与a b <矛盾,故选项A 错误;对于选项B ,当0c =时,若a b <,则330ac bc ==,与33<ac bc 矛盾,故选项B 错误;对于选项C ,当56a b ==,,10c d =-=,,满足a b <,c d <,但a c b d -=-,这与a c b d -<-矛盾,故选项C 错误;对于选项D ,因为a c b d -<-,c d <,所以由不等式性质可得:()()a c c b d d -+<-+,即a b <.因为a b <,c d <,由不等式性质可得:a c b d +<+,故选项D 正确.故选:D.3.设函数()ln 26f x x x x =+-,用二分法求方程ln 260x x x +-=在()2,3x ∈内的近似解的过程中,计算得(2)0,(2.5)0,(2.25)0f f f <>>,则下列必有方程的根的区间为()A.()2.5,3 B.()2.25,2.5 C.()2,2.25 D.不能确定【答案】C 【解析】【分析】利用零点存在性定理及二分法的相关知识即可判断.【详解】显然函数()ln 26f x x x x =+-在[]2,3x ∈上是连续不断的曲线,由于(2)0,(2.25)0f f <>,所以()()2· 2.250f f <,由零点存在性定理可得:()ln 26f x x x x =+-的零点所在区间为()2,2.25,所以方程ln 260x x x +-=在区间()2,2.25内一定有根.故选:C.4.函数2||3()33x x f x =-的图象大致为()A. B. C. D.【答案】D 【解析】【分析】根据函数的奇偶性、定义域、正负性,结合指数函数的单调性进行判断即可.【详解】由33011xx x -≠⇒≠⇒≠±,所以该函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,显然关于原点对称,因为()()()22||||333333x x x x f x f x ---===--,所以该函数是偶函数,图象关于纵轴对称,故排除选项AC ,当1x >时,()33=3300xxf x --<⇒<,排除选项B ,故选:D5.若0a >,0b >,则“221a b +≤”是“a b +≤”的()A .充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据不等式之间的关系,利用充分条件和必要条件的定义进行判断即可得到结论.【详解】当0a >,0b >,且221a b +≤时,()()22222222a b a b ab a b +=++≤+≤,当且仅当2a b ==时等号成立,所以a b +≤,充分性成立;1a =,14b =,满足0a >,0b >且a b +≤,此时221a b +>,必要性不成立.则“221a b +≤”是“a b +≤”的充分不必要条件.故选:A6.已知当生物死亡后,它机体内原有的碳14含量y 与死亡年数x 的关系为573012x y ⎛⎫= ⎪⎝⎭.不久前,考古学家在某遗址中提取了数百份不同类型的样品,包括木炭、骨头、陶器等,得到了一系列的碳14测年数据,发现生物组织内碳14的含量是死亡前的34.则可以推断,该遗址距离今天大约多少年(参考数据ln 20.7≈,ln 3 1.1≈)()A.2355B.2455C.2555D.2655【答案】B 【解析】【分析】设该遗址距离今天大约0x 年,则0573005730132412x ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,再根据对数的运算性质及换底公式计算即可.【详解】设该遗址距离今天大约0x 年,则0573005730132412x ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,即057301324x ⎛⎫= ⎪⎝⎭,所以01222234ln 3 1.1log log log 4log 322573043ln 20.7x ===-=-≈-,所以0115730224557x ⎛⎫≈⨯-= ⎪⎝⎭,即该遗址距离今天大约2455年.故选:B .7.已知函数2295,1()1,1a x ax x f x xx -⎧-+≤=⎨+>⎩,是R 上的减函数,则a 的取值范围是()A.92,2⎡⎫⎪⎢⎣⎭B.94,2⎡⎫⎪⎢⎣⎭C.[]2,4 D.(]9,2,2⎛⎤-∞+∞⎥⎝⎦【答案】C 【解析】【分析】根据函数的单调性列不等式,由此求得a 的取值范围.【详解】依题意,()f x 在R 上单调递减,所以2291229011511a aa a -⎧≥⎪⎪-<⎨⎪-⨯+≥+⎪⎩,解得24a ≤≤,所以a 的取值范围是[]2,4故选:C8.设358log 2,log 3,log 5a b c ===,则()A.a c b <<B.a b c<< C.b<c<aD.c<a<b【答案】B 【解析】【分析】利用中间值比较大小得到23<a ,2334b <<,34c >,从而得到答案.【详解】333log 22log 20o 33938l g a --=-=<,故23<a ,555log 27log 2522log 30333b --=-=>,555log 81log 12533log 30444b --=-=<,故2334b <<,888log 5log 33log 5054246124c --=-=>,34c >,故a b c <<故选:B二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.任何集合都是它自身的真子集B.集合{},,,a b c d 共有16个子集C.集合{}{}42,Z 42,Zx x n n x x n n =+∈==-∈D.集合{}{}22|1,|22,x x a a x x a a a ++=+∈==-+∈N N 【答案】BC 【解析】【分析】根据真子集的性质、子集个数公式,结合集合的描述法逐一判断即可.【详解】A :根据真子集的定义可知:任何集合都不是它自身的真子集,所以本选项说法不正确;B :集合{},,,a b c d 中有四个元素,所以它的子集个数为42=16,所以本选项说法正确;C :因为{}(){}42,Z 412,Z x x n n x x n n =-∈==-+∈,所以{}42,Z x x n n =+∈与{}42,Z x x n n =-∈均表示4的倍数与2的和所组成的集合,所以{}{}42,Z 42,Z x x n n x x n n =+∈==-∈,因此本选项说法正确;D :对于{}2|22,x x a a a +=-+∈N ,当1a =时,2221x a a =-+=,即{}21|22,x x a a a +∈=-+∈N ,但{}21|1,x x a a +∉=+∈N ,所以两个集合不相等,因此本选项说法不正确.故选:BC.10.已知正实数x ,y 满足1x y +=,则下列不等式成立的有()A.22x y +≥ B.14≤xy C.124x x y+≥ D.1174xy xy +≥【答案】ABD【解析】【分析】选项A 用基本不等式性质判断即可;选项B 用基本不等式的推论即可;选项C 将1x y +=带入,再用基本不等式判断;D 利用对勾函数的单调性判断.【详解】对A :因为x ,y为正实数22x y +≥==,当且仅当12x y ==时取等号,所以A 正确;对B :因为2211224x y xy +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当12x y ==时取等号,所以B 正确;对C:因为1222111x x y x y x x y x y x y ++=+=++≥+=+2y x x y =时取等号,所以C 错误;对D :由B 选项可知14≤xy ,令xy t =,则104t <≤,11xy t xy t +=+()1104f t t t t ⎛⎫=+<≤ ⎪⎝⎭因为对勾函数在104t <≤上是减函数,所以()11744f t f ⎛⎫≥= ⎪⎝⎭,所以D 正确;故选:ABD 11.已知()1121xa f x +=+-是奇函数,则()A.1a = B.()f x 在()(),00,x ∈-∞⋃+∞上单调递减C.()f x 的值域为()(),11,-∞-⋃+∞ D.()()3log 2f x f >的解集为()0,9x ∈【答案】AC 【解析】【分析】由奇函数的定义可判定A 项,利用指数函数的性质可判定B 项,进而可求值域判定C 项,可结合对数函数的性质解不等式判定D 项.【详解】因为函数()1121xa f x +=+-是奇函数,易知2100x x -≠⇒≠,则有()()()()()11211112210212121x x x xa a a f x f x a -+-++-+=+++=+=-+=---,解之得1a =,故A 正确;则()2121xf x =+-,易知当0210x x y >⇒=->且有21xy =-单调递增,故此时()2121x f x =+-单调递减,又由奇函数的性质可知0x <时()f x 也是单调递减,故()f x 在(),0∞-和()0,∞+上单调递减,故B 错误;由上可知0x >时,222100112121xx x ->⇒>⇒+>--,即此时()1f x >,由奇函数的性质可知0x <时,()1f x <-,则函数()f x 的值域为()(),11,-∞-⋃+∞,故C 正确;由上可知()()()33log 20log 21,9f x f x x >⇒<<⇒∈,故D 错误.故选:AC12.已知定义在(0,)+∞上的函数()f x 在区间()0,6上满足()()6f x f x -=,当(]0,3x ∈时,()13log f x x =;当[)6,x ∈+∞时,()21448f x x x =-+-.若直线y m =与函数()f x 的图象有6个不同的交点,各交点的横坐标为()1,2,3,4,5,6i x i =,且123456x x x x x x <<<<<,则下列结论正确的是()A.122x x +>B.()5648,49x x ∈C.()()34661x x --> D.()()()()1122660,26x f x x f x x f x +++∈⎡⎤⎣⎦ 【答案】ABD 【解析】【分析】先利用函数的对称性和解析式作出函数图象,分别求出直线y m =与函数()f x 的图象的交点的横坐标的范围,运用基本不等式和二次函数的值域依次检验选项即得.【详解】如图,依题意可得13132log ,03()log (6),361448,6x x f x x x x x x ⎧<≤⎪⎪⎪⎪=-<<⎨⎪⎪-+-≥⎪⎪⎩,作出函数()y f x =在(0,)+∞上的图象,设直线1y =与()y f x =的图象分别交于,,,A B C D 四点,显然有1(,1),(3,1),(7,1)3A B D ,由()()6f x f x -=知函数()f x 在区间()0,6上关于直线3x =对称,故可得:17(,1)3C .对于A 选项,由12()()f x f x =可得121133x x <<<<,111233log log x x =-,化简得121=x x ,由基本不等式得:122x x +>=,故A 项正确;对于B 选项,当[)6,x ∈+∞时,由()21448f x x x =-+-可知其对称轴为直线7x =,故562714,x x +=⨯=又因56678x x <<<<,故()25655551414x x x x x x =-=-+25(7)+49x =--在区间()6,7上为增函数,则有564849x x <<,故B 项正确;对于C 选项,由34()()f x f x =可得34356x x <<<<,131433log (6)log (6)x x -=--,化简得1343log [(6)(6)]0x x --=,故有()()34661x x --=,即C 项错误;对于D 选项,依题意,1236()()()(),f x f x f x f x m ===== 且01m <<,故()()()112266126()x f x x f x x f x x x x m +++=+++ ,又因函数()f x 在区间()0,6上关于直线3x =对称,故1423236,x x x x +=+=⨯=又由B 项分析知5614,x x +=于是126661426,x x x +++=++= 故得:()()()()1122660,26x f x x f x x f x +++∈⎡⎤⎣⎦ ,故D 项正确.故选:ABD.【点睛】关键点点睛:本题考查分段函数与直线y m =的交点横坐标的范围界定,关键在于充分利用绝对值函数与对称函数的图象特征进行作图,运用数形结合的思想进行结论检验.三、填空题:本大题共4小题,每小题5分,共20分.13.若定义在[]4,4-上的奇函数()f x 的部分图象如图所示,则()f x 的单调增区间为______.【答案】[]2,4和[]4,2--【解析】【分析】直接根据图象结合奇函数性质得到答案.【详解】根据图象,0x >时函数在[]2,4上单调递增,函数为奇函数,故函数在[]4,2--上也单调递增.故答案为:[]2,4和[]4,2--.14.若()()2log ,0215,0xx x f x f x x >⎧=⎨++≤⎩,则(1)(7)f f --=______.【答案】32【解析】【分析】直接计算得到答案.【详解】()()2log ,0215,0x x x f x f x x >⎧=⎨++≤⎩,则()()2221113(1)(7)147log 14log 7log 22222f f f f --=+-=+-=+=.故答案为:32.15.石室中学“跳蚤市场”活动即将开启,学生们在该活动中的商品所卖款项将用来支持慈善事业.为了在这次活动中最大限度地筹集资金,某班进行了前期调查.若商品进货价每件10元,当售卖价格(每件x 元)在1025x <≤时,本次活动售出的件数()42105P x =-,若想在本次活动中筹集的资金最多,则售卖价格每件应定为______元.【答案】15【解析】【分析】结合已知条件,求出利润()f x 的解析式,然后结合换元法和基本不等式即可求解.【详解】由题意可知,利润4210(10)()(5)x f x x -=-,1025x <≤,不妨令10(0,15]t x =-∈,则利润44421010()50025(5)10t f x y t t t ===≤+++,当且仅当25t t=时,即5t =时,即15x =时,不等式取等号,故销售价格每件应定为15元.故答案为:15.16.我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.那么,函数()323f x x x x =--图象的对称中心是______.【答案】()1,3-【解析】【分析】计算出()()b f x a b f x a +-++--()232662622a x a a a b =-+---,得到3266026220a a a a b -=⎧⎨---=⎩,求出13a b =⎧⎨=-⎩,得到对称中心.【详解】()()bf x a b f x a +-++--()()()()()()3232332x a x a x a x a x a x a b =+-+-++-+--+--+-32232232233336333x ax a x a x ax a x a x ax a x a =+++------+-+223632x ax a x a b-+-+--()232662622a x a a a b =-+---,要想函数()y f x a b =+-为奇函数,只需()2326626220a x a a a b -+---=恒成立,即3266026220a a a a b -=⎧⎨---=⎩,解得13a b =⎧⎨=-⎩,故()323f x x x x =--图象的对称中心为()1,3-故答案为:()1,3-四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(1)计算2173ln 383log 210e 22lg 527log 10-⎛⎫-⨯--⎪⎝⎭;(2)已知11224x x-+=,求3322x x -+的值.【答案】(1)0(2)52【解析】【分析】(1)结合指数运算及对数运算性质,换底公式即可求解;(2)考察两式间的内在联系,结合立方和公式即可求解.【详解】(1)21723ln 3833log 2101727e22lg 52()(lg 5lg 2)27log 10864-⎛⎫-⨯--=--+ ⎪⎝⎭1791088--==;(2)由11224x x-+=,则112122()216x x x x --+=++=,则114x x -+=,则3322x x-+()11122141352x x x x --⎛⎫=+-+=⨯= ⎪⎝⎭.18.已知全集R U =,集合5|1,{|16}2A x B x x x ⎧⎫=>=<≤⎨⎬-⎩⎭,{1C x x a =≤-∣或21}x a ≥+.(1)求()U A B ∩ð;(2)若()A B C ⊆ ,求实数a 的取值范围.【答案】(1){31}xx -<≤∣(2)(],2[7,)-∞-+∞ 【解析】【分析】(1)解出分式不等式,求出集合A ,再利用交集和补集的含义即可得到答案;(2)分R C =和R C ≠讨论即可.【小问1详解】{}5310(3)(2)0{32}22x A x x x x x x x x x +⎧⎫⎧⎫=>=>=+->=-<<⎨⎬⎨⎬--⎩⎭⎩⎭∣∣∣∣{16}B x x =<≤∣,{1U B x x ∴=≤∣ð或6}x >,(){31}U A B x x ∴=-<≤ ∣ð.【小问2详解】{36}A B x x =-<≤ ∣,且()A B C ⊆ ,①R C =,1212a a a -≥+⇒≤-,此时满足()A B C ⊆ ,②R C ≠,2a >-,此时213a +>-,则167-≥⇒≥a a ,此时满足()A B C ⊆ ,综上所述,实数a 的取值范围为(],2[7,)-∞-+∞ .19.在“①函数()f x 是偶函数;②函数()f x 是奇函数.”这两个条件中选择一个补充在下列的横线上,并作答问题.注:如果选择多个条件分别解答,按第一个解答计分.已知函数()ln(e )ln(e )f x x k x =++-,且______.(1)求()f x 的解析式;(2)判断()f x 在()0,e 上的单调性,并根据单调性定义证明你的结论.【答案】(1)选择①时,()ln(e )ln(e )f x x x =++-;选择②时,()ln(e )ln(e )f x x x =+--(2)答案见解析【解析】【分析】(1)根据函数的奇偶性的定义求解参数k ,即可得()f x 的解析式;(2)根据函数单调性的定义证明即可得结论.【小问1详解】选择①:函数()ln(e )ln(e )f x x k x =++-的定义域满足e 0e 0x x +>⎧⎨->⎩,解得e e x -<<,故定义域为()e,e -,若函数()f x 是偶函数,所以()()()()ln e ln e f x x k x f x -=-++=,则()()()()ln e ln e ln e ln e x k x x k x -++=++-,则1k =所以()ln(e )ln(e )f x x x =++-;选择②:函数()ln(e )ln(e )f x x k x =++-的定义域满足e 0e 0x x +>⎧⎨->⎩,解得e e x -<<,故定义域为()e,e -,若函数()f x 是奇函数,所以()()()()ln e ln e f x x k x f x -=-++=-,则()()()()ln e ln e ln e ln e x k x x k x -++=-+--,则1k =-所以()ln(e )ln(e )f x x x =+--;【小问2详解】选择①:函数22()ln(e )ln(e )ln(e )f x x x x =++-=-在()0,e 上单调递减.证明:1x ∀,()20,e x ∈,且12x x <,有,有22222221121212(e )(e )()()x x x x x x x x ---=-=+-,由120e x x <<<,得120x x +>,120x x -<,所以1212()()0x x x x +-<,于是222212e e 0x x ->->,所以222221e 01e x x -<<-,所以22222222121221e ()()ln(e )ln(e )ln ln10e xf x f x x x x --=---=<=-,即12()()f x f x >,所以函数22()ln(e )f x x =-在()0,e 上单调递减.选择②:函数e ()ln(e )ln(e )ln e xf x x x x+=+--=-在()0,e 上单调递增.证明:1x ∀,()20,e x ∈,且12x x <,则21211221212121e e (e )(e )(e )(e )2()e e (e )(e )(e )(e )x x x x x x x x x x x x x x +++--+---==------由120e x x <<<,得210x x ->,2e 0x ->,1e 0x ->,所以21212()0(e )(e )x x x x ->--,即2121e e 0e e x x x x ++>>--,于是2211e e 1e e x x x x +->+-,所以2212211211e e e e ()()lnln ln ln10e e e e x x x x f x f x x x x x +++--=-=>=+---,即12()()f x f x <,所以函数e ()lne xf x x+=-在()0,e 上单调递增.20.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的含量变化规律的“散点图"”如图,该函数近似模型如下:()20.43()49.18,02256.26e14.73,2x a x x f x x -⎧-+≤<⎪=⎨⎪⋅+≥⎩,又已知酒后1小时测得酒精含量值为46.18毫克/百毫升,根据上述条件,解答以下问题:(1)当02x ≤<时,确定()f x 的表达式;(2)喝1瓶啤酒后多长时间后才可以驾车?(时间以整分钟计算)(附参考数据:ln527 6.27,ln56268.63,ln14737.29===)【答案】(1)23()12()49.182f x x =--+(2)314分钟后【解析】【分析】(1)根据题中条件,建立方程(1)46.18f =,解出即可;(2)根据题意建立不等式,解出即可.【小问1详解】根据题意知,当02x ≤<时,23()()49.182f x a x =-+,所以23(1)(149.1846.182f a =-+=,解得12a =-,所以当02x ≤<,23()12()49.182f x x =--+.【小问2详解】由题意知,当车辆驾驶人员血液中的酒精含量小于20mg /百毫升时可以驾车,当02x ≤<时,()20f x >,此时2x ≥,由0.456.26e 14.7320x -⋅+<,得0.4 5.27527e56.265626x-<=,两边取自然对数可得,0.4ln 527ln 5626 6.278.36 2.09x -<-=-=-,所以 2.095.2250.4x >=,又5.225小时=313.5分钟,故喝1瓶啤酒314分钟后才可以驾车.21.已知函数12x y a -=-(0a >,且1a ≠)过定点A ,且点A 在函数()()ln 1f x x m =+-,(R)m ∈的图象上.(1)求函数()f x 的解析式;(2)若定义在[]1,2上的函数()()ln 2y f x k x =+-恰有一个零点,求实数k 的取值范围.【答案】(1)()ln 1f x x =-(2)e 2e,42⎛⎤++ ⎥⎝⎦【解析】【分析】(1)把定点A 代入函数()f x 的解析式求出m 的值即可;(2)问题等价于()22e g x x kx =-+在[]1,2上恰有一个零点,根据函数零点的定义,结合二次函数的性质进行求解即可;【小问1详解】函数12x y a -=-(0a >,且1a ≠)过定点()1,1A -,函数()()ln 1f x x m =+-(R)m ∈的图象过点()1,1A -,即()ln 111m +-=-,解得0m =,函数()f x 的解析式为()ln 1f x x =-.【小问2详解】函数()()()ln 2ln 1ln 2y f x k x x k x +--==+-定义在[]1,2上,20k x ->在[]1,2上恒成立,可得4k >,令()()2ln 1ln 2ln 210y x k x kx x =-+--=-=,得22e 0xkx -+=,设()22e g x x kx =-+,函数()()ln 2y f x k x =+-在[]1,2上恰有一个零点,等价于()g x 在[]1,2上恰有一个零点,函数()22e g x x kx =-+图像抛物线开口向上,对称轴14kx =>,若()()12e 0282e 0g k g k ⎧=-+=⎪⎨=-+<⎪⎩,无解,不成立;若()()()()122e 82e 0g g k k ⋅=-+-+<,解得e2e 42k +<<+,满足题意;若()24282e 0k g k ⎧≥⎪⎨⎪=-+=⎩,无解,不成立;若()()12e 0124282e 0g k kg k ⎧=-+<⎪⎪<<⎨⎪=-+=⎪⎩,解得e 42k =+,满足题意.所以实数k 的取值范围为e 2e,42⎛⎤++ ⎥⎝⎦.22.若函数()f x 与()g x 满足:对任意的1x D ∈,总存在唯一的2x D ∈,使()()12f x g x m =成立,则称()f x 是()g x 在区间D 上的“m 阶伴随函数”;对任意的1x D ∈,总存在唯一的2x D ∈,使()()12f x f x m=成立,则称()f x 是区间D 上的“m 阶自伴函数”.(1)判断()22111f x x x =+++是否为区间[]0,4上的“2阶自伴函数”?并说明理由;(2)若函数()32πx f x -=区间1,3b ⎡⎤⎢⎥⎣⎦上的“1阶自伴函数”,求b 的值;(3)若()2214f x x ax a =-+-是()4log (167)g x x =--在区间[0,2]上的“2阶伴随函数”,求实数a 的取值范围.【答案】(1)不是,理由见解析(2)1b =(3)314a ≤≤【解析】【分析】(1)根据给定的定义,取12x =,判断2()1f x =在[]0,4是否有实数解即可;(2)根据给定的定义,当11,3x b ⎡⎤∈⎢⎥⎣⎦时,用1x 表示2x 并判断单调性,求出值域,借助集合的包含关系求解即可;(3)根据()g x 的单调性求解其在区间[0,2]上的值域,进而将问题转化为()f x 在区间[0,2]上的值域是[]4,1--的子集,再结合二次函数的性质,分类讨论即可求解.【小问1详解】假定函数()22111f x x x =+++是区间[]0,4上的“2阶自伴函数”,则对任意的[]10,4x ∈,总存在唯一的[]20,4x ∈,使()()122f x f x =成立,取10x =,1()2f x =,由12()()2f x f x =,得2()1f x =,则()222221111f x x x =++=+,则()()222221110x x +-++=,进而可得()222131024x ⎡⎤+-+=⎢⎣⎦显然此方程无实数解,所以函数()22111f x x x =+++不是区间[]0,4上的“2阶自伴函数”,【小问2详解】函数()32πx f x -=为区间1,3b ⎡⎤⎢⎥⎣⎦上的“1阶自伴函数”,则对任意11,3x b ⎡⎤∈⎢⎥⎣⎦,总存在唯一的21,3x b ⎡⎤∈⎢⎥⎣⎦,使得12()()1f x f x =,即123232ππ1x x --=,进而1243x x +=,得2143x x =-,显然函数2143x x =-在11,3x b ⎡⎤∈⎢⎥⎣⎦上单调递减,且当113x =时,21x =,当1x b =时,243x b =-,因此对1,3b ⎡⎤⎢⎥⎣⎦内的每一个1x ,在4[,1]3b -内有唯一2x 值与之对应,而21,3x b ⎡⎤∈⎢⎥⎣⎦,所以41[,1][,]33b b -⊆,所以14133b b ≥⎧⎪⎨-≥⎪⎩,解得11b b ≥⎧⎨≤⎩,即1b =,所以b 的值是1.【小问3详解】由于41log 67,t x y t =-=分别为定义域内单调递增和单调递减函数,所以函数()4log (167)g x x =--在[0,2]上单调递增,且()()102,22g g =-=-得函数()g x 的值域为12,2⎡⎤--⎢⎥⎣⎦,由函数()2214f x x ax a =-+-是()4log (167)g x x =--在区间[0,2]上的“2阶伴随函数”可知,对任意的1[0x ∈,2],总存在唯一的2[0x ∈,2]时,使得12()()2f x g x =成立,于是[]122()4,1()f xg x =∈--,则()2214f x x ax a =-+-在区间上[0,2]的值域是区间[]4,1--的子集,而函数()2214f x x ax a =-+-图象开口向上,对称轴为x a =,显然(0)14f a =-,()258f a =-,()241f a a a =--+,当0a ≤时,()f x 在[0,2]上单调递增,则min max ()(0)4()(2)1f x f f x f =≥-⎧⎨=≤-⎩,即0144581a a a ≤⎧⎪-≥-⎨⎪-≤-⎩,无解;当2a ≥时,()f x 在[0,2]上单调递减,则min max ()(2)4()(0)1f x f f x f =≥-⎧⎨=≤-⎩,即2584141a a a ≥⎧⎪-≥-⎨⎪-≤-⎩,无解;当02a <<时,()f x 在[0,]a 上单调递减,在[a ,2]上单调递增,则()()4(2)101f a f f ≥-⎧⎪≤-⎨⎪≤-⎩,即202581141144a a a a a <<⎧⎪-≤-⎪⎨-≤-⎪⎪-+-≥-⎩,解得314a ≤≤;综上,a 的取值范围是314a ≤≤.。

