人教版七年级数学上《整式》提高训练

合集下载

人教版七年级上册数学《整式》练习题(含答案)

人教版七年级上册数学《整式》练习题(含答案)

2.1整 式一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2xy -5都是多项式 C .多项式-2x 2+4xy 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x6.下列单项式次数为3的是( )×3×4 417.下列代数式中整式有( )x 1, 2x +y , 31a 2b , πy x -, xy 45, , a 个 个 个 个8.下列整式中,单项式是( )+1 -y D.21+x 9.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -110.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式C .0是单项式D .单项式-31x 2y 的系数是31 11.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2512.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,313.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式14.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 15.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个B .2个C .3个D .4个 三.填空题1填一填 整式-ab πr 2 232ab - -a+b 2453-+y x A 3b 2-2a 2b 2+b 3-7ab+5 系数次数项2.单项式: 3234y x -的系数是 ,次数是 ; 3.220053xy 是 次单项式;4.y x 342-的一次项系数是 ,常数项是 ;5.单项式21xy 2z 是_____次单项式. 6.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 7.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有8.x+2xy +y 是 次多项式.9.b 的311倍的相反数是 ; 10.设某数为x ,10减去某数的2倍的差是 ;11.42234263y y x y x x --+-的次数是 ;12.当x =2,y =-1时,代数式||||x xy -的值是 ;13.当y = 时,代数式3y -2与43+y 的值相等; 14.-23ab 的系数是 ,次数是 次.15.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .16.若2313m x y z -与2343x y z 是同类项,则m = . 17.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .18.单项式7532c ab 的系数是____________,次数是____________.19.多项式x2y+xy-xy2-53中的三次项是____________.20.当a=____________时,整式x2+a-1是单项式.21.多项式xy-1是____________次____________项式.22.当x=-3时,多项式-x3+x2-1的值等于____________.23.一个n次多项式,它的任何一项的次数都____________.24.如果3x k y与-x2y是同类项,那么k=____ ____.四、合并下列多项式中的同类项(1)3x2+4x-2x2-x+x2-3x-1;(2)-a2b+2a2b(3)a3-a2b+ab2+a2b-2ab2+b3;(4)2a2b+3a2b-12a2b(5)(2x+3y)+(5x-4y);(6)(8a-7b)-(4a-5b)(7)(8x-3y)-(4x+3y-z)+2z;(8)(2x-3y)-3(4x-2y)(9)3a2+a2-2(2a2-2a)+(3a-a2)(10)3b-2c-[-4a+(c+3b)]+c五.先去括号,再合并同类项:(1)(2x+3y )+(5x -4y ); (2)(8a -7b )-(4a -5b )(3)(8x -3y )-(4x+3y -z )+2z (4)(2x -3y )-3(4x -2y )(5)3a 2+a 2-2(2a 2-2a )+(3a -a 2) (6)3b -2c -[-4a+(c+3b )]+c六、求代数式的值1.当x =-2时,求代数式132--x x 的值。

2021-2022学年人教版数学七年级上册第2章《整式的加减》单元同步提升专练

2021-2022学年人教版数学七年级上册第2章《整式的加减》单元同步提升专练

【整式的加减】单元同步提升专练(一)一.选择题1.计算2a2﹣a2的结果是()A.1B.a C.a2D.2a2.若2x2﹣3y﹣5=0,则6y﹣4x2﹣6的值为()A.4B.﹣4C.16D.﹣163.某家用电器商城销售一款每台进价为a元的空调,标价比进价提高了30%,因商城销售方向调整,决定打九折降价销售,则每台空调的实际售价为()元.A.90%(1+30%)a B.(1+30%)(1﹣90%)aC.(1+30%)a÷90%D.(1+30%﹣10%)a4.已知关于x的多项式mx2﹣mx﹣2与3x2+mx+m的和是单项式,则代数式m2﹣4m+4的值是()A.25B.0C.2或﹣3D.25或05.按如图所示的运算程序,若输入x=2,y=6,则输出结果是()A.4B.16C.32D.346.如图,若a=2,则的值所对应的点可能落在()A.点A处B.点B处C.点C处D.点D处7.已知M、N表示两个代数式,M=(x+1)(x﹣1)﹣2(y2﹣y+1),N=(2x+y)(2x ﹣y),则M与N的大小是()A.M>N B.M<N C.M=N D.无法确定8.下列运算结果正确的是()A.2x+3y=5xy B.7a2b﹣4ab2=3a2bC.x﹣(3y﹣2)=x﹣3y﹣2D.﹣2(x+y)=﹣2x﹣2y9.如果a和1﹣4b互为相反数,那么多项式2(b﹣2a+10)+7(a﹣2b﹣3)的值是()A.﹣4B.﹣2C.2D.410.如图是长10cm,宽6cm的长方形,在四个角剪去4个边长为xcm的小正方形,按折痕做一个有底无盖的长方体盒子,这个盒子的底面积(单位:cm2)是()A.60﹣x2B.60﹣16x+x2C.60﹣4x2D.60﹣32x+4x2二.填空题11.如果单项式3a2x b y与单项式﹣2a y b x+2是同类项,则y x的值为.12.已知|x﹣y|=y﹣x,|x|=2,|y|=3,则x+y=.13.已知a﹣2b﹣1=0,则代数式2﹣3a+6b的值是.14.设x、y、z为整数且满足|x﹣y|2021+|y﹣z|2022=1,则代数式|x﹣y|3+|y﹣z|3+|z﹣x|3的值为.15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,其中m>0,则mn =.三.解答题16.先化简,再求值:(1)(b+3a)+2(3﹣5a)﹣(6﹣2b),其中a=﹣1,b=2.(2)x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.17.已知多项式M=(2x2+3xy+2y)﹣2(x2+x+yx+1).(1)当x=1,y=2,求M的值;(2)若多项式M与字母x的取值无关,求y的值.18.如图,学校操场主席台前计划修建一块凹字形花坛.(单位:米)(1)用含a,b的整式表示花坛的面积;(2)若a=4,b=3,工程费为500元/平方米,求建花坛的总工程费为多少元?19.某种圆珠笔的售价是每支2元,甲、乙两家文具店均有促销活动:甲文具店全部九折,乙文具店20支及以下不打折,超过20支的部分打八折.设小明需要购买的圆珠笔的数量为x,根据题意回答下列问题:(1)若购买超过20支的圆珠笔,则在甲文具店需要花费元,在乙文具店需要花费元.(用含x的代数式表示)(2)当x=25时,选择哪家文具店更优惠?当x=50呢?(3)随着x的变化,试说明选择哪家文具店更优惠.20.如图,在一条数轴上,点O为原点,点A、B、C表示的数分别是m+1,2﹣m,9﹣4m.(1)求AC的长;(用含m的代数式表示)(2)若AB=5,求BC的长.。

人教版七年级数学(上)第一章《整式》经典例题及练习含答案

人教版七年级数学(上)第一章《整式》经典例题及练习含答案

人教版七年级数学(上)第一章《整式》经典例题及练习一. 教学内容:整式1. 单项式的有关概念,如何确定单项式的系数和次数;2. 多项式的有关概念,如何确定多项式的系数和次数;3. 什么是整式;4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力.二. 知识要点:1. 用字母表示数时,应注意以下几点:(1)加、减、乘、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.(2)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a.(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作.(4)代数式中大于1的分数系数一般写成假分数,例如2. 单项式(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意:①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式(x+1)3不是单项式.②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.(2)单项式的系数:是指单项式中的数字因数,如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1.(3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点:①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是4.②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式-2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.④单独一个非零数字的次数是零.3. 多项式(1)多项式:是指几个单项式的和. 其含义有:①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,(2)多项式的项:是指多项式中的每个单项式. 其中不含字母的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号).另外,一个多项式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.(3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.4. 单项式与多项式统称为整式.三. 重点难点:1. 重点:单项式和多项式的有关概念.2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.【典型例题】例1. (1)(2008年宁夏)某市对一段全长1500米的道路进行改造. 原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.(2)(2008年全国数学竞赛广东初赛)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是()A. a(1+m%)(1-n%)元B. am%(1-n%)元C. a(1+m%)n%元D. a(1+m%·n%)元分析:(1)修这条路实际用的天数等于这条路的全长1500米除以实际每天的工作量,原计划每天修x米,实际施工时,每天比原计划的2倍还多35米,即(2x+35)米. 用1500除以(2x+35)就可以了. (2)每件衬衣进价为a元,零售价比进价高m%,那么零售价就是a(1+m%),后来零售价调整为原来的n%,也就是a(1+m%)n%.评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号省略,如果是除法写成分数的形式,系数是代分数时写成假分数,数字和字母写在括号的前面等)例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.单独一个数字是单项式,它的次数是0.8a3x的系数是8,次数是4;-1的系数是-1,次数是0.评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系,如果含有加、减、除的关系,那么它就不是单项式.例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断.解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab+ac+bc+ac+bc). 它们都是整式;abc是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式.评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式.故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2.解:2评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数最高的项的次数决定的.例5. 把代数式2a2c3和a3x2的共同点填写在下列横线上.例如:都是整式.(1)都是____________________;(2)都是____________________.分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母a.解:(1)五次式;(2)都含有字母a.评析:主要观察单项式的特征.例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.分析:多项式不含x3和x项,则x3和x项的系数就是0. 根据这两项的系数等于0就可以求出a和b 的值了.解:因为多项式不含x3项,所以其系数-(a-1)=0,所以a=1.因为多项式也不含x项,所以其系数-(b+3)=0,所以b=-3.答:a的值是1,b的值是-3.评析:多项式不含某项,则某项的系数为0.【方法总结】1. “用字母表示数”是代数学的基础,这种符号化的表示方法随着学习的深入会逐渐加深数学抽象化的程度,我们要体会这种抽象化,它更接近数学的本质,也是有效地解决数学问题的工具.2. 在学习多项式的时候,要注意和单项式的概念进行比较,通过比较两者之间的相同点和不同点,掌握两个概念之间的联系与区别,突出概念的本质,帮助我们理解多项式的概念.【模拟试题】(答题时间:40分钟)一. 选择题1. 在代数式中单项式共有()A. 2个B. 4个C. 6个D. 8个*2. 下列说法不正确的是()C. 6x2-3x+1的项是6x2,-3x,1D. 2πR+2πR2是三次二项式3. 下列整式中是多项式的是()4. 下列说法正确的是()A. 单项式a的指数是零B. 单项式a的系数是零C. 24x3是7次单项式D. -1是单项式5. 组成多项式2x2-x-3的单项式是下列几组中的()A. 2x2,x,3B. 2x2,-x,-3C. 2x2,x,-3D. 2x2,-x,3*7. 下列说法正确的是()B. 单项式a的系数为0,次数为2C. 单项式-5×102m2n2的系数为-5,次数为58. 下列单项式中的次数与其他三个单项式次数不同的是()**9. (2007年华杯初赛)如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式. 例如:x3+2xy2+2xyz+y3是3次齐次多项式. 若x m+2y2+3xy3z2是齐次多项式,则m等于()A. 1B. 2C. 3D. 4二. 填空题1. (2007年云南)一台电视机的原价为a元,降价4%后的价格为__________元.三. 解答题*1. 下列代数式中哪些是单项式,并指出其系数和次数.2. 说出下列多项式是几次几项式:(1)a3-ab+b3(2)3a-3a2b+b2a-1(3)3xy2-4x3y+12(4)9x4-16x2y2+25y2+4xy-1四. 综合提高题**3. 一个关于字母a、b的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若a、b满足︱a+b︱+(b-1)2=0,求你写出的多项式的值.【试题答案】一. 选择题1. B2. D3. B4. D5. B6. C7. D8. B9. B二. 填空题三. 解答题2. (1)三次三项式(2)三次四项式(3)四次三项式(4)四次五项式四. 综合提高题1. 由题意可知m+2+1=8,∴m=52. (1)四次六项式,最高次项是-3x3y,最高次项系数是-3,常数项是1(2)三次三项式,最高次项是y3,最高次项系数是1,常数项是-0.53. 最多有5项(可以含有a3,b3,a2b,ab2),如a3+a2b+ab2+b3+1(答案不唯一). 因为︱a+b ︱+(b-1)2=0,所以b=1,a=-1,所以原式=-1+1-1+1+1=1。

人教版七年级上册数学第二章《整式的加减》必考知识点专题提升练习

人教版七年级上册数学第二章《整式的加减》必考知识点专题提升练习

人教版七年级上册数学《整式的加减》必考知识点专题提升练习一.选择题(每小题4分,共32分)1.单项式-5ab的系数是( )A.5B.-5C.2D.-22.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( )A.x2-5x+3B.-x2+x-1C.-x2+5x-3D.x2-5x-133.观察下列图形,它们是按一定的规律排列的,依照此规律,第20个图形的“★”有( )A.57个B.60个C.63个D.85个4.已知a+b=,则代数式2a+2b-3的值是( )A.2B.-2C.-4D.-35.一个两位数是a,在它的左边加上一个数字b变成一个三位数,则这个三位数用式子表示为()A.10a+100bB.baC.100baD.100b+a6. 已知代数式x+2y的值是4,则代数式3x+6y+1的值是( )A.5B.9C.11D.137.合并同类项m-3m+5m-7m+…+2 017m的结果为 ( )A.0B.1 009mC.1 007mD.以上答案都不对8.如图是一个运算程序的示意图,若开始输入x的值为81,则第2 019次输出的结果为( )A.3B.27C.9D.1二.填空题(每小题5分,共25分)9.合并同类项:4a2+6a2-a2=__ __.10.如果x m y与2x2y n+1是同类项,则m=____,n=____.11.当x=-1时,代数式x2-4x-k的值为0,则当x=3时,这个代数式的值是___.12.已知P=2x2-3x-4,Q=3(x2-x-1),比较P,Q的大小,则P___Q(填“>”“<”或“=”)13. 如果x,y表示有理数,且x,y满足条件|x|=5,|y|=3,|x-y|=y-x,那么x+y=____.14.如图,每个图案都由大小相同的正方形组成,按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为____.三.解答题(共39分)15.(10分)化简:(1)-5+(x2+3x)-(-9+6x2);(2)(5a-3a2+1)-(4a3-3a2).16.(12分)先化简,再求值:(1)(4a2-3a)-(2a2-3a-1),其中a=-2;(2)(ab-3a2)-2b2-[5ab-(a2-2ab)],其中a=1,b=-2.17.(7分)马虎同学在计算一个多项式A减去另一个多项式2m2+5m-3时,错将减号抄成了加号,于是他得到的结果是m2+3m-7,请问如果不抄错,正确答案该是多少?18.(9分)用棋子摆出下列一组图形:(1)填写下表:图形编号 1 2 3 4 5 6图形中__ __ __ __ __ __的棋子(2)照这样的方式摆下去,写出摆第n个图形棋子的枚数(用含n的代数式表示);(3)试计算第672个图形棋子的枚数.人教版七年级上册数学《整式的加减》必考知识点专题提升练习一.选择题(每小题4分,共32分)1.单项式-5ab的系数是( B)A.5B.-5C.2D.-22.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( C)A.x2-5x+3B.-x2+x-1C.-x2+5x-3D.x2-5x-133.观察下列图形,它们是按一定的规律排列的,依照此规律,第20个图形的“★”有( B )A.57个B.60个C.63个D.85个4.已知a+b=,则代数式2a+2b-3的值是( B)A.2B.-2C.-4D.-35.一个两位数是a,在它的左边加上一个数字b变成一个三位数,则这个三位数用式子表示为(D)A.10a+100bB.baC.100baD.100b+a6. 已知代数式x+2y的值是4,则代数式3x+6y+1的值是( D)A.5B.9C.11D.137.合并同类项m-3m+5m-7m+…+2 017m的结果为 ( B)A.0B.1 009mC.1 007mD.以上答案都不对8.如图是一个运算程序的示意图,若开始输入x的值为81,则第2 019次输出的结果为( A)A.3B.27C.9D.1二.填空题(每小题5分,共25分)9.合并同类项:4a2+6a2-a2=__9a2__.10.如果x m y与2x2y n+1是同类项,则m=__2__,n=__0__.11.当x=-1时,代数式x2-4x-k的值为0,则当x=3时,这个代数式的值是__-8__.12.已知P=2x2-3x-4,Q=3(x2-x-1),比较P,Q的大小,则P__<__Q(填“>”“<”或“=”)13. 如果x,y表示有理数,且x,y满足条件|x|=5,|y|=3,|x-y|=y-x,那么x+y=__-2或-8__.14.如图,每个图案都由大小相同的正方形组成,按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为__n(n+1)__.三.解答题(共39分)15.(10分)化简:(1)-5+(x2+3x)-(-9+6x2);(2)(5a-3a2+1)-(4a3-3a2).解:(1)-5+(x2+3x)-(-9+6x2)=-5+x2+3x+9-6x2=-5x2+3x+4;(2)(5a-3a2+1)-(4a3-3a2)=5a-3a2+1-4a3+3a2=-4a3+5a+1.16.(12分)先化简,再求值:(1)(4a2-3a)-(2a2-3a-1),其中a=-2;(2)(ab-3a2)-2b2-[5ab-(a2-2ab)],其中a=1,b=-2.解:(1)(4a2-3a)-(2a2-3a-1)=4a2-3a-2a2+3a+1=2a2+1,当a=-2时,原式=2a2+1=2×(-2)2 +1=9;(2)(ab-3a2)-2b2-[5ab-(a2-2ab)]=ab-3a2-2b2-(5ab-a2+2ab)=ab-3a2-2b2-5ab+a2-2ab=-2a2-6ab-2b2,当a=1,b=-2时,原式=-2a2-6ab-2b2=-2×12-6×1×(-2)-2×(-2)2=-2+12-8=2.17.(7分)马虎同学在计算一个多项式A减去另一个多项式2m2+5m-3时,错将减号抄成了加号,于是他得到的结果是m2+3m-7,请问如果不抄错,正确答案该是多少?解:由题意可知:A+(2m2+5m-3)=m2+3m-7,所以A=m2+3m-7-(2m2+5m-3)=m2+3m-7-2m2-5m+3=-m2-2m-4,所以正确答案为:(-m2-2m-4)-(2m2+5m-3)=-m2-2m-4-2m2-5m+3=-3m2-7m-1.18.(9分)用棋子摆出下列一组图形:(1)填写下表:图形编号 1 2 3 4 5 6图形中__ __ __ __ __ __的棋子(2)照这样的方式摆下去,写出摆第n个图形棋子的枚数(用含n的代数式表示);(3)试计算第672个图形棋子的枚数.解:(1)由题干图可得:图形1中的棋子是6枚,图形2中的棋子是6+3×(2-1)=9枚,图形3中的棋子是6+3×(3-1)=12枚,图形4中的棋子是6+3×(4-1)=15枚,图形5中的棋子是6+3×(5-1)=18枚,图形6中的棋子是6+3×(6-1)=21枚.答案:6 9 12 15 18 21(2)由题意可得,摆第n个图形棋子的枚数应为:6+3(n-1)=6+3n-3=3n+3.(3)当n=672时,3n+3=3×672+3=2 019,所以第672个图形棋子的枚数是2 019.。

