全新 中考数学几何知识点全总结
最全面中考数学知识点归纳总结
![最全面中考数学知识点归纳总结](https://img.taocdn.com/s3/m/55300909bf1e650e52ea551810a6f524ccbfcb2a.png)
最全面中考数学知识点归纳总结中考数学知识点的归纳总结主要包括几何、代数、函数、概率与统计和解题方法等方面的内容。
下面是一个较为全面的中考数学知识点归纳总结,共计132个知识点。
一、几何部分:1.直线、射线、线段、角度的概念及其表示方法;2.同位角、对顶角、相邻角、互补角、补角的概念及性质;3.平行线的概念及判定方法;4.垂直线的概念及判定方法;5.直线与平面的位置关系;6.角的平分线、垂直平分线和中垂线的性质;7.基本图形(三角形、正方形、矩形、平行四边形、菱形、梯形)的特性;8.三角形的高、中线、角平分线、垂心、外心、内心的性质;9.相似三角形的判定方法及性质;10.三角形的全等判定方法及性质;11.三角形的重心、外接圆、内切圆的性质;12.直角三角形的性质及勾股定理的应用;13.倍数关系、比例关系的概念及解题方法;14.圆的概念及周长、面积的计算方法;15.扇形、弓形、弦的概念及其性质;16.圆上的切线的概念及切线与半径的关系;二、代数部分:17.有理数的概念及其基本运算;18.有理数的比较大小及其运算性质;19.小数、百分数与分数之间的相互转化;20.无理数的概念及四舍五入与有理数的关系;21.整式和多项式的概念及其加减乘除运算;22.分布恒等式的概念及应用;23.因式分解的概念及方法;24.同底数幂的积与商、幂的幂、幂的乘方;25.0次幂、负指数幂的概念及运算规律;26.小数与分数的乘除运算;27.分式的定义及分式的加减乘除运算;28.一次方程的概念及解一次方程的“相等原理”;29.一次方程的解的判别及含参量的一次方程;30.二次方程的概念及解二次方程的“因式分解法”、“配方法”、“求根公式”等方法;31.开平方的概念及开平方的运算法则;32.平方根与立方根的应用;33.平方差公式的应用;34.利用二元一次方程组解题;35.进一法与折半法的应用;三、函数部分:36.函数的概念及自变量、函数值、变量区间的含义;37.函数的输入输出、定义域、值域和图象的关系;38.一次函数与函数图象的特点;39.一次函数的斜率与截距的概念及其性质;40.直线与y轴平行的判定及斜率的计算方法;41.一次函数方程的应用;42.二次函数与函数图象的特点;43.二次函数的顶点坐标及对称轴的求解;44.二次函数图象的开口方向、焦点和准顶点的位置关系;45.函数的相等、不等、图象平移、伸缩的概念及表示方法;46.函数的和、差、积、商运算及复合函数;47.用函数的性质解答实际问题;48.绝对值函数的概念、图象及性质;49.幂函数的概念、图象及性质;50.线性函数、常函数、反比例函数的图象及性质;51.分段函数的概念及解答实际问题;四、概率与统计部分:52.实验、样本空间、事件、随机事件的概念;53.事件的发生与否的表示方法;54.事件的包含、互斥及事件间的关系;55.概率的概念及计算公式;56.等可能概型的计算方法;57.样本空间中的点与事件的对应关系;58.随机事件的发生与否的概率计算;59.从历史发展的角度看概率的概念;60.百分位数、分位数的概念及计算方法;61.数据的统计分析及统计图形的画法;62.频数分布表及频数分布直方图的制作;63.正态分布的概念及性质;64.数据的可视化处理及用统计方法解答实际问题;五、解题方法:65.算术运算法则及四则运算的性质;66.四则运算的顺序及提取公因式;67.带分数、分数的四则运算及混合运算;68.指数法则的应用;69.理解与运用算式的概念及递推算式的应用;70.用变量表示数的关系及数的线性关系;71.应用百分数求解实际问题;72.比例关系的运算及其应用;73.消元与代入法解一元一次方程组;74.联立一元一次方程组解题;75.两步走结合法解一元一次方程;76.使用平方根解二次方程的应用;77.二次函数的图象与应用;78.函数的性质与应用;79.根据函数图象表示解的方法;80.初步理解函数模型及其应用;81.理解数据的统计特征及其应用;82.根据统计图表做出合理判断;83.理解概率的基本概念及计算概率;84.基本概率模型的理解与应用;85.从概率模型的角度解答实际问题;86.根据实际问题建立数学模型解题;87.运用合理的方法解决较复杂的数学问题;88.根据问题解答合理化对策。
中考重点几何知识点总结
![中考重点几何知识点总结](https://img.taocdn.com/s3/m/ce084702777f5acfa1c7aa00b52acfc789eb9f3a.png)
中考重点几何知识点总结一、直线和角1. 直线的性质直线是没有端点的、无限延伸的点集合。
直线上的任意两点可以确定唯一的一条直线。
2. 线段和角的概念线段是两个端点和它们之间的点所组成的线的部分。
角是由两条射线共同端点组成的几何图形。
3. 角的度量角的度量可以用角度、弧度、梯度等单位进行表示。
一般来说,我们使用角度作为角的度量单位。
一个完整的圆是360度。
4. 角的分类根据角的大小,可以将角分为锐角、直角、钝角和平角。
其中,直角为90度,平角为180度,锐角小于90度,钝角大于90度。
二、平面图形1. 点、线、面的概念点是没有大小的,表示位置,线是由无数个点组成的,面是由无数个线组成的。
2. 多边形的概念多边形是由三条或者三条以上的线段所组成的封闭图形,其中的每一条线段都称为多边形的边。
3. 多边形的性质多边形的性质有很多,比如所有角的和、外角、内角等等。
正多边形的每个角都相等,每一边也都相等。
4. 圆的概念圆是一种特殊的多边形,它由无数条相等的弧所组成。
圆的周长称为圆周,圆的内部称为圆的内部。
三、三角形和四边形1. 三角形的分类三角形根据边长和角度的大小可以进行分类。
