固体热膨胀系数的测量实验报告

合集下载

固体膨胀系数实验报告心得

固体膨胀系数实验报告心得

固体膨胀系数实验报告心得实验目的本次实验的目的是测量固体的膨胀系数。

实验原理固体的膨胀系数是指固体在温度变化时,单位温度变化时固体长度变化的比例。

固体的膨胀系数通常以常数形式表示,计算公式为: α= (L2 - L1) / (L1 * (T2 - T1))其中,α为固体的膨胀系数,L1和L2分别为在初始温度T1和最终温度T2下的长度。

实验工具和材料- 黄铜棒- 计算机- 夹子- 温度计- 尺子实验步骤1. 固定黄铜棒在水平桌面上。

2. 使用夹子将黄铜棒固定在桌面上,确保不会因为温度变化而移动。

3. 用温度计测量黄铜棒的初始温度,并记录下来。

4. 用尺子测量黄铜棒的初始长度,并记录下来。

5. 将黄铜棒加热到较高温度,等待一段时间,直到温度稳定下来。

6. 用温度计测量黄铜棒的最终温度,并记录下来。

7. 用尺子测量黄铜棒的最终长度,并记录下来。

数据处理和分析1. 根据实验步骤记录的数据,计算出黄铜棒的膨胀系数。

2. 比较实验结果与理论值的差异,分析可能的误差来源。

3. 绘制实验数据的图表,以直观地展示结果。

实验结果根据测量数据计算出的黄铜棒的膨胀系数为0.0000193 ˚C<sup>-1</sup>。

与理论值进行比较后发现,实验结果与理论值相符合。

实验数据的图表如下所示:![膨胀系数实验数据图表](image.png)实验心得通过本次实验,我学会了如何测量固体的膨胀系数。

这不仅加深了我对固体膨胀性质的理解,还提高了我实验操作和数据处理的能力。

在实验过程中,我发现了一些潜在的误差来源,如温度计的准确度和黄铜棒的畸变等。

在以后的实验中,我将更加注意这些因素,以提高实验结果的准确性。

总的来说,这次实验使我更加了解了固体的膨胀特性,并将其与理论知识相结合。

通过实际操作和数据分析,我对固体膨胀系数有了更深入的认识。

我相信这次实验将对我的学习和研究有所帮助。

固体线膨胀系数的测定实验报告

固体线膨胀系数的测定实验报告

固体线膨胀系数的测定实验报告
目录
1. 实验目的
1.1 实验原理
1.1.1 线膨胀系数的概念
1.1.2 线膨胀系数的计算公式
1.2 实验器材
1.3 实验步骤
1.4 实验结果分析
1.5 实验结论
实验目的
通过测定固体线膨胀系数的实验,掌握固体在温度变化下的膨胀规律,了解物体在不同温度下的变化情况。

实验原理
线膨胀系数的概念
线膨胀系数是一个物体在单位温度变化下长度变化的比例系数,通常
表示为α。

线膨胀系数的单位为℃^-1。

线膨胀系数的计算公式
线膨胀系数的计算公式为:
$$
α = \frac{ΔL}{L_0ΔT}
$$
其中,α为线膨胀系数,ΔL为长度变化量,L0为初始长度,ΔT为
温度变化量。

实验器材
1. 物体(例如金属杆)
2. 尺子
3. 温度计
4. 烧杯
5. 热水
实验步骤
1. 测量物体的初始长度并记录为L0。

2. 将物体放入热水中,让其温度升高。

3. 使用温度计测量热水的温度变化ΔT。

4. 测量物体在热水中的长度变化量ΔL。

5. 根据公式计算出线膨胀系数α。

实验结果分析
根据实验数据计算出的线膨胀系数可以帮助我们了解物体在不同温度下的膨胀情况,从而观察到物体在温度变化下的变化规律。

实验结论
通过本次实验,我们成功测定了固体线膨胀系数,并对物体在温度变化下的膨胀规律有了更深入的了解。

这对于工程领域的材料选择和设计具有重要意义。

热膨胀系数实验报告

热膨胀系数实验报告

热膨胀系数实验报告篇一:热膨胀系数测定实验报告数据处理由,得α(50-200C)o 其中n1=,L=72mm;解得:α(50-200C)/Coo相变起始温度T0=283C,o相变终止温度T1=295C。

篇二:物理金属线膨胀系数测量实验报告实验(七)项目名称:金属线膨胀系数测量实验一、实验目的1、学习测量金属线膨胀系数的一种方法。

2、学会使用千分表。

二、实验原理材料的线膨胀是材料受热膨胀时,在一维方向的伸长。

线胀系数是选用材料的一项重要指标。

特别是研制新材料,少不了要对材料线胀系数做测定。

固体受热后其长度的增加称为线膨胀。

经验表明,在一定的温度范围内,原长为L的物体,受热后其伸长量?L与其温度的增加量?t近似成正比,与原长L 亦成正比,即:?LL??t (1)式中的比例系数?称为固体的线膨胀系数(简称线胀系数)。

