整式乘法单元练习题

合集下载

《整式的乘法与因式分解》单元综合测试题(含答案)

《整式的乘法与因式分解》单元综合测试题(含答案)
13.计算:(﹣A)4÷(﹣A3)=_____.
[答案]﹣A.
[解析]
[分析]
先计算(﹣A)4,再把除法转换成乘法进行计算即可.
[详解](﹣A)4÷(﹣A3)= .
故答案是:-A.
14.整数m为_____时,式子 为整数.
[答案]2,0,4,﹣2.
[解析]
[分析]
由式子为整数可知m-1=3或m-1=1或m-1=-1或m-1=-3,从而可解得m的值.
[答案]B
[解析]
[分析]
根据平方差公式计算可得.
[详解]原式=x2-22=x2-4,
故选B.
[点睛]考查平方差公式,解题的关键是掌握(A+B)(A-B)=A2-B2.
10.用配方法将二次三项式x2+4x﹣96变形,结果为( )
A.(x+2)2+100B.(x﹣2)2﹣100C.(x+2)2﹣100D.(x﹣2)2+100
12.计算4y·(-2xy2)的结果等于__________.
[答案]-8xy3
[解析]
[分析]
直接利用单项式乘以单项式运算法则得出答案.
[详解]4y•(-2xy2)=-8xy3.
故答案是:-8xy3.
[点睛]查了单项式乘以单项式运算,正确掌握运算法则(把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式)是解题关键.
[答案]A
[解析]
分析:直接利用积的乘方运算法则将原式变形得出答案.
详解:
=
=
故选A.
点睛:此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.
6.若多项式-6A B+18A Bx+24A By的一个因式是-6A B,那么另一个因式是

《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)

《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)

《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。

第14章 整式的乘法与因式分解 单元测试(含答案)

第14章  整式的乘法与因式分解 单元测试(含答案)

第十四章整式的乘法与因式分解(90分钟 100分)一、选择题(每小题3分,共30分)1.(2020·朝阳中考)下列运算正确的是( C )A.a3·a2=a6B.(a3)2=a5C.2a3÷a2=2a D.2x+3x=5x2【解析】A.a3·a2=a5,故不正确;B.(a3)2=a6,故不正确;C.2a3÷a2=2a,正确;D.2x+3x=5x,故不正确.2.(2020·眉山中考)下列计算正确的是( C )A.(x+y)2=x2+y2B.2x2y+3xy2=5x3y3C.(-2a2b)3=-8a6b3D.(-x)5÷x2=x3【解析】A.原式=x2+2xy+y2,不符合题意;B.原式不能合并,不符合题意;C.原式=-8a6b3,符合题意;D.原式=-x5÷x2=-x3,不符合题意.3.下列运算正确的是( B )A.a2·a4=a8B.210+(-2)10=211C.(-1-3a)2=1-6a+9a2D.(-3x2y)3=-9x6y3【解析】A.a2·a4=a6,故本选项不符合题意;B.210+(-2)10=210+210=(1+1)×210=2×210=211,故本选项符合题意;C.(-1-3a)2=1+6a+9a2,故本选项不符合题意;D.(-3x2y)3=-27x6y3,故本选项不符合题意.4.下列因式分解正确的是( D )A.x2-y2=(x-y)2B.-x2-y2=-(x+y)(x-y) C.x2-2xy+4y2=(x-2y)2D.-x2-2xy-y2=-(x+y)2【解析】A.x2-y2=(x-y)(x+y),故此选项错误;B.-x2-y2,无法分解因式,故此选项错误;C.x2-2xy+4y2,不是完全平方式,故此选项错误;D.-x2-2xy-y2=-(x+y)2,正确.5.(2021·厦门期末)运用公式a2+2ab+b2=(a+b)2直接对整式4x2+4x+1进行因式分解,公式中的a可以是( C )A.2x2B.4x2C.2x D.4x【解析】∵4x2+4x+1=(2x)2+2×2x+1=(2x+1)2,∴对上式进行因式分解,公式中的a可以是2x.6.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为( A )A.a2-4b2B.(a+b)(a-b)C.(a+2b)(a-b) D.(a+b)(a-2b)【解析】根据题意得:(a+2b)(a-2b)=a2-4b2.7.为了用乘法公式计算(2x-3y-4z)( 2x-3y+4z),甲乙丙丁四位同学分别对它们进行了变形,其中变形正确的是( B )A.[2x-(3y+4z)][2x-(3y-4z)] B.[(2x-3y)-4z][(2x-3y)+4z] C.[(2x-4z)-3y][(2x+4z)-3y] D.[(2x-4z)+3y][(2x-4z)-3y] 【解析】观察(2x-3y-4z)( 2x-3y+4z),符号相同的是2x,-3y,符号相反的是-4z和4z,把符号相同的放在一起,符号相反的放在一起.8.若x2+(m-1)x+1可以用完全平方公式进行因式分解,则m的值为( D )A.-3 B.1 C.-3,1 D.-1,3【解析】∵x2+(m-1)x+1可以用完全平方公式进行因式分解,∴m-1=±2,解得m=-1或m=3.9.(2021·娄底期末)如果(x-3)(2x+4)=2x2-mx+n,那么m,n的值分别是( C )A.2,12 B.-2,12C.2,-12 D.-2,-12【解析】∵(x-3)(2x+4)=2x2-2x-12=2x2-mx+n,∴-m=-2,n=-12,解得m=2,n=-12.10.(2021·长沙期末)定义:若一个正整数能表示为两个连续自然数的平方差,那么就称这个正整数为“明德数”.如:1=12-02,3=22-12,5=32-22,因此1,3,5这三个数都是“明德数”.则介于1到200之间的所有“明德数”之和为( A )A.10 000 B.40 000 C.200 D.2 500【解析】介于1到200之间的所有“明德数”之和为:(12-02)+(22-12)+(32-22)+…+(992-982)+(1002-992)=12-02+22-12+32-22+42-32+…+992-982+1002-992=1002=10 000.二、填空题(每小题3分,共24分)11.(2020·丹东中考)因式分解:mn3-4mn=__mn(n+2)(n-2)__.【解析】原式=mn(n2-4)=mn(n+2)(n-2).12.(2020·咸宁中考)因式分解:mx2-2mx+m=__m(x-1)2__.【解析】mx2-2mx+m=m(x2-2x+1)=m(x-1)2.13.计算:(π-3)0+|-2 021|=__2__022__.【解析】原式=1+2 021=2 022.14.(2020·十堰中考)已知x+2y=3,则1+2x+4y=__7__.【解析】∵x+2y=3,∴2(x+2y)=2x+4y=2×3=6,∴1+2x+4y=1+6=7.15.如果(m2+n2+1)与(m2+n2-1)的乘积为15,那么m2+n2的值为__4__.【解析】∵(m2+n2+1)与(m2+n2-1)的乘积为15,∴(m2+n2+1)(m2+n2-1)=15,∴(m2+n2)2-1=15,即(m2+n2)2=16,解得m2+n2=4(负数舍去).16.已知a3n=5,b2n=3,则a6n·b4n的值为__225__.【解析】a6n·b4n=a3n×2·b2n×2=(a3n)2·(b2n)2=52·32=225.17.把一根20 cm长的铁丝分成两段,将每一段围成一个正方形,若这两个正方形的面积之差是5 cm2,则这两段铁丝的长分别为__12__cm和8__cm__.【解析】设其中较长的一段的长为x cm(10<x<20),则另一段的长为(20-x)cm.则两个小正方形的边长分别为1x cm和41(20-x)cm.4∵两正方形面积之差为5 cm2,∴(14x)2-[14(20-x)]2=5,解得x=12.则另一段长为20-12=8(cm).∴两段铁丝的长分别为12 cm和8 cm. 18.观察、分析、猜想:1×2×3×4+1=52;2×3×4×5+1=112;3×4×5×6+1=192;4×5×6×7+1=292;n(n+1)(n+2)(n+3)+1=__[n(n+3)+1]2__.(n为整数)【解析】∵1×2×3×4+1=[(1×4)+1]2=52,2×3×4×5+1=[(2×5)+1]2=112,3×4×5×6+1=[(3×6)+1]2=192,4×5×6×7+1=[(4×7)+1]2=292,∴n(n+1)(n+2)(n+3)+1=[n(n+3)+1]2.三、解答题(共46分)19.(6分)(1)计算:[x(x2y2-xy)-y(x2-x3y)]÷3x2y.(2)计算:(2x-3y)2-(y+3x)(3x-y).(3)已知x m=3,x n=2,求x3m+2n的值.(4)解方程:4(x-2)(x+5)-(2x-3)(2x+1)=11.【解析】(1)[x(x2y2-xy)-y(x2-x3y)]÷3x2y=(x3y2-x2y-x2y+x3y2) ÷3x2y=(2 x3y2-2x2y) ÷3x2y=2 x3y2÷3x2y-2x2y÷3x2y=23xy-23.(2)(2x-3y) 2-(y+3x)(3x-y)=4x2-12xy+9y2-(9x2-y2)=4x2-12xy+9y2-9x2+y2=-5x2-12xy+10y2.(3)因为x m=3,x n=2,所以x3m+2n=x3m×x2n=(x m)3×(x n)2=33×22=108.(4)4(x2+5x-2x-10)-(4x2+2x-6x-3)=4(x2+3x-10)-(4x2-4x -3)=11,4x2+12x-40-4x2+4x+3=11,移项合并同类项得16x=48,x=3.20.(6分)某同学化简a(a+2b)-(a+b)(a-b)出现了错误,解答过程如下:原式=a2+2ab-(a2-b2) (第一步)=a2+2ab-a2-b2(第二步)=2ab-b2 (第三步)(1)该同学解答过程从第____步开始出错,错误的原因是______________;(2)写出此题正确的解答过程.【解析】(1)该同学解答过程从第二步开始出错,错误的原因是去括号时没有变号.答案:二 去括号时没有变号(2)原式=a2+2ab-(a2-b2)=a2+2ab-a2+b2=2ab+b2.21(8分)甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“-a”,得到的结果为6x2+11x-10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2-9x +10.(1)求正确的a,b的值.(2)计算这道乘法题的正确结果.【解析】(1)(2x-a)(3x+b)=6x2+2bx-3ax-ab=6x2+(2b-3a)x-ab=6x2+11x-10.(2x+a)(x+b)=2x2+2bx+ax+ab=2x2+(2b+a)x+ab=2x2-9x+10.∴{2b-3a=11,2b+a=-9,解得{a=-5,b=-2.(2)这道乘法题的正确结果为:(2x-5)(3x-2)=6x2-4x-15x+10=6x2-19x+10.22.(8分)已知a,b,c分别是△ABC的三边.(1)分别将多项式ac-bc,-a2+2ab-b2进行因式分解.(2)若ac-bc=-a2+2ab-b2,试判断△ABC的形状,并说明理由.【解析】(1)ac-bc=c(a-b),-a2+2ab-b2=-(a2-2ab+b2)=-(a -b)2.(2)∵ac-bc=-a2+2ab-b2,∴c(a-b)=-(a-b)2,c(a-b)+(a-b)2=0,(a-b)(c+a-b)=0,∵a,b,c分别是△ABC的三边,满足两边之和大于第三边,即c+a-b>0,∴a-b=0,即a=b,故△ABC的形状是等腰三角形.23.(8分)有一个边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.【解析】由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2;方案三:a2+[a+(a+b)]b2+[a+(a+b)]b2=a2+ab+12b2+ab+12b2=a2+2ab+b2=(a+b)2.24.(10分)(2021·潍坊期末)阅读下列材料,并回答问题:若一个正整数x能表示成a2-b2(a,b是正整数,且a>b)的形式,则正整数x称为“明礼崇德数”.例如:因为7=2×3+1=32+2×3+1-32=(3+1)2-32=42-32,所以7是“明礼崇德数”;再如:因为12=4×3=32+2×3+1-32+2×3-1=(3+1)2-(32-2×3+1)=(3+1)2-(3-1)2=42-22,所以12是“明礼崇德数”;再如:M=x2+2xy=x2+2xy+y2-y2=(x+y)2-y2(x,y是正整数),所以M也是“明礼崇德数”.问题1:2 021是“明礼崇德数”吗?说明理由;问题2:2 020是“明礼崇德数”吗?说明理由;问题3:已知N=x2-y2+4x-6y+k(x,y是正整数,k是常数,且x >y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由.【解析】问题1:2 021是“明礼崇德数”.理由如下:2 021=2×1 010+1=1 0102+2×1 010+1-1 0102=1 0112-1 0102 ;问题2:2 020是“明礼崇德数”.理由如下:2 020=4×505=(5052+2×505+1)-(5052-2×505+1)=5062-5042;问题3:∵N=x2-y2+4x-6y+k=(x2+4x+4)-(y2+6y+9)+k+5=(x+2)2-(y+3)2+k+5,∴当k+5=0时,N=(x+2)2-(y+3)2为“明礼崇德数”,此时k=-5,故当k=-5时,N为“明礼崇德数”.关闭Word文档返回原板块。