根据边长,可以分为等边三角形、等腰三角形和普通三角形。
根据角度,可以分为直角三角形、锐角三角形和钝角三角形。
2. 三角形的性质三角形的性质很多,比如角的和等于180度、内角的性质、外角的性质等等。
3. 四边形的分类和性质四边形根据边的性质和角的大小可以进行分类。
比如平行四边形、矩形、正方形、菱形等。
每个四边形都有各自的性质,比如对角线相等、对角线互相垂直等等。
四、平行关系和相似关系1. 平行线和平行四边形平行线是在同一个平面内,并且永远不会相交的两条直线。
平行四边形是有两对对边平行的四边形。
2. 三角形的相似两个三角形中,如果它们的对应角相等,对应边成比例,则称这两个三角形相似。
相似三角形有很多性质,比如对应边成比例、角对应相等等等。
初三数学几何知识点归纳
![初三数学几何知识点归纳](https://img.taocdn.com/s3/m/c2005f37e97101f69e3143323968011ca300f727.png)
初三数学几何知识点归纳初三数学几何知识点归纳1 同角或等角的余角相等2 过一点有且只有一条直线和已知直线垂直3 过两点有且只有一条直线4 两点之间线段最短5 同角或等角的补角相等6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行初中几何公式:角9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补初中几何公式:三角形15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于18018 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于6034 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形48定理四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理 n边形的内角的和等于(n-2)18051推论任意多边的外角和等于36052平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形初中几何公式:正方形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形初中几何公式:等分78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)2 S=Lh83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d85 (3)等比性质如果a/b=c/d==m/n(b+d++n0),那么(a+c++m)/(b+d++n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的.余切值等于它的余角的正切值初中几何公式:圆101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交 d﹤r②直线L和⊙O相切 d=r③直线L和⊙O相离 d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d﹥R+r ②两圆外切 d=R+r③两圆相交 R-r﹤d﹤R+r(R﹥r)④两圆内切 d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)180/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4144弧长计算公式:L=nR/180145扇形面积公式:S扇形=nR/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)。
初中数学几何知识点总结与归纳
![初中数学几何知识点总结与归纳](https://img.taocdn.com/s3/m/84b138c9bb0d4a7302768e9951e79b89680268cd.png)
初中数学几何知识点总结与归纳数学几何是初中阶段数学学科的重点之一。
通过学习几何知识,学生能够培养空间想象力和逻辑思维能力,提高解决实际问题的能力。
在初中阶段,几何知识主要分为平面几何和立体几何两部分。
本文将对初中数学几何知识点进行总结与归纳,帮助初中生掌握基本的几何知识,为进一步学习奠定基础。
一、平面几何知识点1. 点、直线和线段:点是几何的基本概念,直线是由无数点无限延伸而成的,线段是直线的有限部分。
2. 角:角是由两条有公共端点的线段所确定的图形部分。
角分为锐角、直角、钝角和平角。
3. 三角形:三角形是由三条线段组成的封闭图形。
根据边长和角度的关系,三角形可以分为等边三角形、等腰三角形、直角三角形和一般三角形等。
4. 四边形:四边形是由四条线段组成的封闭图形。
四边形包括梯形、矩形、正方形、菱形和平行四边形等。
5. 圆:圆是由平面上与一点距离相等的所有点组成的图形。
圆上的特殊线段包括直径、弦、弧和切线等。
6. 相似和全等:相似指的是两个图形形状相同但大小不同,全等表示两个图形既形状相同又大小相同。
7. 平行与垂直:平行指的是两条直线永不相交,垂直是指两条相交直线之间的夹角为直角。
8. 图形的面积和体积:图形的面积是指图形所占的平面空间,体积是指图形所占的立体空间。
常见的图形包括矩形、三角形、圆等。
二、立体几何知识点1. 球体:球体是由空间中与一点距离相等的所有点组成的图形。
球体的表面积和体积公式是重要的计算方法。
2. 柱体:柱体是由两个平行并且相等圆形底面和一个连接底面的矩形侧面组成的图形。
柱体的表面积和体积公式需要掌握。