大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。

殷钢和石英的这一特性在精密测量仪器中有较多的应用。

实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。

某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。

另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。

因此测定线胀系数也是了解材料特性的一种手段。

但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。

为测量线胀系数,我们将材料做成条状或杆状。

由(1)式可知,测量出时杆长L、受热后温度从t1升高到t2时的伸长量?L和受热前后的温度升高量?t,则该材料在温度区域的线胀系数为:???L(2)其物理意义是固体材料在温度区域内,温度每升高一度时材料的相对伸长量,其单位为。

测量线胀系数的主要问题是如何测伸长量?L。

我们先粗估算一下?L的大小,若L?250mm,温度变化t2?t1?100C,金属的?数量级为?10?5?1,则估算出?1?LL??t?。

对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。

固体的热膨胀实验报告

固体的热膨胀实验报告

固体的热膨胀实验报告实验目的:探究固体的热膨胀现象,研究固体膨胀与温度变化之间的关系。

实验仪器与试剂:1. 烧杯2. 固体样品(如金属棒、塑料棒等)3. 温度计4. 钳子5. 火柴或打火机实验步骤:1. 准备工作:a. 将烧杯放在平整的工作台上,确保它稳定且不易被推倒。

b. 选择固体样品,并确保其质量均匀、无明显的损坏或缺陷。

c. 温度计的刻度应清晰可见,并且能够测量出合适的温度范围。

d. 确保实验室安全,注意使用火柴或打火机时的安全操作。

2. 实验操作:步骤一:测量固体样品的初始长度a. 使用钳子将固体样品固定在烧杯的底部,确保它在实验过程中不会滑动或移位。

b. 使用温度计测量初始温度,并记录下来。

c. 使用尺子或标尺测量固体样品的初始长度,并记录下来。

步骤二:进行加热a. 使用火柴或打火机点燃固体样品的一端。

b. 观察固体样品的变化,包括颜色、形状等。

c. 当固体样品热胀时,使用尺子或标尺测量其膨胀后的长度,并记录下来。

步骤三:测量固体样品的冷却过程a. 将加热后的固体样品放置在室温下,并使用温度计测量其温度。

b. 定期测量固体样品的长度,并记录下来。

步骤四:数据处理及结果分析a. 将温度和固体样品长度的测量结果整理成表格或图形。

b. 分析温度变化和固体样品长度变化之间的关系,并提出你的观察和结论。

实验结果与分析:通过实验观察和记录,我们得到了以下实验数据(数据仅做示例):初始温度:25°C初始长度:10cm温度(°C)长度(cm)30 10.540 10.850 11.160 11.4根据实验结果可见,随着温度的升高,固体样品的长度逐渐增加。

这说明固体在受热时会膨胀,即固体的热膨胀现象。

而当固体样品冷却后,长度也会随之减小。

结论:本实验通过测量固体样品在不同温度下的长度变化,研究了固体的热膨胀现象。

实验结果表明,随着温度的升高,固体样品会膨胀;同样地,当固体样品冷却时,长度会减小。

固体热膨胀系数的测量实验分析报告

固体热膨胀系数的测量实验分析报告

固体热膨胀系数的测量实验分析报告实验目的:测量固体的热膨胀系数。

实验原理:固体的热膨胀系数是指单位温度变化时单位长度的线膨胀量。

根据热膨胀原理,当固体受热时,其温度会升高,分子间的热运动增加,导致固体的体积扩大;反之,固体受冷时,温度降低,分子间的热运动减小,导致固体的体积减小。

实验中通过测量固体在不同温度下的长度变化,可以确定固体的热膨胀系数。

实验仪器和药品:1.固体样品(例如:金属棒)2.刻度尺3.温度计4.温水槽实验步骤:1.准备固体样品,选取一个具有良好导热性能的样品,例如金属棒。

2.在固体样品的两端分别固定一个刻度尺,确保刻度尺能够垂直于样品,并能够准确读数。

3.准备一个温水槽,将温水槽中的温度调整到较低温度,并记录下该温度。

4.将固体样品的一端放入温水槽中,让其与温水接触,使其温度逐渐上升。

5.当固体样品的温度稳定在一个值时,记录下该温度和此时固体样品两端刻度尺上的刻度值。

6.重复步骤4和步骤5,直至固体样品温度达到最高温度,同时记录下所有温度和相应的刻度值。

7.将温水槽中的温度调整到较低温度,实验完成。

数据处理与结果分析:1.将实验数据整理成表格,表格中包括温度和相应的刻度值。

2.对每个温度和刻度值计算相应的长度值。

3.根据固体样品的初始长度和相应温度下的长度值,计算出固体样品在每个温度条件下的线膨胀量。

4.绘制出温度和线膨胀量之间的折线图。

5.利用得到的实验数据,根据公式计算固体的热膨胀系数。

6.对实验结果进行分析和讨论,比较不同温度下固体的热膨胀系数的大小差异,分析可能的影响因素。

实验注意事项:1.实验过程中要注意安全,避免烫伤和意外发生。

2.在记录刻度值时要保持准确性,尽量避免因误差导致实验结果的不准确。

3.在测量固体样品长度时要保持样品处于稳定不受外力影响的状态。

4.温度的控制要稳定,确保固体样品温度的准确性。

5. 在计算热膨胀系数时,要注意单位的一致性,通常使用℃和mm。

仿真实验报告——膨胀系数

仿真实验报告——膨胀系数

大物仿真实验报告——固体热膨胀系数的测量班级:宗濂31学号:2132000013姓名:王蕊一、实验目的测定金属棒的线胀系数,并学习一种测量微小长度的方法。

二、实验原理1.材料的热膨胀系数各种材料热胀冷缩的强弱是不同的,为了定量区分它们,人们找到了表征这种热胀冷缩特性的物理量,线胀系数和体胀系数。

线膨胀是材料在受热膨胀时,在一维方向上的伸长。

在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t1,物体伸长了,则有上式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。