辽宁省大连市2023-2024学年高一上学期期中考试数学试题含解析

辽宁省大连市2023-2024学年高一上学期期中考试数学试题含解析

2023-2024学年度上学期期中考试高一年级数学科试卷(答案在最后)注意事项:1.请在答题纸上作答,在试卷上作答无效.2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U =R ,集合{}10,1,2,3,4,5,6A =-,,{}N |4B x x =∈<,则A B = ()A.{}10,1,23-,,B.{}1,23,C .{}0,1,2,3 D.{}10,1,2,3,4,5,6-,2.命题“0x ∀>,2320x x +->”的否定是()A.0x ∃≤,2320x x +-≤B.0x ∃>,2320x x +-≤C.0x ∀≤,2320x x +-> D.0x ∀>,2320x x +-≤3.已知函数(32)f x +的定义域为()0,1,则函数()21f x -的定义域为()A.3,32⎛⎫ ⎪⎝⎭ B.75,33⎛⎫- ⎪⎝⎭C.11,63⎛⎫⎪⎝⎭ D.1,12⎛⎫⎪⎝⎭4.“x ∀∈R ,关于x 的不等式210ax ax -+>恒成立”的一个必要不充分条件是()A.04a ≤<B.04a ≤≤C.04a <≤ D.04a <<5.函数()21x f x x -=的图像为()A. B.C. D.6.已知()f x 是定义在()0,∞+上的函数,()()g x xf x =,则“()f x 为增函数”是“()g x 为增函数”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件7.“若1,22x ⎡⎤∀∈⎢⎥⎣⎦,2310x x λ-+>恒成立”是真命题,则实数λ可能取值是()A. B. C.4 D.58.设函数()(0)2a x f x a a x -=≠+,若()()120232g x f x =-+是奇函数,则()2023f =()A.14- B.15 C.14 D.13-二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.在下列四组函数中,()f x 与()g x 不表示同一函数的是()A.21()1()1,x f x x g x x -=-=+B.()1f x x =+,1,1()1,1x x g x x x +≥-⎧=⎨--<-⎩C.0()1,()(1)f x g x x ==+D.2(),()f x x g x ==10.已知不等式20ax bx c ++>的解集为1,22⎛⎫-⎪⎝⎭,则下列结论正确的是()A.a<0B.0b <C.0c >D.20a b c ++<11.已知函数()y f x =是定义在[0,2]上的增函数,且其图像是连续不断的曲线.若(0)f M =,(2)f N =(0M >,0N >),那么对上述常数,M N ,下列选项正确的是()A.一定存在[0,2]x ∈,使得()2M N f x +=B.一定存在[0,2]x ∈,使得()f x =C.不一定存在[0,2]x ∈,使得2()11f x M N=+D.不一定存在[0,2]x ∈,使得()f x =12.已知函数221()1x x f x x x +=++,则下列结论正确的是()A.()f x 为奇函数B.()f x 值域为(,2][2,)-∞-+∞ C.若12120,0,x x x x >>≠,且12()()f x f x =,则122x x +>D.当0x >时,恒有5()2f x x ≥成立第Ⅱ卷三、填空题:本大题共4小题,每小题5分,共20分.13.设{}50A x x =-=,{}10B x ax =-=,若A B B = ,则实数a 的值为______.14.若函数()3,11,1x x f x ax x +≥⎧=⎨+<⎩在R 上为单调函数,则实数a 的取值范围为_______.15.已知正数,x y 满足2(43)3x y x y +=,则23x y +的最小值为____________.16.若定义在()(),00,∞-+∞U 上的函数()f x 同时满足:①()f x 为偶函数;②对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()222121210x f x x f x x x -<-,则称函数()f x 具有性质P .已知函数()f x 具有性质P ,则不等式()()2242(2)f x f x x --<+的解集为_________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知全集为R ,{}2R 2320A x x x =-->ð.(1)求集合A ;(2)设不等式220x ax a -+≤的解集为C ,若C ≠∅且“x C ∈”是“x A ∈”的充分不必要条件,试求实数a 的取值范围.18.设2()(1)f x ax a x a =+++.(1)若不等式()0f x ≥有实数解,试求实数a 的取值范围;(2)当0a >时,试解关于x 的不等式()1f x a <-.19.已知函数()22x x m f x x-+=.(1)若()()2g x f x =+,判断()g x 的奇偶性并加以证明.(2)若1[,1]4x ∈时,不等式()22f x m >-恒成立,试求实数m 的取值范围.20.已知函数()f x x m =+,()22232m g x x mx m =-++-,(1)若()212m g x <+的解集为()1,a ,求a 的值;(2)试问是否存在实数m ,使得对于12[0,1],[1,2]x x ∀∈∀∈时,不等式12()()f x g x >恒成立?若存在,求出实数m 的取值范围;若不存在,请说明理由.21.已知函数()2(2)4f x x a x =--+,()232x b g x ax +-=+.(1)若函数()f x 在2,3b b b ⎡⎤---⎣⎦上为偶函数,试求实数b 的值;(2)在(1)的条件下,当()g x 的定义域为()1,1-时,解答以下两个问题:①判断函数()g x 在定义域上的单调性并加以证明;②若()()120g t g t -+<,试求实数t 的取值范围.22.设函数()f x 的定义域为D ,对于区间[],I a b =(a b <,I D ⊆),若满足以下两条性质之一,则称I为()f x 的一个“美好区间”.性质①:对任意x I ∈,有()f x I ∈;性质②:对任意x I ∈,有()f x I ∉.(1)判断并证明区间[]1,2是否为函数3y x =-的“美好区间”;(2)若[]0,m (0m >)是函数()22f x x x =-+的“美好区间”,试求实数m 的取值范围;(3)已知定义在R 上,且图像连续不断的函数()f x 满足:对任意,R a b ∈(a b <),有()()f a f b b a ->-.求证:()f x 存在“美好区间”,且存在0R x ∈,使得0x 不属于()f x 的任意一个“美好区间”.2023-2024学年度上学期期中考试高一年级数学科试卷注意事项:1.请在答题纸上作答,在试卷上作答无效.2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U =R ,集合{}10,1,2,3,4,5,6A =-,,{}N |4B x x =∈<,则A B = ()A.{}10,1,23-,, B.{}1,23,C.{}0,1,2,3 D.{}10,1,2,3,4,5,6-,【答案】C【解析】【分析】确定{}0,1,2,3B =,再计算交集得到答案.【详解】{}{}N |40,1,2,3B x x =∈<=,{}10,1,2,3,4,5,6A =-,,故{}0,1,2,3A B = .故选:C.2.命题“0x ∀>,2320x x +->”的否定是()A.0x ∃≤,2320x x +-≤ B.0x ∃>,2320x x +-≤C.0x ∀≤,2320x x +-> D.0x ∀>,2320x x +-≤【答案】B【解析】【分析】根据全称量词命题的否定为特称量词命题判断即可.【详解】命题“0x ∀>,2320x x +->”为全称量词命题,其否定为:0x ∃>,2320x x +-≤.故选:B3.已知函数(32)f x +的定义域为()0,1,则函数()21f x -的定义域为()A .3,32⎛⎫ ⎪⎝⎭ B.75,33⎛⎫- ⎪⎝⎭C.11,63⎛⎫ ⎪⎝⎭D.1,12⎛⎫ ⎪⎝⎭【答案】A【解析】【分析】由(32)f x +的定义域求出32x +,再令2215x <-<,解得即可.【详解】函数(32)f x +的定义域为()0,1,即01x <<,所以2325x <+<,令2215x <-<,解得332x <<,所以函数()21f x -的定义域为3,32⎛⎫ ⎪⎝⎭.故选:A4.“x ∀∈R ,关于x 的不等式210ax ax -+>恒成立”的一个必要不充分条件是()A.04a ≤< B.04a ≤≤C.04a <≤ D.04a <<【答案】B【解析】【分析】首先求出不等式恒成立时参数的取值范围,再根据集合的包含关系判断即可.【详解】因为对x ∀∈R ,关于x 的不等式210ax ax -+>恒成立,当0a =时10>恒成立,符合题意;当0a ≠时,20Δ40a a a >⎧⎨=-<⎩,解得04a <<;综上可得04a ≤<.因为[)0,4[]0,4,所以“x ∀∈R ,关于x 的不等式210ax ax -+>恒成立”的一个必要不充分条件可以是04a ≤≤.故选:B5.函数()21x f x x -=的图像为()A. B.C. D.【答案】D【解析】【分析】分析函数()f x 的定义域、奇偶性、单调性及其在(),0∞-上的函数值符号,结合排除法可得出合适的选项.【详解】函数()21x f x x-=的定义域为{}0x x ≠,且()()()2211x x f x f x x x ----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x -=≤,C 选项错误;当1x >时,()22111x x f x x x x x--===-函数单调递增,故B 选项错误;故选:D.6.已知()f x 是定义在()0,∞+上的函数,()()g x xf x =,则“()f x 为增函数”是“()g x 为增函数”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】D【解析】【分析】取特殊函数分别按照充分和必要条件判断即可.【详解】取()21(0)f x x x =->,则()3g x x x =-在()0,∞+不单调;取()1(0)g x x x =+>单调递增,但()11,(0)f x x x=+>单调递减,故“()f x 为增函数”是“()g x 为增函数”的既不充分也不必要条件.故选:D.7.“若1,22x ⎡⎤∀∈⎢⎥⎣⎦,2310x x λ-+>恒成立”是真命题,则实数λ可能取值是()A.B. C.4 D.5【答案】A【解析】【分析】由题得到13x x λ<+恒成立,求出min 13x x ⎛⎫+ ⎪⎝⎭即可得到答案.【详解】1,22x ⎡⎤∀∈⎢⎥⎣⎦,2310x x λ-+>,即13x x λ<+恒成立,13x x +≥=13x x =,即33x =时等号成立,故λ<对比选项知A 满足.故选:A8.设函数()(0)2a x f x a a x -=≠+,若()()120232g x f x =-+是奇函数,则()2023f =()A.14- B.15 C.14 D.13-【答案】C【解析】【分析】首先得到()g x 的解析式,再根据()g x 为奇函数求出参数a 的值,即可得到()f x 的解析式,最后代入计算可得.【详解】因为()(0)2a x f x a a x-=≠+,所以()()()()20231202322202123x g x a f a x x -=-+=--++432023204624046202322a x a x a a a x x ++-=+-=+-+-,因为()()120232g x f x =-+是奇函数,所以()()g x g x -=-,即63432240624042a a ax a x =--+-+-,又0a ≠,所以280920a -=,解得4046a =,所以4046()40462x f x x -=+,所以()40462023120234046220234f -==+⨯.故选:C二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.在下列四组函数中,()f x 与()g x 不表示同一函数的是()A.21()1()1,x f x x g x x -=-=+B.()1f x x =+,1,1()1,1x x g x x x +≥-⎧=⎨--<-⎩C.0()1,()(1)f x g x x ==+D.2(),()f x x g x ==【答案】ACD【解析】【分析】通过函数的定义域,对应法则是否一致进行判断.【详解】对于A ,()f x 的定义域为R ,而()g x 的定义域为{}1x x ≠-,所以不是同一函数;对于B ,因为1x ≥-时,()1f x x =+;1x <-时,()1f x x =--;所以(),()f x g x 表示同一函数;对于C ,()f x 的定义域为R ,而()g x 的定义域为{}1x x ≠-,所以不是同一函数;对于D ,()f x 的定义域为R ,而()g x 的定义域为{}0x x ≥,所以不是同一函数;故选:ACD.10.已知不等式20ax bx c ++>的解集为1,22⎛⎫- ⎪⎝⎭,则下列结论正确的是()A.a<0B.0b <C.0c >D.20a b c ++<【答案】AC 【解析】【分析】根据不等式性质确定a<0且32b ac a⎧=-⎪⎨⎪=-⎩,再依次判断每个选项得到答案.【详解】不等式20ax bx c ++>的解集为1,22⎛⎫- ⎪⎝⎭,故a<0且122122b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,即32b a c a ⎧=-⎪⎨⎪=-⎩,对选项A :a<0,正确;对选项B :302b a =->,错误;对选项C :0c a =->,正确;对选项D :3522022a b c a a a a ++=--=->,错误;故选:AC11.已知函数()y f x =是定义在[0,2]上的增函数,且其图像是连续不断的曲线.若(0)f M =,(2)f N =(0M >,0N >),那么对上述常数,M N ,下列选项正确的是()A.一定存在[0,2]x ∈,使得()2M Nf x +=B.一定存在[0,2]x ∈,使得()f x =C.不一定存在[0,2]x ∈,使得2()11f x M N =+D.不一定存在[0,2]x ∈,使得()f x =【答案】AB 【解析】【分析】取M N λ<<,构造函数()()g x f x λ=-,确定函数单调递增,根据零点存在定理得到存在()01,2x ∈使得()0f x λ=,再依次判断每个选项得到答案.【详解】函数()y f x =是定义在[0,2]上的增函数,故0M N <<,对任意值λ,M N λ<<,考虑()()g x f x λ=-,函数单调递增,则()()110g f M λλ=-=-<,()()220g f N λλ=-=->,故存在()01,2x ∈使得()()000g x f x λ=-=,即()0f x λ=,对选项A :2M N M N +<<,存在[0,2]x ∈,使得()2M Nf x +=,正确;对选项B:M N <<,存在[0,2]x ∈,使得()f x =对选项C :211M NM N <<+,存在[0,2]x ∈,使得2()11f x M N=+,错误;对选项D:M N <<,存在[0,2]x ∈,使得()f x =故选:AB.12.已知函数221()1x xf x x x +=++,则下列结论正确的是()A.()f x 为奇函数B.()f x 值域为(,2][2,)-∞-+∞ C.若12120,0,x x x x >>≠,且12()()f x f x =,则122x x +>D.当0x >时,恒有5()2f x x ≥成立【答案】AC 【解析】【分析】应用奇偶性定义判断A ;在,()0x ∈+∞上,令211x t x x x+==+研究其单调性和值域,再判断()f x 的区间单调性和值域判断B ;利用解析式推出1()()f f x x=,根据已知得到211x x =,再应用基本不等式判断C ;特殊值法,将2x =代入判断D.【详解】由解析式知:函数定义域为{|0}x x ≠,且2222()11()()()()11x x x xf x f x x x x x -+-+-=+=-+=---++,所以()f x 为奇函数,A 对;当,()0x ∈+∞时,令2112x t x x x +==+≥=,当且仅当1x =时等号成立,由对勾函数性质知:1t x x=+在(0,1)上递减,在(1,)+∞上递增,且值域为[2,)t ∈+∞,而1()f x t t =+在[2,)t ∈+∞上递增,故()f x 在(0,1)x ∈上递减,在(1,)x ∈+∞上递增,且5()[,)2f x ∈+∞,由奇函数的对称性知:()f x 在(,1)x ∈-∞-上递增,在(1,0)x ∈-上递减,且5()(,2f x ∈-∞,所以()f x 值域为55(,[,)22-∞-+∞ ,B 错;由222211()111()()111()1x x x x f f x x x x x x++=+=+=++,若12120,0,x x x x >>≠且12()()f x f x =,所以211x x =,故121112x x x x +=+≥=,当且仅当11x =时等号成立,而11x =时211x x ==,故等号不成立,所以122x x +>,C 对;由412295(2)25241102f +=+=<⨯=+,即2x =时5()2f x x <,D 错;故选:AC【点睛】关键点点睛:对于C 选项,根据解析式推导出1(()f f x x=,进而得到211x x =为关键.第Ⅱ卷三、填空题:本大题共4小题,每小题5分,共20分.13.