八年级数学上册《第十四章 整式的乘法》单元测试题及答案(人教版)

八年级数学上册《第十四章 整式的乘法》单元测试题及答案(人教版)

八年级数学上册《第十四章 整式的乘法》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列运算中,结果是a 5的是( )A .a 2•a 3B .a 10÷a 2C .(a 2)3D .(﹣a )52.下列计算中正确的是( )A .a ×a 2×a 3=a 6B .a 3+a 3=2a 6C .a 6÷a 3=a 2D .(a 2)3=a 53.若(x-5)(x+4)=x 2+ax-20,则a 的值为( )A .-5B .-1C .1D .44.若a 为正整数,则(a⋅a⋯⋯a)2a 个=( )A .a 2aB .2aaC .aaD .a 25.(−x +2y)(x −2y)2[−(−x +2y)]3 =( )A .−(x −2y)6B .(x −2y)6C .(−x +2y)6D .−(x +2y)66.若(x 2+px+8)(x 2-3x+q)乘积中不含 x 2 项和 x 3 项,则p 、q 的值为( )A .p=0,q=0B .p=3,q=1C .p=–3, q=–9D .p=–3,q=17.已知x a =2,x b =4则x 2a−b 的值为( ).A .0B .1C .8D .168.某些代数恒等式可用几何图形的面积来验证,如图所示的几何图形的面积可验证的代数恒等式是()A .2a(a +b)=2a 2+2abB .2a(2a +b)=4a 2+2abC .(a +b)2=a 2+2ab +b 2D .(a +b)(a −b)=a 2−b 2二、填空题9.﹣2a (a ﹣b )= .10.计算 6m 6n 3÷3m 2n 211.(x ﹣1)(x+a )的结果是关于x 的二次二项式,则a= .12.已知(x+1)x+4=1,则x= .13.若(x+3)(x2−ax+7)的乘积中不含x的一次项,则a=.三、解答题14.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=- 14,y=- 12.15.计算:(1)(5a2b2c3)4÷(﹣5a3bc)2;(2)(2a2b)4•3ab2c÷3ab2•4b.16.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=−2时,求此时y的值.17.如图,将一个长小形铁皮剪去一个小正方形.(1)用含有a,b的代数式表示余下阴影部分的面积;(2)当a=6,b=2时,求余下阴影部分的面积.18.题目:若a2+a﹣4=0,求代数式(a+2)2+3(a+1)(a﹣1)的值.小明的解法如下:原式=a2+4a+4+3(a2﹣1)(第一步)=a2+4a+4+3a2﹣1(第二步)=4a2+4a+3(第三步)由a2+a﹣4=0得a2+a=4,(第四步)所以原式=4a2+4a+3=4(a2+a)+3=4×4+3=19(第五步)根据小明的解法解答下列问题:(1)小明的解答过程在第步上开始出现了不符合题意,错误的原因是;(2)请你借鉴小明的解题方法,写出此题的符合题意解答过程.19.(1)计算下面两组算式:①(3×5)2与32×52;②[(−2)×3]2与(−2)2×32;(2)根据以上计算结果想开去:(ab)3等于什么?(直接写出结果)(3)猜想与验证:当n为正整数时,(ab)n等于什么? 请你利用乘方的意义说明理由.(4)利用上述结论,求(−4)2020×0.252021的值.参考答案1.A2.A3.B4.A5.A6.B7.B8.A9.﹣2a2+2ab 10.2m4n11.0或1 12.-4或-2或013.7314.解:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)].=2xy-y2当x=- 14,y=- 12时,原式=0.15.(1)解:(5a2b2c3)4÷(﹣5a3bc)2=54a8b8c12÷52a6b2c2=25a2b6c10(2)解:(2a2b)4•3ab2c÷3ab2•4b=16a8b4•3ab2c÷3ab2•4b=(16×3÷3×4)(a8+1﹣1b4+2﹣2+1c)=64a8b5c16.(1)解:∵x=2m+1∴2m=x−1∴y=3+(22)m=3+(2m)2=3+(x−1)2=x2−2x+4(2)解:当x=−2时17.解:(1)根据图形可得:S阴影部分的面积=(a+b)(2a+b)﹣a2=2a2+ab+2ab+b2﹣a2=a2+3ab+b2;(2)当a=6,b=2时S阴影部分的面积=62+3×6×2+22=36+36+4=76.18.(1)二;去括号时,未将﹣1也乘以3(2)解:原式=a2+4a+4+3(a2﹣1)(第一步)=a2+4a+4+3a2﹣3(第二步)=4a2+4a+1(第三步)由a2+a﹣4=0得a2+a=4,(第四步)所以原式=4a2+4a+1=4(a2+a)+1=4×4+1=17(第五步).19.(1)解:①(3×5)2 =152=22532×52 =9×25=225(3×5)2 = 32×52②[(−2)×3]2 =(-6)2=36(−2)2×32 =4×9=36[(−2)×3]2 = (−2)2×32(2)(ab)3=a3b3(3)解:(ab)n=(ab)·(ab)·⋯·(ab)︸n个=(a·a·⋯·a︸n个)·(b·b·⋯·b︸n个)=a n b n(4)解:(−4)2020×0.252021 = (−4×0.25)2020×0.25=1×0.25=0.25。