比例系数称为固体的线胀系数。

体膨胀是材料在受热时体积的增加,即材料在三维方向上的增加。

体膨胀系数定义为在压力不变的条件下,温度升高1K所引起的物体体积的相对变化,用表示。

即一般情况下,固体的体胀系数为其线胀系数的3倍,即,利用已知的,我们可测出液体的体胀系数。

2.线胀系数的测量线膨胀系数是选用材料时的一项重要指标。

实验表明,不同材料的线胀系数是不同的,塑料的线胀系数最大,其次是金属。

殷钢、熔凝石英的线胀系数很小,由于这一特性,殷钢、石英多被用在精密测量仪器中。

表1.2.1-1给出了几种材料的线胀系数。

人们在实验中发现,同一材料在不同的温度区域,其线胀系数是不同的,例如某些合金,在金相组织发生变化的温度附近,会出现线胀系数的突变。

但在温度变化不大的范围内,线胀系数仍然是一个常量。

因此,线胀系数的测量是人们了解材料特性的一种重要手段。

在设计任何要经受温度变化的工程结构(如桥梁、铁路等)时,必须采取措施防止热胀冷缩的影响。

例如,在长的蒸气管道上,可以插入一些可伸缩的接头或插入一段U型管;在桥梁中,可将桥的一端固牢在桥墩上,把另一端放在滚轴上;在铁路上,两根钢轨接头处要留有间隙等。

在式(1)中,是一个微小的变化量,以金属为例,若原长 L=300mm,温度变化,金属的线胀系数,估计。

这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。

热膨胀系数实验报告

热膨胀系数实验报告

热膨胀系数实验报告篇一:热膨胀系数测定实验报告数据处理由,得α(50-200C)o 其中n1=,L=72mm;解得:α(50-200C)/Coo相变起始温度T0=283C,o相变终止温度T1=295C。

篇二:物理金属线膨胀系数测量实验报告实验(七)项目名称:金属线膨胀系数测量实验一、实验目的1、学习测量金属线膨胀系数的一种方法。

2、学会使用千分表。

二、实验原理材料的线膨胀是材料受热膨胀时,在一维方向的伸长。

线胀系数是选用材料的一项重要指标。

特别是研制新材料,少不了要对材料线胀系数做测定。

固体受热后其长度的增加称为线膨胀。

经验表明,在一定的温度范围内,原长为L的物体,受热后其伸长量?L与其温度的增加量?t近似成正比,与原长L 亦成正比,即:?LL??t (1)式中的比例系数?称为固体的线膨胀系数(简称线胀系数)。

大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。

殷钢和石英的这一特性在精密测量仪器中有较多的应用。

实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。

某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。

另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。

因此测定线胀系数也是了解材料特性的一种手段。

但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。

为测量线胀系数,我们将材料做成条状或杆状。

由(1)式可知,测量出时杆长L、受热后温度从t1升高到t2时的伸长量?L和受热前后的温度升高量?t,则该材料在温度区域的线胀系数为:???L(2)其物理意义是固体材料在温度区域内,温度每升高一度时材料的相对伸长量,其单位为。

测量线胀系数的主要问题是如何测伸长量?L。

我们先粗估算一下?L的大小,若L?250mm,温度变化t2?t1?100C,金属的?数量级为?10?5?1,则估算出?1?LL??t?。

对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。

固体热膨胀系数测量

固体热膨胀系数测量

sheshi
大学物理仿真实验报告
项目名称:固体热膨胀系数测量
院系名称:
专业班级:
姓名:
学号:
一、实验目的
1、掌握仿真实验的操作方法
2、掌握用光杠杆法测量微小伸长量的原理和方法
3、熟练掌握运用逐差法处理实验数据
二、实验原理
利用光的性质,采用适当的装置,可使之起到同样的放大作用,并且实验的同时进行测量,再采用逐差法处理数据,最后得出结论…………
三、实验仪器
望远镜,散热罩,温度计,平面镜,米尺,…………
四、实验内容及步骤
1,开始实验前,先将仪器对准(调整平面镜)如图
2,对望远镜进行粗调与细调再用米尺测量出光杠杆的臂长,平面镜到标尺的距离
3,记录下此时10℃时望远镜中心高度的尺子读数,如图
4,打开电源开关进行加热使物体受热膨胀并每增加10℃进行一次望远镜中心高度的尺子读数记录
5,当温度为90℃时望远镜中心高度的尺子读数,如图
6,当实验结束时,将仪器还原
五、实验过程截图、数据记录与处理
(对测量量自行设计表格,条理清楚地展现其大小及单位,最后带入公式计算所求结果。