设{}50A x x =-=,{}10B x ax =-=,若A B B = ,则实数a 的值为______.【答案】0或15【解析】【分析】依题意可得B A ⊆,分B =∅和{}5B =两种情况讨论.【详解】因为{}{}505A x x =-==,又A B B = ,所以B A ⊆,当0a =时{}10B x ax =-==∅,符合题意;当{}5B =,则510a -=,解得15a =,综上可得0a =或15a =.故答案为:0或1514.若函数()3,11,1x x f x ax x +≥⎧=⎨+<⎩在R 上为单调函数,则实数a 的取值范围为_______.【答案】(]0,3【解析】【分析】确定函数单调递增,得到0a >且131a +≥+,解得答案.【详解】()3,11,1x x f x ax x +≥⎧=⎨+<⎩在R 上为单调函数,3y x =+,1x ≥为单调递增函数,故1y ax =+,1x <单调递增,0a >,且131a +≥+,即3a ≤,故03a <≤.故答案为:(]0,315.已知正数,x y 满足2(43)3x y x y +=,则23x y +的最小值为____________.【答案】【解析】【分析】令23t x y =+,则0t >且23t x y -=,即可得到22294t x x=+,再利用基本不等式求出2t 的最小值,即可求出t 的最小值.【详解】因为0x >,0y >,令23t x y =+,则0t >且23t xy -=,因为2(43)3x y x y +=,所以22243333t x t x x x --⎛⎫⋅+⨯= ⎪⎝⎭,所以()()2922t x t x x -+=,即22294t x x -=,所以22294t x x =+,又2229412t x x =+≥=,当且仅当2294x x =,即2x =时取等号,所以t ≥或t ≤-,所以23x y +的最小值为2x =、3y =时取等号.故答案为:16.若定义在()(),00,∞-+∞U 上的函数()f x 同时满足:①()f x 为偶函数;②对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()222121210x f x x f x x x -<-,则称函数()f x 具有性质P .已知函数()f x 具有性质P ,则不等式()()2242(2)f x f x x --<+的解集为_________.【答案】()()3,22,1--⋃--【解析】【分析】构造函数()()2f xg x x=,由题意可以推出函数()()2f xg x x=的奇偶性、单调性,再根据函数的奇偶性和单调性解不等式即可.【详解】不妨设120x x <<,则120x x -<,由()()222121210x f x x f x x x -<-,得()()2221120x f x x f x ->,则()()122212f x f x xx>,构造函数()()2f xg x x=,则120x x <<,()()12g x g x >,所以函数()g x 在()0,∞+上单调递减,因为()f x 为偶函数,所以()()f x f x -=,则()()()()()22f x f xg x xx g x --==-=,所以函数()g x 为偶函数,且函数()g x 的定义域为()(),00,∞-+∞U ,由()()2242(2)f x f x x --<+,得()()()()22224224f x f x x x--<--,即()()224g x g x -<-,所以22242040x x x x ⎧->-⎪⎪-≠⎨⎪-≠⎪⎩,解得31x -<<-且2x ≠-,所以不等式()()2242(2)f x f x x --<+的解集为()()3,22,1--⋃--.故答案为:()()3,22,1--⋃--.【点睛】关键点点睛:解决本题的关键是由已知条件去构造函数()()2f xg x x=.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知全集为R ,{}2R 2320A x x x =-->ð.(1)求集合A ;(2)设不等式220x ax a -+≤的解集为C ,若C ≠∅且“x C ∈”是“x A ∈”的充分不必要条件,试求实数a 的取值范围.【答案】(1)122A x x ⎧⎫=-≤≤⎨⎬⎩⎭(2)14[,0][1,]83- 【解析】【分析】(1)依题意可得{}22320A x x x =--≤,再解一元二次不等式即可;(2)依题意可得220x ax a -+≤的解集非空且是122A x x ⎧⎫=-≤≤⎨⎬⎩⎭的真子集,设2()2f x x ax a =-+,即可得到Δ01221()02(2)0a f f ≥⎧⎪⎪-≤≤⎪⎨⎪-≥⎪⎪≥⎩,解得即可.【小问1详解】由{}2R 2320A x x x =-->ð,得{}22320A x x x =--≤,由22320x x --≤,得()1202x x ⎛⎫+-≤ ⎪⎝⎭,解得122x -≤≤,故122A x x ⎧⎫=-≤≤⎨⎬⎩⎭.【小问2详解】因为C ≠∅且“x C ∈”是“x A ∈”的充分不必要条件,所以220x ax a -+≤的解集非空且是122A x x ⎧⎫=-≤≤⎨⎬⎩⎭的真子集,设2()2f x x ax a =-+,则Δ01221(02(2)0a f f ≥⎧⎪⎪-≤≤⎪⎨⎪-≥⎪⎪≥⎩,即2440122104440a a a a a a a ⎧-≥⎪⎪-≤≤⎪⎨⎪++≥⎪⎪-+≥⎩,解得108a -≤≤或413a ≤≤,当18a =-时不等式220x ax a -+≤的解集为11,24C ⎡⎤=-⎢⎥⎣⎦,符合题意;当43a =时不等式220x ax a -+≤的解集为2,23C ⎡⎤=⎢⎥⎣⎦,符合题意;综上,实数a 的取值范围为14[,0][1,83- .18.设2()(1)f x ax a x a =+++.(1)若不等式()0f x ≥有实数解,试求实数a 的取值范围;(2)当0a >时,试解关于x 的不等式()1f x a <-.【答案】(1)13a ≥-(2)答案见解析【解析】【分析】(1)依题意不等式()210ax a x a +++≥有实数解,分0a =、0a >、a<0三种情况讨论,当a<0时需0∆≥,即可求出参数的取值范围;(2)原不等式可化为()110x x a ⎛⎫++< ⎪⎝⎭,再分1a =、01a <<、1a >三种情况讨论,分别求出不等式的解集.【小问1详解】依题意,()0f x ≥有实数解,即不等式()210ax a x a +++≥有实数解,当0a =时,0x ≥有实数解,则0a =符合题意.当0a >时,取0x =,则()210ax a x a a +++=>成立,符合题意.当a<0时,二次函数()21y ax a x a =+-+的图像开口向下,要0y ≥有解,当且仅当()22114013a a a ∆=+-≥⇔-≤≤,所以103a -≤<.综上,实数a 的取值范围是13a ≥-.【小问2详解】不等式()()21110f x a ax a x <-⇔+++<,因为0a >,所以不等式可化为()110x x a ⎛⎫++< ⎪⎝⎭,当11a -=-,即1a =时,不等式()()110x x ++<无解;当11-<-a ,即01a <<时,11x a-<<-;当11a ->-,即1a >时,11x a-<<-;综上,当01a <<时,原不等式的解集为1(,1)a--,当1a =时,原不等式的解集为∅,当1a >时,原不等式的解集为1(1,)a--.19.已知函数()22x x mf x x-+=.(1)若()()2g x f x =+,判断()g x 的奇偶性并加以证明.(2)若1[,1]4x ∈时,不等式()22f x m >-恒成立,试求实数m 的取值范围.【答案】(1)奇函数,证明见解析(2)1,18⎛⎫- ⎪⎝⎭【解析】【分析】(1)首先求出()g x 的解析式,再根据奇偶性的定义证明即可;(2)设()mh x x x =+(1[,1]4x ∈),依题意只需min ()2h x m >,再分0m ≤、m 1≥、1016m <≤、1116m <<四种情况讨论,求出()h x 的最小值,从而求出m 的取值范围.【小问1详解】()g x 为奇函数,证明如下:因为()22x x m f x x -+=,所以()()2222x x m mx x xg x f x -+=+=+=+,则()g x 的定义域为()(),00,∞-+∞U ,且()()mg x x g x x-=--=-,所以()g x 为奇函数.【小问2详解】1[,1]4x ∈ 时,不等式()22f x m >-恒成立,2mx m x ∴+>对1[,1]4x ∈恒成立.设()mh x x x =+(1[,1]4x ∈),则只需min ()2h x m >即可.当0m ≤时,则()h x 在1[,1]4单调递增,所以min 11()()4244h x h m m ==+>,解得18m >-,所以108m -<≤;当0m >时,因为()h x 在单调递减,)+∞单调递增.1≥,即m 1≥时,()h x 在1[,1]4单调递减,所以min ()(1)12h x h m m ==+>,解得1m <,舍去;14≤,即1016m <≤时,()h x 在1[,1]4单调递增,所以min 11()()4244h x h m m ==+>,解得18m >-,所以此时1016m <≤;③当114<<,即1116m <<时,min ()2h x h m ==,解得01m <<,所以此时1116m <<;综上,实数m 的取值范围为1,18⎛⎫- ⎪⎝⎭.20.已知函数()f x x m =+,()22232m g x x mx m =-++-,(1)若()212m g x <+的解集为()1,a ,求a 的值;(2)试问是否存在实数m ,使得对于12[0,1],[1,2]x x ∀∈∀∈时,不等式12()()f x g x >恒成立?若存在,求出实数m 的取值范围;若不存在,请说明理由.【答案】(1)2(2)不存在,理由见解析【解析】【分析】(1)代入数据得到2240x mx m -+-<,根据不等式与方程的关系确定3m =,代入计算得到答案.(2)题目转化为min max ()()f x g x >,根据单调性计算()min f x m =,根据二次函数性质考虑322m ≤和322m >两种情况,计算最值得到答案.【小问1详解】()212m g x <+,即()22223122m m g x x mx m =-++-<+,整理得到2240x mx m -+-<,不等式2240x mx m -+-<的解集为()1,a ,故1x =为方程2240x mx m -+-=的根,即1240m m -+-=,解得3m =,故2320x x -+<,解得12x <<,则2a =.【小问2详解】对[]10,1x ∀∈,2[1,2]x ∈,()()12f x g x >恒成立,只需min max ()()f x g x >.()f x x m =+在[]0,1上单调递增,因此()()min 0f x f m ==;()22232m g x x mx m =-++-的对称轴为02m x =.当322m ≤,即3m ≤时,2max ()(2)12m g x g ==+,故212m m >+,即2220m m -+<,无解,舍;当322m >,即3m >时,2max ()(1)22m g x g m ==+-,故222m m m >+-,解得22m -<<,舍.综上所述:不存在实数m 符合题意.21.已知函数()2(2)4f x x a x =--+,()232x b g x ax +-=+.(1)若函数()f x 在2,3b b b ⎡⎤---⎣⎦上为偶函数,试求实数b 的值;(2)在(1)的条件下,当()g x 的定义域为()1,1-时,解答以下两个问题:①判断函数()g x 在定义域上的单调性并加以证明;②若()()120g t g t -+<,试求实数t 的取值范围.【答案】(1)3b =(2)①()g x 在()1,1-上单调递增,证明见解析;②10,3⎛⎫ ⎪⎝⎭【解析】【分析】(1)根据偶函数确定2a =且230b b b -+--=,解得答案.(2)任取12,x x 满足1211x x -<<<,计算()()12g x g x <得到函数单调递增,变换()()21g t g t <-,考虑函数的单调性结合函数定义域计算得到答案.【小问1详解】()2(2)4f x x a x =--+在2,3b b b ⎡⎤---⎣⎦上为偶函数,故2a =,230b b b -+--=,即()()310b b -+=,解得3b =或1b =-,由区间定义可知23b b b -<--,即23b >,1b =-不满足,所以3b =.【小问2详解】①函数()g x 在()1,1-上单调递增;证明如下:()222x g x x =+,()1,1x ∈-,任取12,x x 满足1211x x -<<<,()()()()()()122112122222121212222211x x x x x x g x g x x x x x ---=-=++++,由于1211x x -<<<,故121x x <,210x x ->,于是()()()()()()122112*********x x x x g x g x x x ---=<++,则()()12g x g x <,则()g x 在()1,1-上单调递增.②函数()g x 的定义域为()1,1-,关于原点对称,()()222x g x g x x --==-+,则()g x 为奇函数,由(1)(2)0g t g t -+<,即()()21g t g t <-,又因为()g x 在()1,1-上单调递增,则12111121t t t t -<<⎧⎪-<-<⎨⎪<-⎩,解得103t <<,所以实数t 的取值范围是10,3⎛⎫ ⎪⎝⎭.22.设函数()f x 的定义域为D ,对于区间[],I a b =(a b <,I D ⊆),若满足以下两条性质之一,则称I 为()f x 的一个“美好区间”.性质①:对任意x I ∈,有()f x I ∈;性质②:对任意x I ∈,有()f x I ∉.(1)判断并证明区间[]1,2是否为函数3y x =-的“美好区间”;(2)若[]0,m (0m >)是函数()22f x x x =-+的“美好区间”,试求实数m 的取值范围;(3)已知定义在R 上,且图像连续不断的函数()f x 满足:对任意,R a b ∈(a b <),有()()f a f b b a ->-.求证:()f x 存在“美好区间”,且存在0R x ∈,使得0x 不属于()f x 的任意一个“美好区间”.【答案】(1)是,证明见解析(2)[]1,2(3)证明见解析【解析】【分析】(1)根据题设中的新定义,结合函数3y x =-,进行判定,即可求解;(2)若I 为()f x 的“美好区间”,则不满足性质②,必满足性质①,即S I ⊆,由()22f x x x =-+,根据二次函数的性质,分类讨论,即可求解;(3)对于任意区间[],I a b =,记{()|}S f x x I =∈,根据单调性得到()(),S f b f a =⎡⎤⎣⎦,若I 为()f x 的“美好区间”,必满足性质②,转化为()f a a <或()f b b >,得出()f x 一定存在“美好区间”,记()()g x f x x =-,结合函数的单调性和零点的存在性定理,得到存在()0,0x t ∈,使得()00g x =,即可求解.【小问1详解】函数3y x =-,当[1,2]x ∈时,可得[]1,2y ∈,所以区间[]1,2是函数3y x =-的一个“美好区间”.【小问2详解】记[]0,I m =,{()|}S f x x I =∈,可得()[]000,f m =∈,故若I 为()f x 的“美好区间”,则不满足性质②,必满足性质①,即S I ⊆;由()()22211f x x x x =-+=--+,当01m <<时,()f x 在[]0,m 上单调递增,且()()2210f m m m m m m m -=-+-=-->,即()f m m >,所以()0,S f m =⎡⎤⎣⎦不包含于[]0,I m =,不合题意;当12m ≤≤时,()()[][]0,10,10,S f f m I ==⊆=⎡⎤⎣⎦,符合题意;当m>2时,()()()220f m f f <==,所以()f m I ∉,不合题意;综上可知,12m ≤≤,即实数m 的取值范围是[]1,2.【小问3详解】对于任意区间[](),I a b a b =<,记{()|}S f x x I =∈,由已知得()f x 在I 上单调递减,故()(),S f b f a =⎡⎤⎣⎦,因为()()f a f b b a ->-,即S 的长度大于I 的长度,故不满足性质①,所以若I 为()f x 的“美好区间”,必满足性质②,这只需S I =∅ ,即只需()f a a <或()f b b >,由()f x x =显然不恒成立,所以存在常数c 使得()f c c ≠.如()f c c <,取a c =,区间[](),I a b a b =<满足性质②;如()f c c >,取b c =,区间[](),I a b a b =<满足性质②;综上,函数()f x 一定存在“美好区间”;记()()g x f x x =-,则()g x 图象连续不断,下证明()g x 有零点:因为()f x 在R 上是减函数,所以()g x 在R 上是减函数,记()0f t =;若0=t ,则00x =是()g x 的零点,若0t >,则()()0f t f t <=,即()00g >,()0g t <,由零点存在性定理,可知存在()00,x t ∈,使得()00g x =,若0t <,则()()0f t f t >=,即()0g t >,()00g <,由零点存在性定理,可知存在()0,0x t ∈,使得()00g x =,综上,()g x 有零点0x ,即()00f x x =,因为()f x 的所有“美好区间”I 都满足性质②,故0x I ∉.(否则()00f x x I =∈,与性质②不符),即0x 不属于()f x 的任意一个“美好区间”,证毕.【点睛】关键点睛:对于新定义问题关键是理解所给定义及限制条件,再利用相应的数学知识解答.。

