人教版初二上全等三角形培优练习题

合集下载

人教版八年级上册第12章《全等三角形》培优练习题

人教版八年级上册第12章《全等三角形》培优练习题

《全等三角形》培优练习题一.选择题1.下列说法中错误的是()A.有两个角及它们的夹边对应相等的两个三角形全等B.有两个角及其中一个角的对边对应相等的两个三角形全等C.有两条边及它们的夹角对应相等的两个三角形全等D.有两条边及其中一条边的对角对应相等的两个三角形全等2.如图,已知AB=DE,∠1=∠2.若要得到△ABC≌△DEF,则下列条件中不符合要求的是()A.∠A=∠D B.∠C=∠F C.AC=DF D.CE=FB3.如图,点C是AB的中点,AD=BE,CD=CE,则图中全等三角形共有()A.2对B.3对C.4对D.5对4.在△ABC中,∠ABC=30°,AB边的长为10,AC边的长度可以在5,7,10,11中取值,满足这些条件的互不全等的三角形的个数是()A.4 B.5 C.6 D.75.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC6.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在∠A、∠B两内角平分线的交点处B.在AC、BC两边中线的交点处C.在AC、BC两边高线的交点处D.在AC、BC两边垂直平分线的交点处7.如图,在△ABC中,AB=6,BC=5,AC=4,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则△BDE的周长为()A.8 B.7 C.6 D.58.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS9.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为()A.0.8 B.1 C.1.5 D.4.210.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.120°C.135°D.150°二.填空题11.如图,在△ADC与△BDC中,∠1=∠2,加上条件(只填写一个即可),则有△ADC≌△BDC.12.如图,以△ABC的顶点A为圆心,以BC长为半径作弧,再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连接AD、CD,若∠B=56°,则∠ADC的大小为度.13.已知,如图,∠D=∠A,EF∥BC,添加一个条件:,使得△ABC≌△DEF.14.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,AE=AB,连接ED,且∠E =∠C,AD=2DE,则S△AED:S△ADB=.15.在四边形ABCD中,∠ADC与∠BCD的角平分线交于点E,∠DEC=115°,过点B 作BF∥AD交CE于点F,CE=2BF,,连接BE,,则CE =.三.解答题16.如图,在△ABC中,点D是边BC上一点,CD=AB,点E在边AC上,且AD=DE,∠BAD=∠CDE.(1)如图1,求证:BD=CE;(2)如图2,若DE平分∠ADC,在不添加辅助线的情况下,请直接写出图中所有与∠ADE相等的角(∠ADE除外).17.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE.(2)连接OA,BC,试判断直线OA,BC的关系,并说明理由.18.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.20.阅读下面材料:学习了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪的探究方法是对∠B分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图1,△ABC和△DEF中,AC=DF,BC=EF,∠B =∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等B.不全等C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B =∠E>90°.过点C作AB边的垂线交AB延长线于点M;同理过点F作DE边的垂线交DE延长线于N,根据“ASA”,可以知道△CBM≌△FEN,请补全图形,进而证出△ABC≌△DEF.参考答案一.选择题1.解:A、有两个角及它们的夹边对应相等的两个三角形全等,是“ASA”,说法正确;B、两个角及其中一个角的对边对应相等的两个三角形全等,是“AAS”,说法正确;C、有两条边及它们的夹角对应相等的两个三角形全等,是“SAS”,说法正确;D、有两条边及其中一条边的对角对应相等的两个三角形不一定全等,说法错误;故选:D.2.解:A、添加∠A=∠D,根据ASA可以判定△ABC≌△DEF,故本选项不符合题意.B、添加∠C=∠F,根据AAS可以判定△ABC≌△DEF,故本选项不符合题意.C、添加AC=DF,根据SSA不可以判定△ABC≌△DEF,故本选项符合题意.D、添加CE=FB可以得到BC=EF,根据SAS可以判定△ABC≌△DEF,故本选项不符合题意.故选:C.3.