热膨胀系数测定实验报告

热膨胀系数测定实验报告

热膨胀系数测定实验报告热膨胀系数测定实验报告引言:热膨胀系数是描述物体在温度变化下体积变化程度的物理量,对于工程设计和材料研究具有重要意义。

本实验旨在通过测定不同材料的热膨胀系数,探究不同材料的热膨胀性质,为实际应用提供参考。

实验目的:1. 了解热膨胀系数的概念和意义;2. 掌握测量热膨胀系数的方法和步骤;3. 比较不同材料的热膨胀性质。

实验器材:1. 热膨胀系数测量装置;2. 不同材料的试样:如铝、铜、钢等。

实验步骤:1. 将热膨胀系数测量装置调整到合适的工作状态;2. 将待测试样固定在测量装置上,保证试样的稳定性;3. 调整测量装置的温度控制系统,使其能够按照一定的温度变化范围进行测量;4. 记录试样在不同温度下的长度变化,并计算出热膨胀系数。

实验结果与分析:通过实验测量得到的试样在不同温度下的长度变化数据,可以计算得到不同材料的热膨胀系数。

通过对实验结果的分析,可以得出以下结论:1. 不同材料的热膨胀系数存在差异,反映了不同材料对温度变化的敏感程度;2. 金属材料的热膨胀系数一般较大,而非金属材料的热膨胀系数较小;3. 随着温度的升高,试样的热膨胀系数一般呈现递增趋势。

实验误差分析:在实验过程中,由于测量仪器的精度限制、试样的制备和固定等因素,可能会引入一定的误差。

为了减小误差的影响,可以采取以下措施:1. 选择合适的测量仪器,提高测量的精度;2. 重复测量,取平均值,减小随机误差;3. 注意试样的制备和固定,保证试样的稳定性。

实验应用:热膨胀系数的测定对于工程设计和材料研究具有重要意义。

在工程实践中,我们需要考虑材料的热膨胀性质,以避免由于温度变化引起的结构变形和破坏。

例如,在建筑物的设计中,需要考虑材料的热膨胀系数,以防止温度变化引起的裂缝和变形。

在材料研究中,热膨胀系数的测定可以帮助科学家了解材料的热力学性质,为材料的开发和应用提供参考。

结论:通过本实验的测量和分析,我们得出了不同材料的热膨胀系数存在差异,金属材料的热膨胀系数一般较大,而非金属材料的热膨胀系数较小。

固体线膨胀系数的测定实验报告

固体线膨胀系数的测定实验报告

固体线膨胀系数的测定实验报告
固体线膨胀系数的测定实验报告
实验目的:本实验旨在测量一种材料的固体线膨胀系数。

实验原理:当材料受到温度变化时,其热膨胀系数表示材料在单位温度变化时,长度或体积变化的百分比。

热膨胀是物理性质。

它描述了随温度升高而对应体积变化的比例,其中热膨胀系数就是衡量变化的指标。

实验中,通过改变材料的温度,测量温度和长度之间的关系,从而计算出材料的固体线膨胀系数。

实验装置:实验所用的装置包括:精密钢丝、温度测量仪、电子天平。

实验步骤:
1. 用电子天平称量一根精密钢丝的质量,记录其质量m。

2. 把精密钢丝放入一个恒温箱中,控制温度T。

3. 在恒温箱中保持温度T恒定,并不断观察精密钢丝的长度L,并定时记录。

4. 将所记录的温度和长度数据代入公式计算固体线膨胀系数α。

实验结果:
实验中测得的精密钢丝的质量m=50g,当恒温箱内的温度T=20℃时,钢丝的长度L=100cm,当恒温箱内的温度T=80℃时,钢丝的长度L=102cm。

根据以上数据,计算出精密钢丝的固体线膨胀系数α=0.02/℃。

实验结论:从本实验结果可以看出,精密钢丝的固体线膨胀系数为0.02/℃,表明精密钢丝具有较强的热膨胀性能。

实验总结:本实验中,我们通过改变材料的温度,测量温度和长度之间的关系,从而计算出材料的固体线膨胀系数。

实验结果表明,精密钢丝的固体线膨胀系数较低,说明精密钢丝具有较强的热膨胀性能。

固体热膨胀系数的测量

固体热膨胀系数的测量

大学物理仿真实验院系名称:专业班级:姓名:学号:2011年9月23日实验项目名称:物理仿真实验1—固体热膨胀系数的测量一、实验简介物质内部的分子都处于不停地运动中,而分子运动强弱的不同,造成绝大多数材料都表现出热胀冷缩的特性。

人们在工程结构设计时,例如在房屋、铁路、桥梁、机械和仪器制造、材料的焊接等行业中一定要考虑到这一因素,如果忽略这一特性,将造成工程结构稳定性差,严重的可造成损毁,使仪表失灵以及在材料焊接中的缺陷等。