《2-1整式》同步能力提升训练(附答案)七年级数学人教版上册

《2-1整式》同步能力提升训练(附答案)七年级数学人教版上册

2021-2022学年人教版七年级数学上册《2.1整式》同步能力提升训练(附答案)1.下列各式中,不是整式的是()A.3a B.2x=1C.0D.xy2.下列说法中,不正确的是()A.﹣ab2c的系数是﹣1,次数是4B.﹣1是整式C.6x2﹣3x+1的项是6x2、﹣3x,1D.2πR+πR2是三次二项式3.在下列代数式中,次数为5的单项式是()A.xy⁴B.xy⁵C.x+y⁴D.x3+y24.单项式的系数与次数分别是()A.B.C.D.5.在式子:,m﹣3,﹣13,﹣,2πb2中,单项式有()A.1个B.2个C.3个D.4个6.下列说法正确的是()A.是单项式B.是五次单项式C.ab2﹣2a+3是四次三项式D.2πr的系数是2π,次数是1次7.已知:①a是代数式,3是代数式;②单项式﹣的系数是﹣;③x与y的和的平方的3倍是3(x+y)2;④多项式x3y﹣2x3+5是四次三项式.以上说法错误的是()A.①B.②C.③D.④8.某轮船顺水航行3h,逆水航行2h,已知轮船在静水中的速度是xkm/h,水流速度是ykm/h,则轮船共航行了km.9.单项式﹣a2b的系数是.10.观察这列单项式:x,﹣4x3,9x5,﹣16x7,…,则第10个单项式是.11.请写出一个只含字母x的二次三项式,要求二次项的系数是最小的正整数,一次项的系数和常数项相等,则这个二次三项式为.12.已知(m﹣3)xy|m|+1是关于x,y的五次单项式,则m的值是.13.单项式﹣的系数是,多项式2ab﹣3a2b2+1的次数是.14.多项式5a m b4﹣2a2b+3与单项式6a4b3c的次数相同,则m的值为.15.若﹣x3y|b﹣3|是关于x、y的单项式,且系数为,次数是4,求a和b的值.16.已知多项式﹣3x2y m+1+x3y﹣3x4﹣1是五次四项式,且单项式3x2n y3﹣m与多项式的次数相同.(1)求m、n的值;(2)把这个多项式按x的降幂排列.17.已知多项式x4﹣y+3xy﹣2xy2﹣5x3y3﹣1,按要求解答下列问题:(1)指出该多项式的项;(2)该多项式的次数是,三次项的系数是.(3)按y的降幂排列为:.(4)若|x+1|+|y﹣2|=0,试求该多项式的值.18.对于多项式(n﹣1)x m+2﹣3x2+2x(m,n为常数,且m是大于﹣2的整数).(1)若n=2,且该多项式是关于x的三次三项式,求m的值;(2)若该多项式化简后是关于x的二次单项式,求m,n的值;(3)若该多项式是关于x的二次二项式,则m,n要满足什么条件?19.观察多项式x﹣3x2+5x3﹣7x4+…的构成规律,并回答下列问题:(1)它的第100项是什么?(2)它的第n(n为正整数)项是什么?(3)当x=1时,求前2022项的和.20.已知关于x的多项式(a+b)x5+(b﹣2)x3﹣2(a﹣1)x2﹣2ax﹣3中不含x3和x2项,试求当x=﹣1时,这个多项式的值.参考答案1.解:A、3a是整式,故此选项错误;B、2x=1不是整式,是方程,符合题意;C、0是整式,故此选项错误;D、xy是整式,故此选项错误;故选:B.2.解:A、﹣ab2c的系数是﹣1,次数是4,故A正确;B、﹣1是整式,故B正确;C、6x2﹣3x+1的项是6x2、﹣3x,1,故C正确;D、2πR+πR2是二次二项式,故D错误;故选:D.3.解:A、xy4的次数为:1+4=5;B、xy5的次数为:1+5=6;C、x+y4,不是单项式;D、x3+y3,不是单项式;故选:A.4.解:单项式﹣的系数与次数分别是﹣,5.故选:D.5.解:,m﹣3,﹣13,﹣,2πb2中,单项式有:﹣13,﹣,2πb2,共3个.故选:C.6.解:A、是分式,不是单项式,故此选项错误;B、﹣a2b3c是六次单项式,故此选项错误;C、ab2﹣2a+3是三次三项式,故此选项错误;D、2πr的系数是2π,次数是1次,故此选项正确.故选:D.7.解:①a是代数式,3是代数式,原说法正确;②单项式﹣的系数是﹣,原说法错误;③x与y的和的平方的3倍是3(x+y)2,原说法正确;④多项式x3y﹣2x3+5是四次三项式,原说法正确.以上说法错误的是②,故选:B.8.解:顺水的速度为(x+y)km/h,逆水的速度为(x﹣y)km/h,则总航行路程=3(x+y)+2(x﹣y)=5x+y.故答案为:5x+y.9.解:单项式﹣a2b的系数﹣1.故答案为:﹣1.10.解:x=(﹣1)1+1•x1,﹣4x3=(﹣1)2+1•22x2×2﹣1;9x5=(﹣1)3+1•32x3×2﹣1;﹣16x7=(﹣1)4+1•42x4×2﹣1.故第10个单项式为:(﹣1)10+1•102x2×10﹣1,即﹣100x19.故答案为:﹣100x19.11.解:根据题意可得:答案不唯一:如x2+2x+2.故答案为:答案不唯一:如x2+2x+2.12.解:由题意得,|m|+1+1=5,m﹣3≠0,解得,m=﹣3,故答案为:﹣3.13.解:∵单项式中的数字因数叫做单项式的系数.∴单项式﹣系数是﹣,∵多项式中次数最高项的次数叫做多项式的次数.∴多项式2ab﹣3a2b2+1的次数是4.故答案为:﹣,4.14.解:∵多项式5a m b4﹣2a2b+3与单项式6a4b3c的次数相同,∴m+4=4+3+1,解得:m=4.故答案为:4.15.解:由题意得,﹣=,|b﹣3|=1,解得:a=﹣,b=4或b=2.16.解:(1)∵多项式﹣3x2y m+1+x3y﹣3x4﹣1是五次四项式,且单项式3x2n y3﹣m与多项式的次数相同,∴m+1=3,2n+3﹣m=5,解得:m=2,n=2;(2)按x的降幂排列为﹣3x4+x3y﹣3x2y3﹣1.17.解:(1)该多项式的项为:x4,﹣y,3xy,﹣2xy2,﹣5x3y3,﹣1;(2)该多项式的次数是6,三次项的系数是﹣2;故答案为:6,﹣2;(3)按y的降幂排列为:﹣5x3y3﹣2xy2﹣y+3xy+x4﹣1;故答案为:﹣5x3y3﹣2xy2﹣y+3xy+x4﹣1;(4)∵|x+1|+|y﹣2|=0,∴x=﹣1,y=2,∴x4﹣y+3xy﹣2xy2﹣5x3y3﹣1=(﹣1)4﹣2+3×(﹣1)×2﹣2(﹣1)×22﹣5(﹣1)3×23﹣1=1﹣2﹣6+8+40﹣1=40.18.解:(1)当n=2时,且该多项式是关于x的三次三项式,故原式=x m+2﹣3x2+2x,m+2=3,解得:m=1;(2)若该多项式是关于x的二次单项式,则m+2=1,n﹣1=﹣2,解得:m=﹣1,n=﹣1;(3)若该多项式是关于x的二次二项式,①n﹣1=0,m是大于﹣2的整数.则m,n要满足的条件是:n=1,m是大于﹣2的整数;②当m=﹣1时,n≠﹣1,③m=0时,n≠4.19.解:(1)根据题意得:第100项为﹣199x100;(2)根据题意得:第n项为(﹣1)n+1(2n﹣1)x n;(3)把x=1代入得:1﹣3+5﹣7+…+4041﹣4043=﹣2﹣2…﹣2(1011个﹣2相加)=﹣2022.20.解:由题意可知b﹣2=0,a﹣1=0,解得b=2,a=1,当a=1,b=2时,原多项式化简为3x5﹣2x﹣3,把x=﹣1代入,原式=3x5﹣2x﹣3=3×(﹣1)5﹣2×(﹣1)﹣3=﹣3+2﹣3=﹣4.。

2.2整式的加减课堂提高训练课件2021--2022学年七年级上学期数学人教版

2.2整式的加减课堂提高训练课件2021--2022学年七年级上学期数学人教版

解析 我同意小明的观点.理由如下: 因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3 =(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0, 所以a=0.35,b=-0.28是多余的条件,故小明的观点正确.
14.(2021江西吉安期中)阅读材料:我们知道4x-2x+x=(4-2+1)x=3x,类似地, 我们把(a+b)看成一个整体,则4(a+b)-2(a+b)+(a+b)=(4-2+1)(a+b)=3(a+b). “整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的 化简与求值中应用极为广泛,尝试应用: 把(a-b)2看成一个整体,求出3(a-b)2+6(a-b)2-2(a-b)2的结果.
答案 D x+2(y-1)=x+2y-2,故选项A错误;x-2(y-1)=x-2y+2,故选项B、C错 误,选项D正确.故选D.
16.(2021西藏拉萨达孜期末)下列各式与多项式a-b-c不相等的是 ( )
A.(a-b)-c
B.a-(b+c)
C.-(b+c-a)
D.a-(b-c)
答案 D (a-b)-c=a-b-c;a-(b+c)=a-b-c;-(b+c-a)=a-b-c;a-(b-c)=a-b+c,故选 D.
的值是 ( )
A.1
B.-1
C.0
D.-12 019
答案 B 因为2x3yn+4和-x2m+1y2是同类项, 所以2m+1=3,n+4=2,解得m=1,n=-2, 所以(m+n)2 019=(1-2)2 019=-1.故选B.

人教版七年级上册数学分层单元测第二章 整式的加减--提升卷(解析版)

人教版七年级上册数学分层单元测第二章 整式的加减--提升卷(解析版)

2020-2021学年七年级数学上册《单元测试定心卷》(人教版)第二章 整式的加减(能力提升)一、选择题1. 下列叙述中,正确的是( )A. 单项式212xy π的系数是12,次数是4 B. 202a π、、、都是单项式C. 多项式32321a b a +-的常数项是1D. 2m n+是单项式【答案】B 【解析】【分析】根据单项式的次数、系数的定义和多项式的次数、系数的定义解答.【详解】A 、错误,单项式212xy π的系数是12π,次数是3;B 、正确,符合单项式的定义;C 、错误,多项式32321a b a +-的常数项是-1;D 、错误,2m n+是一次二项式. 故选:B .【点睛】此题主要考查了多项式与单项式,正确把握相关定义是解题关键. 2. 点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A. 2x -+B. 2x --C. 2x +D. -2【答案】A 【解析】【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解. 【详解】解:∵BC=2,C 点所表示的数为x , ∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数, ∴A 点所表示的数是-(x-2),即-x+2. 故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.3. 单项式21412n a b --与83m ab 是同类项,则57(1)(1)+-n m =( )A.14B. 14-C. 4D. -4【答案】B 【解析】【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项,∴21184n m -=⎧⎨=⎩,解得:121m n ⎧=⎪⎨⎪=⎩, 则()()5711n m +-=14-, 故答案选:B .【点睛】本题考查的知识点是同类项,解题的关键是熟练地掌握同类项. 4. 下列去括号正确的是( )A. 112222x y x y ⎛⎫ =⎭-⎪⎝--- B. ()12122x y x y ++=+- C. ()16433232x y x y --+=-++ D. ()22x y z x y z +-+=-+【答案】D 【解析】【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误;B. ()12122x y x y ++=++,错误;C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.5. 若多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项,则m 等于( ) A. 2 B. ﹣2C. 4D. ﹣4【答案】D 【解析】【分析】直接利用整式的加减运算法则得出8+2m =0,进而得出答案.【详解】解:∵多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项, ∴2x 3﹣8x 2+x ﹣1﹣(3x 3+2mx 2﹣5x +3)=﹣x 3﹣(8+2m )x 2+6x ﹣4, ∴8+2m =0,解得:m =﹣4,故D 正确. 故选:D .【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.6. 已知a+4b =﹣15,那么代数式9(a+2b )﹣2(2a ﹣b )的值是( )A. ﹣15B. ﹣1C. 15D. 1【答案】B 【解析】【分析】先化简所求代数式,再将已知等式作为一个整体代入求解即可. 【详解】9(2)2(2)a b a b +--91842a b a b =+-+ 520a b =+5(4)a b =+将145a b +=-代入得:原式15(4)5()15a b =+=⨯-=-故选:B .【点睛】本题考查了代数式的化简求值,掌握代数式的化简方法是解题关键. 7. 若2M 3x 5x 2=-+,2 N 3x 5x 1=-- 则M 和N 的大小关系为 ( ) A. M<N B. M=N C. M> N D. 无法确定【答案】C 【解析】【分析】要比较两个代数式的大小,可以求出它们的差来作比较.若差小于0,则被减数小于减数; 若差大于0,则被减数大于减数;若差等于0,则被减数等于减数.【详解】解:∵2M 3x 5x 2=-+,2 N 3x 5x 1=--,∴()()2222M N 3x 5x 23x 5x 13x 5x 23x 5x 13-=-+---=-+-++=>0,∴M N > 故选C .【点睛】本题考查代数式如何比较大小的问题,熟练掌握代数式比较大小的方法,如作差法、作商法等等是解题关键.8. 实数a 在数轴上的位置如图所示,则|a-4|+|a-11|化简后为( )A. 7B. -7C. 2a -15D. 无法确定【答案】A 【解析】【详解】解:由图可知:5,a ,10,,a -4,0,a -11,0,,|a -4|+|a -11|=a -4+11-a =7,故选A,点睛:考查绝对值的化简问题;判断出绝对值里面的式子的符号是解决本题的关键;用到的知识点为:正数的绝对值是它本身;负数的绝对值是它的相反数. 9. 如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A. 2a﹣3bB. 4a﹣8bC. 2a﹣4bD. 4a﹣10b【答案】B【解析】【分析】剪下的两个小矩形的长为a−b,宽为1(a−3b),所以这两个小矩形拼成2的新矩形的长为(a−b),宽为(a−3b),然后计算这个新矩形的周长.【详解】解:根据题意得:2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选B.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键用a和b表示出剪下的两个小矩形的长与宽.10. 用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A. 3nB. 6nC. 3n+6D. 3n+3【答案】D【解析】【详解】观察可知:①中有棋子6个,6=3×1+3,②中有棋子9个,9=3×2+3,③中有棋子12个,12=3×3+3, …所以第n 个图形用的棋子个数为:3n +3, 故答案为:3n +3,【点睛】主要考查了规律性问题,通过题中的图形找出规律是解决本题的关键.二、填空题11. 若关于x 、y 的多项式25x 2y ﹣7mxy+34y 3+6xy 化简后不含二次项,则m=______. 【答案】67【解析】【分析】根据合并同类项法则进行合并后得25 x 2y+34 y 3+(6-7m)xy ,再由不含二次项即可求出m 的值 【详解】25x 2y ﹣7mxy+34y 3+6xy=25x 2y+34y 3+(6-7m)xy , ∵不含二次项, ∴6-7m=0, ∴m=67【点睛】此题主要考查整式的加减,解题的关键是熟知不含某项可得其系数为0.12. 已知多项式21231363m x y xy x +-+--是五次四项式,单项式250.4n m x y -的次数与这个多项式的次数相同,则m =__________,n =__________. 【答案】 ①. 2 ②. 1 【解析】【详解】解:,多项式21231363m x y xy x +-+--的次数是5,单项式250.4n m x y -的次数与这个多项式的次数相同, ,2+m +1=5,2n +5﹣m =5, ,m =2, ,n =1. 故答案为2,1.13. 当x=1时,多项式3ax bx 1++的值为5,则当x=-1时,多项式311ax bx 122++的值为________. 【答案】-1 【解析】【分析】将x=1代入多项式中得出a+b 的值,再将x=-1及a+b 分别代入所求多项式中计算即可解答.【详解】解:由x=1时,代数式3ax bx 1++的值为5得:a+b+1=5 整理得:a+b=4.将311ax bx 122++变形为31ax bx 12++()将x=-1代入31(ax bx)12++得:1(a b)12-++将a+b=4代入上式,得14112-⨯+=-故代数式311ax bx 122++的值为-1,故答案为:﹣1.【点睛】本题考查了代数式的求值,利用整体代入的思想方法是解答本题的关键.14. 已知22251,34A x ax y B x x by =+-+=+--,且对于任意有理数 ,x y ,代数式 2A B - 的值不变,则12()(2)33a A b B ---的值是_______.【答案】-2 【解析】【分析】先根据代数式2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++ (6)(25)9a x b y =-+-+∵对于任意有理数,x y ,代数式 2A B - 的值不变 ∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=---∴原式=51629653223-⨯-⨯=--=-故答案为:-2【点睛】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.15. 如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.【答案】990 【解析】【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b )1的第三项系数为0, (a+b )2的第三项的系数为:1, (a+b )3的第三项的系数为:3=1+2, (a+b )4的第三项的系数为:6=1+2+3, …∴发现(1+x )3的第三项系数为:3=1+2; (1+x )4的第三项系数为6=1+2+3; (1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1), ∴(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=1+2+3+…+44=44(441)2⨯+=990; 故答案为:990.【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.三、解答题16. 先化简下列各式,再求值。