解:∵点C是以AB的中点,∴AC=BC,∵AD=BE,CD=CE,∴△ACD≌△BCE(SSS),∴∠D=∠E,∠A=∠B,∠ACD=∠BCE,∴∠ACG=∠BCH,∴△ACG≌△BCH(ASA),∴CG=CH,∴EG=DH,△ECH≌△DCG(ASA),∵∠EFG=∠DFH,∴△EFG≌△DFH(AAS);∴图中全等三角形共有4对,故选:C.4.解:过A作AE⊥BC于E,∵∠AB=10,∠B=30°,∴AE=AB=5,即AE是A到直线BC的最短距离,当AC=5时,此时三角形有1个;当AC=7此时三角形有2个;当AC=10时,此时三角形有1个;当AC=11时,此时三角形有1个;即存在三角形1+2+1+1=5(个),故选:B.5.解:过D点分别作AB、BC、AC的垂线,垂足分别为E、G、F,∵∠ABC、∠ACB外角的平分线相交于点D,∴ED=GD,GD=DF,∴ED=DF,∴AP平分∠CAB.故选:B.6.解:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选:A.7.解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,,∴△ADE≌△ADC(SAS),∴ED=CD,∴BC=BD+CD=DE+BD=5,∴△BDE的周长=BE+BD+ED=(6﹣4)+5=7.故选:B.8.解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:A.9.解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC.CE=AD=2.5.∵DC=CE﹣DE,DE=1.7cm,∴DC=2.5﹣1.7=0.8.故选:A.10.解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:C.二.填空题(共5小题)11.解:加上条件AD=BD(答案不唯一),则有△ADC≌△BDC.理由是:在△ADC和△BDC中,,∴△ADC≌△BDC(SAS),故答案为:AD=BD(答案不唯一).12.解:由作图可知:AD=BC,AB=CD,AC=CA,∴△ABC≌△CDA(SSS),∴∠ADC=∠B=56°,故答案为:56.13.解:∵EF∥BC,∴∠ACB=∠DFE,又∵∠D=∠A,∴添加条件AC=DF,可以使得△ABC≌△DEF(ASA),添加条件AB=DE,可以使得△ABC≌△DEF(AAS),添加条件BC=EF,可以使得△ABC≌△DEF(AAS),故答案为:AC=DF(AB=DE或BC=EF).14.解:取AD的中点G,连接BG,则AG=DG,AD=2AG,∵AD=2DE,∴DE=AG,∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=∠ABC+∠BAG=90°,∴∠C=∠BAG,∵∠C=∠E,∴∠BAG=∠E,在△ABG和△EAD中,,∴△ABG≌△EAD(SAS),∴S△AED=S△BAG,∵点G是AD的中点,∴S△BGD=S△BAG,∴S△AED:S△ADB=1:2,故答案为:1:2.15.解:∵∠CBF=∠BCE,∴可以假设∠BCE=4x,则∠CBF=5x,∵DE平分∠ADC,CE平分∠DCB,∴∠ADE=∠EDC,∠ECD=∠ECB=4x,设∠ADE=∠EDC=y,∵AD∥BF,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65°②,由①②解得,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF⊥EC,∴CE=2BF,设BF=m,则CE=2m,∵S△BCE=•EC•BF=,∴×2m×m=,∴m=或﹣(舍弃),∴CE=2m=5,故答案为5.三.解答题(共5小题)16.解:(1)在△ABD和△DCE中,,∴△ABD≌△DCE(SAS),∴BD=CE;(2)∵△ABD≌△DCE,∴∠B=∠C,∴∠ADE=∠CDE=∠BAD,∵∠ADC=∠B+∠BAD=∠ADE+∠CDE,∴∠B=∠ADE=∠BAD=∠EDC=∠C,∴与∠ADE相等的角有∠EDC,∠BAD,∠B,∠C.17.解:(1)证明:∵CD⊥AB于D,BE⊥AC于E,∴∠ADC=∠AEB=90°,在△ADC与△AEB中,,∴△ACD≌△ABE,∴AD=AE;(2)直线OA垂直平分BC,理由如下:如图,连接AO,BC,延长AO交BC于F,在Rt△ADO与Rt△AEO中,,∴Rt△ADO≌Rt△AEO,∴OD=OE,∵CD⊥AB于D,BE⊥AC于E,∴AO平分∠BAC,∵AB=AC,∴AO⊥BC.18.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△ABM≌△DBM,则AB=BD,显然不可能,故①错误.故答案为②.19.(1)证明:∵∠ABC=90°,∴∠DBC=90°,在△ABE和△CBD中∴△ABE≌△CBD(SAS);(2)解:∵AB=CB,∠ABC=90°,∴∠BCA=45°,∴∠AEB=∠CAE+∠BCA=30°+45°=75°,∵△ABE≌△CBD,∴∠BDC=∠AEB=75°.20.解:第二种情况选C.理由:由题意满足条件的点D有两个,故△ABC和△DEF不一定全等(如图所示)故选C.第三种情况补全图.证明:由△CBM≌△FEN得,CM=FN,BD=EN又在Rt△CMA和Rt△FND中,∴△CMA≌△FND,∴AM=DN,∴AB=DE,又在△ABC和△DEF中,∴△ABC≌△DEF.。