热膨胀系数的测定在工程技术中是非常重要的,本实验的目的主要是测定金属棒的线胀系数,并学习一种测量微小长度的方法。

二、实验原理固体的线膨胀系数和体膨胀系数是固体热学特性的重要参数,通常体膨胀系数是线膨胀系数的3倍左右,本实验主要介绍固体线膨胀系数的测量方法。

线膨胀是材料在受热膨胀时,在一维方向上的伸长。

在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t2,物体伸长了△L,则线膨胀系数满足:上式中△L 是个极小的量,我们采用光杠杆测量。

光杠杆法测量△L ,如下图(见教材杨氏模量原理)当金属杆伸长时,从望远镜中可读出待测杆伸长前后叉丝所对标尺的读数b 1、b 2,这时有则固体线膨胀系数为:三、实验仪器尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计 四、实验步骤1、在实验界面单击右键选择“开始实验”()12t t L L -=∆αl L D b b ∆=-212⇒2、调节平面镜竖直3、打开望远镜视野,并调节方位、聚焦、目镜使得标尺刻线清晰,且中央叉丝读数为0.0mm4、单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止5、单击卷尺,分别测量l、D6、以t为横轴,b为纵轴作b-t关系曲线,求直线斜率k7、代入公式计算线膨胀系五、实验数据记录与处理l=7.19-1.00=6.19cm D=196.91-8.40=188.51cm L=50.70cm b随t的变化表有图测得:K =0.038 cm/°C 代入得固体线膨胀系数为1.23×10 -5 六、思考题1. 对于一种材料来说,线胀系数是否一定是一个常数?为什么? 答:是,线膨胀系数是由材料本身所具决定的。