3. 圆锥体:圆锥体是由一个圆形底面和一个到底面上一点的边界直线所包围的封闭图形。
圆锥体的表面积和体积公式是需要掌握的重要知识点。
4. 圆柱体和圆锥体的关系:圆柱体和圆锥体具有共轭关系,通过将圆柱体切割成若干个圆锥体可以深入理解两者之间的关系。
5. 二面角:二面角是由两个平面所夹的角。
初中数学几何的总结知识点
![初中数学几何的总结知识点](https://img.taocdn.com/s3/m/2daacbfd64ce0508763231126edb6f1afe00714f.png)
初中数学几何的总结知识点一、几何基本概念1. 点、线、面的基本概念2. 线段、射线、角的基本概念3. 有向线段,边界二、角的性质1. 同位角、余角、邻补角、对顶角2. 锐角、直角、钝角、平角3. 角的度量、角的度分秒制三、相交线和平行线1. 同位角相等2. 对顶角相等3. 垂直线、垂直平行线的判定4. 平行线的性质:平行线性质的等价命题、平行线的性质四、三角形1. 三角形的分类2. 三角形内角和定理3. 三角形的边对角和定理4. 三角形的外角和定理5. 三角形的相似性质6. 相似三角形的判定、相似三角形的性质7. 角平分线定理、中位线定理五、全等三角形1. 全等三角形的对应角、对应边性质2. 全等三角形的判定六、直角三角形1. 勾股定理2. 直角三角形的性质和判定七、平行四边形1. 平行四边形的性质2. 矩形、正方形、菱形、长方形的性质3. 平行四边形的判定八、多边形1. 多边形的命名和分类2. 多边形内角和定理3. 多边形外角和定理4. 等边多边形的性质5. 正多边形的性质九、圆1. 圆的基本概念2. 圆的性质3. 圆周角和圆心角4. 弧长和面积5. 切线和切点6. 相交弦定理7. 立体几何体的基本概念8. 空间直角坐标系与距离十、空间图形1. 空间的基本概念2. 空间图形的基本元素3. 空间图形的分类4. 体积的计算5. 柱、锥、台、球的表面积和体积以上是初中数学几何的基本知识点,同学们要在平时多加强练习,掌握这些知识点,从而提高数学水平。
中考几何的知识点总结
![中考几何的知识点总结](https://img.taocdn.com/s3/m/07f2d7072f3f5727a5e9856a561252d381eb2041.png)
中考几何的知识点总结一、平面几何基本知识1、平面几何定义平面几何是研究平面图形的数学分支,它主要研究平面图形的性质、特征及相关计算问题。
2、点、线、面的关系在平面空间中,点是最基本的几何元素,两点确定一条直线,三点确定一个平面。
3、平行线、垂直线平行线是指在同一平面上不相交的直线,垂直线是指两条相交直线的交线与另外两条直线的交线垂直。
4、角的概念及度量角是由两条射线共同端点所形成的形状,度量角的大小用度来表示。
5、相似和全等全等是指两个图形的形状和大小完全相同,相似是指两个图形的形状相同但大小不同。
6、几何图形的性质平行四边形、三角形、正方形、长方形等几何图形的性质。
二、直线与角的基本运算1、直线的角度计算直角、钝角、锐角的判定与计算。
2、直线的平行与垂直平行线的判定、垂直线的判定。
3、相交线角度关系邻补角、对顶角等角度关系的计算。
三、多边形及其性质1、正多边形正三角形、正方形、正五边形等正多边形的性质。
2、多边形的内角和n边形的内角和公式:(n-2)×180°3、多边形的外角和n边形的外角和公式:360°4、多边形等边等角条件四、圆1、圆的性质圆心、半径、直径、弦、弧、切线等圆的性质。
2、圆的面积与周长计算圆的面积 S=π r²圆的周长 L=2π r3、圆内接四边形正方形、菱形、矩形等圆内接四边形的性质。
五、三角形1、三角形类型及性质等腰三角形、等边三角形、直角三角形等不同类型三角形的性质。
2、三角形的面积计算三角形的面积公式:S=1/2×a×b×sinC3、三角形的高三角形的高公式:h=2S/a以上是中考几何的基础知识点总结,希望对大家的学习有所帮助。
初三数学空间几何认识
![初三数学空间几何认识](https://img.taocdn.com/s3/m/7d9650cddbef5ef7ba0d4a7302768e9951e76e92.png)
初三数学空间几何认识一、平面几何1.点、线、面的基本概念2.直线、射线、线段的概念及性质3.平面、直线、线段之间的位置关系4.平行线、相交线的性质5.三角形、四边形、五边形、多边形的基本概念及性质6.矩形、菱形、正方形、梯形的性质7.圆的基本概念及性质8.圆周率、直径、半径、弧、弦、圆心角的关系9.相交线、平行线与圆的关系10.三角形的不等式二、立体几何1.空间几何体的概念及分类2.球、正方体、长方体、圆柱、圆锥的性质3.面、棱、顶点的概念及关系4.多面体的概念及分类5.平面与立体几何体的位置关系6.直线与立体几何体的位置关系7.点、线、面在立体几何中的位置关系8.立体几何中的角、边、面的度量9.立体几何中的体积、表面积计算10.立体几何中的平行公理及推论三、几何变换1.变换的概念及分类2.平移、旋转的性质及几何变换3.相似变换、位似变换的性质及几何变换4.坐标与几何变换5.函数与几何变换6.几何变换在实际问题中的应用四、几何证明1.证明的概念及方法2.直接证明、反证法、归纳证明、综合法、分析法3.三角形、四边形、圆等常见几何图形的证明方法4.相似三角形的性质及证明5.中位线、平行线、相交线等几何性质的证明6.几何图形的对称性及证明7.几何图形的旋转及证明五、几何问题解决1.几何问题的类型及解决方法2.比例问题、面积问题、体积问题、角度问题等3.几何构造问题、几何计数问题、几何最值问题等4.几何问题中的函数与方程思想5.几何问题中的数形结合思想6.几何问题中的转化与化归思想7.几何问题中的逻辑推理与证明思想六、数学思想与方法1.数形结合思想2.转化与化归思想3.函数与方程思想4.分类与整合思想5.归纳与演绎思想6.模型思想与数学建模7.合情推理与演绎推理以上是初三数学空间几何认识的知识点概述,希望对您有所帮助。