四川省成都市2024-2025学年高一上学期期中考试数学试题含答案

四川省成都市2024-2025学年高一上学期期中考试数学试题含答案

成都市2024-2025学年上学期半期考试高一年级数学试题(答案在最后)考试时间120分钟满分150分一、单选题1.已知集合A ={1,2,3,4,5},{},|15B x x =<<,则A ∩B 的元素个数为()A.2B.3C.4D.5【答案】B 【解析】【分析】直接根据集合的交集运算求解即可.【详解】因为集合A ={1,2,3,4,5},{}|15B x x =<<所以{}2,3,4A B = ,即A ∩B 的元素个数为3个.故选:B2.函数221y x mx =++在[2,+∞)单调递增,则实数m 的取值范围是()A.[2,)-+∞B.[2,+∞)C.(,2)-∞ D.(,2]-∞【答案】A 【解析】【分析】直接由抛物线的对称轴和区间端点比较大小即可.【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m =-函数221y x mx =++在[2,+∞)单调递增,则2m -≤,解得2m ≥-.故选:A.3.若函数的定义域为{}22M x x =-≤≤,值域为{}02N y y =≤≤,则函数的图像可能是()A. B.C. D.【答案】B 【解析】【分析】根据函数的定义域与值域,结合函数的性质判断即可.【详解】对A ,该函数的定义域为{}20x x -≤≤,故A 错误;对B ,该函数的定义域为{}22M x x =-≤≤,值域为{}02N y y =≤≤,故B 正确;对C ,当()2,2x ∈-时,每一个x 值都有两个y 值与之对应,故该图像不是函数的图像,故C 错误;对D ,该函数的值域不是为{}02N y y =≤≤,故D 错误.故选:B.4.已知函数()af x x =,则“1a >”是“()f x 在()0,∞+上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由幂函数的单调性结合充分必要条件的定义判断.【详解】当0a >时,函数()af x x =在()0,∞+上单调递增,则1a >时,一定有()f x 在()0,∞+上单调递增;()f x 在()0,∞+上单调递增,不一定满足1a >,故“1a >”是“()f x 在()0,∞+上单调递增”的充分不必要条件.故选:A.5.已知0,0x y >>,且121y x+=,则12x y +的最小值为()A.2B.4C.6D.8【答案】D 【解析】【分析】利用不等式的乘“1”法即可求解.【详解】由于0,0x y >>,故111122244428x y x xy y x y xy ⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪⎝⎭⎝⎭,当且仅当14,121,xy xyy x⎧=⎪⎪⎨⎪+=⎪⎩即2,14x y =⎧⎪⎨=⎪⎩时,等号成立,故12x y +的最小值为8.故选:D6.已知定义域为R 的函数()f x 不是偶函数,则()A.()(),0x f x f x ∀∈-+≠RB.()(),0x f x f x ∀∈--≠RC.()()000,0x f x f x ∃∈-+≠RD.()()000,0x f x f x ∃∈--≠R 【答案】D 【解析】【分析】根据偶函数的概念得()(),0x f x f x ∀∈--=R 是假命题,再写其否定形式即可得答案.【详解】定义域为的函数()f x 是偶函数()(),0x f x f x ⇔∀∈--=R ,所以()f x 不是偶函数()()000,0x f x f x ⇔∃∈--≠R .故选:D .7.若函数()22f x ax bx c=++的部分图象如图所示,则()1f =()A.23-B.112-C.16-D.13-【答案】D 【解析】【分析】利用函数图象求得函数定义域,利用函数值可得出其解析式,代入计算即求得函数值.【详解】根据函数图象可知2x =和4x =不在函数()f x 的定义域内,因此2x =和4x =是方程20ax bx c ++=的两根,因此可得()()()224f x a x x =--,又易知()31f =,所以可得2a =-;即()()()124f x x x =---,所以()113f =-.故选:D8.奇函数()f x 在(),0-∞上单调递增,若()10f -=,则不等式()0xf x <的解集是().A.()()101,∪,-∞-B.()()11,∪,-∞-+∞C.()()1001,∪,- D.()()101,∪,-+∞【答案】C 【解析】【分析】由()f x 奇偶性,单调性结合题意可得答案.【详解】因奇函数()f x 在(),0∞-上单调递增,()10f -=则()f x 在()0,∞+上单调递增,1=0.得()()()01,01,f x x ⋃∞>⇒∈-+;()()()0,10,1f x x ∞⋃<⇒∈--.则()()000x xf x f x <⎧<⇒⎨>⎩或()()()01,00,10x x f x ⋃>⎧⇒∈-⎨<⎩.故选:C二、多选题9.下列关于集合的说法不正确的有()A.{0}=∅B.任何集合都是它自身的真子集C.若{1,}{2,}a b =(其中,a b ∈R ),则3a b +=D.集合{}2yy x =∣与{}2(,)x y y x =∣是同一个集合【答案】ABD 【解析】【分析】根据集合的定义,真子集的定义,集合相等的定义判断各选项.【详解】{0}中含有一个元素,不是空集,A 错;任何集合都是它自身的子集,不是真子集,B 错;由集合相等的定义得2,1a b ==,3a b +=,C 正确;集合{}2yy x =∣中元素是实数,集合{}2(,)x y y x =∣中元素是有序实数对,不是同一集合,D 错,故选:ABD .10.已知二次函数()2223y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下面说法正确的是()A.该二次函数的图象一定过定点()1,5--;B.若该函数图象开口向下,则m 的取值范围为:625m <<;C.当2m >,且12x ≤≤时,y 的最大值为45m -;D.当2m >,且该函数图象与x 轴两交点的横坐标12,x x 满足1232,10x x -<<--<<时,m 的取值范围为:21114m <<【答案】ABD 【解析】【分析】代入1x =-,解得5y =-,即可求解A ,根据判别式即可求解B ,利用二次函数的单调性即可求解C ,利用二次函数的图象性质即可列不等式求解.【详解】由()2223y m x mx m =-++-可得()22123y m x x =+--,当1x =-时,5y =-,故二次函数的图象一定过定点()1,5--,A 正确,若该函数图象开口向下,且与x 轴有两个不同交点,则()()220Δ44230m m m m -<⎧⎨=--->⎩,解得:625m <<,故B 正确,当2m >,函数开口向上,对称轴为02mx m =-<-,故函数在12x ≤≤时,单调递增,当2x =时,911y m =-,故y 的最大值为911m -;C 错误,当2m >,则开口向上,又1232,10x x -<<--<<时,则3,4210x y m =-=->,且2,110x y m =-=-<,且1,50x y =-=-<,且0,30x y m ==->,解得21114m <<,m 的取值范围为:21114m <<,D 正确,故选:ABD11.已知幂函数()()293mf x m x =-的图象过点1,n m ⎛⎫-⎪⎝⎭,则()A.23m =-B.()f x 为偶函数C.364n =D.不等式()()13f a f a +>-的解集为(),1-∞【答案】AB 【解析】【分析】利用幂函数的定义结合过点1,n m ⎛⎫- ⎪⎝⎭,可求,m n 判断AC ;进而可得函数的奇偶性判断B ;解不等式可求解集判断D.【详解】因为函数()()293mf x m x =-为幂函数,所以2931m -=,解得23m =±,当23m =时,幂函数()23f x x =的图象不可能过点3,2n ⎛⎫- ⎪⎝⎭,故23m ≠,当23m =-,幂函数()23f x x -=的图象过点3,2n ⎛⎫ ⎪⎝⎭,则2332n -=,解得3232629n -⎛⎫=±=±⎪⎝⎭,故A 正确,C 错误;()23f x x -=的定义域为{|0}x x ≠,且()2233()()f x x x f x ---=-==,故()f x 为偶函数,故B 正确;函数()23f x x-=在(0,)+∞上单调递减,由()()13f a f a +>-,可得()()13fa f a +>-,所以1310a a a ⎧+<-⎪⎨+≠⎪⎩,解得1a <且1a ≠-,故D 错误.故选:AB.三、填空题12.满足关系{2}{2,4,6}A ⊆⊆的集合A 有____________个.【答案】4【解析】【分析】由题意可得集合A 为{}2,4,6的子集,且A 中必包含元素2,写出满足条件的集合,即可得答案.【详解】即集合A 为{}2,4,6的子集,且A 中必包含元素2,又因为{2,4,6}的含元素2的子集为:{}2,{}2,4,{}2,6,{2,4,6}共4个.故答案为:4.13.已知()f x 满足()()()2f x y f x f y +=++,且()22f =,则()3f =______.【答案】4【解析】【分析】令1x y ==得()10f =,再令1x =,2y =即可求解.【详解】令1x y ==得()()()21122f f f =++=,所以()10f =,令1x =,2y =得()()()31224f f f =++=.故答案为:4.14.已知函数()()()22223124,,4f x x ax ag x x x a a =-+-=-+-∈R ,若[]10,1x ∀∈,[]20,1x ∃∈,使得不等式()()12f x g x >成立,实数a 的取值范围是__________.【答案】(),6-∞【解析】【分析】由题意将问题转化为()(),min max f x g x >[]0,1x ∈,成立,利用二次函数的性质求解即可.【详解】若对任意[]10,1x ∈,存在[]20,1x ∈,使得不等式()()12f x g x >成立,即只需满足[]min min ()(),0,1f x g x x >∈,()22314g x x x a =-+-,对称轴()1,2x g x =在10,2⎡⎫⎪⎢⎣⎭递减,在,1,12⎛⎤ ⎥⎝⎦递增,()2min 18,2g x g a ⎛⎫==- ⎪⎝⎭()[]2224,0,1f x x ax a x =-+-∈,对称轴4a x =,①04a≤即0a ≤时,()f x 在0,1递增,()22min min ()04()8f x f a g x a ==->=-恒成立;②014a<<即04a <<时,()f x 在0,4a ⎡⎫⎪⎢⎣⎭递减,在,14a ⎛⎤ ⎥⎝⎦递增,22min min 7()4,()848a f x f a g x a ⎛⎫==-=- ⎪⎝⎭,所以227488a a ->-,故04a <<;③14a≥即4a ≥时,()f x 在[0,1]递减,()22min min ()12,()8f x f a a g x a ==--=-,所以2228a a a -->-,解得46a ≤<,综上(),6a ∞∈-.故答案为:(),6∞-【点睛】方法点睛:本题首先需要读懂题意,进行转化;其次需要分类讨论,结合二次函数的性质最后进行总结,即可求出结果.四、解答题15.设全集R U =,集合{|23}P x x =-<<,{|31}.Q x a x a =<≤+(1)若1a =-,求集合()U P Q ð;(2)若P Q =∅ ,求实数a 的取值范围.【答案】(1){|03}x x <<(2)][132,,⎛⎫-∞-+∞ ⎪⎝⎭【解析】【分析】(1)先求出U Q ð,再求()U P Q ⋂ð即可;(2)分Q =∅和Q ≠∅两种情况求解即可【小问1详解】解:当1a =-时,{|31}{|30}Q x a x a x x =<≤+=-<≤;{|3U C Q x x =≤-或0}x >,又因为{}23P x x =-<<,所以(){|03}.U P Q x x ⋂=<<ð【小问2详解】解:由题意知,需分为Q =∅和Q ≠∅两种情形进行讨论:当Q =∅时,即31a a ≥+,解得12a ≥,此时符合P Q =∅ ,所以12a ≥;当Q ≠∅时,因为P Q =∅ ,所以1231a a a +≤-⎧⎨<+⎩或3331a a a ≥⎧⎨<+⎩,解之得3a ≤-.综上所述,a 的取值范围为][1,3,.2∞∞⎛⎫--⋃+ ⎪⎝⎭16.已知二次函数()()20f x ax bx c a =++≠满足()()14f x f x x -+=,且()0 1.f =(1)求函数()f x 的解析式;(2)解关于x 的不等式()()2641f x t x t ≤-+-+.【答案】(1)()2221f x x x =-+(2)答案见解析.【解析】【分析】(1)利用待定系数法计算即可求解析式;(2)根据(1)的结论含参讨论解一元二次不等式即可.【小问1详解】因为()01f =,1c =,所以()21f x ax bx =++,又因为()()14f x f x x -+=,所以()(()22[1)1114a x b x ax bx x ⎤++++-++=⎦,所以24ax a b x ++=,所以240a a b =⎧⎨+=⎩,所以22a b =⎧⎨=-⎩,即()222 1.f x x x =-+【小问2详解】由()()2641f x t x t ≤-+-+,可得不等式()222440x t x t +++≤,即()2220x t x t +++≤,所以()()20x x t ++≤,当2-=-t ,即2t =时,不等式的解集为{|2}x x =-,当2t -<-,即2t >时,不等式的解集为{|2}x t x -≤≤-,当2t ->-,即2t <时,不等式的解集为{|2}x x t -≤≤-,综上所述,当2t =时,不等式的解集为{|2}x x =-,当2t >时,不等式的解集为{|2}x t x -≤≤-,当2t <时,不等式的解集为{|2}.x x t -≤≤-17.已知函数()221x f x x -=.(1)用单调性的定义证明函数()f x 在()0,∞+上为增函数;(2)是否存在实数λ,使得当()f x 的定义域为11,m n ⎡⎤⎢⎥⎣⎦(0m >,0n >)时,函数()f x 的值域为[]2,2m n λλ--.若存在.求出λ的取值范围;若不存在说明理由.【答案】(1)证明见详解;(2)存在,()2,+∞.【解析】【分析】(1)设()12,0,x x ∞∈+,且12x x <,然后作差、通分、因式分解即可判断()()12f x f x <,得证;(2)根据单调性列不等式组,将问题转化为210x x λ-+=存在两个不相等的正根,利用判别式和韦达定理列不等式组求解可得.【小问1详解】()222111x f x x x-==-,设()12,0,x x ∞∈+,且12x x <,则()()()()22121212122222222212211212111111x x x x x x f x f x x x x x x x x x -+⎛⎫--=---=-== ⎪⎝⎭,因为120x x <<,所以221212120,0,0x x x x x x <-+>>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在0,+∞上为增函数.【小问2详解】由(1)可知,()f x 在11,m n ⎡⎤⎢⎥⎣⎦上单调递增,若存在λ使得()f x 的值域为[]2,2m n λλ--,则22112112f m m m f n n n λλ⎧⎛⎫=-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-=- ⎪⎪⎝⎭⎩,即221010m m n n λλ⎧-+=⎨-+=⎩,因为0m >,0n >,所以210x x λ-+=存在两个不相等的正根,所以21212Δ40100x x x x λλ⎧=->⎪=>⎨⎪+=>⎩,解得2λ>,所以存在()2,λ∞∈+使得()f x 的定义域为11,m n ⎡⎤⎢⎥⎣⎦时,值域为[]2,2m n λλ--.18.习总书记指出:“绿水青山就是金山银山”.淮安市一乡镇响应号召,因地制宜的将该镇打造成“生态水果特色小镇”.调研过程中发现:某珍稀水果树的单株产量W (单位:千克)与肥料费10x (单位:元)满足如下关系:()252,02()48,251x x W x x x x ⎧+≤≤⎪=⎨<≤⎪+⎩其它成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价大约为10元/千克,且供不应求.记该单株水果树获得的利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当投入的肥料费用为多少时,该单株水果树获得的利润最大?最大利润是多少?【答案】(1)25030100,02()48030,251x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩;(2)当投入的肥料费用为30元时,获得的利润最大,最大利润是270元.【解析】【分析】(1)由单株产量W 乘以售价减去肥料费和其它成本投入可得出的函数关系式;(2)利用二次函数的单调性求出当02x ≤≤时,()f x 的最大值,由基本不等式求出当25x <≤时,()f x 的最大值,即可得出答案.【小问1详解】(1)由题意可得()()()1020101030f x W x x x W x x=--=-()22105230,025030100,024804830,251030,2511x x x x x x x x x x x x x x ⎧⨯+-≤≤⎧-+≤≤⎪⎪==⎨⎨-<≤⨯-<≤⎪⎪+⎩+⎩.故()f x 的函数关系式为25030100,02()48030,251x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩.【小问2详解】(2)由(1)22319150,025030100,02102()48030,251651030(1),2511x x x x x f x x x x x x x x ⎧⎧⎛⎫-+≤≤⎪-+≤≤⎪ ⎪⎪⎪⎝⎭==⎨⎨-<≤⎡⎤⎪⎪-++<≤+⎢⎥⎪⎪+⎣⎦⎩⎩,当02x ≤≤时,()f x 在30,10⎡⎤⎢⎥⎣⎦上单调递减,在3,210⎛⎤ ⎥⎝⎦上单调递增,且(0)100(2)240f f =<=,max ()(2)240f x f ∴==;当25x <≤时,16()51030(1)1f x x x ⎡⎤=-++⎢⎥+⎣⎦,16181x x ++≥=+ 当且仅当1611x x=++时,即3x =时等号成立.max ()510308270f x ∴=-⨯=.因为240270<,所以当3x =时,max ()270f x =.当投入的肥料费用为30元时,该单株水果树获得的利润最大,最大利润是270元.19.已知集合,A B 中的元素均为正整数,且,A B 满足:①对于任意,i j a a A ∈,若i j a a ≠,都有i j a a B ∈;②对于任意,m k b b B ∈,若m k b b <,都有k mb A b ∈.(1)已知集合{}1,2,4A =,求B ;(2)已知集合{}()2,4,8,8A t t =>,求t ;(3)若A 中有4个元素,证明:B 中恰有5个元素.【答案】(1){}2,48B =,(2)16t =(3)证明见解析【解析】【分析】(1)根据①可得2,4,8都是B 中的元素,进而证明B 中除2,4,8外没有其他元素即可求解,(2)根据条件①②,即可求解,(3)根据题意可得41a a ,3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素,进而根据11a =和12a ≥可得{}2341111,,,A a a a a =,进而{}3456711111,,,,a a a a a B ⊆,接下来假设B 中还有其他元素,且该元素为k ,利用k 与31a 的关系得矛盾求解.【小问1详解】由①可得2,4,8都是B 中的元素.下面证明B 中除2,4,8外没有其他元素:假设B 中还有其他元素,分两种情况:第一种情况,B 中最小的元素为1,显然81不是A 中的元素,不符合题意;第二种情况,B 中最小的元素为2,设B 中除2,4,8外的元素为()2k k b b >,因为2k b 是A 中的元素,所以k b 为4或8,而4,8也是B 中的元素,所以B 中除2,4,8外没有其他元素.综上,{}2,4,8B =.【小问2详解】由①可得,8,16,32,2,4,8t t t 都是B 中的元素.显然84,82,162t t t <<<,由(2)可得,422,,8816t t t 是A 中的元素,即,,248t t t 是A 中的元素.因为842t t t t <<<,所以2,4,8842t t t ===,解得16t =.【小问3详解】证明:设{}12341234,,,,A a a a a a a a a =<<<.由①可得,1224,a a a a 都是B 中的元素.显然1224a a a a <,由②可得,2412a a a a 是A 中的元素,即41a a 是A 中的元素.同理可得3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素.若11a =,则34344122a a a a a a a a =>,所以3412a a a a 不可能是A 中的元素,不符合题意.若12a ≥,则32311a a a a a <<,所以321211,a a a a a a ==,即23213121,a a a a a a ===.又因为44443211a a a a a a a <<<<,所以444123321,,a a a a a a a a a ===,即441a a =,所以{}2341111,,,A a a a a =,此时{}3456711111,,,,a a a a a B ⊆.假设B 中还有其他元素,且该元素为k ,若31k a <,由(2)可得71a A k ∈,而7411a a k >,与{}2341111,,,A a a a a =矛盾.若31k a >,因为31k A a ∈,所以131,1,2,3,4i k a i a ==,则31,1,2,3,4i k a i +==,即{}45671111,,,k a a a a ∈,所以B 中除3456711111,,,,a a a a a 外,没有其他元素.所以{}3456711111,,,,B a a a a a =,即B 中恰有5个元素.【点睛】方法点睛:对于以集合为背景的新定义问题的求解策略:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.3、涉及有交叉集合的元素个数问题往往可采用维恩图法,基于课标要求的,对于集合问题,要熟练基本的概念,数学阅读技能、推理能力,以及数学抽象和逻辑推理能力.。

四川省宜宾市第三中学2021-2022学年高一上学期期中考试数学试题 Word版含答案

四川省宜宾市第三中学2021-2022学年高一上学期期中考试数学试题 Word版含答案

宜宾市三中2021级高一(上)半期测试数学试题第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1. 设集合{|lg },{|1}A x y x B x x ===≤,则=⋂B A ( ) A. (0,)+∞B. [1,)+∞C. (0,1]D.(,1]-∞2. 函数223((0,3])=-+∈y x x x 的值域为( )A.[2,)+∝B.[2,6]C.[3,6]D. (3,6]3. 设集合{|0}M x x m =-<,{|1,01}xN y y a a a ==->≠且,若M∩N=∅,则m 的范围是( ).1A m ≥- .1B m >-.1C m ≤-.1D m <-4. 若23.0=a ,3.0log 2=b ,3.02=c ,则c b a ,,大小关系正确的是( )A.b a c >> B .c b a >>C.a b c >>D.a b c >>5.函数62ln )(-+=x x x f 的零点所在的一个区间是( ) A.(1,2) B.(2,3)C.(3,4)D.(4,5)6.设 ⎩⎨⎧+-=)6(2)(x f x x f ()()1010<≥x x 则)5(f 的值为 ( )A .9B .10C .11D .127. 函数)1ln()(2+=x x f 的图象大致是( )A .B .C .D .8. 若43)(ln +=x x f ,则=)(x f __________A.x ln 3B.4ln 3+xC.xe 3D.43+xe9. 不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,则实数a 的取值范围是( ) A.(]2,2-B.[2,2]-C.[2,1]-D.()2,2-10. 函数)2(log 21+=ax y 在]3,1[-上递增,则a 的取值范围是( ).A.)0,(-∞B.)0,32(-C.)0,1(-D.)1,3(--11. 若偶函数f (x )在(-∞,0)内单调递减,则不等式f (-2)<f (lg x )的解集是 ( )A .(0,100)B .1(,100)100C .1(,+)100∞D .1(0)100,∪(100,+∞)12. 已知函数⎪⎩⎪⎨⎧>+-≤<=)10(,621)100(,lg )(x x x x x f ,若c b a ,,互不相等,且)()()(c f b f a f ==,则abc 的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)第II 卷(非选择题)二、填空题(本题共4道小题,每小题4分,共16分)13. 幂函数)(x f 的图象过点)41,2(,则)(x f =__________.14. 函数12)(-+=x x x f 的最小值是_________.15. 已知⎪⎩⎪⎨⎧>-≤=)0(,3)0(,)(x x a x a x f x )10(≠>a a 且是R 上的减函数,则a 的取值范围是___________. 16. 给出下列四个命题: ①函数1y x=-在R 上单调递增;②函数2122x y x -=+-为奇函数;③若函数(2)f x 的定义域为[1,2],则函数(2)xf 的定义域为[1,2];④若函数22(1)2y x a x =+-+在(,4)-∞上是减函数,则实数a 的取值范围是)3,(--∞. 其中正确的序号是 ________.三、解答题(共6道题, 第17,18,19,20题各12分,第20,21题各13分)17.(本题12分)(1)求值:12log 6log 225.01681064.0332143031 -+++⎪⎭⎫⎝⎛--- (2)已知32121=+-a a ,求21212323----aa a a 的值。