实验报告物质的热膨胀系数测定

实验报告物质的热膨胀系数测定

实验报告物质的热膨胀系数测定实验报告:物质的热膨胀系数测定一、引言热膨胀是物质在温度变化下体积发生变化的现象,也是物体热力学性质的一项基本参数。

测定物质的热膨胀系数可以帮助我们了解物质在热胀冷缩过程中的特性,对于材料工程、热工学等领域具有重要的应用价值。

本实验旨在通过测定不同物质在不同温度下的长度变化,计算出其热膨胀系数。

二、实验原理1.线膨胀测量原理根据物体的长度变化计算出其热膨胀系数,可以采用线膨胀测量原理。

线膨胀实验主要通过测量物体在线膨胀过程中长度变化的方法,来计算热膨胀系数。

一般方法是以一个固定长度的参照物体作为基准,将待测物体与参照物体连接,并受热后观察其长度变化。

2.测量装置与仪器本实验采用了线膨胀测量装置和相应的仪器。

测量装置由悬挂支架、固定头、游标卡尺等组成,用于固定和测量测量样品的长度变化。

仪器为恒温水槽,用于控制待测物体的温度。

三、实验步骤1.准备工作首先,清洗实验装置和仪器,确保其干净无杂质。

接下来,根据实验需要选择待测物体,并测量其初始长度。

将待测物体与参照物体连接,保持两物体之间的联系。

2.恒温准备将恒温水槽加热至一定温度,待温度稳定后开始实验。

确保待测物体完全浸泡在水中,且水温与恒温水槽温度一致。

3.测量数据通过游标卡尺等仪器,记录待测物体在不同温度下的长度变化数据。

在温度变化过程中,每隔一段时间记录一次测量数据,直至温度恢复到初始状态。

4.处理数据根据测量数据计算待测物体的热膨胀系数。

根据线膨胀原理,可以使用以下公式计算:热膨胀系数= (ΔL / L0) / ΔT其中,ΔL为长度变化,L0为初始长度,ΔT为温度变化。

根据测量数据进行计算,得到待测物体的热膨胀系数。

四、实验结果与讨论以不同物质为样本,进行实验测定,得到它们在不同温度下的热膨胀系数。

根据实验数据,我们可以得出各个物质的热膨胀系数与温度之间的关系,并对实验结果进行分析和讨论。

五、实验误差分析在实验过程中,由于温度控制、测量仪器精度等因素的限制,可能产生一定的误差。

固体线热膨胀系数的测定实验报告

固体线热膨胀系数的测定实验报告

固体线热膨胀系数的测定【实验目的】材料的线膨胀指的是材料受热后一维长度的伸长。

当温度升高时,一般固体由于其原子或分子的热运动加剧,粒子间的平均距离发生变化,温度越高,其平均距离越大,这就是固体的热膨胀。

热膨胀是物质的基本热学性质之一。

物体的热膨胀不仅与物质种类有关。

对金属晶体而言,由于它们是由许多晶粒构成的,这些晶粒在空间方位上排列是无规则的,整体表现出各相同性。

它们的线膨胀在各个方向均相同。

虽然固体的热膨胀非常微小,但使物体发生很小形变时就需要很大的应力。

在建筑工程、机械装配、电子工业等部门中都需要考虑固体材料的热膨胀因素。

因此固体线胀系数是选择材料的一项重要指标,测定固体的线膨胀系数具有重要的实际意义。

1. 掌握测量固体线热膨胀系数的基本原理。

测量铁、铜、铝棒的线热膨胀系数。

2. 学会使用千分表,掌握温度控制仪的操作。

3. 学习图解图示法处理实验数据。

【实验原理】设为物体在温度时的长度,则该物体在时的长度可由下式表示:(1)其中,为该物体的线膨胀系数,在温度变化不大时,可视为常数。

将式(23-1)改写为:(2)可见,的物理意义为:温度每升高时物体的伸长量与它在时的长度之比,单位为:或。

实际测量中,一般只能测得材料在温度及时的长度及,设是常量,则有:(3)由式(6)即可求得物体在温度之间的平均线膨胀系数。

其中,微小长度变化量可直接用千分表测量。

本实验对金属铁、铜、铝进行测量求出不同金属的线膨胀系数。

【实验仪器】FD-LEA固体线热膨胀系数测定仪(一套)、(电加热箱、千分表、温控仪)金属棒、电源线、加热线、传感器及电缆仪器介绍1.千分表是一种测定微小长度变化量的仪表,其外形结构如图1所示。

外套管G用以固定仪表本身;测量杆M被压缩时,指针H转过一格。

而指针P则转过一周,表盘上每周等分小格,每小格即代表0.001mm,千分表亦由此得名。

图1千分表2.FD-LEA固体线热膨胀系数测定仪由电加热箱和温控仪两部分组成。

固体热膨胀系数的测量

固体热膨胀系数的测量

固体热膨胀系数的测量院系名称:土木建筑学院专业班级:土木工程##班学生姓名:##..学号:20104804####2011年 5 月16日实验项目名称:固体热膨胀系数的测量一、实验目的1、测定铜丝的线膨胀系数。

2、学会用光杠杆方法测量微笑的长度变化。

二、实验原理1、当固体温度升高时,固体内微粒间距离增大,结果发生固体的热膨胀现象,因热膨胀所造成的长度的增加,称为线膨胀。

设温度为t。

℃时长度为L。

的金属杆,当温度升为t℃时,其长度为L,则:L=L。

×[1+a(t-t。

)]其中a称为线膨胀系数,其数值因材料的不同而不同,这反映了不同的物质有不同的热性质。

2、光杠杆放大微小长度:ΔL≈Nb/2D三、实验仪器光杠杆、温度计、电源、米尺、散热器、铜丝。

四、实验内容及步骤1、调节光杠杆的平面镜,使平面镜与标尺平行。

2、调节望远镜的视野分别调节望远镜的底座、目镜、调焦以及固定装置,使望远镜视野符合要求。

3、控制加热电源、电压,调节电源开关和加热电压。

4、观察温度计指数的变化和光杠杆指数的变化,记录变化数据。

5、测量光杠杆的臂长和平面镜到标尺的距离。

6、处理数据,计算铜丝热膨胀系数。

五、实验数据记录与处理1.记录温度,如下表记录L=50.7cm,l=0.04cm2.记录光杠杆的长度光杠杆的臂长:6.20cm平面镜到标尺的距离:188.50cm 3.根据比例计算可得δL/6.20=(L-l)/188.50得δL=1.67cm根据公式计算,α=δL /L(t-to) 得α=0.00041℃-1。

固体热膨胀系数的测量

固体热膨胀系数的测量

大学物理仿真实验固体热膨胀系数的测量实验报告班级:能动1301班学号:201306130123姓名:夏恩飞固体热膨胀系数的测量———实验简介物质内部的分子都处于不停地运动中,而分子运动强弱的不同,造成绝大多数材料都表现出热胀冷缩的特性。

人们在工程结构设计时,例如在房屋、铁路、桥梁、机械和仪器制造、材料的焊接等行业中一定要考虑到这一因素,如果忽略这一特性,将造成工程结构稳定性差,严重的可造成损毁,使仪表失灵以及在材料焊接中的缺陷等。

热膨胀系数的测定在工程技术中是非常重要的,本实验的目的主要是测定金属棒的线胀系数,并学习一种测量微小长度的方法。

固体热膨胀系数的测量———实验原理1.材料的热膨胀系数各种材料热胀冷缩的强弱是不同的,为了定量区分它们,人们找到了表征这种热胀冷缩特性的物理量,线胀系数和体胀系数。

线膨胀是材料在受热膨胀时,在一维方向上的伸长。

在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为,由初温加热至末温,物体伸长了,则有上式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。

比例系数称为固体的线胀系数。

体膨胀是材料在受热时体积的增加,即材料在三维方向上的增加。

体膨胀系数定义为在压力不变的条件下,温度升高1K所引起的物体体积的相对变化,用表示。

即一般情况下,固体的体胀系数为其线胀系数的3倍,即,利用已知的和,我们可测出液体的体胀系数。

2.线胀系数的测量线膨胀系数是选用材料时的一项重要指标。

实验表明,不同材料的线胀系数是不同的,塑料的线胀系数最大,其次是金属。

殷钢、熔凝石英的线胀系数很小,由于这一特性,殷钢、石英多被用在精密测量仪器中。

表1.2.1-1给出了几种材料的线胀系数。

人们在实验中发现,同一材料在不同的温度区域,其线胀系数是不同的,例如某些合金,在金相组织发生变化的温度附近,会出现线胀系数的突变。

但在温度变化不大的范围内,线胀系数仍然是一个常量。

因此,线胀系数的测量是人们了解材料特性的一种重要手段。

固体热膨胀系数的测量实验报告

固体热膨胀系数的测量实验报告

固体热膨胀系数的测量实验报告
一、概述:
本仪器用于检测石墨、炭素等无机材料线变量、线膨胀系数、体膨胀系数、急热膨胀、以及它们变化曲线,对试样进行气氛保护(可控)。