整式的乘法练习题

整式的乘法练习题

14.1整式的乘法单元练习题一、选择题1、计算下列各式结果等于54x 的是( )A 、225x x ⋅B 、225x x + C、x x +35 D、x x 354+2、下列计算错误的是( ).A .(-2x)3=-2x 3B .-a 2·a=-a3C .(-x)9+(-x)9=-2x9D .(-2a 3)2=4a 63、下面是某同学的作业题:○13a+2b=5ab ○24m 3n-5mn 3=-m 3n ○35236)2(3x x x -=-⋅ ○44a 3b ÷(-2a 2b)=-2a ○5(a 3)2=a 5 ○6(-a)3÷(-a)=-a 2 其中正确的个数是( ) A 、1 B 、2 C 、3 D 、4 4、若(2x -1)0=1,则( ).A .x≥12-B .x≠12-C .x≤12-D .x≠12 5、若(x x -2+m )(x -8)中不含x 的一次项,则m 的值为( )A 、8B 、-8C 、0D 、8或-8 6、化简2)2()2(a a a --⋅-的结果是( )A .0B .22aC .26a -D .24a - 7、下列各式的积结果是-3x 4y 6的是( ). A .213x -·(-3xy 2)3 B .21()3x -·(-3xy 2)3 C .213x -·(-3x 2y 3)2 D .21()3x -·(-3xy 3)2 8、如果a 2m -1·am +2=a 7,则m 的值是( ).A .2B .3C .4D .59、210+(-2)10所得的结果是( ). A .211B .-211C .-2D .210、计算(32)2003×1.52002×(-1)2004的结果是( ) A 、32 B 、23 C 、-32D 、-23 11、(-5x)2·52xy 的运算结果是( ).A 、10y x 3B 、-10y x 3C 、-2x 2y D 、2x 2y12、(x -4)(x +8)=x 2+mx +n 则m ,n 的值分别是( ).A .4,32B .4,-32C .-4,32D .-4,-3213、当()mn mnb 6-=-成立,则( )A 、m 、n 必须同时为正奇数B 、m 、n 必须同时为正偶数C 、m 为奇数D 、m 为偶数。

《第14章整式的乘法与因式分解》单元测试题(含答案).doc

《第14章整式的乘法与因式分解》单元测试题(含答案).doc

(第10题图)第十四章 整式的乘法与因式分解一、选择题1.下列各式由左边到右边的变形为因式分解的是( )A.a 2-b 2+1=(a+b)(a-b)+1B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t2.分解因式:x 3-x,结果为( )A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1)4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 26.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .17、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。

A 、222b ab a ++;B 、222b ab a +--;C 、222b ab a -+-;D 、222b ab a ++-9、已知x 2+kxy+64y 2是一个完全式,则k 的值是( )A 、8B 、±8C 、16D 、±1610、如下图(1),边长为a 的大正方形中一个边长为b小正方形,小明将图(1)的阴影部分拼成了一个矩形,如图(2)。

这一过程可以验证( )A 、a 2+b 2-2ab=(a -b)2 ;B 、a 2+b 2+2ab=(a+b)2 ;C 、2a 2-3ab+b 2=(2a -b)(a -b) ;D 、a 2-b 2=(a+b) (a -b)二、填空题11.若单项式-3x 4a-b y 2与3x 3y a+b 是同类项,则这两个单项式的积为 . 图1 图212.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.13.若16b2+a2+m是完全平方式,则m= .14.分解因式:x3﹣x= .15.因式分解:43a﹣122a+9a= .16、若4x2+kx+25=(2x-5)2,那么k的值是三、解答题17.(8分)因式分解:(1)3a2-27b2; (2)x2-8(x-2).18. (10分)计算:(1)已知a+b=3,ab=-2,求a2+b2和a2-ab+b2的值;(2)已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值;(3)已知a-b=1,a2+b2=25,求ab的值.19.已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2-2ab+b2-4a+4b+4=0,求a,b的值.20、李老师给学生出了一道题:当a=0.35,b= -0.28时,求3323323a ab a b a a b a b a-+++--的值.题目出完后,小聪说:“老师给76336310的条件a=0.35,b= -0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?21、如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b4答案BDCCA BACDD11.-9x 6y 412.013.±8ab14.x (x+1)(x ﹣1).15.a 2(23)a -16.-20;17.解 (1)3a 2-27b 2=3(a 2-9b 2)=3(a+3b)(a-3b);(2)x 2-8(x-2)=x 2-8x+16=(x-4)2.18 (1)a 2+b 2=(a+b)2-2ab=32-2×(-2)=13;a 2-ab+b 2=(a+b)2-3ab=32-3×(-2)=15.(2)∵(x+y)2=x 2+y 2+2xy=1,(x-y)2=x 2+y 2-2xy=49,即解得(3)∵a-b=1,∴(a-b)2=a 2+b 2-2ab=1.∵a 2+b 2=25,∴25-2ab=1,解得ab=12.19.解 ∵长方形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a 2-2ab+b 2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得方程组解得 20.原式=332(7310)(66)(33)0a a b a b +-+-++-=,合并得结果为0,与a 、b 的取值无关,所以小明说的有道理.21.4;6;4;。

第12章《整式的乘除》单元测试(含答案解析)

第12章《整式的乘除》单元测试(含答案解析)