在学习过程中,要注意理论联系实际,培养空间想象能力和逻辑思维能力。
习题及方法:一、平面几何习题1.习题一:已知直线AB和CD互相平行,AB // CD,点E位于直线AB上,点F位于直线CD上。
初三数学知识点考点归纳总结
![初三数学知识点考点归纳总结](https://img.taocdn.com/s3/m/5b0b47624a73f242336c1eb91a37f111f1850d91.png)
初三数学知识点考点归纳总结一. 代数运算1.1 有理数有理数的四则运算,分数的加减乘除运算,化简分数、约分、分数转小数与百分数。
1.2 代数式代数式的基本概念、同类项合并、分配律、消元、整除关系、基本恒等式。
1.3 方程式一元一次方程式的解及其应用,一元二次方程式的解及其应用,二元一次方程式的解及其应用。
1.4 比例比例的概念、性质,比例的计算及应用,重复比例,反比例定理及其应用。
二. 几何与图形2.1 三角形角的概念、角度和弧度的转换,三角形的分类及性质,三角形的内角和定理,三角形的外角和定理。
2.2 直线与角平行直线和平行线特征及其性质,垂直直线和直角的特征及其性质,角的大小以及相邻角、对顶角等相关概念。
2.3 圆和圆的性质圆的基本性质,弧、弦、切线、割线等相关概念及其性质,圆内接四边形和正多边形。
2.4 空间几何与立体图形线面体的概念,正方体、长方体、棱柱、棱锥、圆柱、圆锥的性质和计算。
三. 概率与统计3.1 随机事件和概率事件的概念和性质,基本事件概率、加法规则,条件概率和乘法规则,概率分布和直方图的绘制。
3.2 常见概率问题求样本空间、容斥原理,贝叶斯定理,计算机模拟实验,概率统计中的应用问题。
四. 函数4.1 一些常见函数幂函数、指数函数、对数函数、三角函数、反三角函数的基本概念和性质。
4.2 函数的运算函数的加、减、乘、除的运算,函数的复合运算,导数的概念,导数的基本应用:切线问题和极值点问题。
以上是初三数学知识点考点的归纳总结。
需要注意的是,以上知识点只是初三数学所要学习的知识点的一个大致的方向,可能还存在某些细节问题需要重点学习。
同时,不管学习的什么知识点,都需要掌握好其基本概念和方法,这样才能在应用中灵活运用,解决问题,取得相应的成绩。
中考几何知识点总结
![中考几何知识点总结](https://img.taocdn.com/s3/m/6e1c2e793868011ca300a6c30c2259010202f328.png)
中考几何知识点总结几何是数学的一个重要分支,它研究空间形状、大小和位置的关系,是人们日常生活和实际工作中都会接触到的数学分支。
而中考几何知识点是应用数学的重要组成部分,其中包括平面图形的性质、空间图形的性质、相似三角形的性质、圆的性质、三角形的性质等等。
下面我们就来总结一下中考几何知识点的要点。
一、平面图形的性质1、平行四边形和矩形平行四边形是指四边形的对边是平行的四边形,平行四边形的特点是对边相等、对角相等、相邻边互补。
矩形是指四边形的对边是平行且对角相等的四边形,矩形的特点是对边相等、对角相等、相邻边垂直。
2、菱形和正方形菱形是指四边形的对边相等的四边形,菱形的特点是对边相等、对角相等、对角互补。
正方形是指四边形的对边相等且对角相等的四边形,正方形的特点是对边相等、对角相等、对角互补、对边垂直。
3、三角形的性质三角形是平面图形中的基本图形之一,三角形的性质有很多,例如三角形的内角和为180°,三角形的外角和为360°,等腰三角形的两条边相等,等边三角形的三条边相等等等。
二、空间图形的性质1、立体图形的性质立体图形是指具有三维形状的图形,如长方体、圆柱体、球体等,立体图形的性质包括表面积、体积等概念。
2、直角棱柱和直角锥直角棱柱是指底面为矩形且母线垂直于底面的棱柱,直角锥是指底面为矩形且母线垂直于底面的锥体,直角棱柱和直角锥的特点是底面积相等,高相等。
3、棱台和棱锥棱台是指底面为多边形且母线与底面平行的棱台,棱锥是指底面为多边形且母线与底面平行的锥体,棱台和棱锥的特点是底面积相等、母线平行。
三、相似三角形的性质相似三角形是指三角形的对应角相等且对应边成比例的三角形,相似三角形的性质包括对应角相等、对应边成比例、相似三角形的高、中线、角平分线比例等。
四、圆的性质1、圆的相关概念圆是平面图形中一个特殊的图形,它是平面内所有到一个固定点距离相等的点的集合,圆的性质包括圆心、半径、直径、圆周、弧、圆心角等概念。
几何中考必备知识点总结
![几何中考必备知识点总结](https://img.taocdn.com/s3/m/9941e09bc0c708a1284ac850ad02de80d4d80622.png)
几何中考必备知识点总结一、数学基本概念1. 位置关系- 点、线、面的基本概念- 点和线的位置关系:相交、平行、垂直- 点和面的位置关系:在面内、在面外、在面上- 线和面的位置关系:相交、平行、垂直2. 数学语言和符号- 数学概念表达- 数学语言的规范3. 数学证明- 数学定义- 数学公理- 数学定理的证明方法二、图形的基本性质1. 点、线、面的基本概念- 点、线、面的定义- 直线和曲线的区别2. 角的概念- 角的定义- 角的种类:锐角、直角、钝角- 角的度量3. 多边形- 多边形的定义- 多边形的性质- 正多边形的特性4. 圆- 圆的定义- 圆的性质- 圆周角、弧、弦的关系5. 直线和平面图形- 直线和平面的基本性质 - 相交线和平行线的性质 - 直线和平面图形的计算6. 三角形- 三角形的定义- 三角形的性质- 三角形的分类7. 四边形- 四边形的定义- 四边形的性质- 四边形的分类8. 直角三角形- 直角三角形的性质- 勾股定理- 直角三角形的应用9. 