四川省成都市2024-2025学年高一上学期期中考试 数学含答案

四川省成都市2024-2025学年高一上学期期中考试 数学含答案

高2024级高一上学期11月半期测试数学试题(答案在最后)一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.设全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{5,4,3}B =,则=U A B ⋂ð()A.{1,2,3,4,5}B.{1,2}C.{0,1,2}D.{0,1,2,3}2.已知集合{}2|1,M y y x x R ==+∈,{}|1,N y y x x R ==+∈,则M N ⋂=A.()()0,1,1,2B.()(){}0,1,1,2C.{|1y y =或2}y =D.{}|1y y ≥3.已知函数()*(2),nf x x n =-∈N ,则“1n =”是“()f x 是增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.下列说法正确的是()A.若a b >,则22a b >B.“2x >”是“112x <”的充分不必要条件C.若幂函数()22231m m y m m x--=--在区间 ㈮㔷∞上是减函数,则2m =D.命题“2,0x x x ∀∈+≥R ”的否定为“2,0x x x ∃∈+≥R ”;5.已知命题()()2:R,110p x m x ∃∈++≤,命题2:R,10q x x mx ∀∈-+>恒成立.若p 和q 都为真命题,则实数m 的取值范围为()A.2m ≥B.21m -<≤-C.2m ≤-或2m ≥D.12m -<≤6.已知函数()f x =,则()A.()1ff f >>- B.()1ff f >>-C.()1ff f>-> D.()1f ff ->>7.用()C A 表示非空集合A 中元素的个数,定义()()()()()()()(),*,C A C B C A C B A B C B C A C A C B ⎧-≥⎪=⎨-<⎪⎩.已知{}1,2A =,()(){}22|20B x x ax x ax =+++=,且*1A B =,设实数a 的所有可能取值构成集合S ,则()C S =()A .4B.3C.2D.18.已知函数()()()21,12,1x x f x f x x ⎧-≥⎪=⎨--<⎪⎩,若对于任意的实数x ,不等式()24()1f x a f x -≤+恒成立,则实数a 的取值范围为()A.1,2⎡⎫-+∞⎪⎢⎣⎭B.1,12⎡⎤-⎢⎥⎣⎦C.3,4⎡⎫-+∞⎪⎢⎣⎭D.3,14⎡⎤-⎢⎥⎣⎦二、多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.知函数()f x 满足1211x f x x +⎛⎫= ⎪+⎝⎭,则关于函数()f x 正确的说法是()A.()f x 的定义域为{}1x x ≠- B.()f x 值域为{1y y ≠,且2}y ≠C.()f x 在 ㈮㔷∞ 单调递减D.不等式()2f x >的解集为(1,0)-10.已知a ,b 均为正数,且1a b -=,则()A.a >B.221->a b C.411-≤a bD.13a b+>11.已知函数()2211x xf x x x +=++,则下列结论正确的是()A.()f x 在()1,+∞上单调递增B.()f x 值域为][(),22,∞∞--⋃+C.当0x >时,恒有()f x x >成立D.若12120,0,x x x x >>≠,且()()12f x f x =,则122x x +>三、填空题:本题共3小题,每小题5分,共15分.12.不等式3223x x -≥+的解集为________.13.若两个正实数x ,y 满足40x y xy +-=,且不等式26xy m m ≥-恒成立,则实数m 的取值范围是__________.14.已知函数()(),f x g x 都是定义在R 上的函数,()12f x -+是奇函数,()2g x -是偶函数,且()()()23,21f x g x g --=-=,则()()()234f f f ++=________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}{}23,31P x x Q x a x a =-<<=<≤+.(1)若,x Q x P ∀∈∈,求a 的取值范围;(2)若,x P x Q ∃∈∈,求a 的取值范围.16.已知集合A为使函数y =R 的a 的取值范围,集合{}22210B x x ax a =++-≤(a 为常数,R a ∈).若x A ∈是x B ∈的必要条件,试求实数a 的取值范围.17.在园林博览会上,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放市场,已知该种设备年固定研发成本为50万元,每生产一台需另投入80万元,设该公司一年内生产该设备x 万台且全部售完,每万台的销售收入()G x (万元)与年产量x (万台)满足如下关系式:1802,020()2000900070,20(1)x x G x x x x x -<≤⎧⎪=⎨+->⎪+⎩(1)写出年利润()W x (万元)关于年产量x (万台)的函数解析式:(利润=销售收入-成本)(2)当年产量为多少万台时,该公司获得的年利润最大?并求最大利润.18.已知函数()f x 的定义域为()0,∞+,对任意正实数a b 、都有()()()1f ab f a f b +=+,且当1x >时,()1f x >.(1)求()120242024f f ⎛⎫+⎪⎝⎭的值,(2)判断函数()f x 的单调性并加以证明:(3)当[]1,3x ∈时,关于x 的不等式()()32f kx f x -+>恒成立,求实数k 的取值范围.19.设函数()2,y ax x b a b =+-∈∈R R .(1)若54b a =-,且集合{|0}x y =中有且只有一个元素,求实数a 的取值集合;(2)0a <时,求不等式(22)2y a x b <--+的解集;(3)当0,1a b >>时,记不等式0y >的解集为P ,集合{|22}Q x t x t =--<<-+,若对于任意正数t ,P Q ⋂≠∅,求11a b-的最大值.高2024级高一上学期11月半期测试数学试题一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.【1题答案】【答案】B 【2题答案】【答案】D 【3题答案】【答案】A 【4题答案】【答案】BC 【5题答案】【答案】B 【6题答案】【答案】A 【7题答案】【答案】B 【8题答案】【答案】A二、多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】BC 【11题答案】【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】(,3)[8,)-∞-+∞【13题答案】【答案】[]28-,【14题答案】【答案】6-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)2,3⎡⎫-+∞⎪⎢⎣⎭(2)13,2⎛⎫- ⎪⎝⎭【16题答案】【答案】11a -≤≤【17题答案】【答案】(1)2210050,020()9000101950,201x x x W x x x x ⎧-+-<≤⎪=⎨--+>⎪+⎩;(2)当年产量为29万台时,该公司获得的年利润最大为1360万元.【18题答案】【答案】(1)2(2)()f x 在()0,+∞上是增函数,证明见解析(3)()4,+∞【19题答案】【答案】(1)1{0,,1}4;(2)答案见解析;(3)12.。

高一年级上学期半期统一考试数学试题(附解析)

高一年级上学期半期统一考试数学试题(附解析)

高一年级上学期半期统一考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。

第I 卷(选择题 共60分)一、选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1、若全集{}1,2,3,4,5U =,集合{}{}1,2,2,3,4M N ==,则()U C M N 等于( ) A 、{}1B 、{}2C 、{}3,4D 、{}52、函数()12f x x-的定义域是( ) A 、[)()1,22,-+∞B 、[)1,-+∞C 、()(),22,-∞+∞D 、()()1,22,-+∞3、若函数()()3,52,5x x f x f x x ⎧-≥⎪=⎨+<⎪⎩,则()2f 的值为( )A 、2B 、3C 、4D 、54、设集合{}{}2430,230A x x x B x x =-+≥=-≤,则A B =( )A 、(][),13,-∞+∞B 、[]1,3C 、3,32⎡⎤⎢⎥⎣⎦D 、[)3,3,2⎛⎤-∞+∞ ⎥⎝⎦5、函数()()2213f x x a x =---在3,2⎛⎫+∞ ⎪⎝⎭上是增函数,则实数a 的范围是( )A 、1a ≤B 、1a ≥C 、2a ≤D 、2a ≥6、已知函数()()22,2x x f x g x x -==- )A 、函数()f x 是奇函数,函数()g x 是偶函数B 、函数()f x 不是奇函数,函数()g x 是偶函数C 、函数()f x 是奇函数,函数()g x 不是偶函数D 、函数()f x 不是奇函数,函数()g x 不是偶函数7、若函数()f x 满足关系式()()321f x f x x+-=-,则()2f 的值为( )A 、32-B 、32C 、52-D 、52知圆柱形桶中液面上升的速度是一个常量,H 是圆锥形漏斗中液面下落的距离,则H 与下落时间()min t 的函数关系式表示的图象只可能是( )9、已知()()314,1,1a x a x f x ax x ⎧-+<⎪=⎨-≥⎪⎩是定义在(),-∞+∞上的减函数,则实数a 的取值范围是( )A 、11,83⎡⎫⎪⎢⎣⎭B 、11,83⎡⎤⎢⎥⎣⎦C 、10,3⎛⎫ ⎪⎝⎭D 、10,3⎛⎤ ⎥⎝⎦10、已知函数()f x 满足:对任意的实数,a b 都有()()()f a b f a f b +=⋅,且()12f =,则()()()()()()()()24620161352015f f f f f f f f ++++=( )A 、504B 、1008C 、2016D 、403211、奇函数()f x 在()0,+∞内单调递增且()20f =,则不等式()01f x x >-的解集为( )A 、()()(),20,11,2-∞-B 、()()2,01,2-C 、()(),22,-∞-+∞D 、()()(),20,12,-∞-+∞12、已知函数22y x x =+在闭区间[],a b 上的值域为[]1,3-,则满足题意的有序实数对(),a b 在坐标平面内所对应点组成图形为( )A B C D第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分。

高一上学期期中数学试题(含参考答案)

高一上学期期中数学试题(含参考答案)