<第12章整式的乘除>一、选择题1.假设3×9m×27m =321 ,那么m的值为 ( )A.3 B.4 C.5 D.62.要使多项式 (x2 +px +2 ) (x﹣q )不含关于x的二次项 ,那么p与q的关系是 ( ) A.相等 B.互为相反数C.互为倒数 D.乘积为﹣13.假设|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,那么 (3x﹣y )3的值为 ( )A.1 B.9 C.﹣9 D.274.假设x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,那么k的值为 ( )A.3 B.6 C.±6 D.±815.多项式 (17x2﹣3x +4 )﹣ (ax2 +bx +c )能被5x整除 ,且商式为2x +1 ,那么a﹣b +c = ( )A.12 B.13 C.14 D.196.以下运算正确的选项是 ( )A.a +b =ab B.a2•a3 =a5C.a2 +2ab﹣b2 = (a﹣b )2D.3a﹣2a =17.假设a4 +b4 +a2b2 =5 ,ab =2 ,那么a2 +b2的值是 ( )A.﹣2 B.3 C.±3 D.28.以下因式分解中 ,正确的选项是 ( )A.x2y2﹣z2 =x2 (y +z ) (y﹣z ) B.﹣x2y +4xy﹣5y =﹣y (x2 +4x +5 )C. (x +2 )2﹣9 = (x +5 ) (x﹣1 ) D.9﹣12a +4a2 =﹣ (3﹣2a )29.设一个正方形的边长为1cm ,假设边长增加2cm ,那么新正方形的面积增加了 ( )A.6cm2B.5cm2C.8cm2D.7cm210.在边长为a的正方形中挖去一个边长为b的小正方形 (a>b ) (如图甲 ) ,把余下的局部拼成一个矩形 (如图乙 ) ,根据两个图形中阴影局部的面积相等 ,可以验证 ( )A. (a +b )2 =a2 +2ab +b2B. (a﹣b )2 =a2﹣2ab +b2C.a2﹣b2 = (a +b ) (a﹣b ) D. (a +2b ) (a﹣b ) =a2 +ab﹣2b2二、填空题11.假设把代数式x2﹣2x﹣3化为 (x﹣m )2 +k的形式 ,其中m ,k为常数 ,那么m +k = .12.现在有一种运算:a※b =n ,可以使: (a +c )※b =n +c ,a※ (b +c ) =n﹣2c ,如果1※1 =2 ,那么2021※2021 =.13.如果x +y =﹣4 ,x﹣y =8 ,那么代数式x2﹣y2的值是.14.假设 (x﹣m )2 =x2 +x +a ,那么m = .15.假设x3 =﹣8a9b6 ,那么x .16.计算: (3m﹣n +p ) (3m +n﹣p ) = .17.阅读以下文字与例题将一个多项式分组后 ,可提公因式或运用公式继续分解的方法是分组分解法.例如: (1 )am +an +bm +bn = (am +bm ) + (an +bn )=m (a +b ) +n (a +b )= (a +b ) (m +n )(2 )x2﹣y2﹣2y﹣1 =x2﹣ (y2 +2y +1 )=x2﹣ (y +1 )2= (x +y +1 ) (x﹣y﹣1 )试用上述方法分解因式a2 +2ab +ac +bc +b2 = .18.观察 ,分析 ,猜想:1×2×3×4 +1 =52;2×3×4×5 +1 =112;3×4×5×6 +1 =192;4×5×6×7 +1 =292;n (n +1 ) (n +2 ) (n +3 ) +1 = . (n为整数 )三、解答题 (共46分 )19.通过对代数式的适当变形 ,求出代数式的值.(1 )假设x +y =4 ,xy =3 ,求 (x﹣y )2 ,x2y +xy2的值.(2 )假设x = ,y = ,求x2﹣xy +y2的值.(3 )假设x2﹣5x =3 ,求 (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1的值.(4 )假设m2 +m﹣1 =0 ,求m3 +2m2 +2021的值.20.2a =5 ,2b =3 ,求2a +b +3的值.21.利用因式分解计算:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012.22.先化简 ,再求值:x (x﹣2 )﹣ (x +1 ) (x﹣1 ) ,其中x =10.23.利用分解因式说明: (n +5 )2﹣ (n﹣1 )2能被12整除.24.观察以下等式:1× =1﹣ ,2× =2﹣ ,3× =3﹣,…(1 )猜想并写出第n个等式;(2 )证明你写出的等式的正确性.<第12章整式的乘除>参考答案与试题解析一、选择题1.假设3×9m×27m =321 ,那么m的值为 ( )A.3 B.4 C.5 D.6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先逆用幂的乘方的性质转化为以3为底数的幂相乘 ,再利用同底数幂的乘法的性质计算后根据指数相等列出方程求解即可.【解答】解:3•9m•27m =3•32m•33m =31 +2m +3m =321 ,∴1 +2m +3m =21 ,解得m =4.应选B.【点评】此题考查了幂的乘方的性质的逆用 ,同底数幂的乘法 ,转化为同底数幂的乘法 ,理清指数的变化是解题的关键.2.要使多项式 (x2 +px +2 ) (x﹣q )不含关于x的二次项 ,那么p与q的关系是 ( ) A.相等 B.互为相反数C.互为倒数 D.乘积为﹣1【考点】多项式乘多项式.【分析】把式子展开 ,找到所有x2项的所有系数 ,令其为0 ,可求出p、q的关系.【解答】解:∵ (x2 +px +2 ) (x﹣q ) =x3﹣qx2 +px2﹣pqx +2x﹣2q =﹣2q + (2﹣pq )x + (p﹣q )x2 +x3.又∵结果中不含x2的项 ,∴p﹣q =0 ,解得p =q.应选A.【点评】此题主要考查了多项式乘多项式的运算 ,注意当要求多项式中不含有哪一项时 ,应让这一项的系数为0.3.假设|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,那么 (3x﹣y )3的值为 ( )A.1 B.9 C.﹣9 D.27【考点】解二元一次方程组;非负数的性质:绝||对值;非负数的性质:偶次方.【专题】方程思想.【分析】先根据相反数的定义列出等式|x +y +1| + (x﹣y﹣2 )2 =0 ,再由非负数的性质求得x、y的值 ,然后将其代入所求的代数式 (3x﹣y )3并求值.【解答】解:∵|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,∴|x +y +1| + (x﹣y﹣2 )2 =0 ,∴ ,解得 , ,∴ (3x﹣y )3 = (3× + )3 =27.应选D.【点评】此题主要考查了二元一次方程组的解法、非负数的性质﹣﹣绝||对值、非负数的性质﹣﹣偶次方.解题的关键是利用互为相反数的性质列出方程 ,再由非负数是性质列出二元一次方程组.4.假设x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,那么k的值为 ( )A.3 B.6 C.±6 D.±81【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构判断即可确定出k的值.【解答】解:∵x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,∴﹣k =±6 ,那么k =±6.应选C.【点评】此题考查了完全平方式 ,熟练掌握完全平方公式是解此题的关键.5.多项式 (17x2﹣3x +4 )﹣ (ax2 +bx +c )能被5x整除 ,且商式为2x +1 ,那么a﹣b +c = ( )A.12 B.13 C.14 D.19【考点】整式的除法.【专题】计算题.【分析】根据商乘以除数等于被除数列出关系式 ,整理后利用多项式相等的条件确定出a ,b ,c的值 ,即可求出a﹣b +c的值.【解答】解:依题意 ,得 (17x2﹣3x +4 )﹣ (ax2 +bx +c ) =5x (2x +1 ) ,∴ (17﹣a )x2 + (﹣3﹣b )x + (4﹣c ) =10x2 +5x ,∴17﹣a =10 ,﹣3﹣b =5 ,4﹣c =0 ,解得:a =7 ,b =﹣8 ,c =4 ,那么a﹣b +c =7 +8 +4 =19.应选D.【点评】此题考查了整式的除法 ,熟练掌握运算法那么是解此题的关键.6.以下运算正确的选项是 ( )A.a +b =ab B.a2•a3 =a5C.a2 +2ab﹣b2 = (a﹣b )2D.3a﹣2a =1【考点】同底数幂的乘法;合并同类项.【专题】存在型.【分析】分别根据合并同类项、同底数幂的乘法及完全平方公式对各选项进行解答即可.【解答】解:A、a与b不是同类项 ,不能合并 ,故本选项错误;B、由同底数幂的乘法法那么可知 ,a2•a3 =a5 ,故本选项正确;C、a2 +2ab﹣b2不符合完全平方公式 ,故本选项错误;D、由合并同类项的法那么可知 ,3a﹣2a =a ,故本选项错误.应选B.【点评】此题考查的是合并同类项、同底数幂的乘法及完全平方公式 ,熟知以上知识是解答此题的关键.7.假设a4 +b4 +a2b2 =5 ,ab =2 ,那么a2 +b2的值是 ( )A.﹣2 B.3 C.±3 D.2【考点】因式分解 -运用公式法.【分析】利用完全平方公式分解因式进而求出即可.【解答】解:由题意得 (a2 +b2 )2 =5 +a2b2 ,因为ab =2 ,所以a2 +b2 = =3.应选:B.【点评】此题主要考查了公式法分解因式 ,熟练利用完全平方公式是解题关键.8.以下因式分解中 ,正确的选项是 ( )A.x2y2﹣z2 =x2 (y +z ) (y﹣z ) B.﹣x2y +4xy﹣5y =﹣y (x2 +4x +5 )C. (x +2 )2﹣9 = (x +5 ) (x﹣1 ) D.9﹣12a +4a2 =﹣ (3﹣2a )2【考点】提公因式法与公式法的综合运用.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义 ,利用排除法求解.【解答】解:A、用平方差公式 ,应为x2y2﹣z2 = (xy +z ) (xy﹣z ) ,故本选项错误;B、提公因式法 ,符号不对 ,应为﹣x2y +4xy﹣5y =﹣y (x2﹣4x +5 ) ,故本选项错误;C、用平方差公式 , (x +2 )2﹣9 = (x +2 +3 ) (x +2﹣3 ) = (x +5 ) (x﹣1 ) ,正确;D、完全平方公式 ,不用提取负号 ,应为9﹣12a +4a2 = (3﹣2a )2 ,故本选项错误.应选C.【点评】此题考查了提公因式法 ,公式法分解因式 ,熟练掌握公式的结构特征是解题的关键.9.设一个正方形的边长为1cm ,假设边长增加2cm ,那么新正方形的面积增加了 ( )A.6cm2B.5cm2C.8cm2D.7cm2【考点】完全平方公式.【专题】计算题.【分析】根据题意列出算式 ,计算即可得到结果.【解答】解:根据题意得: (1 +2 )2﹣12 =9﹣1 =8 ,即新正方形的面积增加了8cm2 ,应选C.【点评】此题考查了完全平方公式 ,熟练掌握完全平方公式是解此题的关键.10.在边长为a的正方形中挖去一个边长为b的小正方形 (a>b ) (如图甲 ) ,把余下的局部拼成一个矩形 (如图乙 ) ,根据两个图形中阴影局部的面积相等 ,可以验证 ( )A. (a +b )2 =a2 +2ab +b2B. (a﹣b )2 =a2﹣2ab +b2C.a2﹣b2 = (a +b ) (a﹣b ) D. (a +2b ) (a﹣b ) =a2 +ab﹣2b2【考点】平方差公式的几何背景.