最新人教版七年级上册数学第二章整式的加减同步强化训练(含答案)

最新人教版七年级上册数学第二章整式的加减同步强化训练(含答案)

第二章整式的加减第23课时2.1.1列代数式用字母表示数应注意:①在含有字母的式子中如果出现乘号,通常将乘号写作“·”或省略不写,例如100×t 可以写成__100t__.②当数字与字母相乘时,数字在前,字母在后,例如0.5×t或0.5t.③数字和字母相除时,或字母和字母相除时,可以写成分数形式,如x÷3应写成__x3__.④1乘字母时,1可以省略不写,如1×a可写成__a__;-1乘字母时,只要在那个字母前加上“-”号,如-1×a 可写成__-a__.⑤用含有字母的式子表示某种量时,若结果是加、减关系,有单位的必须把式子用括号括起来后再写单位名称,如(x+3)千米.(1)(2020·长春中考)我市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费__(30m +15n)__元.(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量是__mn件__.(1)某钢铁厂每天生产钢铁m吨,现在每天比原来增加20%,现在每天钢铁的产量是__1.2m__吨.(2)用式子表示数a 的相反数是__-a__.甲、乙两人的年龄和等于甲、乙两人年龄差的3倍,设甲为x 岁,乙为 y 岁,则他们的年龄和用年龄差表示为( C ) A .(x +y )岁 B .(x -y )岁 C .3(x -y )岁 D .3(x +y )岁用含字母的式子表示下面各题的数量关系:①一个数加上m 后得3,这个数是3-m ;②一个数减去x 后得15,这个数是15-x ;③一个数乘x 得36,这个数是36÷x ;④一个数除以5得k ,这个数是5k ,其中正确的有( C )A .1个B .2个C .3个D .4个下列式子符合代数式书写格式的是( B ) A .215 xy B .12 a C .2÷mD .mn ·7(2021·唐山期中)下列各式:ab ·2,m ÷2n ,53 xy ,113 a ,a -b4 其中符合代数式书写规范的有__2__个.1.式子x -y2 的意义为( B ) A .x 与y 的一半的差 B .x 与y 的差的一半C .x 减去y 除以2的差D .x 与y 的12 的差2.“比t 的13 大4的数”用式子表示是( B )A .t ⎝ ⎛⎭⎪⎫13+4 B .13 t +4 C .53 tD .t 13 +43.某商店举办促销活动,促销的方法是将原价为x 元的衣服以⎝ ⎛⎭⎪⎫45x -10 元出售,则下列说法中,能正确表达该商店促销方法的是( B ) A .原价减去10元后再打8折 B .原价打8折后再减去10元 C .原价减去10元后再打2折 D .原价打2折后再减去10元4.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?( A )A .10-xB .10-yC .10-x +yD .10-x -y5.用含字母的式子表示下面各题的数量关系. (1)a 与4的和的7倍__7(a +4)__;(2)比m 的8倍少n 的一半的数__8m -12 n __; (3)比x 的5倍少8的数__5x -8__;(4)一台电视机原价 t 元,现按原价的8.5折出售,这台电视机现在的售价是__0.85t __元;(5)一个两位数,十位数字是 a ,个位数字是b ,则这个两位数是__10a +b __; (6)电影院里座位的总排数是m ,若第一排的座位数是a ,并且后一排总比前一排的座位数多1个,则电影院里最后一排有__(a +m -1)__个座位.6.如图为园子一角,正方形边长为x ,里面有两个半圆形花池,阴影部分是草坪,则草坪的面积是__x 2-14 πx 2__.1.某企业今年2月份产值为a 万元,3月份比2月份增加了15%,4月份比3月份减少了5%,则4月份的产值为( C ) A .(a +15%)(a -15%)万元 B .a (1+85%)(1-95%)万元 C .a (1+15%)(1-5%)万元 D .a (1+15%-5%)万元2.(2020·聊城中考改编)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图○n 表示,那么图○50 中的白色小正方形地砖的块数是__355__.3.(2020·抚宁期中)如图,是小明用火柴搭的1条、2条、3条“金鱼”……,分别用去火柴棒8根、14根、20根、…,则搭n条“金鱼”需要火柴棒__(6n+2)__根(含n的代数式表示).第24课时 2.1.2 单 项 式1.表示__数或字母__的积组成的式子叫做单项式.单独的一个__数__或一个__字母__也是单项式.注意:数与字母之间是乘积关系.2.单项式的系数是指单项式中的__数字因数__,如果一个单项式只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为-1.3.一个单项式中,所有字母的__指数的和__叫做这个单项式的次数.在式子1x ,2x +5y ,0.9,-2a ,-3x 2y ,x +13 中,单项式是__0.9,-2a ,-3x 2y__.下列各代数式:(1)x +12 ;(2)abc ;(3)b 2;(4)-5ab 2;(5)y +x ; (6)-xy 2;(7)-5,是单项式的有(填序号):__(2)(3)(4)(6)(7)__.(2020·日照中考)单项式-3ab 的系数是( B ) A .3 B .-3 C .3a D .-3a说出单项式13 a 2h ,2πr ,abc ,-m 的系数与次数. 【解析】单项式13 a 2h2πr abc -m系数 13 2π 1 -1 次数3131写出所有系数是-12 ,且都只含字母x ,y 的五次单项式. 【解析】-12 xy 4,-12 x 2y 3,-12 x 3y 2,-12 x 4y .下面各题的判断是否正确? ①-7xy 2的系数是7;( × ) ②-x 2y 3与x 3没有系数;( × ) ③-ab 3c 2的次数是5;( × ) ④-a 3的系数是-1;( √ ) ⑤-32x 2y 3的次数是7;( × ) ⑥13 πr 2h 2的系数是13 .( × )1.下列各式中,为四次单项式的是( C ) A .3 B .-2πxy C .xyz 2 D .x 3+1 2.(2021·酒泉期末)下列说法中错误的是( C ) A .-23 x 2y 的系数是-23 B .0是单项式 C .23 xy 的次数是1D .-x 是一次单项式3.下列各式:-n ,a +b ,-12 ,x -1,3ab ,1x ,其中单项式有__3__个.4.(1)系数为-3,只含有字母x ,y 的四次单项式有__3__个,它们是__-3xy 3,-3x 2y 2,-3x 3y __.(2)(2021·北京期末)一个单项式满足下列两个条件:①含有两个字母;②次数是3.请写出一个同时满足上述两个条件的单项式__-2ab 2(答案不唯一)__. 5.填表6.用单项式填空,并指出它们的系数和次数:(1)圆的半径为r ,则它的面积为__πr 2__,它的系数是__π__,次数是__2__; (2)每包书有12册,n 包书有12n 册,它的系数是__12__,次数是__1__; (3)a 的相反数是__-a __,它的系数是__-1__,次数是__1__;(4)底边长为a ,高为h 的三角形的面积为12 ah ,它的系数是__12 __,次数是__2__; (5)一台电视机原价a 元,现按原价的9折出售,这台电视机现在的售价为0.9a 元,它的系数是__0.9__,次数是__1__;(6)一个长方形的长是0.5,宽是a ,这个长方形的面积是0.5a ,它的系数是__0.5__,次数是__1__.7.观察下面的三行单项式: x 、2x 2、4x 3、8x 4、16x 5、32x 6……① -2x 、4x 2、-8x 3、16x 4、-32x 5、64x 6……②2x 2、-3x 3、5x 4、-9x 5、17x 6、-33x 7……③(1)根据你发现的规律,第①行第8个单项式为__128x 8__;(2)第②行第8个单项式为__256x 8__,第③行第8个单项式为__-129x 9__. 8.(1)写出系数是-1,含有字母a ,b 的所有四次单项式; (2)写出系数是-12 ,含有字母a ,b ,c 的所有五次单项式. 【解析】(1)-a 3b ,-a 2b 2,-ab 3.(2)-12 ab 2c 2,-12 ab 3c ,-12 a 2bc 2,-12 a 2b 2c ,-12 abc 3,-12 a 3bc .9.刘明家前年收入a 元,去年比前年收入增加x %,求去年收入多少元?今年又比去年收入增加x %,求今年收入多少元? 【解析】去年收入为a +a ×x %=a (1+x %)(元).今年收入为a (1+x %)+ a (1+x %)×x %=a (1+x %)(1+x %)=a ⎝⎛⎭⎫1+x % 2(元).若3x m y n 是含有字母x 和y 的5次单项式,求m n 的最大值.【解析】根据题意得,m =1,n =4 或m =2,n =3 或 m =3,n =2 或m =4,n =1,m n 的最大值是9.第25课时 2.1.3 多 项 式1.__几个单项式的和__叫做多项式.在多项式中,每个单项式叫做多项式的__项__,其中不含字母的项叫做__常数项__.一个多项式有几项就叫做几项式. 2.多项式里,__次数最高项__的次数,叫做这个多项式的次数. 3.__单项式__与__多项式__统称整式.下列各式:2+x 2,2x ,xy 2,3x 2+2x -1,abc ,1-2y ,x -y 3 中,多项式有__4__个.(2021·上海期末)下列说法正确的是( D ) A .a 2+2a +32是三次三项式 B .xy 24 的系数是4 C .x -32 的常数项是-3 D .0是单项式多项式x 2-2xy 3-12 y -1是( C ) A .三次四项式 B .三次三项式 C .四次四项式 D .四次三项式 ,如果多项式(a -2)x 5-23 x b+x -9是关于x 的四次三项式,那么ab 的值为__8__.多项式2-xy 2-4x 3y 的各项为__2,-xy 2,-4x 3y __,次数为__4__. a 2b -ab +1是__三__次__三__项式,写出所有的项:__a 2b ,-ab ,1__,其中三次项的系数是__1__,二次项的系数为__-1__,常数项为__1__.代数式3x 2y -4x 3y 2-5xy 3-1按x 的升幂排列,正确的是( D ) A .-4x 3y 2+3x 2y -5xy 3-1 B .-5xy 3+3x 2y -4x 3y 2-1 C .-1+3x 2y -4x 3y 2-5xy 3 D .-1-5xy 3+3x 2y -4x 3y 2(2021·上海期末)将多项式2-3xy 2+5x 3y -13 x 2y 3按字母y 降幂排列是__-13x 2y 3-3xy 2+5x 3y +2__.1.组成多项式2x 2-x -3的单项式是下列几组中的( B ) A. 2x 2,x ,3 B. 2x 2,-x ,-3 C. 2x 2,x ,-3 D. 2x 2,-x ,32.(2020·绵阳中考)若多项式xy |m -n |+(n -2)x 2y 2+1是关于x ,y 的三次多项式,则mn =__0或8__.3.若多项式(k +1)x 2-3x +1中不含 x 2项,则k 的值为__-1__.4.(2021·辽阳期末)多项式5a m b 4-2a 2b +3与单项式6a 4b 3c 的次数相同,则m 的值为__4__.5.已知多项式(m -1)x 4-x n +2x -5是三次三项式,则(m +1)n =__8__. 6.多项式2x 3-x 2y 2-3xy +x -1是__四__次__五__项式.7.将多项式5x 2y +y 3-3xy 2-x 3按x 的升幂排列为__y 3-3xy 2+5x 2y -x 3__. 8.写出一个只含有字母x ,y 的二次三项式__x 2+xy +y 2(答案不唯一)__. 9.如图,用式子表示圆环的面积.当R =15 cm ,r =10 cm 时,求圆环的面积(结果保留π).【解析】圆环面积为πR 2-πr 2, 当R =15 cm ,r =10 cm , 圆环的面积=πR 2-πr 2=125π cm 2.10.(2021·北京质检)已知多项式-3x 2y m +1+x 3y -3x 4-1是五次四项式,且单项式3x 2n y 3-m 与多项式的次数相同. (1)求m ,n 的值;(2)把这个多项式按x 的降幂排列.【解析】(1)因为多项式-3x 2y m +1+x 3y -3x 4-1是五次四项式,且单项式3x 2n y 3-m 与多项式的次数相同,所以m +1=3,2n +3-m =5,解得:m =2,n =2;(2)按x 的降幂排列为-3x 4+x 3y -3x 2y 3-1.11.(2021·长春期末)已知下面5个式子:①x 2-x +1,②m 2n +mn -1,③x 4+1x+2,④5-x 2,⑤-x 2. 回答下列问题:(1)上面5个式子中有________个多项式,次数最高的多项式为________(填序号),整式有________个.(2)选择2个二次多项式,并进行加法运算.【解析】(1)上面5个式子中有3个多项式,分别是:①②④, 次数最高的多项式为②, 整式有4个,分别是①②④⑤. 答案:3 ② 4(2)选择2个二次多项式:①+④=-x +6.(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的多项式. (1)当m ,n 满足什么条件时,该多项式是关于x 的二次多项式; (2)当m ,n 满足什么条件时,该多项式是关于x 的三次二项式.【解析】(1)因为(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的二次多项式, 所以3m -4=0,2n -3≠0,解得m =43 ,n ≠32 .(2)因为(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的三次二项式, 所以3m -4≠0,2n -3=0,2m +5n =0, 解得n =1.5,m =-3.75.第26课时2.2 整式的加减(1)【合并同类项】1.所含字母相同,并且相同字母的__指数__也相同的项叫同类项.所有的常数项都是同类项.2.把多项式中的同类项合并成一项,叫做__合并同类项__.3.合并同类项后,所得项的系数是合并前各同类项的系数的__和__,且字母连同它的指数__不变__.下列各组中属于同类项的是( D ) A .2a 与2a 2 B .x 2y 3z 与2x 2y 3 C .2x 2与2y 2 D .-52 yx 2与5x 2y下列各组式子中,是同类项的是( B ) A .3x 2y 与-3xy 2 B .3xy 与-2yx C .2x 与2x 3 D .5xy 与5yz(2020·湘潭中考)已知2x n +1y 3与13 x 4y 3是同类项,则n 的值是( B ) A .2 B .3 C .4 D .5(1)若5a 2x -3b 与-3a 5b 4y +5是同类项,则x =__4__,y =__-1__. (2)写出-12 xy 3的一个同类项:xy 3(答案不唯一).下列各式合并同类项结果正确的是( B ) A .3x 3-x 3=3 B .3a 2-a 2=2a 2 C .3a 2-a 2=a D .3x 2+5x 3=8x 5化简:(1)3x 2+x 2-3x 2=__x 2__; (2)2a 2b -3a 2b =__-a 2b __.已知-3x m y 与-5y n x 3是同类项,则m =__3__,n =__1__.1.下面是小明同学做的四道题:①3m +2m =5m ;②5x -4x =1;③-p 2-2p 2=-3p 2;④3+x =3x . 他做正确了( B )A .1道B .2道C .3道D .4道2.(2020·黔西南州中考)若7a x b 2与-a 3b y 的和为单项式,则y x =__8__.1.在下列各组式子中,不是同类项的一组是( B ) A .2,-5B .-0.5xy 2, 3x 2yC .-3t ,200πtD .ab 2,-b 2 a2.把2x 2-5x +x 2+4x +3x 2合并同类项后,所得的多项式是( A ) A .二次二项式 B .二次三项式 C .一次二项式 D. 三次二项式3.把(x +y )看成整体,将(x +y )+2(x +y )-4(x +y )合并同类项得( B ) A. x +yB. -(x +y )C. -x +yD. x -y4.(2020·天津中考)计算x +7x -5x 的结果等于__3x __.5.(2020·广东中考)如果单项式3x m y 与-5x 3y n 是同类项,那么m +n =__4__. 6.求k 为多少时,代数式2x 2-kxy -3y 2+13 xy -8中不含xy 项.【解析】k =137.先化简,再求值:7x 2-3x 2-2x -2x 2+5+6x ,其中x =-2. 【解析】原式=2x 2+4x +5, 当x =-2时,原式=8-8+5=5.8.已知-2a m bc 2与4a 3b n c 2是同类项,求多项式3m 2n -2mn 2-m 2n +mn 2的值. 【解析】由同类项定义得m =3,n =1, 3m 2n -2mn 2-m 2n +mn 2=⎝⎛⎭⎫3-1 m 2n +⎝⎛⎭⎫-2+1 mn 2=2m 2n -mn 2,当m =3,n =1时,原式=2×32×1-3×12 =18-3=15.对于多项式2x2+7xy+3y2+x2-kxy+5y2,老师提出了两个问题,第一个问题是:当k为何值时,多项式中不含xy项,第二个问题是:在第一问的前提下,如果x=2,y=-1,多项式的值是多少?(1)王明同学很快就完成了第一个问题,也请你把你的解答写在下面吧.(2)在做第二个问题时,马小虎同学把y=-1错看成y=1,可是他得到的最后结果却是正确的,你知道这是为什么吗?【解析】(1)因为2x2+7xy+3y2+x2-kxy+5y2=(2x2+x2)+(3y2+5y2)+(7xy-kxy)=3x2+8y2+(7-k)xy.