适合GB/T3074(1).4-2003对石墨电热膨胀系数的测定。

也可以适用其它固体材料对大试样要求的检测。

二、主要技术参数:
1、zui高炉温:1350℃。

2、升温速度:0-50度/分可调,电脑程序控温。

3、计算机自动计算膨胀系数、体膨胀系数、线膨胀量,急热膨胀。

4、自动计算补偿系数并自动补偿,也可人工修正(在线)。

5、自动记录、存储、打印数椐,打印温度-膨胀系数曲线。

温度间距自由设定,zui小间距1℃。

6、膨胀值测量范围:±10mm。

7、测量膨胀值分辨率:0.1-1um,自动校正量程。

8、试样范围:方形:(2-50)×(2-50)×(20-150)mm。

圆形:¢(2-50)×(20--150)mm。

9、有对试样充气保护装置(可控)。

10、采用进口直线轴承传动,实现膨胀值无磨擦传递,传动精度及重复性好。

11、系统测量误差:±0.1-0.5%。

12、电源电压:220V±10﹪,2KW。

13、仪器配有标准计算机接口,可与通用计算机相联,所有试验操作均计算机界面完成,操作方便易学并提供全套软件。

(配有炭素行业专用检测软件)
14、可根据用户要求制造一机双试样,多试样的仪器。

热膨胀系数测定实验报告

热膨胀系数测定实验报告

热膨胀系数测定实验报告篇一:固体热膨胀系数的测量实验报告固体热膨胀系数的测量班级:姓名:学号:实验日期:一、实验目的测定金属棒的线胀系数,并学习一种测量微小长度的方法。

二、仪器及用具热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等)三、实验原理1.材料的热膨胀系数线膨胀是材料在受热膨胀时,在一维方向上的伸长。

在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t2,物体伸长了△L,则有?L?L??L?t2?t1?(1) Lt 2 ?t 1 (2)??此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。

比例系数称为固体的线胀系数。

一般情况下,固体的体胀系数为其线胀系数的3倍。

2.线胀系数的测量在式(1)中△L是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。

考虑到测量方便和测量精度,我们采用光杠杆法测量。

光杠杆系统是由平面镜及底座,望远镜和米尺组成的。

光杠杆放大原理如下图所示:当金属杆伸长△L时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时有:带入(2)式得固体线膨胀系数为:b2?b1?L?2Dl?L??b2?b1?l2D??l?b2?b1?l?k2DLt2?t12DL四、实验步骤及操作1.单击登陆进入实验大厅2.选择热力学试验单击3.双击固体热膨胀系数的测量进入实验界面4.在实验界面单击右键选择“开始实验”5.调节平面镜至竖直状态6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节中丝读数为0.0mm,并打开望远镜视野7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止8.单击卷尺,分别测量l、D,9.以t为横轴,b为纵轴作b-t关系曲线,求直线斜率。

10.代入公式计算线膨胀系数值。

热膨胀系数测定实验报告

热膨胀系数测定实验报告

热膨胀系数测定实验报告篇一:固体热膨胀系数的测量实验报告固体热膨胀系数的测量班级:姓名:学号:实验日期:一、实验目的测定金属棒的线胀系数,并学习一种测量微小长度的方法。

二、仪器及用具热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等)三、实验原理1.材料的热膨胀系数线膨胀是材料在受热膨胀时,在一维方向上的伸长。

在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t2,物体伸长了△L,则有?L?L??L?t2?t1?(1) Lt 2 ?t 1 (2)??此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。

比例系数称为固体的线胀系数。

一般情况下,固体的体胀系数为其线胀系数的3倍。

2.线胀系数的测量在式(1)中△L是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。

考虑到测量方便和测量精度,我们采用光杠杆法测量。

光杠杆系统是由平面镜及底座,望远镜和米尺组成的。

光杠杆放大原理如下图所示:当金属杆伸长△L时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时有:带入(2)式得固体线膨胀系数为:b2?b1?L?2Dl?L??b2?b1?l2D??l?b2?b1?l?k2DLt2?t12DL四、实验步骤及操作1.单击登陆进入实验大厅2.选择热力学试验单击3.双击固体热膨胀系数的测量进入实验界面4.在实验界面单击右键选择“开始实验”5.调节平面镜至竖直状态6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节中丝读数为0.0mm,并打开望远镜视野7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止8.单击卷尺,分别测量l、D,9.以t为横轴,b为纵轴作b-t关系曲线,求直线斜率。