【分析】第|一个图形中阴影局部的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积 ,等于a2﹣b2;第二个图形阴影局部是一个长是 (a +b ) ,宽是 (a﹣b )的长方形 ,面积是 (a +b ) (a﹣b );这两个图形的阴影局部的面积相等.【解答】解:∵图甲中阴影局部的面积 =a2﹣b2 ,图乙中阴影局部的面积 = (a +b ) (a﹣b ) , 而两个图形中阴影局部的面积相等 ,∴阴影局部的面积 =a2﹣b2 = (a +b ) (a﹣b ).应选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差 ,这个公式就叫做平方差公式.二、填空题11.假设把代数式x2﹣2x﹣3化为 (x﹣m )2 +k的形式 ,其中m ,k为常数 ,那么m +k = .【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构 ,按照要求x2﹣2x﹣3 =x2﹣2x +1﹣4 = (x﹣1 )2﹣4 ,可知m =1.k =﹣4 ,那么m +k =﹣3.【解答】解:∵x2﹣2x﹣3 =x2﹣2x +1﹣4 = (x﹣1 )2﹣4 ,∴m =1 ,k =﹣4 ,∴m +k =﹣3.故答案为:﹣3.【点评】此题主要考查完全平方公式的变形 ,熟记公式结构是解题的关键.完全平方公式: (a±b )2 =a2±2ab +b2.12.现在有一种运算:a※b =n ,可以使: (a +c )※b =n +c ,a※ (b +c ) =n﹣2c ,如果1※1 =2 ,那么2021※2021 =.【考点】整式的除法.【专题】新定义.【分析】先设出2021※2021 =m ,再根据新运算进行计算 ,求出m的值即可.【解答】解:设2021※2021 =m ,由得 , (1 +2021 )※1 =2 +2021 ,2021※ (2021﹣2021 ) =m +2×2021 ,那么2 +2021 =m +2×2021 ,解得,m =2021※2021 = (2 +2021 )﹣2021×2 =﹣2021.故答案为:﹣2021.【点评】此题主要考查了有理数的混合运算 ,在解题时要注意按照两者的转换公式进行计算即可.13.如果x +y =﹣4 ,x﹣y =8 ,那么代数式x2﹣y2的值是.【考点】平方差公式.【专题】计算题.【分析】由题目可发现x2﹣y2 = (x +y ) (x﹣y ) ,然后用整体代入法进行求解.【解答】解:∵x +y =﹣4 ,x﹣y =8 ,∴x2﹣y2 = (x +y ) (x﹣y ) = (﹣4 )×8 =﹣32.故答案为:﹣32.【点评】此题考查了平方差公式 ,由题设中代数式x +y ,x﹣y的值 ,将代数式适当变形 ,然后利用 "整体代入法〞求代数式的值.14.假设 (x﹣m )2 =x2 +x +a ,那么m = .【考点】完全平方公式.【专题】计算题.【分析】等式左边利用完全平方公式展开 ,利用多项式相等的条件确定出m的值即可.【解答】解:∵ (x﹣m )2 =x2 +x +a =x2﹣2mx +m2 ,∴﹣2m =1 ,a =m2 ,那么m =﹣ ,a =.故答案为:﹣【点评】此题考查了完全平方公式 ,熟练掌握完全平方公式是解此题的关键.15.假设x3 =﹣8a9b6 ,那么x .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方法那么进行解答即可.【解答】解:∵x3 =﹣8a9b6 ,∴x3 = (﹣2a3b2 )3 ,∴x =﹣2a3b2.故答案为: =﹣2a3b2.【点评】此题考查的是幂的乘方与积的乘方法那么 ,先根据题意得出x3 = (﹣2a3b2 )3是解答此题的关键.16.计算: (3m﹣n +p ) (3m +n﹣p ) = .【考点】平方差公式;完全平方公式.【专题】计算题.【分析】原式利用平方差公式化简 ,再利用完全平方公式计算即可得到结果.【解答】解:原式 =9m2﹣ (n﹣p )2 =9m2﹣n2 +2np﹣p2.故答案为:9m2﹣n2 +2np﹣p2【点评】此题考查了平方差公式 ,以及完全平方公式 ,熟练掌握公式是解此题的关键.17.阅读以下文字与例题将一个多项式分组后 ,可提公因式或运用公式继续分解的方法是分组分解法.例如: (1 )am +an +bm +bn = (am +bm ) + (an +bn )=m (a +b ) +n (a +b )= (a +b ) (m +n )(2 )x2﹣y2﹣2y﹣1 =x2﹣ (y2 +2y +1 )=x2﹣ (y +1 )2= (x +y +1 ) (x﹣y﹣1 )试用上述方法分解因式a2 +2ab +ac +bc +b2 = .【考点】因式分解 -分组分解法.【专题】压轴题;阅读型.【分析】首||先进行合理分组 ,然后运用提公因式法和公式法进行因式分解.【解答】解:原式 = (a2 +2ab +b2 ) + (ac +bc )= (a +b )2 +c (a +b )= (a +b ) (a +b +c ).故答案为 (a +b ) (a +b +c ).【点评】此题考查了因式分解法 ,要能够熟练运用分组分解法、提公因式法和完全平方公式.18.观察 ,分析 ,猜想:1×2×3×4 +1 =52;2×3×4×5 +1 =112;3×4×5×6 +1 =192;4×5×6×7 +1 =292;n (n +1 ) (n +2 ) (n +3 ) +1 = . (n为整数 )【考点】规律型:数字的变化类.【分析】观察以下各式:1×2×3×4 +1 =52 = (12 +3×1 +1 )2;2×3×4×5 +1 =112 = (22 +3×2 +1 )2;3×4×5×6 +1 =192 = (32 +3×3 +1 )2 ,4×5×6×7 +1 =292 = (42 +3×4 +1 )2 ,得出规律:n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2 , (n≥1 ).【解答】解:∵1×2×3×4 +1 =[ (1×4 ) +1]2 =52 ,2×3×4×5 +1 =[ (2×5 ) +1]2 =112 ,3×4×5×6 +1 =[ (3×6 ) +1]2 =192 ,4×5×6×7 +1 =[ (4×7 ) +1]2 =292 ,∴n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2.故答案为:n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2.【点评】此题考查了数字的变化规律 ,解答此题的关键是发现规律为n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3n +1 )2 (n≥1 ) ,一定要通过观察 ,分析、归纳并发现其中的规律.三、解答题 (共46分 )19.通过对代数式的适当变形 ,求出代数式的值.(1 )假设x +y =4 ,xy =3 ,求 (x﹣y )2 ,x2y +xy2的值.(2 )假设x = ,y = ,求x2﹣xy +y2的值.(3 )假设x2﹣5x =3 ,求 (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1的值.(4 )假设m2 +m﹣1 =0 ,求m3 +2m2 +2021的值.【考点】整式的混合运算 -化简求值.【分析】 (1 )将 (x﹣y )2通过配方法转化成 (x +y )2 ,x2y +xy2因式分解即可;(2 )利用配方法转化成 = (x +y )2﹣3xy即可;(3 )根据整式的乘法把式子展开即可;(4 )先把m2 +m﹣1 =0 ,变形为m2 =1﹣m.把m3 +2m2 +2021变形为m2(m +2 ) +2021 = (1﹣m ) (m +2 ) +2021即可;【解答】解: (1 ) (x﹣y )2 =x2﹣2xy +y2 =x2 +2xy +y2﹣4xy = (x +y )2﹣4xy42﹣4×3 =4 , x2y +xy2 =xy (x +y ) =3×4 =12 ,(2 )x2﹣xy +y2 = (x +y )2﹣3xy = ( + +﹣ )2﹣3 ( + ) (﹣ ) = (2 )2﹣3×2 =28﹣6 =22(3 ) (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1 =2x2﹣3x +1﹣ (x2 +2x +1 ) +1 =x2﹣5x +1 =3 +1 =44 )由m2 +m﹣1 =0 ,得m2 =1﹣m.把m3 +2m2 +2021 =m2(m +2 ) +2021 = (1﹣m ) (m +2 ) +2021 =m﹣1﹣m +2 +2021【点评】此题考查了学生的应用能力 ,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.20.2a =5 ,2b =3 ,求2a +b +3的值.【考点】同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法那么求出即可.【解答】解:2a +b +3 =2a•2b•23 =5×3×8 =120.【点评】此题主要考查了同底数幂的乘法运算 ,熟练掌握运算法那么是解题关键.21.利用因式分解计算:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012.【考点】因式分解的应用.【分析】先把原式变形为1 +32﹣22 +52﹣42 +… +1012﹣1002,再因式分解得1 + (3 +2 ) + (5 +4 ) +… + (101 +100 ) ,然后进行计算即可.【解答】解:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012=1 +32﹣22 +52﹣42 +… +1012﹣1002=1 + (3 +2 ) (3﹣2 ) + (5 +4 ) (5﹣4 ) +… + (101 +100 ) (101﹣100 )=1 + (3 +2 ) + (5 +4 ) +… + (101 +100 )==5151.【点评】此题考查了因式分解的应用 ,用到的知识点是平方差公式 ,关键是对要求的式子进行变形 ,注意总结规律 ,得出结果.22.先化简 ,再求值:x (x﹣2 )﹣ (x +1 ) (x﹣1 ) ,其中x =10.【考点】整式的混合运算 -化简求值.【专题】计算题.【分析】按单项式乘以单项式法那么和平方差公式化简 ,然后把给定的值代入求值.【解答】解:原式 =x2﹣2x﹣x2 +1 =﹣2x +1 ,当x =10时 ,原式 =﹣2×10 +1 =﹣19.【点评】考查的是整式的混合运算 ,主要考查了公式法、单项式与多项式相乘以及合并同类项的知识点.23.利用分解因式说明: (n +5 )2﹣ (n﹣1 )2能被12整除.【考点】因式分解的应用.【分析】将原式因式分解 ,结果能被12整除即可.【解答】解:因为 (n +5 )2﹣ (n﹣1 )2 =n2 +10n +25﹣ (n2﹣2n +1 ) =12 (n +2 ) ,所以 (n +5 )2﹣ (n﹣1 )2能被12整除.【点评】考查了因式分解的应用 ,解决此题的关键是用因式分解法把所给式子整理为含有12的因数相乘的形式.24.观察以下等式:1× =1﹣ ,2× =2﹣ ,3× =3﹣,…(1 )猜想并写出第n个等式;(2 )证明你写出的等式的正确性.【考点】规律型:数字的变化类.【专题】证明题;探究型.【分析】 (1 )等号左边第|一个因数为整数 ,与第二个因数的分子相同 ,第二个因数的分母比分子多1;等号右边为等号左边的第|一个数式﹣第二个因数 ,即n× =n﹣;(2 )把左边进行整式乘法 ,右边进行通分.【解答】解: (1 )猜想:n× =n﹣;(2 )证:右边 = = =左边 ,即n× =n﹣.【点评】主要考查:等式找规律 ,难点是怎样证明 ,不是验证.此题隐含着逆向思维及数学归纳法的思想.。