所以只要7-k=0,这个多项式就不含xy项.即k=7时,多项式中不含xy项.(2)因为在第一问的前提下原多项式为3x2+8y2.当x=2,y=-1时,原式=3x2+8y2=3×22+8×(-1)2=12+8=20.当x=2,y=1时,原式=3x2+8y2=3×22+8×12=12+8=20.所以马小虎的最后结果是正确的.第27课时2.2整式的加减(2)【去括号】如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号__相同__;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号__相反__.下列去括号正确的是(B)A.-(a+b-c)=-a+b-cB.-2(a+b-3c)=-2a-2b+6cC.-(-a-b-c)=-a+b+cD.-(a-b-c)=-a+b-c(2019·黄石中考)化简13(9x-3)-2(x+1)的结果是(D)A.2x-2 B.x+1 C.5x+3 D.x-3化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b). 【解析】(1)原式=13a+b;(2)原式=5a+3b-3a2.化简:(1)m -(5m -3n )+2(n -m ); (2)3a 2-[2a 2-(2ab -a 2)+4ab ].【解析】(1)原式=m -5m +3n +2n -2m =-6m +5n ; (2)原式=3a 2-[2a 2-2ab +a 2+4ab ] =3a 2-2a 2+2ab -a 2-4ab =-2ab .(1)a +b -c =a +(__b -c __); (2)a -b -c =a -(__b +c __); (3)-(x +y )=(__-x -y __).(1)-a +b +c =-(__a -b __)+c; (2)-a +b +c -d =-(__a -b __)+c -d ; (3)-(x -y )=(__-x +y __).先化简,再求值:2(3x 2-y )-(x 2+y ),其中x =-1,y =2. 【解析】原式=5x 2-3y ,当x =-1,y =2时,原式=5-6=-1.2a +[a 2-(3a 2+2a -1)],其中a =12 .【解析】原式=2a +[a 2-3a 2-2a +1]=-2a 2+1, 当a =12 时,原式=-12 +1=12 .1.下列计算中,正确的是(C)A.-2(a+b)=-2a+bB.-2(a+b)=-2a-b2C.-2(a+b)=-2a-2bD.-2(a+b)=-2a+2b2.把a-2(b-c)去括号正确的是(D)A.a-2b-c B.a-2b-2cC.a+2b-2c D.a-2b+2c3.不改变多项式3b3-2ab2+4a2b-a3的值,把后三项放在前面是“-”号的括号中,以下正确的是(D)A.3b3-(2ab2+4a2b-a3)B.3b3-(2ab2+4a2b+a3)C.3b3-(-2ab2+4a2b-a3)D.3b3-(2ab2-4a2b+a3)4.化简x-y-(x-y) 的最后结果是(B)A.2x B.0 C.-2y D.2x-2y5.-a+b-c的相反数是(B)A.a-b-c B.a-b+cC.a+b-c D.a+b+c6.化简下列各式:(1)3(2a+b);(2) -2(m+2n);(3)3(2xy-y)-2xy;(4)(-3a+5b)-(-5a+7b);(5)2(6a-10b)+(-4a+5b);(6)(3x+5y)-3(2x-3y).【解析】(1)原式=6a+3b;(2)原式=-2m-4n;(3)原式=4xy-3y;(4)原式=2a-2b;(5)原式=8a-15b;(6)原式=-3x+14y.7.当k为何值时,多项式2(2x2-3xy-2y2)-(2x2+2kxy+y2)中不含xy项?【解析】原式=4x2-6xy-4y2-2x2-2kxy-y2=2x2-5y2+(-6-2k)xy,因为不含xy项,所以-6-2k=0,k=-3.阅读下面材料:计算:1+2+3+4+…+99+100如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5 050 根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)【解析】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m +…100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m) =101a+101m×50=101a+5 050m.第28课时2.2整式的加减(3)【求代数式的值】1.整式加减的实质是合并同类项,若有括号,就要先用去括号法则去掉括号,然后再合并同类项.2.应用整式加减解决实际问题,就是把实际问题中的数量关系数学化,把题目中的量用整式表示出来,然后进行整式的加减运算.x-y的相反数是__y-x__,x+y的相反数是__-x-y__.如果a-b=12,那么-3(b-a)的值是(C)A.-35B.23C.32D.16一个整式减去a2-2b2等于a2+2b2,则这个整式是(C)A.2b2B.-2b2C.2a2D.-2a2一个多项式与x2-2x+1的和是3x-2,则这个多项式为(B)A.x2-5x+3 B.-x2+5x-3C.-x2+x-1 D.x2-5x-13某位同学做一道题:已知两个多项式A,B,求A-B的值,他误将A-B看成A+B,求得的结果是3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求A-B的正确答案.【解析】(1)由已知,A+B=3x2-3x+5,则A=3x2-3x+5-(x2-x-1)=3x2-3x+5-x2+x+1=2x2-2x+6;(2)A-B=2x2-2x+6-(x2-x-1)=2x2-2x+6-x2+x+1=x2-x+7.一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支,买这些笔记本和圆珠笔,小红和小明共花费多少钱?【解析】根据题意列得:(3x+2y)+(4x+3y)=7x+5y,则小红与小明一共花费(7x+5y)元.1.(2020·无锡中考)若x+y=2,z-y=-3,则x+z的值等于(C)A.5 B.1 C.-1 D.-52.化简下列各式:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);(3)8m2-[4m2-2m-(2m2-5m)];(4) (8xy-x2+y2)-3(-x2+y2+5xy).【解析】(1)原式=7x+y;(2)原式=4a-2b;(3)原式=6m 2-3m ;(4)原式=8xy -x 2+y 2+3x 2-3y 2-15xy =2x 2-2y 2-7xy . 3.先化简,再求值.3a 2+(4a 2-2a -1)-2(3a 2-a +1),其中a =-12 . 【解析】原式=a 2-3 当a =-12 时,原式=-114 .4.(2021·武汉期末)先化简,再求值: 3a 2b -2ab 2-2⎝ ⎛⎭⎪⎫ab -32a 2b +ab +3ab 2,其中a =-3,b =-2.【解析】原式=3a 2b -2ab 2-2ab +3a 2b +ab +3ab 2 =6a 2b +ab 2-ab ;当a =-3,b =-2时,原式=6×9×(-2)+(-3)×4-6=-108-12-6=-126. 5.若A =9a 3b 2-5b 3-1,B =-7a 3b 2+8b 3+2. 求(A +2B )-(B -A )的值. 【解析】(A +2B )-(B -A ) =A +2B -B +A =2A +B . 因为A =9a 3b 2-5b 3-1, B =-7a 3b 2+8b 3+2,所以原式=2(9a 3b 2-5b 3-1)+(-7a 3b 2+8b 3+2) =18a 3b 2-10b 3-2-7a 3b 2+8b 3+2 =11a 3b 2-2b 3.6.(2021·泉州期末)化简求值:(1)化简:(3a2-b2)-3(a2-2b2);(2)先化简,再求值:2(a2b+ab)-3(a2b-1)-2ab-4,其中a=2019,b=12 019. 【解析】(1)原式=3a2-b2-3a2+6b2=5b2;(2)原式=2a2b+2ab-3a2b+3-2ab-4=-a2b-1,当a=2019,b=12 019时,原式=-20192×12 019-1=-2 019-1=-2 020.7.做大小两个长方体纸盒,尺寸如下(单位:厘米).(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?长宽高小纸盒 a b c大纸盒 1.5a 2b 2c【解析】(1)2(1.5a×2b+2b×2c+1.5a×2c)+2(ab+bc+ac)=6ab+8bc+6ac+2ab +2bc+2ac=8ab+10bc+8ac(平方厘米).答:做这两个纸盒共用料(8ab+10bc+8ac)平方厘米.(2)2 (1.5a×2b+2b×2c+1.5a×2c)-2(ab+bc+ac)=6ab+8bc+6ac-(2ab+2bc+2ac)=4ab+6bc+4ac(平方厘米).答:做大纸盒比做小纸盒多用料(4ab+6bc+4ac)平方厘米.已知a+b=6,ab=3,求(5ab-4a-7b)-(6a+3ab)-(4ab+3b)的值.【解析】原式=5ab-4a-7b-6a-3ab-4ab-3b=-2ab-10a-10b=-2ab-10(a+b).当a+b=6,ab=3时,原式=-6-60=-66.第29课时2.2 整式的加减(4)【综合练习】1.计算:(1)(2x -2)-(3x +5); (2)-(2a 2-2a)+3(3a -a 2); (3)2(4x 2y -5xy 2)-3(x 2y -4xy 2); (4)3(2x 2-2x -1)-2(2x 2-x -7); (5)2a -[-3b -3(3a -b)];(6)⎝ ⎛⎭⎪⎫13a 3-2a -6 -12 ⎝ ⎛⎭⎪⎫12a 3-a -7 . 【解析】(1)原式=-x -7; (2)原式=-5a 2+11a ; (3)原式=5x 2y +2xy 2; (4)原式=2x 2-4x +11; (5)原式=11a ;(6)原式=112 a 3-32 a -52 .2.(2021·西安期末)先化简,再求值:2(x 2y +xy 2)-2(x 2y -x)-2xy 2-2y ,其中x =2,y =-2. 【解析】原式=2x 2y +2xy 2-2x 2y +2x -2xy 2-2y =2x -2y ,当x =2,y =-2时,原式=2×2-2×(-2)=4+4=8.3.三个队植树,第一队植树a棵,第二队植的树比第一队的2倍还多8棵,第三队植的树比第二队的一半少6棵,问三队共植树多少棵?并求当a=100时,三个队共植树的棵数.【解析】因为第一队植树a棵,第二队植的树比第一队的2倍还多8棵,所以第二队植的树的棵数为2a+8,第三队植的树的棵数为(2a+8)÷2-6=a-2.所以三个队共植树的棵数=a+(2a+8)+(a-2)=4a+6,当a=100时,4a+6=406(棵).答:三个队共植树(4a+6)棵,当a=100时,三个队共植树406棵.4.小船在静水中的速度是50千米/时,水流速度是a千米/时,顺水航行4小时的行程与逆水航行3小时的行程相差多少千米?【解析】顺水速度为(50+a)千米/时,逆水速度为(50-a)千米/时,故顺水航行4小时比逆水航行3小时多:4(50+a)-3(50-a)=(7a+50)千米.5.已知(2x2+ax-y+b)-(2bx2-3x+5y-1)的值与字母x的取值无关,求3(a2-ab-b2)-(4b2+ab+b2)的值.【解析】原式=2x2+ax-y+b-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+1+b,因为与字母x的取值无关,所以b=1,a=-3,3(a2-ab-b2)-(4b2+ab+b2)=3a2-3ab-3b2-4b2-ab-b2=3a2-4ab-8b2,将b=1,a=-3代入,得3a2-4ab-8b2=3×(-3)2-4×(-3)×1-8×12=31.6.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12 还多1岁,求这三名同学的年龄之和是多少. 【解析】因为小红的年龄比小明的年龄的2倍少4岁, 所以小红的年龄为(2m -4)岁.又因为小华的年龄比小红的年龄的12 还多1岁, 所以小华的年龄为12 (2m -4)+1(岁), 则这三名同学的年龄的和为m +(2m -4)+⎣⎢⎡⎦⎥⎤12(2m -4)+1 =m +2m -4+[m -2+1]=4m -5. 答:这三名同学的年龄的和是(4m -5)岁. 7.已知□,★,△分别代表1~9中的三个自然数.(1)若□+□+□=15,★+★+★=12,△+△+△=18,那么□+★+△=________;(2)如果用★△表示一个两位数,将它的个位和十位上的数字交换后得到一个新的两位数△★,若★△与△★的和恰好为某自然数的平方,则该自然数是________;和是________;(3)①如果在一个两位数★△前插入一个数□后得到一个三位数□★△,设★△代表的两位数为x ,□代表的数为y ,则三位数□★△用含x ,y 的式子可表示为________;②设a 表示一个两位数,b 表示一个三位数,把a 放在b 的左边组成一个五位数m ,再把b 放在a 的左边,组成一个新五位数n.试探索:m -n 能否被9整除?并说明你的理由.【解析】(1)若□+□+□=15,★+★+★=12,△+△+△=18,则□=5,★=4,△=6,则□+★+△=15.答案:15(2)根据题意,得★△+△★=(★+△)×10+(△+★)=(★+△)×11由于★△与△★之和恰为某自然数的平方,故★+△=11,★△+△★=121.答案:11121(3)①根据题意,得三位数□★△用含x,y的式子可表示为100y+x.答案:100y+x②m-n能被9整除.理由如下:根据题意,得m=1 000a+b,n=100b+a,所以m-n=9(111a-11b)所以m-n能被9整除.第30课时单元复习课——整式的加减①__次数__ ②__同类项__ ③__括号__ ④__合并__用字母表示数1.(2018·常州中考)已知苹果每千克m 元,则2千克苹果共需要的费用是( D ) A .(m -2)元 B .(m +2)元 C .m2 元D .2m 元2.(2018·大庆中考)某商品打七折后价格为a 元,则原价为( B ) A .a 元B .107 a 元 C .30%a 元D .710 a 元【特别提醒】用字母表示数的三个“注意事项”1.注意把握问题中的关键词,如,多、少、倍、分、折等. 2.注意问题中的字母所表示的含义.3.在同一个问题中,相同字母所表示的数是同一个数,不同的数应该用不同的字母来表示.求代数式的值1.(2017·海南中考)已知a =-2,则代数式a +1的值为( C ) A .-3 B .-2 C .-1 D .12.(2017·重庆中考A 卷)若x =-13 ,y =4,则代数式3x +y -3的值为( B ) A .-6 B .0 C .2D .63.(2018·徐州中考)若2m +n =4,则代数式6-2m -n 的值为__2__. 4.(2018·岳阳中考)已知a 2+2a =1,则3(a 2+2a )+2的值为__5__. 【特别提醒】代数式求值的三个“注意事项” 1.求代数式的值时,一定不要改变原来的运算. 2.在代入数值之前,必须把代数式进行化简. 3.在求代数式的值时,经常用到整体思想.整式的有关概念1.(2018·淄博中考)若单项式a m -1b 2与12 a 2b n 的和仍是单项式,则n m 的值 是( C )A .3B .6C .8D .92.(2017·西宁中考)13 x 2y 是__3__次单项式.3.(2017·玉林崇左中考)若4a 2b 2n +1与a m b 3是同类项,则m +n =__3__. 【特别提醒】理解同类项的两“相同”和两“无关”两相同:一是所含字母相同,二是相同字母的指数也相同. 两无关:与字母的顺序无关,与系数无关.整式的加减1.(2017·无锡中考)若a -b =2,b -c =-3,则a -c 等于( B ) A .1 B .-1 C .5 D .-52.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块长方形,则这块长方形较长的边长为( A )A .3a +2bB .3a +4bC .6a +2bD .6a +4b3.代数式2a 2+b -2c 与-4b +c -a 2的和为a 2-3b -c . 4.下面是徐颖化简整式的过程,仔细阅读后解答所提出的问题. 解:x (x +2y )-(x +1)2+2x=x2+2xy-x2+2x+1+2x第一步=2xy+4x+1第二步(1)徐颖的化简过程从第________步开始出现错误;(2)对此整式进行化简.【解析】(1)括号前面是负号,去掉括号应变号,故第一步出错.答案:一(2)x(x+2y)-(x+1)2+2x=x2+2xy-x2-2x-1+2x=2xy-1.【特别提醒】整式的加减的两个注意事项1.准确熟练应用去括号法则和合并同类项法则.2.如果括号外面有数字,在去括号时,可以分为两个步骤:第一,利用乘法分配律把数字与括号内各项相乘,第二,用去括号法则去掉括号.规律探索1.(2018·烟台中考)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第○n个图形中有120朵玫瑰花,则n的值为(C)A.28 B.29 C.30 D.312.如图表示的是用火柴棒搭成的图形,第一个图形用了5根火柴,第二个图形用了8根火柴,…,则用281根火柴棒搭成了第________个图形.(C)A.93 B.94C.80 D.813.(2017·娄底中考)刘莎同学用火柴棒依图的规律摆成六边形图案,用10 086根火柴棒摆出的图案应该是第__2__017__个.【特别提醒】解决探索规律题的一般步骤1.利用已知条件猜测隐含的规律.2.对猜测的规律进行验证.3.依次进行猜测——验证……猜测——验证,直到验证成功为止.。