八上数学《第12章.全等三角形》状元培优单元测试题(人教版版附答案)

八上数学《第12章.全等三角形》状元培优单元测试题(人教版版附答案)

2019-2020学年八上数学《12.全等三角形》状元培优单元测试题(人教版版附答案)一、选择题1、如图所示,△ABC与△DEF是全等三角形,即△ABC≌△DEF,那么图中相等的线段有( ).A.1组 B.2组 C.3组 D.4组2、如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下哪个条件仍不能判定△ABE ≌△ACD( )A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3、如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1 B.2 C.3 D.44、如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是().A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE5、下列说法正确的是()A.全等三角形是指形状相同大小相等的三角形 B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形 D.所有的等边三角形都是全等三角形6、如图,已知,,与交于点,于点,于点,那么图中全等的三角形有()A.5对B.6对C.7对D.8对7、如图,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠BAD=∠ABC,∠ABD=∠BAC B.AD=BC,BD=ACC.BD=AC,∠BAD=∠ABC D.∠D=∠C,∠BAD=∠ABC8、小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上 B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等 D.以上均不正确9、如图是两个全等三角形,则∠1=()A.62° B.72° C.76° D.66°10、如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于( )A.65° B.95° C.45° D.100°11、数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线 B.一条高 C.一条角平分线D.不确定12、已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是()A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E二、填空题13、如图,在等腰△ABC中,∠ABC=90°,D为底边AC中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=12,FC=5,EF长为.14、如图,已知,,,则.15、如图,点P为△ABC三条角平分线的交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD____________PF.16、如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到AB的距离为________ .17、如图所示,在平行四边形ABCD中,分别以AB.AD为边作等边△ABE和等边△ADF,分别连接CE.CF和EF,则下列结论中一定成立的是________ (把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF⊥CD.三、简答题18、如图,在△ADF和△BCE中,AF=BE,AC=BD,∠A=∠B,∠B=32°,∠F=28°,BC=5cm,CD=1cm.求:(1)∠1的度数;(2)AC的长.19、如图,在平面直角坐标系中A.B坐标分别为(2,0),(-1,3),若△OAC与△OAB全等,(1)试尽可能多的写出点C的坐标;(2)在⑴的结果中请找出与(1,0)成中心对称的两个点。

人教版八年级数学上册三角形全等的证明培优综合训练(含答案)

人教版八年级数学上册三角形全等的证明培优综合训练(含答案)