整式的乘除测试题(3套)及答案

整式的乘除测试题(3套)及答案

北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。

2.单项式z y x 425-的系数是 ,次数是 。

3.多项式5134+-ab ab 有 项,它们分别是 。

4. ⑴ =⋅52x x 。

⑵ ()=43y 。

⑶ ()=322ba 。

⑷ ()=-425y x 。

⑸ =÷39a a 。

⑹=⨯⨯-024510 。

整式的乘法单元测试题

整式的乘法单元测试题

第14章 整式的乘法 单元测试〔提高〕一、填空题:〔每空3分,共30分〕1. ()()25434x y xy -= 。

2. ()200420030.24-⨯= 。

3. ()()()2224a a a +-+= 。

4. 假设2164b m ++是完全平方式,那么m = 。

5. 当3,1a b x y +=-=时,代数式222a ab b x y ++-+的值等于 。

6. 99,98a b ==,代数式22255a ab b a b -+-+= 。

7. :15a a +=,那么221a a+= 。

8. :4,2x y xy +==,那么()2x y -= ,22x y += 。

9. 因式分解〔1〕2291x y -= ,〔2〕2214x y xy +-= 。

〔3〕2514x x --= 。

10.假设()2190m n -+-=,将22mx ny -因式分解得 。

二、选择题:〔每题4分,共24分〕11. 将11n n x x +--因式分解,结果正确的选项是 〔 〕A .()1n x x x --B .()11n x x --C . ()121n x x -- D .()()111n x x x -+- 12.以下各式是因式分解,并且正确的选项是 〔 〕A .()()22a b a b a b +-=- B .123111a a a +=+++ C .()()232111a a a a a --+=-+ D .()()2222a ab b a b a b +-=-+13.把2221a b b -+-因式分解,正确的选项是 〔 〕A . ()()21a b a b b +-+-B .()()11a b a b ++--C . ()()11a b a b +-++D .()()11a b a b +--+14.化简()2003200455-+所得的值为 〔 〕A .5-B .0C .20025D . 200345⨯ 15.给出以下多项式:〔1〕222x xy y +-;〔2〕222x y xy --+;〔3〕22x xy y ++;〔4〕2114x x ++其中能用完全平方公式分解因式的有 〔 〕A 1个B 2个C 3个D 4个 16.在边长为a 的正方形中挖掉一个边长为b 的小正方形〔a b >〕,把余下的局部剪拼成一个矩形, 通过计算两个图形的面积,验证了一个等式,那么这个等式是〔 〕A ()22()a b a b a b -=-+B ()2222a b a ab b +=++ C ()2222a b a ab b -=-+ D ()()2222a b a b a ab b +-=+-三、解答题:〔每题5分,共20分〕17.把以下各式因式分解:〔1〕am an ap -+ 〔2〕325x x -〔3〕2225204x xy y ++ 〔4〕2710y y -+18.把以下各式因式分解:〔1〕212315123m m m ab a b a b +++- 〔2〕()()22a x y b y x -+-〔3〕32412a a a --+ 〔4〕()()241x y x y +-+-四,解答题。

整式的乘法与因式分解全章测试

整式的乘法与因式分解全章测试
29.已知 ,求 的值.
30.已知a+b=3, ab= -12,求下列各式的值.
(1) a2+b2(2) a2-ab+b2
31.分解因式:a2-1+b2-2ab=_______________。
32.分解因式: _______________
三、解答题(每小题4分,共32分)
21.计算
(1) (2)
(3) (4)
22.因式分解
(1) (2)
(3) (4)
四、解答题(每小题5分,共20分)
23.比较 , , 三数的大小,并用“>”号连接.
24.先化简,再求值: ,其中a=1,b=-1.
25.观察下列算式:
①1×3-22=3-4=-1
②2 ×4-32=8-9=-1
《整式的乘法与因式分解》单元测试
一、选择题:(每题4分,共24分)
1.下值分别为()
A. B. C. D.
3.若 是完全平方式,则m的值是()
A.3B.-1C.7D.7或-1
4.下列分解因式正确的是()
A.x3-x=x(x2-1)B.m2+m-6=(m+3)(m-2)
8.设 , ,则A、B的关系为()
A.A>BB.A<BC.A=BD.无法确定
9.下列计算中,正确的是()
A B.
C. D.
10.计算 的结果是()
A.9B. C.2D.
二、填空题(每空4分,共24分)
11. =________.
12.如果 ,那么a+b的值为.
13.一个正方形的边长增加了2cm,面积相应增加了32cm ,则这个正方形的边长为_____cm.
14.已知 , ,则 则值为.
15.因式分解: =.