高一上学期期中数学试题一、单选题(本大题共8小题)1. 已知集合{}2Z160U x x =∈-≤∣,集合{}2Z 340A x x x =∈--<∣,则UA =( )A .{14xx ≤≤∣或4}x =- B .{41xx -≤≤-∣或4}x = C .{}4,3,2,1,4---- D .{}4,3,2,1----2. 24x =是2x =-的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3. 若,,a b c R ∈,a b >则下列不等式成立的是( ) A .11a b<B .22a b <C .a c b c >D .2211a bc c >++ 4. 设函数()21,01,0x x f x x x -+≤⎧=⎨->⎩,若()3f a =,则实数=a ( )A .2B .2-或2C .4-或2D .4-5. 幂函数2225()(5)m m f x m m x +-=+-在区间(0,)+∞上单调递增,则(3)f =( )A .27B .9C .19D .1276. 下列函数中,既是其定义域上的单调函数,又是奇函数的是( ) A .4y x = B .1y x=C .y =D .3y x =7. 若两个正实数,x y 满足141x y +=,且不等式234yx m m +<-有解,则实数m 的取值范围为( )A .41,3⎛⎫- ⎪⎝⎭B .()4,1,3∞∞⎛⎫--⋃+ ⎪⎝⎭C .4,13⎛⎫- ⎪⎝⎭D .()4,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭8. 已知函数()f x 的定义域是()0,∞+,且满足()()()1,12f xy f x f y f ⎛⎫=+= ⎪⎝⎭,如果对于0x y <<,都有()()f x f y >,则不等式()()232f x f x +-≥-的解集为( ) A .[]1,2 B .][(),12,-∞⋃+∞C .()()0,12,3D .][()0,12,3⋃二、多选题(本大题共4小题)9. 已知{}21|A y y x ==+,(){}21|,B x y y x ==+ ,下列关系正确的是( )A .=AB B .()1,2A ∈C .1B ∉D .2A ∈10. 已知关于x 的不等式20ax bx c ++>的解集为{}|23<<x x ,则下列说法正确的有( ) A .0a >B .0a b c ++<C .24c a b ++的最小值为6D .不等式20cx bx a -+<的解集为1|32x x x ⎧⎫<->⎨⎬⎩⎭或11. 下列说法正确的是( )A .偶函数()f x 的定义域为[]21,a a -,则1a =B .若函数()21y f x =-的定义域是[]2,3-,则f x y =的定义域是(]3,5-C .奇函数()f x 在[]2,4上单调递增,且最大值为8,最小值为1-,则()()24215f f -+-=-D .若集合{}2|420A x ax x =-++=中至多有一个元素,则2a ≤-12. 已知定义在R 上的函数()f x 的图像是连续不断的,且满足以下条件:①()()R,x f x f x ∀∈-=;② ()12,0,x x ∀∈+∞,当12x x ≠时,()()21210f x f x x x ->-;③()10f -=.则下列选项成立的是( )A .()f x 在(),0∞-上单调递减,B .()()53f f -<C .若()()12f m f -<,则3m <D .若()0f x x>,则()()1,01,x ∈-⋃+∞三、填空题(本大题共3小题)13. 已知()y f x =为奇函数,当0x ≥时()()1f x x x =+,则()3f -= . 14. 已知1x >,则1411y x x =++-的最小值是 . 15. 已知()f x 是定义域为(),-∞+∞的偶函数,且满足()()()2,01f x f x f +=-=,则()()()()()12320212022f f f f f +++++= .四、双空题(本大题共1小题)16. 已知函数()22,31,3x x x c f x c x x ⎧+-≤≤⎪=⎨<≤⎪⎩,若0c ,则()f x 的值域是 ;若()f x 的值域是[]1,3-,则实数c 的取值范围是 .五、解答题(本大题共6小题)17. (1)某网店销售一批新款削笔器,每个削笔器的最低售价为15元.若按最低售价销售,每天能卖出30个;若一个削笔器的售价每提高1元,日销售量将减少2个.为了使这批削笔器每天获得400元以上的销售收入,应怎样制定这批削笔器的销售价格?(2)根据定义证明函数1y x x=+在区间()1,+∞上单调递增. 18. 已知命题2120p x x a ∀≤≤-≥:,,命题22R +2+2+=0q x x ax a a ∃∈:,. (1)若命题p 的否定为真命题,求实数a 的取值范围;(2)若命题p 为真命题,命题q 为假命题,求实数a 的取值范围.19. 已知函数()f x A ,集合={1<<1+}B x a x a -.(1)当=2a 时,求R A B ⋂();(2)若B A ⊆,求a 的取值范围.20. 已知幂函数()22()55m f x m m x -=-+的图象关于点(0,0)对称.(1)求该幂函数()f x 的解析式;(2)设函数()|()|g x f x =,在如图的坐标系中作出函数()g x 的图象; (3)直接写出函数()g x 的单调区间.21. 已知函数()223,R f x x bx b =-+∈. (1)求不等式()24f x b <-的解集;(2)当[]1,2x ∈-时,函数()y f x =的最小值为1,求当[]1,2x ∈-时,函数()y f x =的最大值.22. 设函数()()22,52(0)1x f x g x ax a a x ==+->+,(1)若对任意的[]10,1x ∈,存在[]20,1x ∈使得()()12f x g x ≥,求实数a 的取值范围; (2)若对任意的[]10,1x ∈,存在[]20,1x ∈使得()()12f x g x =,求实数a 的取值范围.参考答案1. 【答案】C【分析】解一元二次不等式求得集合U 和A ,根据补集的概念即可求得答案.【详解】解不等式2340x x --<得14,{Z 14}{0123}x A x x -<<∴=∈-<<=∣,,,, 由2160x -≤,可得44x -≤≤,{}Z 44{432101234}U x x ∴=∈-≤≤=----∣,,,,,,,,, {}4,3,2,1,4U A ∴=----故选:C. 2. 【答案】B【分析】先解方程24x =,进而判断出.24x =是2x =-的必要不充分条件. 【详解】①当24x =时,则2x =±,∴充分性不成立,②当2x =-时,则24x =,∴必要性成立,∴24x =是2x =-的必要不充分条件. 故选:B. 3. 【答案】D【分析】通过反例1a =,1b ,0c 可排除ABC ;利用不等式的性质可证得D 正确.【详解】若1a =,1b,则1111a b=>=-,221a b ==,则A 、B 错误; 若a b >,0c ,则0a c b c ==,则C 错误;211c +≥,21011c ∴<≤+,又a b >,2211a bc c ∴>++,则D 正确.故选:D. 4. 【答案】B【分析】根据()21,01,0x x f x x x -+≤⎧=⎨->⎩,分0a ≤和 0a >讨论求解. 【详解】解:()21,01,0x x f x x x -+≤⎧=⎨->⎩,当0a ≤时,13a -+=,则2a =-, 当0a >时,令24a =,则2a =, 故实数2a =-或2, 故选:B. 5. 【答案】A【分析】根据幂函数的概念及性质,求得实数m 的值,得到幂函数的解析式,即可求解.【详解】由题意,令251m m +-=,即260m m +-=,解得2m =或3m =-,当2m =时,可得函数3()f x x =,此时函数()f x 在(0,)+∞上单调递增,符合题意; 当3m =-时,可得2()f x x -=,此时函数()f x 在(0,)+∞上单调递减,不符合题意, 即幂函数3()f x x =,则(3)27f =. 故选:A. 6. 【答案】D【分析】根据幂函数的单调性与奇偶性分析判断.【详解】对于A :∵()44x x -=,则4y x =是偶函数,故A 错误; 对于B :∵11=--x x ,则1y x=为奇函数,在()(),0,0,-∞+∞单调递减,但在定义域上不单调,故B 错误;对于C :y =[)0,∞+,在定义域上单调递增,但定义域不关于原点对称,即y =C 错误;对于3D :y x =在定义域R 上单调递增,且33()x x -=-,即3y x =为奇函数,故D 正确; 故选:D. 7. 【答案】B【分析】根据基本不等式,结合不等式有解的性质进行求解即可. 【详解】不等式234y x m m +<-有解,2min 3,0,04y x m m x y <⎛⎫∴+->> ⎪⎝⎭,且141x y +=,144224444y y x y x x x y y x ⎛⎫⎛⎫∴+=++=++≥= ⎪ ⎪⎝⎭⎝⎭,当且仅当44x y y x =,即2,8x y ==时取“=",min 44y x ⎛⎫∴+= ⎪⎝⎭,故234m m ->,即()()1340m m +->,解得1m <-或4,3m >∴实数m 的取值范围是()4,1,3∞∞⎛⎫--⋃+ ⎪⎝⎭. 故选:B. 8. 【答案】D【分析】由赋值法得()42f =-,由函数的单调性转化后求解,【详解】由于()()()f xy f x f y =+,令1x y ==得()()121f f =,即()10f =,则()()11122022f f f f ⎛⎫⎛⎫=⨯=+= ⎪ ⎪⎝⎭⎝⎭,由于112f ⎛⎫= ⎪⎝⎭,则()21f =-, 即有()()4222f f ==-,由于对于0x y <<,都有()()f x f y >,则()f x 在()0,∞+上递减, 不等式()()232f x f x +-≥-即为()()234f x x f ⎡⎤-≥⎣⎦.则20302(3)4x x x x >⎧⎪->⎨⎪-≤⎩,解得01x <≤或23x ≤<,即解集为][()0,12,3⋃. 故选:D9. 【答案】CD【分析】根据集合A 、B 的特征,结合元素与集合的关系进行判断.【详解】∵{}2|1{|1}A y y x y y ==+=是数集;{}2(,)|1B x y y x ==+为点集,∴2A ∈,2B ∉,1B ∉,故A 错误,C 、D 正确;由21y x =+知,=1x 时=2y ,∴(1,2)B ∈,(1,2)A ∉,故B 错误. 故选:CD . 10. 【答案】BC【分析】由不等式与方程的关系得出02323a b a c a ⎧⎪<⎪⎪+=-⎨⎪⎪⨯=⎪⎩,从而得到:5b a =-,6c a =,且a<0,再依次对四个选项判断即可得出答案.【详解】不等式20ax bx c ++>的解集为{}|23<<x x ,02323a b a c a ⎧⎪<⎪⎪∴+=-⎨⎪⎪⨯=⎪⎩,解得:5b a =-,6c a =,且a<0,故选项A 错误;5620a b c a a a a ++=-+=<,故选项B 正确;()2243641964c a a a b a a ++⎛⎫==-+-≥ ⎪+-⎝⎭, 当且仅当13a =-时等号成立,故选项C 正确;20cx bx a -+<可化为:2650ax ax a ++<,即26510x x ++>,则解集为1123x x x ⎧⎫--⎨⎬⎩⎭或,故选项D 错误;综上所述选项B 、C 正确, 故选:BC. 11. 【答案】BC【分析】根据偶函数的定义域关于原点对称,可判断A 项错误;根据抽象函数定义域的求解法则,以及使得分式根式有意义,可列出不等式组,可判断B 项正确;根据条件可得()21f =-,()48f =,根据奇函数的性质可求得()2f -与()4f -的值,代入即可得出C 项正确;由题意可知,方程2420ax x -++=至多有一个解,对a 是否为0讨论,可得D 项错误.【详解】由偶函数()f x 的定义域为[]21,a a -,可得210a a -+=,解得13a =,A 错;因为函数()21y f x =-的定义域是[]2,3-,所以23x -≤≤,即5215x -≤-≤.所以函数()f x 的定义域为[]5,5-.要使f x y =5530x x -≤≤⎧⎨+>⎩,解得35x -<≤,即y =(]3,5-,B 对;因为,奇函数()f x 在[]2,4上单调递增,且最大值为8,最小值为-1, 则()21f =-,()48f =,根据奇函数的性质可得,()()221f f -=-=,()()448f f -=-=-, 则()()()24228115f f -+-=⨯-+=-,则C 项正确;因为集合{}2420A x ax x =-++=∣中至多有一个元素, 所以方程2420ax x -++=至多有一个解,当0a =时,方程420x +=只有一个解12x =-,符合题意;当0a ≠时,由方程2420ax x -++=至多有一个解,可得Δ1680a =+≤,解得2a ≤-. 所以,0a =或2a ≤-,则D 项错误. 故选:BC. 12. 【答案】AD【分析】由①可得,()f x 为偶函数.由②可得,()f x 在()0,∞+上单调递增.后分析选项可得答案.【详解】由()()()21121221,0,,,0f x f x x x x x x x ∞-∀∈+≠>-得:()f x 在()0,∞+上单调递增,由R x ∀∈,()()f x f x -=得:函数()f x 是R 上的偶函数.对于A 选项,因()f x 在()0,∞+上单调递增,且()f x 为偶函数,则()f x 在(),0∞-上单调递减,故A 正确.对于B ,C 选项,因()f x 为偶函数,则()()f x f x =.又()f x 在()0,∞+上单调递增,则()()()553,f f f -=>故B 错误;()()()()1212f m f f m f -<⇔-<,又函数()f x 的图像是连续不断的,则有12m -<,解得13,m -<<故C 错误;对于D 选项,由()0f x >及()10f -=得:()()11f x f x >⇔>,解得1x <-或1x >,由()0f x <得:()()11f x f x <⇔<,解得11x -<< 则()0f x x>可化为:()00f x x ⎧>⎨>⎩或()00f x x ⎧<⎨<⎩,解得1x >或10x -<<,即()()1,01,x ∈-⋃+∞,故D 正确.故选:AD13. 【答案】-12【分析】利用奇函数的性质()()f x f x -=-即可得到答案. 【详解】因为()y f x =为奇函数,所以()()f x f x -=-, 故()()()3331312f f -=-=-⨯+=-. 故答案为:-12. 14. 【答案】9【分析】将目标式变形,利用基本不等式即可得出其最值. 【详解】1x >,10x ->,()(11414152415911x x x x x ∴++=-++-=--, 当且仅当()1411x x -=-即3=2x 时取等号, 32x ∴=时, 1411y x x =++-取最小值9. 故答案为:9. 15. 【答案】1-【分析】由()()2f x f x +=-知函数是周期为4的周期函数,再结合偶函数可求()()()()1234f f f f ,,,的值,从而可求()()()()()12320212022f f f f f +++++的值.【详解】由()f x 满足()()2f x f x +=-,则()()()42f x f x f x +=-+=,即函数是周期为4的周期函数;根据题意,()f x 是定义域为(),-∞+∞的偶函数,则有()()11f f -=,又由()f x 满足()()2f x f x +=-,则()()()111f f f -=-=,所以()()110f f =-=,由()()2f x f x +=-,可得()()()()201,310f f f f =-=-=-=, 则()()()()12340f f f f +++=, 所以()()()()()12320212022f f f f f +++++()()()()()()5051234121f f f f f f ⎡⎤=+++++=-⎣⎦. 故答案为:1-.16. 【答案】 [1,)-+∞ 1[,1]3.【分析】作出函数()f x 的图象,根据二次函数与反比例函数的图象与性质,结合图象,即可求解.【详解】由0c 时,函数()22,301,03x x x f x x x⎧+-≤≤⎪=⎨<≤⎪⎩,当[3,0]x ∈-时,函数()22f x x x =+,可得函数()f x 在[3,1]--上单调递减,在[1,0]-上单调递增, 且()()(3)3,11,00f f f -=-=-=,所以函数的值为[1,3]-; 当(0,3]x ∈时,函数()1f x x =为单调递减函数,其值域为1[,)3+∞, 综上可得,函数()f x 的值域为[1,)-+∞; 作出函数()f x 的图象,如图所示, 若函数()f x 的值域为[1,3]-,当1y =-时,即221x x +=-,解得=1x -, 当3y =时,即223x x +=,解得3x =-或1x =, 当13x=时,可得13x =,结合图象,可得实数c 的取值范围是1[,1]3.故答案为:[1,)-+∞;1[,1]3.17. 【答案】(1)应将这批削笔器的销售价格制定在每个15元到20元之间(包括15元但不包括20元);(2)证明见解析.【分析】(1)设这批削笔器的销售价格定为()15x x 元/个,解不等式()30152400x x ⎡⎤--⨯⋅>⎣⎦即得解;(2)利用函数单调性的定义证明.【详解】(1)设这批削笔器的销售价格定为()15x x 元/个,由题意得()30152400x x ⎡⎤--⨯⋅>⎣⎦,即2302000,x x -+<方程230200x x -+=的两个实数根为1210,20x x ==,2302000x x ∴-+<解集为{1020}x x <<∣, 又15,1520x x ≥∴≤<,故应将这批削笔器的销售价格制定在每个15元到20元之间(包括15元但不包括20元),才能使这批削笔器每天获得400元以上的销售收入.(2)证明:()12,1,x x ∀∈+∞,且12x x <,有()()()211212121212121212121211111x x x x y y x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫---=+-+=-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由()12,1,x x ∈+∞,得121,1x x >>.所以12121,10x x x x >->. 又由12x x <,得120x x -<.于是()12121210x x x x x x --<,即12y y <. 所以,函数1y x x=+在区间()1,+∞上单调递增. 18. 【答案】(1)(1,)+∞ (2)(0,1]【分析】(1)先求出p ⌝,然后利用其为真命题,求出a 的取值范围即可; (2)由(1)可知,命题p 为真命题时a 的取值范围,然后再求解q 为真命题时a 的取值范围,从而得到q ⌝为真命题时a 的取值范围,即可得到答案. 【详解】(1)根据题意,当12x ≤≤时,214x ≤≤, p ⌝:存在12x ≤≤,20x a -<为真命题,则1a >, 所以实数a 的取值范围是(1,)+∞;(2)由(1)可知,命题p 为真命题时,1a ≤, 命题q 为真命题时,2244(2)0a a a ∆=-+≥,解得0a ≤, 所以q ⌝为真命题时,0a >,所以1>0a a ≤⎧⎨⎩,解得01a <≤,所以实数a 的取值范围为(0,1]. 19. 【答案】(1){3<1x x -≤-或}34x ≤≤(2){3}aa ≤|【分析】(1)求出定义域,得到{-34}A xx =<≤|,进而计算出RB 及()R A B ⋂;(2)分B =∅与B ≠∅,列出不等式,求出a 的取值范围. 【详解】(1)要使函数()f x 40+3>0x x -≥⎧⎨⎩,解得:34x -<≤, 所以集合{-34}A x x =<≤|. 2a =,∴{}{}=1<<1+=1<<3B x a x a x x --, ∴{=1RB x x ≤-或}3x ≥,∴{=3<1RA B x x ⋂-≤-或}34x ≤≤;(2)B A ⊆,①当B =∅时,11a a -≥+,即0a ≤,满足题意;②当B ≠∅时,由B A ⊆,得1<1+131+4a a a a --≥-≤⎧⎪⎨⎪⎩,解得:03a <≤,综上所述:a 的取值范围为{}3a a ≤.20. 【答案】(1)1()f x x -=(2)作图见解析(3)递增区间是(,0)-∞,递减区间是(0,)+∞【分析】(1)利用幂函数的定义求出m 值,再结合其图象性质即可得解.(2)由(1)求出函数()g x ,再借助反比例函数、对称性作出()g x 的图象.(3)根据(2)中图象特征写出函数()g x 的单调区间.【详解】(1)因幂函数()22()55m f x m m x -=-+,则2551m m -+=,解得1m =或4m =,当1m =时,函数11()f x x x-==定义域是(,0)(0,)-∞+∞,()f x 是奇函数,图象关于原点对称,则1m =,当4m =时,函数2()f x x =是R 上的偶函数,其图象关于y 轴对称,关于原点不对称,所以幂函数()f x 的解析式是1()f x x -=(2)因函数()|()|g x f x =,由(1)知,1()||g x x =,显然()g x 是定义域(,0)(0,)-∞+∞上的偶函数,当0x >时,1()g x x =在(0,)+∞上单调递减,其图象是反比例函数1y x =在第一象限的图象,作出函数()g x 第一象限的图象,再将其关于y 翻折即可得()g x 在定义域上的图象,如图,(3)观察(2)中图象得,函数()g x 的递增区间是(,0)-∞,递减区间是(0,)+∞. 21. 【答案】(1){|11}x b x b -<<+(2)答案见解析【分析】(1)根据题意解一元二次不等式即可;(2)分类讨论函数单调区间,找到最小值点,由最小值为1,求出系数b ,再求函数在区间内的最大值.【详解】(1)若()24f x b <-,即22234x bx b -+<-,则()()110x b x b ⎡⎤⎡⎤---+<⎣⎦⎣⎦,∵11b b -<+,所以11b x b -<<+,故不等式()0f x <的解集为{|11}x b x b -<<+.(2)因为()223f x x bx =-+是开口向上,对称轴为x b =的二次函数,①若1b ≤-,则()f x 在[]1,2-上单调递增,∴函数()y f x =的最小值为()1421f b -=+=,解得32b =-, 故函数()y f x =的最大值为()27413f b =-=;②若2b ≥,则()f x 在[]1,2-上单调递减,∴函数()y f x =的最小值为()2741f b =-=,解得32b =(舍去); ③若12b -<<,则()f x 在[]1,b -上单调递减,在(],2b 上是单调递增,∴函数()y f x =的最小值为()231f b b =-=,解得b =b =(舍去),故函数()y f x =的最大值为()1424f b -=+=+综上所述: 当32b =-时,()f x 的最大值为13;当b =()f x 最大值为4+22. 【答案】(1)5,2⎡⎫+∞⎪⎢⎣⎭(2)5,42⎡⎤⎢⎥⎣⎦【分析】(1)根据题意,分别求出两个函数的最小值,将问题等价转化为min min ()()g x f x ≤,解不等式即可求解;(2)根据题意,分别求出两个函数的值域,然后将问题等价转化为()f x 在[0,1]上值域是()g x 在[0,1]上值域的子集,结合集合的包含关系即可求解.【详解】(1)因为()()()2221221214111x x f x x x x x -+⎡⎤===++-⎢⎥+++⎣⎦,利用1y x x =+函数图像性质可知()f x 在[]0,1上单调递增,于是()f x 在0x =处取得最小值,即()min ()00f x f ==,因为()52g x x a α=+-,注意到0a >,则()g x 在[]0,1上单调递增,于是()g x 在0x =处取得最小值,即()min ()052g x g a ==-,由题意可得:520a -≤,即得5,2a ∞⎡⎫∈+⎪⎢⎣⎭,所以实数a 的取值范围为5,2⎡⎫+∞⎪⎢⎣⎭. (2)由(1)可知:()f x 在1x =处取得最大值,即()max ()11f x f ==于是当[]0,1x ∈时,()f x 的值域[]0,1A = ()g x 在1x =处取得最大值,即()max ()15g x g a ==- 于是当[]0,1x ∈时,()g x 的值域[]52,5B a a =-- 要使得对任意的[]10,1x ∈,存在[]20,1x ∈使得()()12f x g x = 根据()f x 与()g x 的连续性可知A B ⊆成立 则52051a a -≤⎧⎨-≥⎩,解得5,42a ⎡⎤∈⎢⎥⎣⎦,所以实数a 的取值范围为5,42⎡⎤⎢⎥⎣⎦.。