相似三角形- 相似三角形的性质- 相似三角形的判定方法 - 相似三角形的应用10. 共线和共点- 共线和共点的概念- 共线定理- 共点定理三、几何运算1. 点的运算- 点的坐标- 点的对称- 点的中点2. 直线和线段的运算- 直线和线段的长度- 直线和线段的相交、平行、垂直关系 - 直线和线段的运算法则3. 角的运算- 角的度量- 角的加、减、乘、除- 角的特殊运算4. 多边形的运算- 多边形的周长- 多边形的面积- 多边形的运算法则5. 圆的运算- 圆的周长- 圆的面积- 圆的运算法则6. 三角形的运算- 三角形的周长- 三角形的面积- 三角形的运算法则四、空间与位置1. 空间几何的基本概念- 空间几何的基本概念- 空间几何的基本原理2. 空间的位置关系- 空间图形的位置关系- 空间图形的相交、平行、垂直关系3. 空间图形的投影- 空间图形的平行投影- 空间图形的垂直投影- 空间图形的投影等式5. 空间图形的旋转- 二维空间图形的旋转- 三维空间图形的旋转- 空间图形的旋转等式六、几何证明1. 几何证明的基本原理- 几何证明的基本原理- 几何证明的基本方法- 几何证明的基本技巧2. 等腰三角形的性质- 等腰三角形的证明方法 - 等腰三角形的应用3. 直角三角形的性质- 直角三角形的性质- 直角三角形的证明方法 - 直角三角形的应用4. 等边三角形的性质- 等边三角形的性质- 等边三角形的证明方法 - 等边三角形的应用5. 等腰梯形的性质- 等腰梯形的性质- 等腰梯形的证明方法 - 等腰梯形的应用七、几何推理1. 几何推理的基本规则 - 几何推理的基本规则 - 几何推理的基本方法 - 几何推理的基本技巧2. 垂直平分线- 垂直平分线的性质- 垂直平分线的证明方法 - 垂直平分线的应用3. 两角平分线- 两角平分线的证明方法- 两角平分线的应用4. 垂心、心、外心、内心- 垂心、心、外心、内心的基本概念- 垂心、心、外心、内心的性质- 垂心、心、外心、内心的证明方法- 垂心、心、外心、内心的应用5. 三角形的中线、中垂线和高线- 三角形的中线的性质- 三角形的中垂线的性质- 三角形的高线的性质- 三角形中线、中垂线和高线的证明方法 - 三角形中线、中垂线和高线的应用八、几何应用1. 图形的相似- 图形的相似概念- 图形的相似定理- 图形的相似判定方法2. 三角形的面积与周长- 三角形的面积公式- 三角形的周长公式- 三角形的应用题3. 圆的周长和面积- 圆的周长公式- 圆的面积公式- 圆的应用题4. 多边形的面积和周长- 多边形的面积公式- 多边形的周长公式- 多边形的应用题5. 空间图形的体积和表面积- 空间图形的体积公式- 空间图形的表面积公式- 空间图形的应用题以上是几何中考必备知识点总结,希望对大家的学习有所帮助。
中考数学几何知识点总结
![中考数学几何知识点总结](https://img.taocdn.com/s3/m/c23464e60129bd64783e0912a216147916117e7b.png)
中考数学几何知识点总结数学几何是中考数学中的一个重要知识点,以下是对中考数学几何知识点的总结:一、基本概念:1.点、线、面:点是几何图形的最基本元素,线是点的集合,面是线的集合。
2.线段:由两个端点确定的线段,是线段边上的所有点组成的集合。
3.射线:由一个端点和该端点的同一直线上的其他所有点组成的集合。
4.角:由两条相交的射线组成的形状。
5.直角、钝角、锐角:角的开口程度不同,可分为直角(90°)、钝角(大于90°)和锐角(小于90°)。
6.平行线:在同一个平面内,不相交且任意延长都不相交的两条线。
7.垂直线:两条相交线的交角为90°,则它们是垂直线。
8.三角形:由三条线段组成的封闭图形,分别称为三角形的三边。
9.等边三角形:三条边相等的三角形。
10.等腰三角形:两边边长相等的三角形,两个顶角也相等。
11.直角三角形:一个角为直角(90°)的三角形。
12.合同三角形:两个三角形的对应角相等,并且对应边相等。
二、性质及定理:1.三角形内角和定理:三角形内角之和为180°。
2.三角形外角定理:三角形两个内角的非公共的外角之和等于第三个内角。
3.直线与平行线的性质:直线与平行线之间的相交角均为180°。
4.三角形的外心、内心、垂心、重心的特点及应用。
5.相似三角形:两个三角形对应角相等,则它们相似。
6.相似三角形的性质:相似三角形的边长比例相等,对应边成比例。
7.相似三角形的勾股定理:相似三角形的对应边的比值等于对应边的长度比值。
8.平行四边形的性质:平行四边形的对角线相互平分,对边相等。
9.正方形的性质:四条边相等且都是直角。
10.矩形的性质:两对对边相等且都是直角。
11.菱形的性质:四条边相等,两组对角线交于直角。
三、平面图形的周长和面积:1.三角形的周长和面积的计算公式:周长=边长之和,面积=底边×高除以22.矩形的周长和面积的计算公式:周长=两倍的长+两倍的宽,面积=长×宽。
中考几何重要知识点总结
![中考几何重要知识点总结](https://img.taocdn.com/s3/m/603a2f10bf23482fb4daa58da0116c175e0e1e7c.png)
中考几何重要知识点总结一、几何图形的性质1. 直线和射线直线是由无数个点组成的集合,它没有起点和终点,可以延伸到无限远。
射线是一个起点固定的直线段,它由一个起点和一个方向组成,可以延伸到无限远。
2. 角角是由两条线(射线)共同起点的两个半平面所围成的图形,其中共同起点叫做角的顶点,共同起点的两条线(射线)分别叫做角的边。
3. 多边形多边形是由三条或三条以上线段组成的闭合图形,它的每条线段叫做多边形的边,相邻的两条边叫做多边形的边。
4. 圆圆是由平面内与一个点到另一个点的距离相等的全部点组成的集合,这个距离叫做圆的半径。
在圆周上任意两点的连线叫做圆的弦。