七年级数学上《整式的加减》全章复习巩固提高训练练习试卷含答案解析

七年级数学上《整式的加减》全章复习巩固提高训练练习试卷含答案解析

七年级数学上《整式的加减》全章复习巩固提高训练练习试卷含答案解析一、选择题1.A 、B 、C 、D 均为单项式,则A+B+C+D 为( ). A .单项式 B .多项式 C .单项式或多项式 D .以上都不对 2.下列计算正确的个数 ( )① ab b a 523=+;② 32522=-y y ; ③ y x x y y x 22254=-;④ 532523x x x =+; ⑤ xy xy xy =+-33 A .2 B .1 C .4 D .03.现规定一种运算:a * b = ab + a - b ,其中a ,b 为有理数,则3 * 5的值为( ). A .11 B .12 C .13 D .14 4.化简1(1)(1)nn a a +-+-(n 为正整数)的结果为( ).A .0B .-2aC .2aD .2a 或-2a 5.已知a-b =-3,c+d =2,则(b+c)-(a-d)为( ). A .-1 B .-5 C .5 D .16. 有理数a ,b ,c 在数轴上的位置如右图所示,则a c c b b a ++--+= ( )A .-2bB .0C .2cD .2c -2b7.当x =-3时,多项式535ax bx cx ++-的值是7,那么当x =3时,它的值是( ). A .-3 B .-7 C .7 D .-17 8.如果32(1)n m a a--++是关于a 的二次三项式,那么m ,n 应满足的条件是( ).A .m =1,n =5B .m ≠1,n >3C .m ≠-1,n 为大于3的整数D .m ≠-1,n =5 二、填空题9.nmx y -是关于x ,y 的一个单项式,且系数是3,次数是4,则m =________,n =________. 10. (1)-=+-222x y xy x (___________);(2)2a -3(b -c )=___________.(3)2561x x -+-(________)=7x+8. 11.当b =________时,式子2a+ab-5的值与a 无关. 12.若45a b c -+=,则30()b a c --=________. 13.某一铁路桥长100米,现有一列长度为l 米的火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟时间,则火车的速度为________.14.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.三、解答题15.先化简,再求值:4x 3- [-x 2-2( x 3-12x 2+1)],其中x= -13.16.已知:a 为有理数,3210a a a +++=,求23420121...a a a a a++++++的值.17. 如图所示,用三种大小不同的六个正方形 和一个缺角的正方形拼成长方形ABCD, 其中,GH=2cm, GK=2cm, 设BF=x cm, (1)用含x 的代数式表示CM= cm, DM= cm.(2)若x=2cm ,求长方形ABCD 的面积.【答案与解析】 一、选择题1. 【答案】C【解析】若A 、B 、C 、D 均为同类项,则A 、B 、C 、D 的和为单项式,否则为多项式,故选…C .2.【答案】D 3. 【答案】C【解析】按规定的运算得:3*5=3×5+3-5=13. 4. 【答案】A【解析】分析两种情况,当n 为偶数时,(1)1n-=,1(1)1n +-=-,当n 为奇数时,(1)1n -=-,1(1)1n +-=,无论哪种情况,结果都是0.5.【答案】C【解析】(b+c)-(a-d)=b+c-a+d =-a+b+c+d =-(a-b)+(c+d) 当a-b =-3,c+d =2时,原式=-(-3)+2=5,所以选C . 6.【答案】B 7. 【答案】D【解析】由已知条件得:53(3)(3)(3)57a b c -+-+--=,通过适应变形得:5333312a b c ++=-.当x =3时,原式533335a b c =++-,再把变形后的式子的值整体代入即可. 8.【答案】D【解析】由题意得:n-3=2且m+1≠0,得n =5且m ≠-1. 二、填空题9.【答案】-3 , 3【解析】由系数为3,得-m =3,则m =-3.由次数为4,得x ,y 的指数之和为4,即n+1=4, 则n =3.10. 【答案】22;233;5137xy y a b c x x --+-- 11.【答案】-2【解析】2a+ab-5=(2+b)a-5.因为式子的值与a 无关,故2+b =0,所以b =-2. 12.【答案】-24【解析】因为a b c -+与b a c --互为相反数,又因为45a b c -+=,所以45b a c --=-,由此可得430()30245b a c ⎛⎫--=⨯-=- ⎪⎝⎭.13.【答案】101米/分钟【解析】火车从开始上桥到完全过桥所通过的路程为(100+l)米,时间为1分钟,由=路程速度时间, 可得结果.14.【答案】127, 1332++n n .【解析】∵第1个图形需要7=1+6×1枚棋子, 第2个比第1个多12个,即1+6×(1+2)枚, 第3个比第2个多18个,即1+6×(1+2+3)枚, 第4个比第三个多24个,即1+6×(1+2+3+4)=61枚.……, ∴第n 个比第(n-1)个多6n 个,即1+6×(1+2+3+4+…+n )=3n 2+3n+1枚. 三、解答题 15. 【解析】解:263+=x 原式,当97131=-=时,原式x . 16. 【解析】 解:17. 【解析】解:(1)2,x + 22x +(或3x ).(2)长方形的长为:2214x x x x x ++++++=cm, 宽为:4242210x +=⨯+=cm. 所以长方形的面积为:21401014cm =⨯.2342012235232009231...1(1)(1)...(1)101a a a a a a a a a a a a a a a a a ++++++=+++++++++++++=+=。

2021-2022学年七年级数学上学期第2章 整式的加减单元提升卷(人教版)

 2021-2022学年七年级数学上学期第2章 整式的加减单元提升卷(人教版)

第2章 整式的加减单元提升卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。

1.下列各式中,符合代数式书写要求的是( ) A .x 6B .m ÷nC .1abD .32a2.下列各组单项式中,不是同类项的是( ) A .﹣a 2与2a 2B .23与32C .2ab 2与2a 2bD .﹣mn 与2nm3.下列各式中与多项式a ﹣b ﹣c 不相等的是( ) A .a ﹣(b +c )B .a ﹣(b ﹣c )C .(a ﹣b )+(﹣c )D .﹣b ﹣(c ﹣a )4.已知a 2﹣2a =1,则3a 2﹣6a ﹣4的值为( ) A .﹣1B .1C .﹣2D .25.下列说法中,不正确的是( ) A .﹣ab 2c 的系数是﹣1,次数是4B .xy 3−1是整式C .6x 2﹣3x +1的项是6x 2、﹣3x ,1D .2πR +πR 2是三次二项式6.长方形的一边为2a ﹣3b ,另一边比它小a ﹣b ,则此长方形的另一边为( ) A .3a ﹣4bB .3a ﹣2bC .a ﹣2bD .a ﹣4b7.若P 和Q 都是关于x 的五次多项式,则P +Q 是( ) A .关于x 的五次多项式 B .关于x 的十次多项式 C .关于x 的四次多项式D .关于x 的不超过五次的多项式或单项式8.老师布置一道多项式的运算:先化简再求值:(2x 2﹣3x +1)﹣(ax 2+bx ﹣5),其中x =﹣2,一位同学将“x =﹣2”抄成“x =2”,其余运算正确,结果却是对的,则关于a 和b 的值叙述正确的是( ) A .a 一定是2,b 一定是﹣3 B .a 不一定是2,b 一定是﹣3 C .a 一定是2,b 不一定是﹣3D .a 不一定是2,b 不一定是﹣39.已知点A ,B ,C ,D 在数轴上的位置如图所示,且相邻两点之间的距离均为1个单位.若点A 表示数a ,点D 表示数d ,且d =﹣2a ,则与数轴的原点重合的点是( )A.A B.B C.C D.D10.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x(x ≠0)时输出的运算结果为P,输入的数是3x时输出的运算结果为Q,则()A.P:Q=3B.Q:P=3C.(Q﹣1):(P﹣1)=3D.(Q+1):(P+1)=3二、填空题(每小题3分,共15分)11.“比x的2倍小3的数”用式子表示是.12.写出一个次数是2,且字母只有a、b的三项式.13.若多项式x2﹣4kxy+5y2﹣xy+9不含有xy项,则k=.14.若x+y=3,xy=2,则(x+2)+(y﹣2xy)=.15.计算机在进行计算时,总是根据程序进行的,如图是一个计算程序:当输入的数据为﹣1时,输出的结果是.三、解答题(本大题共8个小题,第16、19、20题各10分,其余各题9分,共75分)16.已知|a|=5,|b|=2.(1)若ab<0,求a﹣b的值;(2)若|a+b|=﹣(a+b),求a﹣b的值.17.先化简,再求值:5(a2﹣4ab)﹣2(a2﹣8ab+1),其中a=23,b=−6.18.如图,利用总长为10m的篱笆和一面足够长的墙,围成一个矩形园子,园子的宽为x (m).(1)用关于x的代数式表示园子的面积;(2)当x=2时,求园子的面积.19.观察下列各式:①﹣a+b=﹣(a﹣b);②2﹣3x=﹣(3x﹣2);③5x+30=5(x+6);④﹣x﹣6=﹣(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1﹣b=﹣1,求﹣1+a2+b+b2的值.20.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b是数轴上最小的正整数,单项式−12x2y4的次数为c.(1)a=,b=,c=.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.21.如图所示,现有一张白色卡片甲和两张灰色卡片乙、丙,上面分别写有一个整式,现从这三张卡片中随机抽取,规定抽到灰色卡片,就减去上面的整式,抽到白色卡片,就加上上面的整式.(1)请计算抽到甲、乙两张卡片的结果;(2)若抽到甲、丙两张卡片,请将计算结果分解因式;(3)已知同时抽到甲、乙、丙这三张卡片,若计算结果的值为0,求x的值.22.小林和小明在信息技术课上设计了一个小游戏程序:开始时两人的屏幕上显示的数分别是9和4,如图,每按一次屏幕,小林的屏幕上的数就会加上a2,同时小明的屏幕上的数就会减去2a,且均显示化简后的结果.如表就是按一次后及两次后屏幕显示的结果.开始数按一次后按两次后按三次后按四次后小林99+a29+2a2小明44﹣2a4﹣4a根据以上的信息回答问题:从开始起按4次后,(1)两人屏幕上显示的结果是:小林;小明;(2)判断这两个结果的大小,并说明理由.23.(1)例:代数式(a+b)2表示a、b两数和的平方,仿照上例填空:代数式a2﹣b2表示代数式(a+b)(a﹣b)表示.(2)试计算a、b取不同数值时,a2﹣b2及(a+b)(a﹣b)的值,填入下表:a 、b 的值 当a =5,b =1时 当a =﹣4,b =2时 当a =﹣3,b =﹣6时a 2﹣b 2 (a +b )(a ﹣b )(3)请你再任意给a 、b 各取一个数值,并计算a 2﹣b 2及(a +b )(a ﹣b )的值: 当a = ,b = 时,a 2﹣b 2= ,(a +b )(a ﹣b )= .(4)我的发现: .(5)用你发现的规律计算:78.352﹣21.652.第2章 整式的加减单元提升卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。

(必考题)七年级数学上册第二单元《整式加减》-解答题专项提高练习(培优)

(必考题)七年级数学上册第二单元《整式加减》-解答题专项提高练习(培优)