整式的乘法练习题练习题

整式的乘法练习题练习题

整式的乘法练习题练习题一、选择题:1. 已知a=2,b=3,求2a^2b的值。

A. 12B. 18C. 24D. 362. 若x+y=5,xy=3,求x^2y+xy^2的值。

A. 15B. 12C. 10D. 83. 计算(2x-3y)(2x+3y)的结果。

A. 4x^2-9y^2B. 4x^2+9y^2C. 9y^2-4x^2D. 9y^2+4x^24. 已知(3m+2n)(3m-2n)=9m^2-4n^2,求2m+n的值。

A. 2B. 3C. 4D. 5二、填空题:1. 计算(3x+2)^2的结果,应为______。

2. 若(a+b)(a-b)=a^2-b^2,求a^2+b^2的值,应为______。

3. 已知(2x-1)(3x+1)=6x^2-x-1,求(2x-1)(3x-1)的值,应为______。

4. 若(x+y)^2=x^2+2xy+y^2,求2(x+y)(x-y)的值,应为______。

三、计算题:1. 计算下列表达式,并简化:(a) (x+2)(x-2)(b) (2x+3)^22. 已知x^2-4x+4=0,求x^2-2x的值。

3. 计算(3x-2y)(3x+2y),并用平方差公式简化。

4. 已知(2x-y)^2=4x^2-4xy+y^2,求(2x+y)^2的值。

四、解答题:1. 已知a=1,b=-2,求(a+b)(a-b)的值。

2. 若x^2+4x+4=0,求x^2+4x的值。

3. 已知(3x-y)(3x+y)=9x^2-y^2,求(3x-2y)(3x+2y)的值。

4. 计算(2x+3y)(2x-3y),并用平方差公式简化,然后求(2x+3y)^2的值。

五、应用题:1. 某工厂生产的产品,每件成本为a元,售价为b元,若每件产品的利润为售价减去成本,则利润的表达式为b-a。

若已知a=50元,b=120元,求利润的值。

2. 某公司销售的两种产品,一种产品的利润率为10%,另一种产品的利润率为20%。

《整式的乘法与因式分解》单元测试题(含答案)

《整式的乘法与因式分解》单元测试题(含答案)
8.下列等式从左到右的变形是因式分解的是( )
A.2x(x+3)=2x2+6xB.24xy2=3x•8y2
C.x2+2xy+y2+1=(x+y)2+1D.x2﹣y2=(x+y)(x﹣y)
[答案]D
[解析]
[分析]
根据因式分解的定义逐个判断即可.
[详解]A、不是因式分解,故本选项不符合题意;
B、不是因式分解,故本选项不符合题意;
[答案]9
[解析]
[分析]
根据幂的运算即可得到答案.
[详解]解:20182m-n=(2018m)2÷2018n=62÷4=36÷4=9,故答案为9.
[点睛]本题主要考查了幂 运算法则,解本题的要点在于利用已知条件求出答案.
14.如图,一块直径为A+B的圆形钢板,从中挖去直径分别为A与B的两个圆,则剩下的钢板的面积为_____.
C. 9D.以上答案都不对
3.如果A2n-1An+5=A16,那么n 值为( )
A.3B.4C.5D.6
4.计算(﹣4A2+12A3B)÷(﹣4A2)的结果是( )
A. 1﹣3A BB. ﹣3A BC. 1+3A BD. ﹣1﹣3A B
5.若等式x2+Ax+19=(x﹣5)2﹣B成立,则A+B的值为( )
18.若实数A、B、C满足A﹣B= ,B﹣C=1,那么A2+B2+C2﹣A B﹣B C﹣C A的值是_____
[答案]3+
[解析]
[分析]
利用完全平方公式将代数式变形:A2+B2+C2-A B-B C-C A= (2A2+2B2+2C2-2A B-2B C-2C A)= [(A-B)2+(B-C)2+(A-C)2],即可求代数式的值.

整式的乘除整章练习题(完整)

整式的乘除整章练习题(完整)
4.计算:(1) ____________;(2) _______.
5.已知 ,则 ____________.
6.计算:(1) ______________.(2) ____________.
7.下列计算正确的是( )
A. B.
C. D.
8.下列计算正确的个数为( )
(1) (2) (3) (4)
A.0个B.1个C.2个D.3个
10.计算.
(1)(2x 一3 +4x-1)(一3x);
(2) .
11.计算.
(1)2 - (2 -5b)-b(5 -b);
(2) .
12.先化简,再求值.
(1)m (m+3)+2m(m —3)一3m(m +m-1),其中m ;
(2)4 b( b- b + 6)一2 b (2 —3 b+2 ),其中 =3,b=2.
第1章整式的乘除
第1课时幂的运算(一)
1.计算:(1) _________;(2) _____________.
2.计算:(1) ___________;(2) ______________.
3.计算:(1) ________;(2) ____________.
4.计算: ____________.5.计算:(1) __________;(2) __________.
7.下列运算中,正确的是( )
A.( 一2b)( -2b)= -4b B.(- +2b)( 一2b)=- 一2b
C.( +2b)( 一2b)=- -2b D.(一 一2b)(一 +2b)= -4b
8.在下列各式中,运算结果为36y +49x 的是( )

《整式的乘法与因式分解》单元测试带答案

《整式的乘法与因式分解》单元测试带答案
3.下列运算不正确的是( )
A. B.
C. D.
[答案]D
[解析]
[分析]
各项计算得到结果,即可作出判断.
[详解]A、原式=5A,不符合题意;
B、原式= ,不符合题意;
C、原式=x2+4xy+4y2,不符合题意;
D、原式= ,符合题意,
故选D.
[点睛]此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
《整式的乘法与因式分解》单元测试卷
(时间:120分钟 满分:150分)
一、选择题(每题3分,共33分)
1.下列计算,正确的是( )
A. B. C. D.
2.计算 的结果是()
A. B. C. D.
3.下列运算不正确 是( )
A. B.
C. D.
4.若(x+2)(x﹣1)=x2+mx+n,则m+n=()
18.计 ;
(4) .
[答案](1)-6x3y4;(2)6A4-10A2B;(3) ;(4) .
[解析]
[分析]
原式利用单项式乘以单项式,多项式乘以多项式,以及单项式乘以多项式法则计算即可得到结果.
[详解](1)原式=-6x3y4;
(2)原式=6A4-10A2B;
(3)原式= = ;
[答案]-395
[解析]
[分析]
根据完全平方公式、平方差公式,可得答案.
[详解]原式=(200-1)2-(200-2)(200+2)
=2002-400+1-(2002-4)
=2002-400+1-2002+4
=-395.
点睛]本题考查了平方差公式,利用了完全平方公式,平方差公式.