重庆市学校2023-2024学年高一上学期期中数学试题含解析

重庆市学校2023-2024学年高一上学期期中数学试题含解析

重庆市高2026届高一上期期中考试数学试题(答案在最后)注意事项:1.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}0,2,4,6,8,10,1,0,1,2,3A B ==-,则A B = ()A.{}4,8 B.{}0,2,6 C.{}0,2 D.{}2,4,6【答案】C 【解析】【分析】根据交集概念进行求解.【详解】{}{}{}0,2,4,6,8,101,0,1,2,30,2A B =-= .故选:C2.全称量词命题“2,54x x x ∀∈+≠R ”的否定是()A.2,54x x x ∃∈+=RB.2,54x x x ∀∈+=RC.2,54x x x ∃∈+≠RD.2,54x x x ∀∈+≠R 【答案】A 【解析】【分析】全称量词命题的否定是存在量词命题,把任意改为存在,把结论否定.【详解】“2,54x x x ∀∈+≠R ”否定是“2,54x x x ∃∈+=R ”.故选:A3.函数()3f x x =-的定义域为()A.()1,-+∞ B.[)1,-+∞ C.[)1,3- D.[)()1,33,-⋃+∞【答案】D 【解析】【分析】根据解析式的特征,直接列式即可得解.【详解】因为()3f x x =-,所以1030x x +≥⎧⎨-≠⎩,解得1x ≥-且3x ≠.所以函数的定义域是[)()1,33,-⋃+∞.故选:D.4.若函数)1fx =,则()f x 的解析式为()A.()()20f x x x x =+≥ B.()()21f x x x x =+≥C.()()20f x x x x =-≥ D.()()21f x x x x =-≥【答案】D 【解析】【分析】直接利用换元法可得答案,解题过程一定要注意函数的定义域.【详解】令1t =+,则()21x t =-,1t ≥,因为)1fx +=+,所以()()()()22111f t t t t t t =--+=≥-,则()()21f x x x x =-≥,故选:D.5.设奇函数()f x 的定义域为[]5,5-,当[]0,5x ∈时,函数()y f x =的图象如图所示,则使()0f x <的x 的取值集合为()A.()3,5 B.()()5,30,3-- C.()5,3-- D.()()3,00,3- 【答案】B 【解析】【分析】根据奇函数的图象特征补全()f x 的图象,从而结合图象即可得解.【详解】因为函数()f x 是奇函数,所以()y f x =在[]5,5-上的图象关于坐标原点对称,由()y f x =在[]0,5x ∈上的图象,知它在[]5,0-上的图象,如图所示,所以使()0f x <的x 的取值集合为()()5,30,3-- .故选:B.6.若0,0a b >>,且4a b +=,则下列不等式恒成立的是()A.112ab > B.111a b+≤ C.2≥ D.4194a b +≥【答案】D 【解析】【分析】根据特殊值以及基本不等式求得正确答案.【详解】当1,3a b ==时,3ab =,113ab =,1114133a b +=+=,所以112ab <,111a b+>2<,ABC 选项错误.()4114114544b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭19544⎛≥+= ⎝,当且仅当2484,,,433a b b a a b a b a b =⎧===⎨+=⎩时等号成立,D 选项正确.故选:D7.设m 为给定的一个实常数,命题[]2:0,3,40p x x x m ∀∈-+≥,则“6m >”是“命题p 为真命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】先求出命题p 为真命题时4m ≥,进而判断出答案.【详解】由题意得24m x x ≥-+对[]0,3x ∀∈恒成立,其中()22424y x x x =-+=--+,故24y x x =-+在2x =处取得最大值,最大值为4,故4m ≥,即命题p 为真命题时4m ≥,由于64m m >⇒≥,但4m ≥⇒6m >,故则“6m >”是“命题p 为真命题”的充分不必要条件.故选:A8.已知函数()f x 满足条件:()()()()()11,,2f f x y f x f y f x =+=⋅在R 上是减函数,若[]1,4x ∃∈,使()()216f x f mx ≤成立,则实数m 的取值范围是()A.(),5-∞ B.(],5-∞ C.(),4-∞ D.(],4∞-【答案】B 【解析】【分析】将问题转化为24mx x ≤+能成立,再利用对勾函数的单调性即可得解.【详解】因为()()()()11,2f f x y f x f y =+=⋅,所以()()()12114f f f =⋅=,()()()141622f f f =⋅=,所以()()216f x f mx ≤,可化为()()()()()22214164f mx f x f f x f x ≥==+⋅,因为()f x 在R 上是减函数,所以24mx x ≤+,所以问题转化为[]1,4x ∃∈,使24mx x ≤+成立,即4m x x ≤+,则max 4m x x ⎛⎫+ ⎪⎝≤⎭,因为对勾函数4y x x=+在[]1,2上单调递减,在[]2,4上单调递增,所以当1x =或4x =时,4y x x=+取得最大值5,所以5m ≤,即(],5m ∈-∞.故选:B.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的4个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.下列各项中,()f x 与()g x 表示的函数相等的是()A.()(),f x x g x ==B.()()f x g x ==C.()()32,x f x x g x x== D.()()1,11,1,1x x f x x g x x x -≥⎧=-=⎨-<⎩【答案】BD 【解析】【分析】根据函数的定义,一一判断各选项函数的定义域和对应法则是否相同,即可得到答案.【详解】对于A ,()f x x =,定义域为R ,()||g x x ==,定义域为R ,但对应法则与前者不同,故两函数不相等,故A 错误;对于B ,由210x -≥得11x -≤≤,故()f x =[]1,1-,由1010x x +≥⎧⎨-≥⎩得11x -≤≤,故()g x =的定义域为[]1,1-,又两者对应法则相同,故两函数相等,故B 正确;对于C,()f x x =定义域为R ,3()x g x x =定义域为{|0}x x ≠,故两函数不相等,故C 错误;对于D ,1,1()11,1x x f x x x x -≥⎧=-=⎨-<⎩,()1,11,1x x g x x x -≥⎧=⎨-<⎩,两函数相等,故D 正确.故选:BD.10.若集合()20,,5x A x B a x ∞⎧⎫-=<=+⎨⎬-⎩⎭,若A B ⊆,则实数a 可能是()A.3- B.1C.2D.5【答案】ABC 【解析】【分析】解不等式求得集合A ,根据A B ⊆求得a 的取值范围,进而求得正确答案.【详解】由205x x -<-解得25x <<,所以()2,5A =,由于A B ⊆,所以2a ≤,所以ABC 选项正确,D 选项错误.故选:ABC11.下列说法正确的是()A.函数4(0)y x xx=+<的最大值是4- B.函数2y =的最小值是2C.函数16(2)2y x x x =+>-+的最小值是6 D.若4x y +=,则22x y +的最小值是8【答案】ACD 【解析】【分析】根据基本不等式的知识对选项进行分析,从而确定正确答案.【详解】A 选项,对于函数4(0)y x x x=+<,()444x x x x ⎡⎤+=--+≤--⎢-⎣⎦,当且仅当4,2x x x -==--时等号成立,所以A 选项正确.B 选项,22y ==≥=,=B 选项错误.C 选项,对于函数16(2)2y x x x =+>-+,20x +>,1616222622x x x x +=++-≥-=++,当且仅当162,22x x x +==+时等号成立,所以C 选项正确.D 选项,由基本不等式得22222x y x y ++⎛⎫≥ ⎪⎝⎭,所以222222282x y x y +⎛⎫≥⨯=⨯= ⎪⎝⎭+,当且仅当2x y ==时等号成立,所以D 选项正确.故选:ACD12.德国数学家狄里克雷(Dirichlet ,PeterGustavLejeune ,1805~1859)在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数.”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个x ,有一个确定的y 和它对应就行了,不管这个法则是用公式还是用图象、表格等形式表示,例如狄里克雷函数()D x ,即:当自变量取有理数时,函数值为1;当自变量取无理数时,函数值为0.下列关于狄里克雷函数()D x 的性质表述正确的是()A.()00D = B.()D x 的值域为{}0,1C.()D x 图象关于直线1x =对称 D.()D x图象关于点12⎫⎪⎭对称【答案】BC 【解析】【分析】AB 选项可根据题意直接得到,C 可分x 为有理数和无理数两种情况推导;D 选项,可举出反例.【详解】A 选项,因为0为有理数,故()01D =,A 错误;B 选项,由题意得()D x 的值域为{}0,1,B 正确;C 选项,当x 为有理数时,()1D x =,此时()D x 图象关于直线1x =对称,当x 为无理数时,()0D x =,此时()D x 图象关于直线1x =对称,综上,()D x 图象关于直线1x =对称,C 正确.D 选项,由于()()01,21D D ==,且()()0,1,2,1不关于12⎫⎪⎭对称,D 错误.故选:BC三、填空题:本题共4小题,每小题5分,共20分.13.设函数3,0()6,0x x f x x x≥⎧⎪=⎨-<⎪⎩,则((3))f f -=__________.【答案】6【解析】【分析】代入分段函数解析式求解即可.【详解】由题意,()()()63263f f f f ⎛⎫-=-== ⎪-⎝⎭.故答案为:614.重庆市第十一中学校每学年分上期、下期分别举行“大阅读”与“科技嘉年华”两项大型活动,深受学生们的喜爱.某社团经问卷调查了解到如下数据:96%的学生喜欢这两项活动中的至少一项,78%的学生喜欢“大阅读”活动,87%的学生喜欢“科技嘉年华”活动,则我校既喜欢“大阅读”又喜欢“科技嘉年华”活动的学生数占我校学生总数的比例是_________.【答案】69%【解析】【分析】根据集合的知识求得正确答案.【详解】设只喜欢“大阅读”的有x 人,两者都喜欢的有y 人,只喜欢“科技嘉年华”的有z 人,则0.960.780.87x y z x y y z ++=⎧⎪+=⎨⎪+=⎩,解得0.69y =.故答案为:69%15.已知实数()111,3,,84a b ⎛⎫∈∈ ⎪⎝⎭,则a bb +的取值范围是_________.【答案】()5,25【解析】【分析】利用不等式的基本性质即可得解.【详解】因为11,84b ⎛⎫∈ ⎪⎝⎭,所以148b <<,又(1,3)a ∈,所以424a b <<,故5125ab<+<所以1a b ab b+=+的取值范围为()5,25.故答案为:()5,25.16.已知函数()220x a x f x x ax x +<⎧=⎨-≥⎩,,,若关于x 的方程()()0f f x =有8个不同的实根,则a 的取值范围__________.【答案】()8,+∞【解析】【分析】先讨论0a ≤,结合函数解析式,确定显然不满足题意;再讨论0a >,画出()f x 的图象,利用数形结合的方法,即可求出结果.【详解】若0a ≤,当0x <时,()20f x x a =+<恒成立;当0x ≥时,由()()20f x x ax x x a =-=-=得0x =;即()0f x =仅有0x =一个根;所以由()()0ff x =可得()0f x =,则0x =;即方程()()0f f x =仅有一个实根;故不满足()()0ff x =有8个不同的实根;若0a >时,画出()2200x a x f x x ax x +<⎧=⎨-≥⎩,,的大致图象如下,由()()0f f x =可得()12f x a =-,()20fx =,()3f x a =,又()()0ff x =有8个不同的实根,由图象可得,()20f x =显然有三个根,()3f x a =显然有两个根,所以()12f x a =-必有三个根,而20a -<,2222244a a a y x ax x ⎛⎫=-=--≥- ⎪⎝⎭,为使()12f x a =-有三个根,只需224a a ->-,解得8a >;综上可知,8a >.故答案为:()8,+∞.【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步聚.17.设m ∈R ,集合{}2280A x x x =--≤,{}2B x m x m =≤≤+.(1)若3m =,求()R A B ð;(2)若A B ⋂=∅,求实数m 的取值范围.【答案】(1){}23x x -≤<(2)()(),44,∞∞--⋃+【解析】【分析】(1)解不等式得到{}24A x x =-≤≤和R B =ð{3x x <或}5x >,利用交集概念求出答案;(2)根据交集为空集得到不等式,求出实数m 的取值范围.【小问1详解】{}{}228024A x x x x x =--≤=-≤≤,3m =时,{}35B x x =≤≤,故R B =ð{3x x <或}5x >,故(){}R 24A B x x ⋂=-≤≤ð{3x x ⋂<或}5x >{}23x x =-≤<;【小问2详解】显然B ≠∅,因为A B ⋂=∅,所以22m +<-或4m >,解得4m <-或4m >,故实数m 的取值范围为()(),44,∞∞--⋃+.18.已知函数()21f x ax bx =++(,a b 为实数),()10f -=,且_________.请在下列三个条件中任选一个,补充在题中的横线上,并解答.①()()31f f -=;②()f x 的值域为[)0,∞+;③()0f x <的解集为∅;(1)求()f x 的解析式;(2)当[]2,2x ∈-时,()()g x f x kx =-是单调函数,求实数k 的取值范围;注:如果选择多个条件解答,按第一个解答计分.【答案】(1)选①②③,答案均为()221f x x x =++(2)(][),26,-∞-+∞ 【解析】【分析】(1)选①,得到方程组求出1a =,2b =,求出解析式;选②,根据函数值域及()10f -=得到方程组,求出解析式;选③,由二次函数图象分析得到20Δ40a b a >⎧⎨=-≤⎩,结合()10f -=得到1a =,2b =,求出答案;(2)转化为()()221g x x k x =+-+在[]2,2x ∈-上单调,结合函数对称轴得到不等式,求出答案.【小问1详解】选①,()()31f f -=,因为()10f -=,所以109311a b a b a b -+=⎧⎨-+=++⎩,解得12a b =⎧⎨=⎩,故()221f x x x =++;选②,()f x 的值域为[)0,∞+,即2404a b a-=由于()10f -=,所以10a b -+=,解得12a b =⎧⎨=⎩,故()221f x x x =++;选③,()0f x <的解集为∅,故20Δ40a b a >⎧⎨=-≤⎩,由于()10f -=,所以10a b -+=,即1b a =+,故()()221410a a a +-=-≤,解得1a =,故2b =,解析式()221f x x x =++.【小问2详解】()()221g x x k x =+-+在[]2,2x ∈-上单调,其中()()221g x x k x =+-+的对称轴为22k x -=,故需满足222k -≥或222k -≤-,解得6k ≥或2k ≤-,故实数k 的取值范围是(][),26,-∞-+∞ .19.已知函数()()()221,12ax b x f x g x f x x x ++==⋅++.若()f x 为R 上的奇函数且()112f =.(1)求,a b ;(2)判断()g x 在(),2-∞-上的单调性,并用单调性的定义证明.【答案】(1)1a =,0b =;(2)单调递增,证明见解析.【解析】【分析】(1)根据给定的函数式,利用奇函数的定义求出b ,由()112f =求出a 即得.(2)由(1)求出()g x 并判断单调性,再利用定义证明即得.【小问1详解】由()f x 为R 上的奇函数,得()()0f x f x -+=,即22()011a xb ax b x x -+++=++,则2201b x =+,解得0b =,又()112f =,则21(1)112a f ==+,解得1a =,所以1a =,0b =.【小问2详解】由(1)知2()1x f x x =+,则212()()1222x x g x f x x x x +=⋅==-+++,函数()g x 在(),2-∞-上的单调递增,()12,,2x x ∞∀∈--,121221122()22()()22(2)(2)x x g x g x x x x x --=-=++++,因为122x x <<-,则1220,20x x +<+<,120x x -<,有12122()0(2)(2)x x x x -<++,即12()()<g x g x ,所以函数()g x 在(),2-∞-上的单调递增.20.我校在一个月内分批购入每张价值为200元的书桌共360张,若每批都购入x 台(x 是正整数),且每批均需付运费400元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比.若每批购入40张书桌,则该月需用的运费和保管费共5200元.(1)求该月购入书桌时需用的运费和保管费的总费用()f x ;(2)为使得该月购入书桌所需的运费和保管费最少,应如何安排每批进货的数量?【答案】(1)()36040040f x x x=⨯+,*Z x ∈(2)每批进货的数量为60【解析】【分析】(1)假设题中比例为k ,由题意列出()f x 关于k 的表达式,再代入已知条件求得k ,从而得解.(2)结合(1)中解析,利用基本不等式即可得解.【小问1详解】设题中的比例系数设为k ,每批购入x 台,则共需分360x 批,每批书桌价值200x 元,则()360400200f x k x x =⨯+⨯,*Z x ∈,因为当40x =时,5200y =,所以36040020040520040k ⨯+⨯⨯=,解得15k =,所以()36040040f x x x =⨯+,*Z x ∈.【小问2详解】由(1)可得:()036040040480f x x x =≥=⨯+(元)当且仅当36040040x x⨯=,即60x =时,等号成立,所以每批进货的数量为60.21.已知二次函数y =ax 2+bx ﹣a +2.(1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值;(2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.【答案】(1)a =﹣1,b =2(2)见解析【解析】【分析】(1)根据一元二次不等式的解集性质进行求解即可;(2)根据一元二次不等式的解法进行求解即可.【小问1详解】由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根,所以132(1)3b a a a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;【小问2详解】当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0,即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-;当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.22.对于定义域为D 的函数()y f x =,若存在区间[],a b D ⊆,使()f x 在[],a b 上的值域为[],a b ,则称区间[],a b 为函数()f x 的“最美区间”.(1)求函数()2f x x =的“最美区间”;(2)若()f x k =存在最美区间[],a b 函数,求实数k 的取值范围.【答案】(1)[]0,1(2)9,4a ⎛⎤- ⎥⎝⎦【解析】【分析】(1)推导出0a ≥,0b >,结合()f x 在[],a b 上单调递增,得到()f b b =,()f a a =,求出0a =,1b =,得到答案;(2)根据()f x k =+在[)2,-+∞上单调递增,得到()()f a a f b b ⎧=⎪⎨=⎪⎩,转化为,a bk x =在[)2,-+∞上两个不等的实根,且k a b ≤<,平方后,数形结合得到不等式,求出实数k 的取值范围.【小问1详解】因为()20f x x =≥,()f x 在[],a b 上的值域为[],a b ,故0a ≥,因为a b <,所以0b >,故()f x 在[],a b 上单调递增,所以()f b b =,即2b b =,解得1b =或0(舍去),所以1a <,同理()f a a =,解得0a =或1(舍去),综上,()2f x x =的“最美区间”是[]0,1;【小问2详解】令20x +≥,解得2x ≥-,故()f x k =的定义域为[)2,-+∞,且()f x k =在[)2,-+∞上单调递增,故()()f a a f b b ⎧=⎪⎨=⎪⎩,k a k b==,即,a b为方程k x =在[)2,-+∞上两个不等的实根,且k a b ≤<,x k =-,两边平方得()222120x k x k -++-=,令()()22212g x x k x k =-++-,需满足()()()222122Δ2142020k x k k g k a +⎧=>-⎪⎪⎪=+-->⎨⎪-≥⎪⎪≤⎩,解得94k a -<≤,故实数k 的取值范围是9,4a ⎛⎤- ⎥⎝⎦.。