一、解答题1.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 2.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245. 【分析】 (1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭(2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.3.有这样一道题“求多项式3323323763363101a a b a b a a b a b a -+++--+的值,其中99.01,123.89a b ==-”,有一位同学把99.01a =抄成99.01,123.89a b =-=-抄成123.89b =,结果也正确,为什么?解析:见解析【分析】原式合并同类项得到最简结果为常数1,这个多项式的值与a 、b 的值无关,故a ,b 的值抄错后,答案仍然是1【详解】解:∵3323323763363101a a b a b a a b a b a -+++--+()()()33333227310663311a a a a b a b a b a b =+-+-++-+=;∴这个多项式的值与,a b 的值无关,故,a b 的值抄错后结果也正确.【点睛】此题考查了整式的加减——化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.4.列出下列代数式:(1)a 、b 两数差的平方;(2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积;(4)a 的相反数与b 的平方的和.解析:(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意.5.用代数式表示:(1)a 的5倍与b 的平方的差;(2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍.解析:(1)5a -b 2(2)m 2+n 2(3)x 2+y 2-2xy【分析】(1)a 的5倍表示为5a ,b 的平方表示为b 2,然后把它们相减即可;(2)m 与n 平方的和表示为m 2+n 2;(3)x 、y 两数的平方和表示为x 2+y 2,它们积的2倍表示为2xy ,然后把两者相减即可;【详解】解:(1)a 的5倍与b 的平方的差可表示为:5a -b 2;(2)m 的平方与n 的平方的和可表示为:m 2+n 2;(3)x ,y 两数的平方和减去它们积的2倍可表示为:x 2+y 2-2xy .【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.6.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a ,以15%的速度增长,∴第二年的产量为a (1+15%)=1.15a .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系. 7.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.8.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy x x xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.解析:xy ,1-【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦ =22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+--=xy ; ∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x、y的值,以及掌握整式的混合运算.9.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是.(用含a,b的代数式表示)(2)若a=0.5米,b=2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).解析:(1)12ab平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a,b的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a•b (平方米).故答案为:12ab (平方米).(2)当a=0.5米,b=2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012π×4×450=3660(元).【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识.10.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)(2)求出当a=20,b=12时的绿化面积.解析:(1)(5a2+3ab)平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a=20,b=12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,答:绿化的面积是(5a2+3ab)平方米;(2)当a=20,b=12时5a2+3ab=5×202+3×20×12=2000+720=2720,答:当a=20,b=12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤.11.已知多项式2x2+4xy﹣3y2+x2+kxy+5y2,当k为何值时,它与多项式3x2+6xy+2y2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x2+4xy﹣3y2+x2+kxy+5y2,=3x2+(4+k)xy+2y2,因为它与多项式3x2+6xy+2y2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.12.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)的形式来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f(﹣1),则f(﹣1)=﹣7.已知f(x)=ax5+bx3+3x+c,且f(0)=﹣1(1)c=_____.(2)若f(1)=2,求a+b的值;(3)若f(2)=9,求f(﹣2)的值.解析:(1)-1;(2)0;(3)-11.【解析】分析:(1)把x=0,代入f(x)=ax5+bx3+3x+c,即可解决问题;(2)把x=1,代入f(x)=ax5+bx3+3x+c,即可解决问题;(3)把x=2,代入f (x )=ax 5+bx 3+3x+c ,利用整体代入的思想即可解决问题;详解:(1)∵f (x )=ax 5+bx 3+3x+c ,且f (0)=-1,∴c=-1,故答案为-1.(2)∵f (1)=2,c=-1∴a+b+3-1=2,∴a+b=0(3)∵f (2)=9,c=-1,∴32a+8b+6-1=9,∴32a+8b=4,∴f (-2)=-32a-8b-6-1=-4-6-1=-11.点睛:本题考查的多项式代数式求值,解题的关键是理解题意,灵活运用所学知识解决问题.13.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.14.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492【分析】 (1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时, 原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.15.已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.16.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-解析:(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 17.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375 【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.18.计算:7ab-3a 2b 2+7+8ab 2+3a 2b 2-3-7ab .解析:8ab 2+4.【分析】原式合并同类项即可得到结果.【详解】原式=(7﹣7)ab +(﹣3+3)a 2b 2+8ab 2+(7﹣3)=8ab 2+4.【点睛】本题考查了合并同类项得法则.即系数相加作为系数,字母和字母的指数不变. 19.国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.解析:(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.20.已知A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+1223ab + (1)当a =﹣1,b =﹣2时,求4A ﹣(3A ﹣2B )的值;(2)若(1)中式子的值与a 的取值无关,求b 的值.解析:(1)4ab ﹣2a+13;(2)b=12 【分析】(1)将a=﹣1,b=﹣2代入A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23,求出A 、B 的值,再计算4A ﹣(3A ﹣2B )的值即可;(2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.21.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.22.已知230x y ++-=,求152423x y xy --+的值. 解析:-24.【分析】首先根据绝对值的非负性求出x ,y ,然后代入代数式求值.【详解】解:∵230x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3, ∴152423x y xy --+ ()()552342323=-⨯--⨯+⨯-⨯ ()5524=-+-24=-.【点睛】本题考查了代数式求值,利用非负数的和为零得出x 、y 的值是解题关键.23.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14-. 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.24.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.解析:(1)x 2﹣8x +4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.25.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-= 26.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.解析:1020100【分析】 由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1010×1010=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.27.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。

2021-2022学年数学七年级上册尖子生提升训练(人教版)(二)整式的加减(原卷版)

2021-2022学年数学七年级上册尖子生提升训练(人教版)(二)整式的加减(原卷版)

(二)整式的加减一、单选题1.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种规律下去,第n次移动到点A n,如果点A n,与原点的距离不少于20,那么n的最小值是()A.11B.12C.13D.202.如图所示,图(1)中含“○”的矩形有1个,图(2)中含“○”的矩形有7个,图(3)中含“○”的矩形有17个,按此规律,图(6)中含“○”的矩形有()A.70B.71C.72D.733.按如图所示的规律搭正方形:搭一个小正方形需要4根小棒,搭两个小正方形需要7根小棒,搭2020个这样的小正方形需要小棒()根.A.8080B.6066C.6061D.60604.我们定义一种变换S:对于一个由5个数组成的数列S1,将其中的每个数换成该数在S1中出现的次数,可得到一个新数列S2.例如:当数列S1是(4,2,3,4,2)时,经过变换S可得到的新数列S2是(2,2,1,2,2).若数列S1可以由任意5个数组成,则下列的数列可作为S2的是()A.(1,2,1,1,2) B.(2,2,2,3,3) C.(1,1,2,2,3) D.(1,2,1,2,2)5.观察下图和所给表格回答,当图形的周长为80时,梯形的个数为( )A.25B.26C.27D.286.观察下列正方形的四个顶点所标的数字规律,那么2009这个数标在( )A .第502个正方形的左下角B .第502个正方形的右下角C .第503个正方形的左下角D .第503个正方形的右下角7.观察图形的变化规律,则第10个小房子用了( )颗石子.A .119B .121C .140D .1428.现有一列数:a 1,a 2,a 3,a 4,…,a n-1,a n (n 为正整数),规定a 1=2,a 2- a 1=4,326a a -=,…,12n n a a n --=(n≥2),若12311115041009n a a a a ++++=,则n 的值为( ). A .2015B .2016C.2017 D .20189.观察下列有序数对:(,5,,7,,9,234⎛⎛⎛⎫--- ⎪⎝⎭⎝⎭⎝⎭,……,根据你发现的规律,第100个有序数对是( ) A .201,u ⎛-⎝⎭B .201,100⎛⎫-⎪ ⎪⎝⎭C .199,100⎛⎫-⎪ ⎪⎝⎭D .199,100⎛⎫-⎪ ⎪⎝⎭10.下列图案由边长相等的黑、白两色正方形按一定的规律拼接而成,依此规律,第n 个图形中白色正方形的个数为( )A .4n +1B .4n ﹣1C .3n ﹣2D .3n +2二、填空题11.按一定规律排列的一列数依次为:,,,,…,按此规律,这列数中的第10个数与第16个数的积是_____.12.若32a b+=时,代数式126a b ++=_________13.古希腊毕达格拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们研究过图1中的1,3,6,10,…由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,….这样的数为正方形数).(1)请你写出一个既是三角形数又是正方形数的自然数______;(2)类似地,我们将k 边形数中第n 个数记为()(),3N n k k ≥.以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-根据以上信息,得出(),N n k =______.(用含有n 和k 的代数式表示) 14.根据以下图形变化的规律,第2019个图形中黑色正方形的数量是___.15.观察下面一列数:按照上述规律排下去,那么第8行从右边数第4个数是__.1-2,3-,45-,6,7-,8,9-10,11-,12,13-,14,15-,16⋯⋯16.毕业典礼的开幕式上需要采购花店的鲜花.花店提供甲、乙两种造型的花束数量若干,甲种花束由4枝红花、1枝黄花和1枝紫花搭配而成,乙种花束由4枝黄花和2枝紫花搭配而成.已知每枝红花、黄花和紫花的成本之比是3:2:1,甲、乙两种造型的花束数量之比是2:9.甲、乙两种花束成本价分别为每种造型的三种鲜花的成本之和,甲种花束的销售利润率是20%,乙种花束的销售利润率为10%,这次买卖,花店获得的利润率是___________.17.某机械厂的总工程师张青家距厂部很远,每天都由厂部小客车接送,厂车到接送停靠站接到张青立即返程,根据厂车的出车时间和速度,张青总能算准时间,通常是他到停靠站时,厂车正好到达,这样,双方均不必等候.有一次,张青因挂念厂里的科研课题,提前80分钟到停靠站后没有等汽车,而是迎着厂车来的方向走去,遇到厂车后,他乘车到达厂部,结果比平时早20分,则汽车的速度是张青步行速度的______倍. 三、解答题18.有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,继续依次操作下去.问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是多少? 19.(问题提出)在由(1)m n m n ⨯⨯>个小正方形(边长为1)组成的矩形网格中,该矩形的一条对角线所穿过的小正方形个数与m ,n 有何关系? (问题探究)为探究规律,我们采用一般问题特殊化的策略,通过分类讨论,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:当m ,n 互质(m ,n 除1外无其他公因数)时,观察图1并完成下表:图1结论:当m ,n 互质时,在m n ⨯的矩形网格中,该矩形一条对角线所穿过的小正方形的个数f 与m ,n 之间的关系式是________. 探究二:当m ,n 不互质时,不妨设m ka =,n kb =(a ,b ,k 为正整数,且a ,b 互质),观察图2并完成下表:图2结论:当m ,n 不互质时,若m ka =,n kb =(a ,b ,k 为正整数,且a ,b 互质).在m n ⨯的矩形网格中,该矩形一条对角线所穿过的小正方形的个数f 与a ,b ,k 之间的关系式是________. (模型应用)一个由边长为1的小正方形组成的长为630,宽为490的矩形网格中,该矩形的一条对角线所穿过的小正方形个数是________个.图3(模型拓展)如图3,在一个由48个棱长为1的小正方体组成的长方体中,经过顶点A ,B 的直线穿过的小正方体的个数是________个.20.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.(1)第1个几何体中只有2个面涂色的小立方体共有个.第3个几何体中只有2个面涂色的小立方体共有个.(2)求出第100个几何体中只有2个面涂色的小立方体的块数.(3)求出前100个几何体中只有2个面涂色的小立方体的块数和.图① 图① 图①21.如果一个两位数的个位数字是n,十位数字是m,那么我们可以把这个两位数简记为mn,即10=+.如果一个三位数的个位数字是c,十位数字是b,百位mn m n数字是a,那么我们可以把这个三位数简记为abc,即10010=++.abc a b c(1)若一个两位数mn满足75=+,请求出m,n的数量关系并写出这个两位mn m n数.(2)若规定:对任意一个三位数abc进行M运算,得到整数()32+M=+.若一个三位数5xy满足32132+1=32=+.如:()32M abc a b c()5132M xy=,求这个三位数.(3)已知一个三位数abc和一个两位数ac,若满足65=+,请求出所有符合abc ac c条件的三位数.。