二、几何证明1. 同位角对顶角同位角是指两条直线被一条横穿的直线分隔开,这两条直线相交产生的四个角中,处于对侧的两个角相等。
这样的两个角叫做同位角。
对顶角是指两条直线相交时,相对位置的两对角。
如果两条直线的夹角相等,则这两对角也相等。
2. 同余三角形如果两个三角形的对应边边长相等,对应角一一对应且大小相等,则这两个三角形叫做同余三角形。
在中考几何中,学生需要掌握同余三角形的性质,以便进行相关定理的证明。
3. 平行线和角的性质平行线是指在同一平面内,不相交的两条直线。
平行线产生的对应角、内错角、交替内角、同位角等各种角度关系,学生需要熟练掌握和运用。
三、相似三角形1. 相似三角形的判定相似三角形是指两个三角形的对应角相等,对应边成比例的情况。
在中考几何中,学生需要了解相似三角形的判定方法,以便在相关题目中进行判断和运用。
2. 相似三角形的性质相似三角形的性质是中考几何中的重要知识点。
相似三角形对应边的比例、相似三角形的高、相似三角形的中线等都是学生需要掌握和理解的内容。
3. 相似三角形的应用相似三角形的性质在中考几何中有着重要的应用。
例如,在解决实际问题中,需要利用相似三角形的性质进行相关计算。
学生需要通过练习和实践,掌握相似三角形的应用技巧。
四、圆的性质1. 圆周角圆周角是指圆的周长上的一个角,它的顶点在圆心上,两条边分别在圆周上。
中考数学几何知识点总结
![中考数学几何知识点总结](https://img.taocdn.com/s3/m/db899c3a17fc700abb68a98271fe910ef12daebd.png)
中考数学几何知识点总结中考数学几何知识点总结前言在中考数学考试中,几何是一个重要的知识点。
掌握几何知识对于解题和提高数学成绩至关重要。
本文将总结中考数学几何知识点,帮助考生更好地复习和备考。
正文1. 图形的基本概念•点、线、面的概念。
•直线、射线、线段、角的定义和表示方法。
2. 角的性质•同位角、邻补角、余角等性质。
•锐角、直角、钝角的定义和判定方法。
3. 相交线与平行线•各种相交线之间的关系。
•平行线的定义及判定方法。
•平行线与横线、竖线之间的关系。
4. 三角形及其性质•三角形的定义和表示方法。
•分类:等边三角形、等腰三角形、直角三角形、等腰直角三角形等。
•三角形内角和、外角性质等。
5. 四边形及其性质•包括正方形、长方形、菱形、平行四边形等常见四边形。
•对角线性质、角平分线性质等。
6. 圆及其性质•圆的定义、半径、直径、圆心、弧等基本概念。
•圆心角、弧度、弦等与圆的相关性质。
7. 直角三角形相关知识•勾股定理及其应用。
•正弦定理、余弦定理及其应用。
8. 各种图形的周长和面积计算•三角形、四边形、圆形等图形的周长计算方法。
•三角形、四边形、圆形等图形的面积计算方法。
结尾以上是中考数学几何知识点的总结。
通过对这些知识点的整理和学习,考生可以更好地应对中考数学试卷中的几何题目。
建议考生在备考过程中,加强对这些知识点的掌握,并结合大量习题进行练习,以提高解题能力和应试能力。
祝愿所有考生取得好成绩!。
中考数学几何知识点总结
![中考数学几何知识点总结](https://img.taocdn.com/s3/m/91c9901791c69ec3d5bbfd0a79563c1ec5dad7d7.png)
中考数学几何知识点总结(专项汇总)1 同角或等角的余角相等2 过一点有且只有一条直线和已知直线垂直3 过两点有且只有一条直线4 两点之间线段最短5 同角或等角的补角相等6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理通过直线外一点,有且只有一条直线与这条直线平行8 假如两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到那个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在那个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边同时垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,同时每一个角都等于60°34 等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上45逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理假如三角形的三边长a、b、c有关系a+b=c,那么那个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角差不多上直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形本文导航1、首页2、角3、三角形4、等腰三角形5、四边形6、矩形7、菱形8、正方形9、等腰梯形10、等分》》》菱形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,同时每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角差不多上直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,同时互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都通过对称中心,同时被对称中心平分73逆定理假如两个图形的对应点连线都通过某一点,同时被这一点平分,那么这两个图形关于这一点对称宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
初三数学几何知识点归纳