安徽省六安2023-2024学年高一上学期期中考试数学试题含解析

安徽省六安2023-2024学年高一上学期期中考试数学试题含解析

六安2023年秋学期高一年级期中考试数学试卷(答案在最后)满分:150分时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.命题“1x ∀>,20x x ->”的否定是()A.1x ∃≤,20x x ->B.1x ∀>,20x x -≤C.1x ∃>,20x x -≤D.1x ∀≤,20x x ->【答案】C 【解析】【分析】根据全称量词命题的否定为存在量词命题即可得解.【详解】因为全称量词命题的否定为存在量词命题,所以命题“1x ∀>,20x x ->”的否定是1x ∃>,20x x -≤.故选:C.2.若12162x A x ⎧⎫=≤≤⎨⎬⎩⎭,501x B x x ⎧⎫-=≥⎨⎬-⎩⎭,则()R A B =I ð()A.{}14x x <≤ B.{}14x x ≤< C.{}14x x << D.{}14x x ≤≤【答案】D 【解析】【分析】分别解指数不等式和分式不等式求出集合A 与集合B ,再由补集和交集知识进行求解即可.【详解】由12162x ≤≤,得14222x -≤≤,∵2x y =在R 上单调递增,∴解得14x -≤≤,∴{}1216142x A xx x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,又∵501x x -≥-()()51010x x x ⎧--≥⇔⎨-≠⎩,解得1x <或5x ≥,∴501x B x x ⎧⎫-=≥⎨⎬-⎩⎭{1x x =<或}5x ≥,∴{}15B x x =≤<R ð,又∵{}14A x x =-≤≤,∴(){}14A B x x ⋂=≤≤R ð.故选:D.3.已知p :12a >,q :指数函数()()32xf x a =-是增函数,则p 是q 的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件【答案】C 【解析】【分析】求出命题q 中a 的范围,判断两个命题间的充分性与必要性即可.【详解】因为指数函数()()32xf x a =-是增函数,所以3211a a ->⇒>,又p :12a >,所以p 是q 的必要不充分条件,故选:C4.若0.62a =,30.6b =,0.63c =,则它们的大小关系是()A.c a b >>B.c b a>> C.a c b>> D.b a c>>【答案】A 【解析】【分析】利用函数0.6y x =和0.6x y =的单调性即可比较.【详解】因为0.6y x =在()0,∞+上单调递增,所以0.60.60.6123<<,即1c a >>又0.6x y =在R 上单调递减,所以300.60.6<,即1b <,综上,c a b >>.故选:A5.若,x y 满足0,0,3x y xy x y >>=+,则3x y +的最小值为()A.10+B.10+C.12D.16【答案】D 【解析】【分析】利用乘“1”法即可得到答案.【详解】因为3xy x y =+,0,0x y >>,两边同除xy 得131x y+=,所以()133********y x x y x y x y x y ⎛⎫⎛⎫+=++=++≥+⎪ ⎪⎝⎭⎝⎭.当且仅当4x y ==时等号成立,故选:D .6.已知函数()x f x a b =+的图象如图所示,则函数()()()g x x a x b =--的大致图象为()A. B.C. D.【答案】A 【解析】【分析】根据指数函数的图象与性质结合函数()x f x a b =+的图象可求得,a b 的范围,再根据二次函数的图象即可得解.【详解】函数()x f x a b =+的图象是由函数x y a =的图象向下或向上平移b 个单位得到的,由函数()x f x a b =+的图象可得函数为单调递减函数,则01a <<,令0x =得()11,0b +∈-,则()2,1b ∈--,则函数()()()g x x a x b =--的大致图象为A 选项.故选:A .7.设定义在()2,2-上的函数()2112x f x x +=-,则使得()()121f x f x +>-成立的实数x 的取值范围是()A.1,02⎛⎫-⎪⎝⎭B.1,12⎛⎫-⎪⎝⎭C.()0,1 D.()0,2【答案】C 【解析】【分析】利用函数的单调性和奇偶性解不等式即可.【详解】()()()211=2x f x x x f -+=---,且定义域是()2,2-,所以()f x 为偶函数,且2112,x y x y +=-=在()0,2均为增函数,所以()f x 在()0,2为增函数,且()f x 为偶函数,所以()()121f x f x +>-,即1212122212x x x x ⎧+>-⎪-<+<⎨⎪-<-<⎩,解得01x <<.故选:C8.已知函数()f x 满足()()()1f x y f x f y +=++(,R x y ∈),当0x >时,()10f x +>且()12f =,若当[]1,3x ∈时,()()221f ax x f x ++<有解,则实数a 的取值范围为()A.9,4⎛⎫-∞- ⎪⎝⎭B.8,9⎛⎫-∞- ⎪⎝⎭C.(),2-∞- D.82,9⎛⎫--⎪⎝⎭【答案】B 【解析】【分析】证明函数单调递增,变换得到()()231f ax x f +<,根据单调性得到231ax x +<,计算函数最值得到答案.【详解】设12x x <,故()2110f x x -+>,则()()()()()2121112110f x f x f x x x f x f x x -=-+-=-+>,函数单调递增,()()221f ax x f x ++<,即()222f ax x x ++<,即()()231f ax x f +<,即231ax x +<在[]1,3x ∈有解,即221313924a x x x ⎛⎫<-=-- ⎪⎝⎭,2max1398249x ⎧⎫⎪⎪⎛⎫--=-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,故8,9a ⎛⎫∈-∞- ⎪⎝⎭.故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知关于x 的不等式20ax bx c ++≥的解集为{3x x ≤-或}4x ≥,则下列说法正确的是()A.0a >B.不等式0bx c +>的解集为{}4x x <-C.不等式20cx bx a -+<的解集为{14x x <-或13x ⎫>⎬⎭D.0a b c ++>【答案】AC 【解析】【分析】由题意可得3,4-是方程20ax bx c ++=的两个根,且0a >,然后利用根与系数的关系表示出,b c ,再逐个分析判断即可.【详解】关于x 的不等式20ax bx c ++≥的解集为(][),34,-∞-⋃+∞,所以二次函数2y ax bx c =++的开口方向向上,即0a >,故A 正确;且方程20ax bx c ++=的两根为-3、4,由韦达定理得3434bac a⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,解得12b a c a =-⎧⎨=-⎩.对于B ,0120bx c ax a +>⇔-->,由于0a >,所以12x <-,所以不等式0bx c +>的解集为{}12x x <-,故B 不正确;对于C ,因为12b ac a=-⎧⎨=-⎩,所以20cx bx a -+<,即2120ax ax a -++<,所以21210x x -->,解得14x <-或13x >,所以不等式20cx bx a -+<的解集为{14x x <-或13x ⎫>⎬⎭,故C 正确;对于D ,12120a b c a a a a ++=--=-<,故D 不正确.故选:AC .10.以下从M 到N 的对应关系表示函数的是()A.R M =,R N =,1:f x y x→=B.R M =,{}0N y y =≥,:f x y x →=C.{}0M x x =>,R N =,:f x y →=D.*{|2,N }M x x x =≥∈*{|0,N },N y y y =≥∈2:22f x y x x →=-+【答案】BD 【解析】【分析】判断从M 到N 的对应关系是否表示函数,主要是判断集合M 中的每一个元素在集合N 中是否都有唯一的元素与之对应即可.【详解】对于A 选项,因0,M ∈而0没有倒数,故A 项错误;对于B 选项,因任意实数的绝对值都是非负数,即集合M 中的每一个元素在集合N 中都有唯一的元素与之对应,故B 项正确;对于C 选项,因每个正数的平方根都有两个,即集合M 中的每个元素在集合N 中都有两个元素与之对应,故C 项错误;对于D 选项,因2222(1)1,y x x x =-+=-+当*2,N x x ≥∈时,即有*,2,N y y ∈≥且每个x 对应唯一的y 值,故必有y N ∈成立,故D 项正确.故选:BD.11.已知函数()33f x x =--,下列说法正确的是()A.()f x 定义域为[)(]3,00,3-B.()f x 在(]0,3上单调递增C.()f x 为奇函数D.()f x 值城为()3,3-【答案】ABC 【解析】【分析】根据函数的性质逐个判定即可.【详解】对于A :函数定义域需满足290330x x ⎧-≥⎪⎨--≠⎪⎩,解得[)(]3,00,3x -∈ ,A 正确;对于B :当(]0,3x ∈时()f x ====,在(]0,3单调递减,所以()f x 在(]0,3内单调递增,B 正确;对于C :由A 知函数定义域为[)(]3,00,3- ,所以()f x ==,所以()()f x f x x-==-,所以()f x 为奇函数,C 正确;对于D :由B 知()f x 在(]0,3内单调递增,所以(]0,3x ∈时()(],0f x ∈-∞,又由C 知()f x 为奇函数,所以[)3,0x ∈-时()[)0,f x ∈+∞,所以()f x 得值域为(),-∞+∞,D 错误,故选:ABC12.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称[],a b 为()f x 的“k 倍跟随区间”;特别地,若函数()f x 的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是()A.函数()922f x x=-不存在跟随区间B.若[]1,a 为()222f x x x =-+的跟随区间,则2a =C.二次函数()22f x x x =-+存在“3倍跟随区间”D.若函数()f x m =-存在跟随区间,则1,04m ⎡⎤∈-⎢⎥⎣⎦【答案】BC 【解析】【分析】根据“跟随区间”的定义对选项逐一分析,根据函数的单调性、值域等知识确定正确答案.【详解】对于A 选项,由题,因为函数()922f x x=-在区间(),0∞-与()0,∞+上均为增函数,若()922f x x =-存在跟随区间[],a b 则有922922a ab b ⎧=-⎪⎪⎨⎪=-⎪⎩,即,a b 为922x x =-的两根.即22940x x -+=的根,故1,42a b ==,故A 错误.对于B 选项,若[]1,a 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,a 为增函数,故其值域为21,22a a ⎡⎤-+⎣⎦,根据题意有222a a a -+=,解得1a =或2a =,因为1a >故2a =,故B 正确.对于C 选项,若()22f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b ,当1a b <≤时,易得()22f x x x =-+在区间上单调递增,此时易得,a b 为方程232x x x =-+的两根,求解得=1x -或0x =.故定义域[]1,0-,则值域为[]3,0-.故C 正确.对于D 选项,若函数()f x m =-存在跟随区间[],a b ,因为()f x m =-为减函数,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=-⎪⎩即()()11a b a b a b -=+-+=-(,因为a b <1=.易得01≤<.所以(1a m m ==--,令t =[]()0,1t ∈代入化简可得20t t m --=,同理t =也满足20t t m --=,即20t t m --=在区间[]0,1上有两不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故D 错误.故选:BC三、填空题:本题共4小题,每小题5分,共20分.13.)2232711644-⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭________.【答案】13【解析】【分析】根据题意,由指数幂的运算,即可得到结果.【详解】原式2332345194134⨯⎛⎫=⨯+-=+= ⎪⎝⎭.故答案为:1314.已知函数()f x 的定义域为()1,3,则函数()3g x -=的定义域为________.【答案】()5,6【解析】【分析】根据复合函数的定义域的性质求解即可.【详解】因为()f x 的定义域为()1,3,所以()3f x -满足13346x x <-<⇒<<,又函数()3g x -=有意义,所以505x x ->⇒>,所以函数()3g x -=的定义域为()5,6,故答案为:()5,615.已知)132fx +=++,则()f x 的解析式为________.【答案】()2354f x x x =-+,1x ≥【解析】【分析】换元法求解表达式,第一步令括号内的表达式为t ,第二步将表达式中的x 换成t 即可.【详解】)132f x +=++的定义域为[)0,∞+.令1,1t t =≥,则2(1)x t =-,所以,由)132fx +=++得()23(1)2,1f t t t =-++≥,即()2354,1f t t t t =-+≥.于是()2354,1f x x x x =-+≥.故答案为:()2354,1f x x x x =-+≥.16.已知函数()f x x x a =-,当[]0,1x ∈时()f x 的最大值为3,则实数a 的值为________.【答案】2-或4【解析】【分析】化简()f x x x a =-解析式为分段函数形式,讨论0a ≤时,结合最大值求得a 的值;0a >时,数形结合,讨论12a ≥和1122a a +<£以及112a <,确定函数在何处取得最值,求得a 的值,综合可得答案.【详解】由题意知函数的定义域为R ,()22,,x ax x af x x x a x ax x a ⎧-≥=-=⎨-+<⎩,当0a ≤时,由[]0,1x ∈得()()2224a a f x x x a x ⎛⎫=-=--⎪⎝⎭,所以当1x =时,()max 13,2f x a a =-=∴=-,当0a >时,()f x 的图象如图所示,当12a≥,即2a ≥时,()f x 在[0,1]上单调递增,所以()f x 函数在[0,1]上的最大值为(1)13,4f a a =-=∴=,当1122a a <£,即22a ≤<时,()f x 在[0,1]上的图象在2a x =处达到最高点,所以()f x 在[0,1]上的最大值为2(324a a f ==,不符合题意;当112a <,即02a <<-时,()f x 在[0,1]上的图象在1x =处达到最高点,所以()f x 在[0,1]上的最大值为(1)13,2f a a =-==-,不符合题意,故a 的值为2-或4,故答案为:2-或4四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设集合U =R ,{}03A x x =≤≤,{}21,R B x m x m m =≤≤+∈.(1)2m =,求A B ⋃;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求m 的取值范围.【答案】(1){}05A B x x ⋃=≤≤(2)()[],10,1-∞-⋃【解析】【分析】(1)根据集合的并集运算求解即可.(2)根据命题间的充分不必要关系转化为集合间的包含关系,进而求出参数取值范围.【小问1详解】当2m =时,{}25B x x =≤≤,因为{}03A x x =≤≤,所以{}05A B x x ⋃=≤≤【小问2详解】由题意“x B ∈”是“x A ∈”的充分不必要条件得B AÜ①若B =∅,则21m m >+,解得1m <-;②若B ≠∅,则21m m ≤+,解得1m ≥-;B A Ü,∴0213m m ≥⎧⎨+<⎩或0213m m >⎧⎨+≤⎩,∴01m ≤≤综合①②得:m 的取值范围是()[],10,1-∞-⋃.18.已知幂函数()()233af a a x x =-+为偶函数,a ∈R .(1)求()f x 的解析式;(2)若函数()g x 是定义在R 上的奇函数,当0x >时,()()1g x f x x =++,求函数()g x 的解析式.【答案】(1)()2f x x=(2)()221,00,01,0x x x g x x x x x ⎧++>⎪==⎨⎪-+-<⎩【解析】【分析】(1)根据题意,由幂函数的定义,列出方程,即可得到结果;(2)根据题意,由函数的奇偶性求解函数解析式,即可得到结果.【小问1详解】()f x 为幂函数,∴2331a a -+=,解得1a =或2a =,又()f x 为偶函数,∴2a =,∴()2f x x =.【小问2详解】由(1)得,当0x >时,()21g x x x =++①当0x =时,()0g x =;②当0x <时,0x ->;∴()()()2211g x x x x x -=-+-+=-+,∴()()21g x g x x x =--=-+-综上得()221,00,01,0x x x g x x x x x ⎧++>⎪==⎨⎪-+-<⎩19.已知二次函数()f x 是R 上的偶函数,且()04f =,()15f =.(1)设()()f x g x x=,根据函数单调性的定义证明()g x 在区间[)2,+∞上单调递增;(2)当0a >时,解关于x 的不等式()()()21212f x a x a x <-+++.【答案】(1)证明见解析(2)答案见解析【解析】【分析】(1)待定系数法求的()f x ,应用定义法证明函数的单调性;(2)分类讨论两根的大小关系即可求解.【小问1详解】设()2f x ax bx c =++,(0a ≠)()f x 为偶函数,∴0b =.()04f =,∴4c =,∴()24f x ax =+又()15f =,∴1a =,∴()24f x x =+,∴()244x g x x x x+==+.证明:[)12,2,x x ∀∈+∞,且12x x <,()()12121244g x g x x x x x ⎛⎫-=+-+ ⎪⎝⎭()()1212124x x x x x x --=[)12,2,x x ∈+∞,且12x x <,∴120x x -<,1240x x ->,120x x >∴()()120g x g x -<,∴()()12g x g x <∴()g x 在[)2,+∞上单调递增.【小问2详解】()()2241212x a x a x +<-+++整理得:()22120ax a x -++<,因式分解得()()120ax x --<当0a >,方程()()120ax x --=的两根为1a 和2,且1122aaa--=.①当102a <<时,12a >,原不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭②当12a =时,12a =,原不等式的解集为∅③12a >时,12a <,原不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭综上:当102a <<时,不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭当12a =时,不等式的解集为∅当12a >时,不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭.20.天气转冷,宁波某暖手宝厂商为扩大销量,拟进行促销活动.根据前期调研,获得该产品的销售量a 万件与投入的促销费用x 万元(0x ≥)满足关系式91ka x =-+(k 为常数),而如果不搞促销活动,该产品的销售量为6万件.已知该产品每一万件需要投入成本20万元,厂家将每件产品的销售价格定为432a ⎛⎫+ ⎪⎝⎭元,设该产品的利润为y 万元.(注:利润=销售收入-投入成本-促销费用)(1)求出k 的值,并将y 表示为x 的函数;(2)促销费用为多少万元时,该产品的利润最大?此时最大利润为多少?【答案】(1)3k =,361121y x x =--+,0x ≥(2)当促销费用为5万元时,该产品的利润最大,最大利润为101万元【解析】【分析】(1)由题意求得k ,再利用利润公式即可求得y 关于x 的函数;(2)利用基本不等式即可得解.【小问1详解】依题意,当0x =时,96a k =-=,∴3k =,∴391a x =-+,所以43632201241121y a a x a x x a x ⎛⎫=+--=+-=-- ⎪+⎝⎭,∴361121y x x =--+,0x ≥.【小问2详解】因为3636112113111y x x x x ⎛⎫=--=-++ ⎪++⎝⎭113101≤-=,当且仅当3611x x =++,即5x =时,等号成立.∴当促销费用为5万元时,该产品的利润最大,最大利润为101万元.21.已知函数()133x x bf x a++=+是定义在R 上的奇函数.(1)求实数a ,b 的值;(2)若对任意()1,2x ∈,不等式()()222210f x x f x k +-+->恒成立,求实数k 的取值范围.【答案】(1)3a =,1b =-.(2)4k ≤【解析】【分析】(1)利用()00f =,()()11f f -=-,求得a ,b 的值,再检验即可;(2)先证明()f x 为R 上单调递增,再结合奇偶性可得2321k x x <+-恒成立,利用二次函数的性质求得()2321g x x x =+-,()1,2x ∈的最小值,进而可解.【小问1详解】由()f x 是R 上的奇函数得()1003b f a +==+,∴1b =-,∴()1313xx f x a+-=+,又()()11f f -=-,解得3a =,∴()()1313133331x x x x f x +--==++,则()()()()()311331331313331x xx xxxf x f x ------===-=-+++∴()f x 为R 上的奇函数,∴3a =,1b =-.【小问2详解】()()()31312121331331331x x x x x f x -+-⎛⎫===- ⎪+++⎝⎭任取12,R x x ∈,且12x x <,则()()()()()212121122332231313131x x x x x x f x f x --=-=++++,因为3x y =在R 上单调递增,所以当12x x <时,1233x x <,即12330x x -<,又2110,1033x x +>+>,所以()()120f x f x -<,即()()12f x f x <,∴()f x 在R 上单调递增.()1,2x ∀∈,()()22221f x x f x k +->--由()f x 为奇函数,上式可变形为()()22221f x x f k x+->-由()f x 为R 上增函数得22221x x k x +->-即2321k x x <+-恒成立,令()2321,12g x x x x =+-<<,而()2214321333g x x x x ⎛⎫=+-=+- ⎪⎝⎭,所以()g x 在()1,2单调递增,所以()()14g x g >=,∴4k ≤.22.已知定义在R 上的函数()142xx f x m m +=⋅--(m ∈R ).(1)当1m =时,求()f x 的值域;(2)若函数()f x 在()1,+∞上单调递增,求实数m 的取值范围;(3)若函数()y g x =的定义域内存在0x ,使得()()002g a x g a x b ++-=成立,则称()g x 为局部对称函数,其中(),a b 为函数()g x 的局部对称点,若()1,0是()f x 的局部对称点,求实数m 的取值范围.【答案】(1)[)2,-+∞(2)1,2⎡⎫+∞⎪⎢⎣⎭(3)40,3⎛⎤ ⎥⎝⎦【解析】【分析】(1)根据题意,由换元法,结合二次函数值域,即可得到结果;(2)根据题意,分0,0,0m m m =<>讨论,结合条件,代入计算,即可得到结果;(3)根据题意,由局部对称点的定义,结合函数的单调性,代入计算,即可得到结果.【小问1详解】当1m =时,()1421xx f x +=--令20x t =>,()2221122y t t t =--=--≥-,∴()f x 的值域为[)2,-+∞.【小问2详解】令22x t =>,22y mt t m=-- 2x t =在()1,+∞上单调递增,∴要使()f x 在()1,+∞上单调递增,只需22y mt t m =--在()2,+∞上单调递增①当0m =时,2y t m =--在()2,+∞上单减不符合题意;②当0m <时,22y mt t m =--开口向下不符合题意;③当0m >时,012m m>⎧⎪⎨≤⎪⎩,解得12m ≥,∴实数m 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.【小问3详解】由()1,0是()f x 的局部对称点得x ∃∈R ,()()110f x f x ++-=代入整理得()()2442220x xxx m m --+-+-=①令222x x t -=+≥,则()22442222x x x xt --+=+-=-代入①式得22250mt t m --=,2225252tm t t t==--当2t ≥时,函数2y t =和5y t=-均为增函数∴52t t -在[)2,+∞上单调递增,∴5322t t -≥,∴240,32t t t⎛⎤∈ ⎥⎝⎦-,∴实数m 的取值范围为40,3⎛⎤ ⎥⎝⎦.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一上期半期考试数学试卷
一、选择题:
1.已知集合M ={x |x <3},N ={x |22x >},则M ∩N = ( )
A .∅
B .{x |0<x <3}
C .{x |1<x <3}
D .{x |2<x <3} 2. 有五个关系式:①∅≠
⊂}0{;②}0{=∅;③∅=0;④}0{0∈;⑤
∅∈0
其中正确的有 ( ) A.1个. B.2个. C.3个. D.4个. 3.下列各组函数中表示同一函数的是( ) A .()f x x = 与()()2
g x x =
B .()f x x = 与()3
3g x x =
C .()f x x x = 与()()()2200x x g x x x ⎧ >⎪=⎨- <⎪⎩
D .()211x f x x -=- 与()()11g x x x =+ ≠
4. 下列各图形中,是函数的图象的是( )
5.设,)31
(,)31(,)32(31
3231===c b a 则c b a ,,的大小关系是( )
A.b c a >>
B.c b a >>
C.b a c >>
D.a c b >>
6.下列函数为偶函数且在[)+∞,0上为增函数的是( ) A .y x = B .2y x = C .2x y = D .2x y -=
7.已知函数⎩⎨⎧>-≤=2
),1(log 2
,2)(2x x x x f x ,则))5((f f 的值为( )
A .1
B .2
C .3
D .4 8.








)
,0(+∞的是
( ) A. y =-5x
B.y =(31
)1-x C.y =1)2
1(-x
D.y =x 21-
9.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则
)2
5
2()23(2++-a a f f 与的大小关系是( )
O
x
y
O x y
O
x
y
O x
y
A B C D
A .)23(-f >)252(2++a a f
B .)23(-f <)25
2(2++a a f
C .)23(-f ≥)252(2++a a f
D .)23(-f ≤)2
5
2(2++a a f
{}{}
[][][)
[][]
2,0.1,0.,21,0.)
,2(1,0.B A ,0,,2A .
)()(B A .1022D C B x y y B x y x B A x B A x x B A x
x +∞+∞⨯>==⎭
⎬⎫⎩⎨⎧-==⋂∉⋃∈=⨯ A等于()则已知且是非空集合,定义、设 二、填空题 11.
函数y =
的定义域是 ;
12.函数)10(1)(1≠>+=-a a a x f x 且恒过定点 ; 13.
300)32(10])2[(])3
7
(2[25
.0131
3202
1--+-⨯⨯----=___________;
14. 设{}{}25,121A x x B x m x m =-≤≤=+≤≤-,若A B B ⋂=,则实数m 的取值范围是 ;
15. 设定义在R 的函数)(x f 同时满足以下条件:①0)()(=-+x f x f ; ②
)
2()(+=x f x f ;③当10<≤x 时,12)(-=x x f 。


=++++)2
5
()2()23()1()21(f f f f f _____________. 三、解答题
16.(12分)设全集U=R ,集合A={x |x <4}, B={x |0342>+-x x }。

求A ∩B ,A ∪B ,A ∩(C U B )。

[]的值域。

求的值;求的值;求且已知)(),()3()2()2()2(),2()1()(2)(),1(11)(.172
x g x f g f g f R x x g x R x x
x f x ∈+=-≠∈+=
18.已知函数y=2x -ax-3(55≤≤-x )。

(1)若a=2,求函数的最大最小值 ;(2)若函数在定义域内是单调函数,求a 取值的范围。

19.定义在R 上的奇函数()f x ,当0x >时,()2f x x =-,(1)用分段函数写出()f x 在R 上的解析式;(2)求不等式1()2
f x <的解集。

20.函数()2
1x
b
ax x f ++=
是定义在(-1,1)上的奇函数,且5
221=⎪⎭⎫ ⎝⎛f (1)求函数()x f 的解析式;(2)判断并证明函数在(-1,1)上的单调性; (3)求满足()()01<+-t f t f 的t 的范围.
21. 已知函数f (x )=log 4(ax 2+2x +3).
(1)若f (1)=1,求f (x )的单调区间;
(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.
高一数学(上期)半期考试参考答案
一、选择题(本大题共12小题,每小题5分,满分50分。


二、填空题(本大题共5小题,每小题5分,满分25分。


11、 ),2(+∞- 12、 (1,2) 13、 30 14、 (]3,∞- 15三、解答题(本大题共6小题,满分75分,解答题写出必要的文字说明、推演步
16.解:由已知得A={x |-4<x <4} B={x |x <1或x >3} ……4分
B A ∴={x |-4<x <1或3<x <4} ……7分 B A =R ……9分
A )(
B
C U ={x |13≤≤x } ……12分
17.(1)f(2)=1/3,g(2)=6; (2)f[g(2)]=1/7 (3)()()+∞∞-,00, [)+∞,2
18. (本小题满分8分)(1)最大值是32,最小值是-4; ……4分
(2)10≥a 或10-≤a ;……8分
19.(1)⎪⎩

⎨⎧<+=>-=)
0(2)0(0)
0(2)(x x x x x x f (2)⎪⎭⎫⎢⎣⎡--∞25,0)23,(
20. 解:(1)
()f x 是定义在(-1,1)上的奇函数
()00=∴f 解得0=b , ………………………………………………………1分
则()21x ax x f +=∴524
112121=+=⎪
⎭⎫ ⎝⎛a
f 1=∴a ……………………3分 学校_____________班级_________________姓名__________________ 试场号 座位号_________ -----------------------------装------------------------------------------------订----------------------------------------------------线-----------------------------------------------------------------
函数的解析式为:()()1112
<<-+=x x x
x f ……………………………4分 (2)证明单调性(略)
()()10f t f t -+< ()()t f t f -<-∴1 ………………………………9分 ()()f t f t -=-()()t f t f -<-∴1 ………………………………10分

()f x 在(-1,1)上是增函数111<-<-<-∴t t 2
1
0<
<∴t .....12分 解:(1)∵f (x )=log 4(ax 2+2x+3)且f (1)=1,
∴log 4(a ●12+2×1+3)
=1a+5=4
a=﹣1
可得函数f(x)=log4(﹣x2+2x+3)
∵真数为﹣x2+2x+3>0﹣1<x<3
∴函数定义域为(﹣1,3)
令t=﹣x2+2x+3=﹣(x﹣1)2+4 可得:
当x∈(﹣1,1)时,t为关于x的增函数;
当x∈(1,3)时,t为关于x的减函数.
∵底数为4>1
∴函数f(x)=log4(﹣x2+2x+3)的单调增区间为(﹣1,1),单调减区间为(1,3)(2)设存在实数a,使f(x)的最小值为0,由于底数为4>1,
可得真数t=ax2+2x+3≥1恒成立,且真数t的最小值恰好是1,
即a为正数,且当x=﹣=﹣
时,t值为1.
所以
a=
所以a=,使f(x)的最小值为0.
高一上半期数学试题(含答案)
- 11 - / 11。

相关文档
最新文档