部编数学七年级上册必刷提高练【整式及整式的加减】(解析版)考点必刷精编讲义(人教版)含答案

部编数学七年级上册必刷提高练【整式及整式的加减】(解析版)考点必刷精编讲义(人教版)含答案

2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第2章《整式的加减》2.1-2.2 整式及整式的加减知识点1:列代数式【典例分析01】(2021秋•舒兰市期末)苹果进价是每千克x元,要得到10%的利润,则该苹果售价应是每千克 1.1x 元(用含x的代数式表示)解:由题意可得,该苹果售价应是每千克:x(1+10%)=1.1x元,故答案为:1.1x.【变式训练1-1】(2021秋•仁怀市期末)某楼盘在今年国庆节期间,为了增加销售业绩,提高销售量,该楼盘在原单价为a元/平方米的基础上降价10%,则降价后的单价为( )元/平方米.A.(1+10%)a B.(1﹣10%)a C.1+10%a D.10%a解:由题意得,降价后的单价为(1﹣10%)a,故选:B.【变式训练1-2】(2021秋•成华区期末)某超市出售一商品,在原标价上有如下四种调价方案,其中调价后售价最低的是( )A.先提价25%,再打八折B.先提价50%,再打六折C.先提价30%,再打七折D.先打九折,再打九折解:设商品原标价为a元,A.先提价25%,再打八折后的售价为:(1+25%)×0.8a=a(元);B.先提价50%,再打六折后的售价为:(1+50%)×0.6a=0.9a(元);C.先提价30%,再打七折后的售价为:(1+30%)×0.7a=0.91a(元);D.先打九折,再打九折的售价为:0.90×0.90a=0.81a(元);∵0.81a<0.9a<0.91a<a,∴D选项的调价方案调价后售价最低,故选:D.【变式训练1-3】(2021秋•船山区校级期末)如图,已知长方形ABCD中,AD=20cm,DC=12cm,点F是DC 的中点,点E从A点出发在AD上以每秒2cm的速度向D点运动,运动时间设为t秒.(假定0<t<10)(1)当t=5秒时,求阴影部分(即三角形BEF)的面积;(2)用含t的式子表示阴影部分的面积;并求出当三角形EDF的面积等于6时,阴影部分的面积是多少?(3)过点E作EG∥AB交BF于点G,过点F作FH∥BC交BE于点H,请直接写出在E点运动过程中,EG 和FH的数量关系.解:(1)长方形ABCD中,AD=20(cm),DC=12(cm),点F是DC的中点,∴DF=CF=6(cm),当t=5秒时,AE=10(cm),DE=20﹣10=10(cm),∴S阴影=S矩形ABCD﹣S△ABE﹣S△DEF﹣S△BCF=20×12﹣×12×10−×10×6−×20×6=90(cm2).(2)由题意得:AE=2t,DE=20﹣2t,∵S阴影=S矩形ABCD﹣S△ABE﹣S△DEF﹣S△BCF=20×12﹣×12×2t−×(20×6)−×6×(20−2t)=120﹣6t,∴阴影部分的面积为:(120−6t)(cm)2.∵S△DEF==6(cm)2,∴t=9(cm),∴S阴影=120﹣6t=66(cm2).(3)∵长方形ABCD,∴AD⊥CD、AB∥CD、AD∥BC,∵EG∥AB、FH∥BC,∴EG⊥HF、AD⊥EG、CD⊥HF,∴DE、AE分别等于△EGF,△EGB的EG边上的高;DF、CF分别等于△EHF、△BHF的FH边上的高,=EG•DE+EG•AE=EG•(DE+AE)=EG•AD,∴S△BEF同理得:S△BEF=HF•DC,∴GE•AD=HF•DC,即:20GE=12HF,∴==.知识点2:代数式求值【典例分析02】(2022•九龙坡区模拟)按如图所示的运算程序,能使输出y值为3的是( )A.x=1B.x=2C.x=3D.x=4解:当x=1时,1是奇数,y==6;当x=2时,2是偶数,y=+1=2;当x=3时,3是奇数,y==2;当x=4时,4是偶数,y=+1=3;∴按如图所示的运算程序,能使输出y值为3的是x=4.故选:D.【变式训练2-1】(2022春•包河区校级期中)若x2=4,y3﹣8=0,则x+y的值为( )A.0B.4C.士4D.0或4解:∵x2=4,y3﹣8=0,∴x=±2,y=2,∴x+y=0或4.故选:D.【变式训练2-2】(2022春•新罗区校级月考)已知3x﹣6y=﹣1,那么代数式﹣x+2y+1的值是 1 .解:∵3x﹣6y=﹣1,∴x﹣2y=﹣.∴﹣x+2y+1=﹣(x﹣2y)+1=﹣(﹣)+1=1.故答案为:1.【变式训练2-3】(2022•鹿城区校级模拟)(1)已知非零实数a,b满足ab=a﹣b,试求的值.(2)已知实数a,b,c满足a﹣7b+8c=4,8a+4b﹣c=7,试求a2﹣b2+c2的值.解:(1)∵ab=a﹣b,∴====ab+2﹣ab=2;(2)由题意得:,②×8+①得:65a+25b=60,则有:a=,把a=代入①得:﹣7b+8c=4,则有:c=,∴a2﹣b2+c2=()2﹣b2+()2===1+b2﹣b2=1.【变式训练2-4】(2022春•宜黄县月考)如图,一块长方形铁片,从中挖去直径分别为xcm,ycm的四个半圆.(1)用含x、y的式子表示剩下的面积.(2)当x=6,y=2时,剩下铁片的面积是多少平方厘米?(结果保留π)解:(1)剩下的面积为:(x+y)•x﹣π﹣π=(x2+xy﹣x2﹣)cm2;(2)当x=6,y=2时,剩下铁片的面积为:62+6×2﹣×62﹣=36+12﹣9π﹣π=(48﹣10π)cm2.答:当x=6,y=2时,剩下铁片的面积是(48﹣10π)平方厘米.知识点3:同类项【典例分析03】(2021秋•沙坪坝区期末)已知单项式2a3与﹣3a n b2是同类项,则代数式2m2﹣6m+2022的值是 2020 .解:根据题意得:m2﹣3m+n=2,n=3,∴m2﹣3m=﹣1,∴2m2﹣6m+2022=2(m2﹣3m)+2022=﹣2+2022=2020,故答案为:2020.【变式训练3-1】(2021秋•西青区期末)下列说法错误的是( )A.xy﹣7+x是二次三项式B.﹣x+2不是单项式C.﹣a2b系数是﹣1D.﹣32与3a2是同类项解:A.多项式xy﹣7+x是二次三项式,故A不符合题意;B.﹣x+2,是多项式,故B不符合题意;C.单项式﹣a2b的系数是﹣1,故C不符合题意;D.单项式﹣32与3a2不是同类项,故D符合题意;故选:D.【变式训练3-2】(2020秋•饶平县校级期末)已知单项式﹣m2x﹣1n9和m5n3y是同类项,求代数式x﹣5y 的值.解:∵单项式﹣m2x﹣1n9和m5n3y是同类项,∴2x﹣1=5,3y=9,∴x=3,y=3,∴x﹣5y=×3﹣5×3=﹣13.5.【变式训练3-3】(2018秋•惠东县校级期中)如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m﹣2n﹣1)2017的值.解:(1)由题意,得3a﹣6=a,解得a=3;(2)由题意,得2m﹣4n=0,解得m=2n,(m﹣2n﹣1)2017=(﹣1)2017=﹣1.知识点4:合并同类项【典例分析04】(2022•沙坪坝区校级三模)下列各式中运算正确的是( )A.3m﹣n=2B.a2b﹣ab2=0C.3xy﹣5yx=﹣2xy D.3x+3y=6xy解:A、3m与﹣n不能合并,故A不符合题意;B、a2b与﹣ab2不能合并,故B符合题意;C、3xy﹣5yx=﹣2xy,故C符合题意;D、3x与3y不能合并,故D不符合题意;故选:C.【变式训练4-1】(2021秋•邹平市校级期末)下列计算正确的是( )A.2c+3c=5c2B.8y2﹣2y2=6C.5x6+3x6=8x12D.﹣4ab+3ab=﹣ab解:A、2c+3c=5c,故A不符合题意;B、8y2﹣2y2=6y2,故B不符合题意;C、5x6+3x6=8x6,故C不符合题意;D、﹣4ab+3ab=﹣ab,故D符合题意;故选:D.【变式训练4-2】(2021秋•句容市期末)如果单项式x a+b y3与5x2y b的和仍是单项式,则a﹣b的值为 ﹣4 .解:∵单项式y3与5x2y b的和仍是单项式,∴y3与5x2y b是同类项,∴a+b=2,3=b,解得:a=﹣1,b=3,∴原式=﹣1﹣3=﹣4,故答案为:﹣4.【变式训练4-3】(2021秋•靖江市期中)若单项式﹣7x m+2y与﹣3x3y n的和仍是单项式,则mn= 1 .解:∵﹣7x m+2y与﹣3x3y n的和仍是单项式,∴7x m+2y与﹣3x3y n是同类项.∴m+2=3,n=1.解得:m=1.∴mn=1×1=1.故答案为:1.【变式训练4-4】(2018秋•和平区校级月考)请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.解:(1)原式=(m﹣1)x2+(3+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,3+n=0,∴m=1,n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,∵多项式不含二次项,∴6m﹣1=0,4n+2=0.∴.∴.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.知识点5:去括号和添括号【典例分析05】(2018秋•夹江县期末)在括号内填上恰当的项:ax﹣bx﹣ay+by=(ax﹣bx)﹣( ay﹣by ).解:ax﹣bx﹣ay+by=(ax﹣bx)﹣(ay﹣by).故答案是:ay﹣by.【变式训练5-1】(2021秋•金沙县期末)下列去括号中正确的是( )A.x+(3y+2)=x+3y﹣2B.y2+(﹣2y﹣1)=y2﹣2y﹣1C.a2﹣(3a2﹣2a+1)=a2﹣3a2﹣2a+1D.m2﹣(2m2﹣4m﹣1)=m2﹣2m2+4m﹣1解:A、x+(3y+2)=x+3y+2,故本选项不符合题意;B、y2+(﹣2y﹣1)=y2﹣2y﹣1,故本选项符合题意;C、a2﹣(3a2﹣2a+1)=a2﹣3a2+2a﹣1,故本选项不符合题意;D、m2﹣(2m2﹣4m﹣1)=m2﹣2m2+4m+1,故本选项不符合题意;故选:B.【变式训练5-2】(2018秋•陵城区期中)在计算:A﹣(5x2﹣3x﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x2+3x﹣4,则多项式A是 ﹣7x2+6x+2 .解:根据题意得:A=(﹣2x2+3x﹣4)﹣(5x2﹣3x﹣6)=﹣2x2+3x﹣4﹣5x2+3x+6=﹣7x2+6x+2,故答案为:﹣7x2+6x+2.【变式训练5-3】(2014秋•铁西区期中)计算:3b﹣2c﹣[﹣4a﹣(c﹣3b)]+c.解:3b﹣2c﹣[﹣4a﹣(c﹣3b)]+c=3b﹣2c﹣(﹣4a﹣c+3b)+c=3b﹣2c+4a+c﹣3b+c=4a.知识点6:单项式【典例分析06】(2021秋•庄河市期末)下列说法正确的是( )A.πa2次数为3B.次数为2C.ab系数为1D.系数为﹣6解:A、πa2次数为2,原说法错误,故此选项不符合题意;B、﹣ab2次数为3,原说法错误,故此选项不符合题意;C、ab系数为1,原说法正确,故此选项符合题意;D、﹣系数为﹣,原说法错误,故此选项不符合题意.故选:C.【变式训练6-1】(2021秋•滨江区期末)单项式的系数为 ,次数为 3 .解:单项式的系数为;次数为3;故答案为,3.【变式训练6-2】(2016秋•荔城区校级期中)若3x m y n是含有字母x和y的五次单项式,求m、n可能的值.解:因为3x m y n是含有字母x和y的五次单项式所以m+n=5所以m=1,n=4或m=2,n=3或m=3,n=2或m=4,n=1【变式训练6-3】(2014秋•香洲区校级期中)若(m+n)x2y n+1是关于x,y的五次单项式且系数为6,试求m,n的值.解:∵(m+n)x2y n+1是关于x、y的五次单项式,且系数为6,∴m+n=6,2+n+1=5.解得:m=4,n=2.知识点7:多项式【典例分析07】(2021秋•常宁市期末)下列说法错误的是( )A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.2ab2是二次单项式D.﹣xy2的系数是﹣1解:A.2x2﹣3xy﹣1是二次三项式,故本选项不符合题意;B.﹣x+1是多项式,不是单项式,故本选项不符合题意;C.2ab2是三次单项式,故本选项符合题意;D.﹣xy2的系数是﹣1,故本选项不符合题意;故选:C.【变式训练7-1】.(2021秋•大余县期末)下列说法正确的是( )A.的系数是B.x3y+x2﹣1是三次三项式C.x2﹣2x﹣1的常数项是1D.是多项式解:A.根据单项式系数的定义,得的系数为,那么A不符合题意.B.根据多项式的次数以及项数的定义,得x3y+x2﹣1的次数为4,项数为3,即多项式x3y+x2﹣1为四次三项式,那么B不符合题意.C.x2﹣2x﹣1的常数项是﹣1,那么C不符合题意.D.根据多项式的定义,含、﹣这两项,是多项式.故选:D.【变式训练7-2】(2021秋•建华区校级期中)已知多项式(m+4)x|m|y2+xy﹣4x+1六次四项式,单项式5x2n y6﹣m与多项式的次数相同,(m,n是常数),则m n= 16 .解:∵多项式(m+4)x|m|y2+xy﹣4x+1六次四项式,单项式5x2n y6﹣m与多项式的次数相同,∴|m|+2=6且m+4≠0,2n+6﹣m=6,解得m=4,n=2,则m n=42=16.故答案为:16.【变式训练7-3】(2021秋•惠城区期末)观察数轴,充分利用数形结合的思想.若点A,B在数轴上分别表示数a,b,则A,B两点的距离可表示为AB=|a﹣b|.根据以上信息回答下列问题:已知多项式2x3y2z﹣3x2y2﹣4x+1的次数是b,且2a与b互为相反数,在数轴上,点O是数轴原点,点A表示数a,点B表示数b.设点M在数轴上对应的数为m.(1)由题可知:A,B两点之间的距离是 9 .(2)若满足AM+BM=12,求m.(3)若动点M从点A出发第一次向左运动1个单位长度,在此新位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照此规律不断地左右运动,当运动了1009次时,求出M所对应的数m.解:(1)由多项式2x3y2z﹣3x2y2﹣4x+1的次数是6,可知b=6,又2a与b互为相反数,∴2a+b=0,故a=﹣3,∴A,B两点之间的距离是6﹣(﹣3)=9,故答案为:9;(2)①当M在A左侧时,∵AM+MB=12,∴﹣3﹣m+6﹣m=12,解得:m=﹣4.5;②M在A和B之间时,∵AM+MB=AB=9≠12,∴点M不存在;③点M在B点右侧时,∵AM+MB=12,∴m+3+m﹣6=12,解得:m=7.5,综上,m的值是﹣4.5或7.5;(3)依题意得:﹣3﹣1+2﹣3+4﹣5+6﹣7+……+1008﹣1009=﹣3+(﹣1+2)+(﹣3+4)+••+(﹣1007+1008)﹣1009=﹣3+504﹣1009=﹣508,∴点M对应的有理数m为﹣508.故答案为:﹣508.知识点8:整式【典例分析08】(2021春•南岗区校级月考)下列式子x3﹣yz,+3,abc+6,0,,中,整式有( )A.2个B.3个C.4个D.5个解:根据整式的定义,可知整式有:x3﹣yz,abc+6,0,,共有4个.故选:C.【变式训练8-1】(2021•锦江区校级开学)下列代数式:﹣,,﹣π,﹣5x2y3,,,﹣x,其中整式有 5 个.解:下列代数式:﹣,,﹣π,﹣5x2y3,,,﹣x,属于整式的有:.,是分式,不是整式.故答案为:5.【变式训练8-2】下列代数式中,哪些是整式?①x2+y2;②﹣x;③;④6xy+1;⑤;⑥0;⑦.解:①x2+y2,是整式;②﹣x,是整式;③,是整式;④6xy+1,是整式;⑤,不是整式;⑥0,是整式;⑦,不是整式.知识点9:整式的加减【典例分析09】(2022•长沙模拟)已知多项式A=﹣3x2+5x﹣4,B=﹣x2﹣2x,则A﹣3B的结果为( )A.﹣6x2﹣x﹣4B.11x﹣4C.﹣x﹣4D.﹣6x2﹣5解:∵A=﹣3x2+5x﹣4,B=﹣x2﹣2x,∴A﹣3B=(﹣3x2+5x﹣4)﹣3(﹣x2﹣2x)=﹣3x2+5x﹣4+3x2+6x=11x﹣4.故选:B.【变式训练9-1】(2022•九龙坡区模拟)已知多项式A=x2+2y+m和B=y2﹣2x+n(m,n为常数),以下结论中正确的是( )①当x=2且m+n=1时,无论y取何值,都有A+B≥0;②当m=n=0时,A×B所得的结果中不含一次项;③当x=y时,一定有A≥B;④若m+n=2且A+B=0,则x=y;⑤若m=n,A﹣B=﹣1且x,y为整数,则|x+y|=1.A.①②④B.①②⑤C.①④⑤D.③④⑤解:①当x=2且m+n=1时,A=x2+2y+m=2y+4+m,B=y2﹣2x+n=y2﹣4+n,∴A+B=y2+2y+m+n=y2+2y+1=(y+1)2≥0,故①正确;②当m=n=0时,A=x2+2y+m=x2+2y,B=y2﹣2x+n=y2﹣2x,A×B=(x2+2y)(y2﹣2x)=x2y2﹣2x3+2y3﹣4xy,∴所得的结果中不含一次项,故②正确;③当x=y时,A=x2+2y+m=A=x2+2x+m,B=y2﹣2x+n=x2﹣2x+n,A﹣B=x2+2x+m﹣(x2﹣2x+n)=x2+2x+m﹣x2+2x﹣n=4x+m﹣n,不确定4x+m﹣n的正负,故③错误;④若m+n=2且A+B=0,∴A+B=x2+2y+m+y2﹣2x+n=x2+y2﹣2x+2y+2=(x﹣1)2+(y+1)2=0,∴,解得,∴x≠y,故④错误;⑤∵m=n,∴A﹣B=x2+2y+m﹣y2+2x﹣n=x2+2y﹣y2+2x=(x+y)(x﹣y+2)=﹣1,若|x+y|=1正确,则|x﹣y+2|=1,即x﹣y+2=±1,当x﹣y+2=1时,代入(x+y)(x﹣y+2)=﹣1,得x+y=﹣1,此时|x+y|=1,正确;当x﹣y+2=﹣1时,代入(x+y)(x﹣y+2)=﹣1,得x+y=1,此时|x+y|=1,正确.故⑤正确.故选:B.【变式训练9-2】(2021秋•石狮市期末)一棵桃树结了m个桃子,有三只猴子先后来摘桃.第一只猴子摘走,再从树上摘一个吃掉;第二只猴子摘走剩下的,再从树上摘一个吃掉;第三只猴子再摘走剩下的,再从树上摘一个吃掉,则树上最后剩下的桃子数为 个.(用含m的代数式表示)解:根据题意得:m﹣m﹣1﹣(m﹣m﹣1)﹣1﹣{m﹣[m﹣m﹣1﹣(m﹣m﹣1)﹣1)]}﹣1=(个),则树上最后剩下的桃子数为个.故答案为:.【变式训练9-3】(2022•兴隆县一模)某企业有A,B两条加工相同原材料的生产线,在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.(1)当a=b=1时,两条生产线的加工时间分别是多少小时?(2)某一天,该企业把5吨原材料分配到A、B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的吨数是多少?解:(1)当a=b=1时,A生产线的加工时间为:4×1+1=5(小时),B生产线的加工时间为:2×1+3=5(小时),答:A生产线的加工时间为5小时,B生产线的加工时间为5小时;(2)A生产线每小时加工原材料为:(吨),B生产线每小时加工原材料为:(吨),令分配到A生产线的吨数为x吨,依题意得:,整理得:x=,则分配到B生产线的吨数为:5﹣=.答:分配到A生产线的吨数为:吨,分配到B生产线的吨数为:吨.知识点10:整式的加减——化简求值【典例分析10】(2021秋•重庆月考)若m2﹣2m+2=0,则2(m2﹣m)+2(2021﹣m)的值为( )A.4038B.4040C.4042D.4044解:∵m2﹣2m+2=0,∴m2﹣2m=﹣2,则原式=2m2﹣2m+4042﹣2m=2(m2﹣2m)+4042=﹣4+4042=4038.故选:A.【变式训练10-1】(2021秋•威县期中)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简6A﹣9B= 21x+21y﹣33xy .(2)若x+y=,xy=2,则6A﹣9B的值为 ﹣57 .解:(1)∵A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy,∴6A﹣9B=6(3x2﹣x+2y﹣4xy)﹣9(2x2﹣3x﹣y+xy)=18x2﹣6x+12y﹣24xy﹣18x2+27x+3y﹣9xy=21x+21y﹣33xy,故答案为:21x+21y﹣33xy;(2)当x+y=,xy=2时,6A﹣9B=21x+21y﹣33xy=21(x+y)﹣33xy=21×()﹣33×2=9﹣66=﹣57.故答案为:﹣57.【变式训练10-2】(2021秋•巫溪县期末)已知代数式A=2m2+3my+2y﹣1,B=m2﹣my.(1)若(m﹣1)2+|y+2|=0,求3A﹣2(A+B)的值;(2)若3A﹣2(A+B)的值与y的取值无关,求m的值.解:(1)∵(m﹣1)2+|y+2|=0,∴m﹣1=0,y+2=0,∴m=1,y=﹣2,∵A=2m2+3my+2y﹣1,B=m2﹣my,∴3A﹣2(A+B)=3(2m2+3my+2y﹣1)﹣2(2m2+3my+2y﹣1+m2﹣my)=6m2+9my+6y﹣3﹣4m2﹣6my﹣4y+2﹣2m2+2my=5my+2y﹣1,当m=1,y=﹣2时,原式=5×1×(﹣2)+2×(﹣2)﹣1=﹣15;(2)∵3A﹣2(A+B)=5my+2y﹣1=(5m+2)y﹣1,又∵此式的值与y的取值无关,∴5m+2=0,∴m=﹣.【变式训练10-3】(2021秋•平舆县期末)已知A=x2﹣ax﹣1,B=2x2﹣ax﹣1,且多项式A﹣B的值与字母x取值无关,求a的值.解:∵A=x2﹣ax﹣1,B=2x2﹣ax﹣1,∴A﹣B=(x2﹣ax﹣1)﹣(2x2﹣ax﹣1)=x2﹣ax﹣1﹣x2+ax+=﹣ax﹣,∵多项式A﹣B的值与字母x取值无关,∴﹣a=0,∴a=0。

人教版初中七年级数学上册第二章《整式的加减》提高卷(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》提高卷(含答案解析)