![初三数学几何知识点归纳](https://img.taocdn.com/s3/m/8854e634571252d380eb6294dd88d0d232d43c4a.png)
初三数学几何知识点归纳一、三角形1. 三角形的基本概念- 三角形由不在同一直线上的三条线段首尾顺次相接所组成。
- 三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
例如,若三角形三边为a、b、c,则a + b>c,a - b<c。
2. 三角形的分类- 按角分类:- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形,直角三角形中斜边最长,两直角边的平方和等于斜边的平方(勾股定理a^2+b^2=c^2,其中c为斜边,a、b为两直角边)。
- 钝角三角形:有一个角是钝角的三角形。
- 按边分类:- 不等边三角形:三边都不相等的三角形。
- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
等腰三角形两底角相等(等边对等角),等腰三角形三线合一(底边上的高、底边上的中线、顶角平分线互相重合)。
- 等边三角形:三边都相等的三角形,等边三角形三个角都是60^∘,等边三角形是特殊的等腰三角形。
3. 三角形的内角和与外角- 三角形内角和定理:三角形三个内角的和等于180^∘。
- 三角形的外角:三角形的一边与另一边的延长线组成的角。
三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。
二、四边形1. 平行四边形- 定义:两组对边分别平行的四边形叫做平行四边形。
- 性质:- 平行四边形的对边平行且相等。
- 平行四边形的对角相等,邻角互补。
- 平行四边形的对角线互相平分。
- 判定:- 两组对边分别平行的四边形是平行四边形。
- 两组对边分别相等的四边形是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
- 两组对角分别相等的四边形是平行四边形。
- 对角线互相平分的四边形是平行四边形。
2. 矩形- 定义:有一个角是直角的平行四边形叫做矩形。
- 性质:- 矩形具有平行四边形的所有性质。
初三数学平面几何知识总结
![初三数学平面几何知识总结](https://img.taocdn.com/s3/m/e2fdd976ec630b1c59eef8c75fbfc77da2699723.png)
初三数学平面几何知识总结一、点、线、面基本概念1.点:几何的基本要素,无长度、宽度和高度,只有位置。
2.线:由无数个点按照一定方向和顺序排列而成,有直线、射线和曲线等。
3.面:由无数个线按照一定规律排列而成,有平面和曲面等。
二、直线与平面1.直线的性质:无限延伸、无宽度和高度、相交于一点的两条直线平行。
2.平面的性质:无限延伸、无边界、垂直于同一直线的两平面平行。
3.直线与平面的关系:直线在平面内、直线与平面相交、直线与平面平行。
4.三角形的性质:三个顶点、三条边、三个角。
5.三角形的分类:锐角三角形、直角三角形、钝角三角形。
6.三角形的判定:两边之和大于第三边、两边之差小于第三边。
7.四边形的性质:四个顶点、四条边、四个角。
8.四边形的分类:矩形、平行四边形、梯形、菱形。
9.四边形的判定:对边平行且相等、对角相等、对边平行且对角相等。
10.圆的性质:圆心、半径、直径、圆周率。
11.圆的分类:圆、椭圆、双曲线、抛物线。
12.圆的方程:圆的标准方程、圆的一般方程。
六、相交线与平行线1.相交线的性质:交点、夹角。
2.平行线的性质:同位角相等、内错角相等、同旁内角互补。
3.平行线的判定:同位角相等、内错角相等、同旁内角互补。
七、三角形全等1.三角形全等的条件:SSS(三边相等)、SAS(两边及夹角相等)、ASA(两角及夹边相等)、AAS(两角及非夹边相等)。
2.三角形全等的证明:综合全等条件,利用几何画板或实物展示。
八、相似三角形1.相似三角形的性质:对应角相等、对应边成比例。
2.相似三角形的判定:AA(两角相等)、AAA(三角相等)。
3.相似三角形的应用:图形放大与缩小、三角函数计算。
九、圆的性质与计算1.圆的性质:圆心到圆上任意一点的距离相等、圆上任意一条直径对角平分。
2.圆的计算:圆的周长、圆的面积、弧长、扇形面积。
十、解析几何基础1.解析几何的概念:用代数方法研究几何问题。
2.坐标系:直角坐标系、平面直角坐标系。
中考数学知识点总结几何篇
![中考数学知识点总结几何篇](https://img.taocdn.com/s3/m/435cd305f7ec4afe04a1dfe7.png)
中考数学知识点总结几何篇初中几何公式:线1、同角或等角的余角相等。
2、过一点有且只有一条直线和已知直线垂直。
3、过两点有且只有一条直线。
4、两点之间线段最短。
5、同角或等角的补角相等。
6、直线外一点与直线上各点连接的所有线段中,垂线段最短。
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行。
8、如果两条直线都和第三条直线平行,这两条直线也互相平行。
初中几何公式:角9、同位角相等,两直线平行。
10、内错角相等,两直线平行。
11、同旁内角互补,两直线平行。
12、两直线平行,同位角相等。
13、两直线平行,内错角相等。
14、两直线平行,同旁内角互补。
初中几何公式:三角形15、定理三角形两边的和大于第三边。
16、推论三角形两边的差小于第三边。
17、三角形内角和定理三角形三个内角的和等于180°。
18、推论1 直角三角形的两个锐角互余。
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和。