10.代入公式计算线膨胀系数值。

固体线胀系数的测定实验报告

固体线胀系数的测定实验报告

固体线胀系数的测定实验报告实验一、目的和原理本实验的目的是通过实验测定固体的线胀系数,掌握测量仪器的使用方法和实验数据的处理方法,加深对固体热学性质的理解。

线胀系数是温度升高时单位长度固体的长度增长量与固体初长度的比值,单位为1/℃。

根据热力学原理,固体在温度升高时会发生热膨胀,即长度增加。

实验二、实验仪器和材料实验所需仪器和材料如下:1.线胀系数测量装置:由基底、通孔、加热炉、测温仪和支架等部分组成。

2.铜管和铝管:直径分别为ΦD1 = 4mm和ΦD2 = 6mm。

3.钢杆:长度为L = 100mm,直径为ΦD3 = 3mm。

4.加热器:用于加热铜管、铝管和钢杆等试样。

5.变压器、电表等电器设备。

实验三、实验步骤1.使用千分尺测量铜管、铝管和钢杆的长度L0,并记录下来。

2.将铜管、铝管和钢杆依次安装在线胀系数测量装置中,调整支架高度使得测温仪的测温头与试样接触。

3.加热器加热铜管、铝管和钢杆等试样,使其温度升高到200℃左右,并保持一段时间。

4.使用测温仪测量试样的温度,并记录下来。

5.千分尺测量试样此时的长度L1,并记录下来。

6.计算试样的线胀系数α,公式为:α = ΔL / (L0 × Δt)式中,ΔL 为试样长度增加值,Δt 为温度升高的温度差。

将测得的α值与标准值进行比较。

实验四、实验数据处理1.铜管试样数据处理试验数据如下表所示:初温(℃)终温(℃)温度升高(℃)初长度L0(mm)终长度L1(mm)增加长度ΔL(mm)线胀系数α(1/℃)20 236 216 100.65 100.86 0.21 1.27×10-52.铝管试样数据处理试验数据如下表所示:初温(℃)终温(℃)温度升高(℃)初长度L0(mm)终长度L1(mm)增加长度ΔL(mm)线胀系数α(1/℃)20 236 216 100.85 101.12 0.27 2.29×10-53.钢杆试样数据处理试验数据如下表所示:初温(℃)终温(℃)温度升高(℃)初长度L0(mm)终长度L1(mm)增加长度ΔL(mm)线胀系数α(1/℃)20 236 216 100.05 100.18 0.13 1.77×10-5实验五、结论通过实验测定,铜管、铝管和钢杆的线胀系数分别为1.27×10-5、2.29×10-5和1.77×10-5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体热膨胀系数的测量
班级:姓名:学号:实验日期:
一、实验目的
测定金属棒的线胀系数,并学习一种测量微小长度的方法。

二、仪器及用具
热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等)
三、实验原理
1 •材料的热膨胀系数
线膨胀是材料在受热膨胀时,在一维方向上的伸长。

在一定的温度范围内,固体受
热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t2,物体伸长了
L L 12 t i(1 )
△ L,则有
此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。

比例系
数称为固体的线胀系数。

一般情况下,固体的体胀系数为其线胀系数的3倍。

2 •线胀系数的测量
在式(1 )中厶L是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度
是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。

考虑到测量方便和测量精度,我们采用光杠杆法测量。

光杠杆系统是由平面镜及底座,望远镜和米尺组成的。

光杠杆放大原理如下图所示:
当金属杆伸长△
L
时,从望远镜中叉丝所对标尺刻度前后为
bl、b2,这时有: b2 d 2_L L b2 b\ l
D T 2D
带入(2)式得固体线膨胀系数为:
l b2 b i l ,
k
2DLt 2 t, 2D
四、实验步骤及操作
1. 单击登陆进入实验大厅
2. 选择热力学试验单击
3. 双击固体热膨胀系数的测量进入实验界面
4. 在实验界面单击右键选择"开始实验”
5. 调节平面镜至竖直状态
6. 进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节中丝读
数为0.0mm,并打开望远镜视野
7. 单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升
高10度时标尺读数直至温度升高到90度止
The length of the copper
返回8.单击卷尺,分别测量I、D ,
返回
9 .以t为横轴,b为纵轴作b-t关系曲线,求直线斜率。

10.代入公式计算线膨胀系数值。

由图得k=0.3724
五、实验数据记录与处理
温度(撮氏踐〉
10 20 30 40
50
60
70
80
90
•-
3.7
73 11.1 15.0 18.8 22.2 26 A 360
六、思考题
1 •对于一种材料来说,线胀系数是否一定是一个常数?为什么?
答:不是。

因为同一材料在不同的温度区域,其线性系数是不同的,有实验结果 的事实可证明。

2 •你还能想出一种测微小长度的方法,从而测出线胀系数吗?
答:目前想不到更好地方法。

3.引起 测量误差的主要因素是什么?
答:仪器的精准度,操作过程中的不可避免性的失误,温度变化的控制,铜棒受热 不均匀等。

关系曲线
I —I 关系曲關 b=0.3724t+.0.3861
<
x
*
1DL。

相关文档
最新文档