1.下列代数式的书写,正确的是()A.5n B.n5 C.1500÷t D.114x2y A解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A、5n,书写正确,符合题意;B、n5,书写错误,不合题意;C、1500÷t,应为1500t,故书写错误,不合题意;D、114x2y=54x2y,故书写错误,不合题意;故选:A.【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.2.与(-b)-(-a)相等的式子是( )A.(+b)-(-a) B.(-b)+aC.(-b)+(-a) D.(-b)-(+a)B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒3.下列计算正确的是()A.﹣1﹣1=0 B.2(a﹣3b)=2a﹣3b C.a3﹣a=a2D.﹣32=﹣9D解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.解:A .﹣1﹣1=﹣2,故本选项错误; B .2(a ﹣3b )=2a ﹣6b ,故本选项错误; C .a 3÷a =a 2,故本选项错误; D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 4.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( )A .2018B .2018-C .1009-D .1009C解析:C 【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n,然后把n 的值代入进行计算即可得解. 【详解】 解:123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=- 678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-, 故选择C 【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.5.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( ) A .-7 B .-1C .5D .11A解析:A先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可. 【详解】解:第1次操作,a 1=|23+4|-10=17; 第2次操作,a 2=|17+4|-10=11; 第3次操作,a 3=|11+4|-10=5; 第4次操作,a 4=|5+4|-10=-1; 第5次操作,a 5=|-1+4|-10=-7; 第6次操作,a 6=|-7+4|-10=-7; 第7次操作,a 7=|-7+4|-10=-7; …第2020次操作,a 2020=|-7+4|-10=-7. 故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.6.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C解析:C 【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10. 【详解】 解:8×10−6=74, 故选:C . 【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数. 7.一个多项式与²21x x -+的和是32x -,则这个多项式为( ) A .253x x -+ B .21x x -+- C .253x x -+-D .2513x x -- C【分析】根据题意列出关系式,去括号合并即可得到结果. 【详解】∵一个多项式与x 2-2x+1的和是3x-2, ∴这个多项式=(3x-2)-(x 2-2x+1) =3x-2-x 2+2x-1 =253x x -+-. 故选:C . 【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 8.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2C .3D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解. 【详解】解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下: 496 497 498 499 500 501 502 503 504 505 506507508509510511512513故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程. 11.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B 【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断. 【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错;(3)单项式-x 3y 2的系数是-1,正确; (4)3x 2-y+5xy 2是3次3项式,故错误. 故选:B . 【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法. 12.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210m xm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A. 【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 13.下列关于多项式21ab a b --的说法中,正确的是( ) A .该多项式的次数是2 B .该多项式是三次三项式 C .该多项式的常数项是1 D .该多项式的二次项系数是1-B解析:B 【分析】直接利用多项式的相关定义进而分析得出答案. 【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误; 故选:B . 【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.14.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +- D .(120%)15%a + A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元. 故选A . 【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键. 15.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64 B .31,32,33 C .31,62,63 D .31,45,46C解析:C 【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数. 【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63. 故选:C . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 1.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值. 【详解】解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =,故答案为19. 【点睛】本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0. 2.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可. 【详解】 ∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环, 所以2020÷3=673…1,则a 2020=a 1=2. 故答案为:2. 【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.3.已知等式:2222233+=⨯,233 3388+=⨯,244 441515+=⨯,…,2a a1010b b+=⨯(a ,b 均为正整数),则 a b += ___.【分析】先根据已知代数式归纳出(n 为正整数)然后令n=10求得ab 最后求和即可【详解】解:由已知代数式可归纳出(n 为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案 解析:109【分析】先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可. 【详解】解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10 ∴a+b=10+99=109. 故答案为109. 【点睛】本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键.4.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101【解析】 试题1111++++133********⨯⨯⨯⨯=111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101.5.===,……=m =_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9 【分析】13n +,将210n +=代入即可得出答案.【详解】解:==……,13n +210n +=8n ∴=19m n ∴=+= 故答案为:9. 【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.-25【分析】由x=1时代数式ax+b+1的值是﹣3求出a+b 的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x =1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b =﹣4∴(a解析:-25. 【分析】由x =1时,代数式ax +b +1的值是﹣3,求出a +b 的值,将所得的值整体代入所求的代数式中进行计算即可得解. 【详解】解:∵当x =1时,ax +b +1的值为﹣3, ∴a +b +1=﹣3, ∴a +b =﹣4,∴(a +b ﹣1)(1﹣a ﹣b )=(a +b ﹣1)[1﹣(a +b )]=(﹣4﹣1)×(1+4)=﹣25. 故答案为:﹣25. 【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.7.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据 解析:3【分析】根据题意可知单项式322m x y -与3-x y 是同类项,从而可求出m 的值.【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式,∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.8.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.9.“a的3倍与b的34的和”用代数式表示为______.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a+b;故答案为:3a+b 【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列解析:3 34 a b【分析】a的3倍表示为3a,b的34表示为34b,然后把它们相加即可.【详解】根据题意,得3a+34 b;故答案为:3a+34 b.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.10.如图,大、小两个正方形ABCD与正方形BEFG并排放在一起,点G在边BC上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF的面积是______平方厘米.【分析】设出两个正方形边长分别为ab(a>b)表示正方形面积之差用ab表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab(a>b)由已知四边形的面积为:故答案为:【点睛】本题考查解析:31 2【分析】设出两个正方形边长分别为a,b(a>b),表示正方形面积之差,用a、b表示四边形CDGF的面积,进行整体代入即可.【详解】解:设两个正方形边长分别为a,b(a>b)由已知2231a b -=四边形CDGF 的面积为:()()()()()()2211113122222DC GF GC DC GF BC BG a b a b a b +⋅=+-=+-=-= 故答案为:312 【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。

七年级数学上册第2章精选《多项式及整式》同步提升训练(人教版)

七年级数学上册第2章精选《多项式及整式》同步提升训练(人教版)

《多项式及整式》提升训练1.如果一个多项式是五次多项式,那么它任何一项的次数( )A 都小于5 B.都等于5C.都不小于5D.都不大于52.当3x =-时,式子237x x --的值为( ).25 B. 7C. 8 D. 11A -- 3.(重庆中考)按如图所示的运算程序,能使输出的结果为12的是( )A. 3,3B. 4,2C. 2,4D. 4,2x y x y x y x y ===-=-==== 4.已知多项式||(2)10m x m x +--是二次三项式,m 为常数,则m 的值为_________.5.【整体思想】(岳阳中考)已知221a a +=,则23(2)2a a ++的值为__________.6.某人买了50元的乘车月票卡,若此人乘车的次数用m 表示,则记录他每次乘车后的余额n 如下表:(1)写出此人乘车的次数m 表示余额n 的式子;(2)利用上述公式,计算乘了13次车还剩多少元?7.(教材P60习题T6变式)如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地.若圆形的半径为米,长方形的长为a 米,宽为b 米.(1)分别用式子表示草地和空地的面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(π取3.14,结果保留整数).8.如果关于x 的多项式42142ax x +-与35b x x +是同次多项式,求3212342b b b -+-的值.参考答案1.D2.D3.C4.2-5.56.解:(1)500.8n m =-(2)乘了13次车还剩39.6元. 7.解:(1)草地面积为22144r r ππ⨯=(平方米),空地面积为2()ab r π-平方米.(2)广场空地的面积约为59686平方米. 8.解:由题意得:若0a =,则2b =:若0a ≠,则4b =.当2b =时,原式182432422=⨯-⨯+⨯-=-;当4b =时,原式16421634482=⨯-⨯+⨯-=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《整式》提高训练一、选择题1.多项式3x2y﹣5x2+﹣1的次数是()A.3B.5C.10D.22.下列各式中,哪个不是单项式()A.B.﹣ab2C.D.03.对于单项式﹣24x2y2z的系数、次数,下列说法正确的是()A.系数为﹣2,次数为9B.系数为﹣16,次数为5C.系数为﹣24,次数为4D.系数为﹣2,次数为54.多项式﹣x2+2x中,二次项的系数是()A.1B.﹣1C.0D.25.多项式x2y2﹣2π3y3﹣y﹣1是()A.六次四项式B.五次三项式C.四次四项式D.四次三项式二、填空题6.在代数式,2x2y,,0,﹣a,中,单项式有个,多项式有个.7.多项式1﹣xy+y3﹣5x3y2﹣xy4中二次项是,请将多项式按字母y的降幂排列.8.若5x2y|m|﹣(n﹣2018)y2+1是三次二项式,则m n的值为.9.若关于x的多项式x3+(2m﹣6)x2+x+2是三次三项式,则m的值是.10.下列各式中,3a+4b,0,﹣a,am+1,﹣xy,,﹣1,单项式有个,多项式有个三、解答题11.已知多项式2x2+x3+x﹣5x4﹣.(1)请指出该多项式是几次几项式,并写出它的二次项、一次项和常数项;(2)按要求把这个多项式重新排列:①按x的降幂排列;②按x的升幂排列.12.(3m﹣4)x3﹣(2n﹣3)x2+(2m+5n)x﹣6是关于x的多项式.(1)当m、n满足什么条件时,该多项式是关于x的二次多项式;(2)当m、n满足什么条件时,该多项式是关于x的三次二项式.13.已知多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,单项式6x2n y5﹣m的次数与这个多项式的次数相同,求m+n的值.14.下列代数式中的哪些是单项式,哪些是多项式,哪些是整式?,4xy,,,x2+x+,0,,m,﹣2.01×105整式集合:{…}单项式集合:{…}多项式集合:{…}.15.回顾多项式的有关概念,解决下列问题(1)求多项式﹣x3y3+x4y中各项的系数和次数;(2)若多项式﹣5x a+1y2﹣x3y3+x4y的次数是7,求a的值.《整式》提高训练参考答案与试题解析一、选择题1.多项式3x2y﹣5x2+﹣1的次数是()A.3B.5C.10D.2【分析】直接利用多项式的次数确定方法分析得出答案.【解答】解:多项式3x2y﹣5x2+﹣1的次数是:5.故选:B.【点评】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.2.下列各式中,哪个不是单项式()A.B.﹣ab2C.D.0【分析】直接利用单项式的定义分别分析得出答案.【解答】解:A、不是单项式,符合题意;B、﹣ab2,是单项式,不符合题意;C、﹣,是单项式,不符合题意;D、0,是单项式,不符合题意;故选:A.【点评】此题主要考查了单项式,正确把握单项式的定义是解题关键.3.对于单项式﹣24x2y2z的系数、次数,下列说法正确的是()A.系数为﹣2,次数为9B.系数为﹣16,次数为5C.系数为﹣24,次数为4D.系数为﹣2,次数为5【分析】直接利用单项式的次数与系数确定方法分析得出答案.【解答】解:单项式﹣24x2y2z的系数为﹣16,次数为5.故选:B.【点评】此题主要考查了单项式的次数与系数,正确把握相关定义是解题关键.4.多项式﹣x2+2x中,二次项的系数是()A.1B.﹣1C.0D.2【分析】直接利用多项式的各部分名称分析得出答案.【解答】解:多项式﹣x2+2x中,二次项的系数是:﹣1.故选:B.【点评】此题主要考查了多项式,正确掌握相关定义是解题关键.5.多项式x2y2﹣2π3y3﹣y﹣1是()A.六次四项式B.五次三项式C.四次四项式D.四次三项式【分析】直接利用多项式次数与项数确定方法分析得出答案.【解答】解:多项式x2y2﹣2π3y3﹣y﹣1是:四次四项式.故选:C.【点评】此题主要考查了多项式,正确把握多项式的次数与项数确定方法是解题关键.二、填空题6.在代数式,2x2y,,0,﹣a,中,单项式有3个,多项式有1个.【分析】直接利用多项式以及单项式的定义分析得出答案.【解答】解:在代数式,2x2y,,0,﹣a,中,单项式有:2x2y,0,﹣a,共3个,多项式有,一共1个.故答案为:3,1.【点评】此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.7.多项式1﹣xy+y3﹣5x3y2﹣xy4中二次项是﹣xy,请将多项式按字母y 的降幂排列﹣xy4+y3﹣5x3y2﹣xy+1.【分析】根据多项式的次数和项的定义及将幂排列的定义解答.【解答】解:多项式1﹣xy+y3﹣5x3y2﹣xy4中二次项是﹣xy,请将多项式按字母y的降幂排列﹣xy4+y3﹣5x3y2﹣xy+1.故答案为:﹣xy,﹣xy4+y3﹣5x3y2﹣xy+1.【点评】考查了多项式,多项式的次数是“多项式中次数最高的项的次数”,把一个多项式按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,常数项应放在最前面,如果是降幂排列应按此字母的指数从大到小依次排列.8.若5x2y|m|﹣(n﹣2018)y2+1是三次二项式,则m n的值为1.【分析】由多项式为三次二项式,求出m与n的值,即可求出m n的值.【解答】解:∵5x2y|m|﹣(n﹣2018)y2+1是三次二项式,∴2+|m|=3,n﹣2018=0,解得:m=1或﹣1,n=2018,则m n=(±1)2018=1,故答案为:1.【点评】此题考查了多项式,熟练掌握多项式的定义是解本题的关键.9.若关于x的多项式x3+(2m﹣6)x2+x+2是三次三项式,则m的值是3.【分析】根据多项式的概念列出关于m的方程,解方程得到答案.【解答】解:∵关于x的多项式x3+(2m﹣6)x2+x+2是三次三项式,∴2m﹣6=0,解得:m=3,故答案为:3.【点评】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.10.下列各式中,3a+4b,0,﹣a,am+1,﹣xy,,﹣1,单项式有3个,多项式有3个【分析】根据单项式和多项式的定义求解可得.【解答】解:单项式有0,﹣a,﹣xy这3个,多项式有3a+4b,am+1和这3个,故答案为:3,3.【点评】此题主要考查了单项式以及多项式的定义,正确把握定义是解题关键.三、解答题11.已知多项式2x2+x3+x﹣5x4﹣.(1)请指出该多项式是几次几项式,并写出它的二次项、一次项和常数项;(2)按要求把这个多项式重新排列:①按x的降幂排列;②按x的升幂排列.【分析】(1)别利用多项式的次数以及各项名称和多项式的项数定方法求出即可.(2)根据多项式的升幂、降幂排列,即可解答.【解答】解:(1)该多项式是四次五项式,它的二次项是2x2,一次项是x,常数项是﹣;(2)①按x降幂排列为:﹣5x4+x3+2x2+x﹣;②按x的升幂排列为:﹣+x+2x2+x3﹣5x4.【点评】此题主要考查了多项式的定义,正确掌握多项式的系数与次数判定方法及熟记多项式的升幂、降幂排列是解题关键.12.(3m﹣4)x3﹣(2n﹣3)x2+(2m+5n)x﹣6是关于x的多项式.(1)当m、n满足什么条件时,该多项式是关于x的二次多项式;(2)当m、n满足什么条件时,该多项式是关于x的三次二项式.【分析】(1)根据多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式可得3m﹣4=0,且2n﹣3≠0,再解即可;(2)根据多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式可得2n﹣3=0,2m+5n=0,且3m﹣4≠0,再解即可.【解答】解:(1)由题意得:3m﹣4=0,且2n﹣3≠0,解得:m=,n≠;(2)由题意得:2n﹣3=0,2m+5n=0,且3m﹣4≠0,解得:n=,m=﹣.【点评】此题主要考查了多项式,关键是掌握多项式次数的确定方法.13.已知多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,单项式6x2n y5﹣m的次数与这个多项式的次数相同,求m+n的值.【分析】根据已知得出方程2+m+1=6,求出m=3,根据已知得出方程2n+5﹣m=6,求出方程的解即可.【解答】解:∵多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,∴2+m+1=6,∴m=3,∵单项式26x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,∴2n=1+3=4,∴n=2.∴m+n=3+2=5.【点评】本题考查了多项式的有关内容的应用,注意:多项式中次数最高的项的次数叫多项式的次数.14.下列代数式中的哪些是单项式,哪些是多项式,哪些是整式?,4xy,,,x2+x+,0,,m,﹣2.01×105整式集合:{,4xy,,0,m,﹣2.01×105…}单项式集合:{4xy,,0,m,﹣2.01×105…}多项式集合:{…}.【分析】根据整式、单项式、多项式的定义判断后选出即可.【解答】解:整式集合:{,4xy,,0,m,﹣2.01×105…};单项式集合:{ 4xy,,0,m,﹣2.01×105…};多项式集合:{…}.故答案为:{,4xy,,0,m,﹣2.01×105…};{ 4xy,,0,m,﹣2.01×105…};{…}.【点评】本题考查了对单项式,多项式,整式的定义的理解和运用,注意:整式包括多项式和单项式,若干个单项式的和组成的式叫做多项式.15.回顾多项式的有关概念,解决下列问题(1)求多项式﹣x3y3+x4y中各项的系数和次数;(2)若多项式﹣5x a+1y2﹣x3y3+x4y的次数是7,求a的值.【分析】(1)根据多项式次数、系数的定义即可得出答案;(2)根据次数是7,可得出关于a的方程,解出即可.【解答】解:(1)多项式﹣x3y3+x4y中的式﹣x3y3系数是,次数是6;x4y 的系数是,次数是5.(2)由多项式的次数是7,可知﹣5x a+1y2的次数是7,即a+3=7,解得a=4.【点评】本题考查了多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.。

相关文档
最新文档