第一章整式的乘除单元检测试题(含答案)

第一章整式的乘除单元检测试题(含答案)

第一章 整式的乘除单元检测试题班级:__________姓名:__________ 一、单选题(共10题;共30分)1.下列计算错误的是( )A. =4 B. 32×3﹣1=3 C. 20÷2﹣2= D. (﹣(﹣3×3×10102)3=﹣2.7×2.7×101072.已知则 ( ) A. B. 50 C. 500 D. 无法计算无法计算3.若(x ﹣2)(x +3)=x 2+ax +b ,则a 、b 的值分别为(的值分别为( ) A.a =5,b =6 B.a =1,b =﹣6 C.a =1,b =6 D.a =5,b =﹣6 4.已知4y 2+my +9是完全平方式,则m 为( )A. 6 B. ±6 C. ±12 D. 12 5.如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为(a +1)cm 的正方形(a >0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ) A. (2a 2+5a )cm 2 B. (3a +15)cm 2 C. (6a +9)cm 2 D. (6a +15)cm 26.下列计算正确的一项是( )A. a 5+a 5=2a 10 B. (a +2)(a ﹣2)=a 2﹣4 ;C. (a ﹣b )2=a 2﹣b 2 ;D. 4a ﹣2a =2 7.若x n =2,则x 3n 的值为(的值为( )A. 6 B. 8 C. 9 D. 12 8.如果(a -1)0=1成立,则(成立,则( )A. a ≠1≠1 B. a =0 C. a =2 D. a =0或a =2 9.若 , ,且满足,且满足 ,则,则 的值为( ). ). A. 1 B. 2 C. C. D. 10.请你观察图形,依据图形面积之间的关系,不需要添加辅助线,便可以得到一个你熟悉的公式,这个公式是( )A. (x +y )(x ﹣y )=x 2﹣y 2=________。

整式的乘法专项练习

整式的乘法专项练习

整式的乘法单元复习一、幂的运算 1.计算(1)3m 2·2m 3 (2)(2x)2·x 4 (3)(-mn)2(-m 2n)3(5)a 3·(-a)5·(-3a)2·(-7ab 3) (6)3(a-b)2[9(a-b)n+2](b-a)5(7)4774()()a a -+- (8)[(-a)2m ]3·a 3m +[(-a)5m ]2(9)(-ab)3·(-a 2b)·(-a 2b 4c)2 (10) ()[]⋅+323-y x ()[]432-y x +2.整体思想(1)已知:693273=⋅m m ,求m .(2)满足3x+1·2x -3x 2x+1=66,则x = (3)若10m =a ,10n =b ,那么10m+n =______. (4) 已知:a m =2,b n =32,则n m 1032+=________ (5)已知:,52a n =b n =4,则=n 610_______(6)若2x + 5y -3 = 0 则=(7)已知ab 2=-6,求-ab(a 2b 5-ab 3-b)的值3.比较大小(1)比较250与375的大小(2)1405=a ,2103=b ,2802=c ,比较a 、b 、c 的大小关系4.简便运算(1)()200320025.1-32⨯⎪⎭⎫ ⎝⎛ (2)201320142015)1()5.1()32(-⋅-⋅二、整式的乘法1.计算(1)()322635-a ab a - (2)()()x y y x 2332--- (3)(-3x 2y)(-2xy+3yz-1)(4) (-2ab 2)3·(3a 2b-2ab-4b 2) (5)5x(x 2+2x+1)-(2x+3)(x-5)(6) 2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3)2.化简求值 (1)(x-2)(x-3)+2(x+6)(x-5)-3(x 2-7x+13),其中x=(2)(32)(23)(2)(2)a b a b a b a b +----,其中11.5,4a b =-=(3)使(x 2+px+8)(x 2-3x+q)的积中不含x 2和x 3,求p ,q 的值(4)若x 3-6x 2+11x-6=(x-1)(x 2+mx+n),求m ,n 的值3.解方程(1)3x(x+2)+(x+1)(x-1)=4(x 2+8) (2))1)(1(13)12()31(22+-=-+-x x x x4.整体思想(1)已知;,012=-+a a 求2014223++a a 的值(2)已知099052=-+x x ,求1019985623+-+x x x 的值.5.应用已知一个长方形的长增加3cm,宽减少1cm,面积保持不变,若长减少2cm,宽增加4cm,面积也保持不变,求原长方形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.1整式的乘法单元练习题
一、选择题
1、计算下列各式结果等于54
x 的是( )
A 、2
25x x ⋅ B 、22
5x x +
C、x x +35 D、x x 354
+ 2、下列计算错误的是( ).
A .(-2x)3=-2x
3
B .-a 2·a=-a
3
C .(-x)9+(-x)9=-2x
9
D .(-2a 3)2=4a 6
3、下面是某同学的作业题:○
13a+2b=5ab ○24m 3
n-5mn 3
=-m 3
n ○35
2
36)2(3x x x -=-⋅ ○
44a 3b ÷(-2a 2b)=-2a ○5(a 3)2=a 5 ○6(-a)3÷(-a)=-a 2 其中正确的个数是( ) A 、1 B 、2 C 、3 D 、4 4、若(2x -1)0
=1,则( ).
A .x≥12-
B .x≠12-
C .x≤12
- D .x≠1
2
5、若(x x -2
+m )(x -8)中不含x 的一次项,则m 的值为( )
A 、8
B 、-8
C 、0
D 、8或-8 6、化简2
)2()2(a a a --⋅-的结果是( )
A .0
B .22a
C .26a -
D .2
4a - 7、下列各式的积结果是-3x 4y 6
的是( ). A .213x -
·(-3xy 2)3 B .21()3x -·(-3xy 2)3 C .213x -·(-3x 2y 3)2 D .21
()3
x -·(-3xy 3)2 8、如果a 2m -1
·a
m +2
=a 7
,则m 的值是( ).
A .2
B .3
C .4
D .5
9、210
+(-2)10
所得的结果是( ). A .211
B .-211
C .-2
D .2
10、计算(
32)2003×1.52002×(-1)2004
的结果是( ) A 、32 B 、23 C 、-3
2
D 、-
2
3 11、(-5x)2
·5
2xy 的运算结果是( ).
A 、10y x 3
B 、-10y x 3
C 、-2x 2
y D 、2x 2
y
12、(x -4)(x +8)=x 2
+mx +n 则m ,n 的值分别是( ).
A .4,32
B .4,-32
C .-4,32
D .-4,-32
13、当()
mn m
n
b 6-=-成立,则( )
A 、m 、n 必须同时为正奇数
B 、m 、n 必须同时为正偶数
C 、m 为奇数
D 、m 为偶数。

14、()()
1
333--⋅+-m m
的值是( )
A 、1
B 、-1
C 、0
D 、()
1
3+-m
15、若142-=y x ,1
3
27+=x y ,则y x -等于( )
A 、-5
B 、-3
C 、-1
D 、1 16、如果55
2=a ,44
3=b ,33
4=c ,那么( )
A 、a >b >c
B 、b >c >a
C 、c >a >b
D 、c >b >a
17、若
y x y x y x n m 23=÷,则有( ) A 、2,6==n m B 、 2,5==n m C 、0,5==n m D 、 0,6==n m 二、填空题
1、计算(直接写出结果)
①a ·a 3= . ③(b 3)4= . ④(2ab )3
= .
⑤3x 2
y ·
)223y x -(= .322
(3)a a -÷= . 2、计算(-8m 4n +12m 3n 2-4m 2n 3)÷(-4m 2
n)的结果等于__________. 3、与单项式-3a 2
b 的积是6a 3b 2
-2a 2b 2
+9a 2
b 的多项式是__________. 4、若代数式1322++a a 的值为6,则代数式5962
++a a 的值为 . 5、3=x a ,则=x
a 2 .
6、()()=-⎪⎭
⎫ ⎝
⎛-⋅ac abc c
24
122
3
.
7、代数式()2
7b a +-的最大值是 .
8、已知(a n b m +1)3
=a 9b 15
,则m n
=__________.
9、若a m +2÷a 3=a 5,则m =__________;若a x =5,a y =3则a y -x
=__________. 10、已知:a m
=2
,b n =32,则n m 1032+=________.
三、解答题
1、化简下列各式
(1)()()y x y x 2332-+ (2) (
)3
2
2
635-a
ab a -
(3) ()()()()2
32
2
33574x xy xy xy y y x -⋅--⋅-+- (4) ()
22232
()3x x y xy y x x y x y ⎡⎤---÷⎣

(5) -a 2
b(ab 2
)+3a(-2b 3
)(223a )+(-2ab)2ab ; (6) 1122(1)3()233
y y y y --+;
(7) 22
1()3
xy -
·[xy(2x-y)+xy 2]; (8) (a +2b)(a -2b)(a 2+4b 2).
2、先化简,再求值: x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2.
3、解方程(3x -2)(2x -3)=(6x +5)(x -1)+15.
4、已知,2,2
1
==mn a 求n m a a )(2⋅的值 5、若的求n n n
x x x 22232)(4)3(,2---=值. 6、若0352=-+y x ,求y x 324⋅的值.
7、说明:对于任意的正整数n ,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除.
8、将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成 a b c d
,定义
a b c d
=ad -bc ,上述记
号就叫做2阶行列式.若
6 5 616 1 65
x x x x +---=-20,求x 的值.。

相关文档
最新文档