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角。
21、全等三角形的对应边、对应角相等。
22、边角边公理有两边和它们的夹角对应相等的两个三角形全等。
23、角边角公理有两角和它们的夹边对应相等的两个三角形全等。
24、推论有两角和其中一角的对边对应相等的两个三角形全等。
25、边边边公理有三边对应相等的两个三角形全等。
26、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等。
27、定理1 在角的平分线上的点到这个角的两边的距离相等。
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上。
29、角的平分线是到角的两边距离相等的所有点的集合。
初中几何公式:等腰三角形30、等腰三角形的性质定理等腰三角形的两个底角相等。
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边。
32、等腰三角形的顶角平分线、底边上的中线和高互相重合。
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°。
中考几何重要知识点归纳
![中考几何重要知识点归纳](https://img.taocdn.com/s3/m/50d6c88977eeaeaad1f34693daef5ef7ba0d12d4.png)
中考几何重要知识点归纳中考几何是数学科目中的重要组成部分,涵盖了多种几何图形的属性、定理和证明方法。
以下是中考几何的重要知识点归纳:一、基本概念- 点、线、面:点是几何图形的基本元素,线是由点组成的一维图形,面是由线组成的二维图形。
- 直线、射线、线段:直线是无限延伸的线,射线有一端点,另一端无限延伸,线段是有限长度的线。
- 角度:角度是两条射线的夹角,可以是锐角、直角或钝角。
- 相似和全等:两个图形在形状和大小上完全相同称为全等,形状相同但大小不同称为相似。
二、平面几何图形- 三角形:包括等边三角形、等腰三角形、直角三角形等,以及它们的内角和定理、外角定理等。
- 四边形:包括矩形、平行四边形、梯形等,以及它们的对角线性质、面积计算方法。
- 圆:涉及圆的性质、圆周角定理、弧长计算、扇形面积等。
三、立体几何图形- 棱柱、棱锥:包括正方体、长方体、金字塔等,以及它们的体积和表面积计算。
- 圆柱、圆锥、球:涉及它们的体积和表面积计算,以及圆锥的高和底面半径的关系。
四、几何证明方法- 反证法:假设结论的反面成立,通过逻辑推理得出矛盾,从而证明原结论的正确性。
- 归纳法:从个别事实出发,通过归纳得出一般性的结论。
- 演绎法:从已知的一般性结论出发,通过逻辑推理得出个别事实的结论。
五、几何变换- 平移、旋转、反射:这些是几何图形的基本变换,可以改变图形的位置或方向,但不改变其形状和大小。
- 相似变换:保持图形形状不变,改变图形的大小。
六、几何问题解决技巧- 画图辅助:在解决几何问题时,画图可以帮助直观理解问题,发现问题的关键点。
- 利用已知条件:在解题过程中,要充分利用题目给出的条件,进行逻辑推理。
- 转化思想:将复杂问题转化为简单问题,或者将不熟悉的问题转化为熟悉的问题。
结束语:掌握中考几何的这些重要知识点,能够帮助学生在考试中迅速准确地解决问题。
通过不断的练习和思考,可以提高解决几何问题的能力,从而在中考中取得优异的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何公式:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行初中几何公式:角9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补初中几何公式:三角形15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理有两边和它们的夹角对应相等的两个三角形全等23、角边角公理有两角和它们的夹边对应相等的两个三角形全等24、推论有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理有三边对应相等的两个三角形全等26、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30、等腰三角形的性质定理等腰三角形的两个底角相等31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形初中几何公式:矩形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、、矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形初中几何公式:正方形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形初中几何公式:等分78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 、(1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例初中几何:相似三角形90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r ②直线L和⊙O相切d=r ③直线L和⊙O相离d﹥r 122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=nπR/180145、扇形面积公式:S扇形=nπR/360=LR/2146、内公切线长= d-(R-r) 外公切线长= d-(R+r)。