人教版八年级数学上册三角形全等的证明培优综合训练(含答案)考点1 利用SSS求证三角形全等1.如图,点B,F,C,E在同一条直线上,点A,D在直线BC的异侧,AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)若∠BFD=150°,求∠ACB的度数.2.如图,C是AB的中点,AD=CE,CD=BE.求证:(1)△DCA≌△EBC;(2)AD//CE.3.已知:如图,已知线段AB、CD相交于点O、AD、CB的延长线交于点E、OA=OC、EA=EC,求证:∠A=∠C、考点2 利用SAS求证三角形全等4.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,AB=DE,BF=CE,AB‖DE,求证:△ABC≅△DEF.5.在△ABC中,AD为边BC上的中线,延长AD到点E,使DE=AD,连接BE.△ABC的面积与△ABE的面积相等吗?说明理由6.两组邻边分别相等的四边形我们称它为筝形,如图,在筝形ABCD中,AB=AD,BC =DC,AC,BD相交于点O.(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;(2)如果AC=6,BD=4,求筝形ABCD的面积.考点3 利用AAS 或ASA 求证三角形全等7.已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .(1)证明:BDA AEC ≌;(2)3BD =,4CE =,求DE 的长.8.如图,已知AD 为ABC ∆的中线,延长AD ,分别过点B ,C 作BE AD ⊥,CF AD ⊥.求证:BED CFD ∆≅∆.9.如右图,已知,90AB AC BAC BE CE =∠=︒,⊥于点E ,延长BE CA 、相交于点F ,求证:ADC AFB ≌10.如图,已知E 、F 在AC 上,AD //CB ,且∠D=∠B ,AE=CF .求证:DF=BE .考点4 利用HL 求证三角形全等11.在ABC 中,AB CB =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =.(1)求证:ABE CBF ≌;(2)若30CAE ∠=︒,求ACF ∠度数.12.如图,已知AE =DE ,AB ⊥BC ,DC ⊥BC ,且AB =EC .求证:BC =AB +DC .13.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)证明:Rt△BCE≌Rt△DCF;(2)若AB=21,AD=9,求AE的长.14.如图:AD是ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD、求 .证:BE AC考点5 全等三角形综合15.已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M、N分别是射线AE、AF上的点,(1)如图1,当点M在线段AB上,点N在线段AC的延长线上,且PM=PN,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM、CN与AC之间的数量关系_______.(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,∠MAN+MPN=180°,若AC:PC=2:1,PC=4,求四边形ANPM的面积.16.如图,在平面直角坐标系中,A、B坐标为(6,0)、(0,6),P为线段AB上的一点.(1)如图1,若P为AB的中点,点M、N分别是OA、OB边上的动点,且保持AM=ON,则在点M、N运动的过程中,探究线段PM、PN之间的位置关系与数量关系,并说明理由.(2)如图2,若P为线段AB上异于A、B的任意一点,过B点作BD⊥OP,交OP、OA分别于F、D两点,E为OA上一点,且∠PEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.答案1.解:(1)证明:BF EC =∵,BF FC EC FC ∴+=+,BC EF ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ≅∆∆∴;(2)150BFD ∠=︒,180BFD DFE ∠+∠=︒, 30DFE ∴∠=︒,由(1)知,ABC DEF ∆≅∆,ACB DFE ∴∠=∠,30ACB ∴∠=︒.2.(1)证明:点C 是AB 的中点,AC BC ∴=;在DCA ∆与EBC ∆中,AD CE CD BE AC BC =⎧⎪=⎨⎪=⎩,()DCA EBC SSS ∴∆≅∆,(2)证明:DCA EBC ∆≅∆,A BCE ∴∠=∠,//AD CE ∴.3.如图,连结OE在、OEA 和、OEC 中OA OC EA EC OE OE =⎧⎪=⎨⎪=⎩、、OEA、、OEC (SSS )、、A =、C (全等三角形的对应角相等)4.∵BF=CE ,∴BF+FC=CE+FC ,即BC=EF .∵AB ∥DE ,∴∠B=∠E .在△ABC 和△DEF 中AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (SAS )5.△ABC 与△ABE 的面积相等.理由:∵AD 为边BC 上的中线,∴BD=CD ,在△BDE 和△CAD 中,BD DC BDE CDA DE AD =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CAD、SAS、,BDE ABD CAD ABD S S S S +=+,即△ABC 与△ABE 的面积相等.6.(1)证明:①在△ABC 和△ADC 中,AB=AD ,BC=DC ,AC=AC ,∴△ABC ≌△ADC (SSS ).②∵△ABC ≌△ADC ,∴∠BAO=∠DAO.∵AB=AD ,∠BAO=∠DAO ,OA=OA ,∴△ABO ≌△ADO (SAS ).∴OB=OD ,AC ⊥BD.(2)筝形ABCD 的面积=△ABC 的面积+△ACD 的面积=12×AC×BO+12×AC×DO=12×AC×(BO+DO)=12×AC×BD=12×6×4=12. 7.(1)证明:∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∴90ABD BAD ∠+∠=︒,∵AB AC ⊥,∴90BAD CAE ∠+∠=︒,∴ABD CAE ∠=∠,在BDA 和AEC 中,90ADB CEA ABD CAEAB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()BDA AEC AAS ≅;(2)∵BDA AEC ≅△△,∴BD AE =,AD CE =,∴7DE DA AE BD CE =+=+=.8.证明:∵AD 是△ABC 的中线,∴ BD =CD ,∵ BE ⊥AD ,CF ⊥AD ,∴∠E =∠CFD =90°在Rt △BDE 和Rt △CDF 中,90BDE CDF E CFD BD CD ∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴ Rt △BDE ≌Rt △CDF (AA S )9.、、BAC=90°,、、BAF=180°-、BAC=90°,、、BAF=、CAD ,、F+、ABF=90°,∵CE ⊥BE ,、、CEF=90°,、、F+、ACD=90°,、、ABF=、ACD ,在、ADC 和、AFB 中,BAF CAD AC ABACD ABF ∠=∠⎧⎪=⎨⎪∠=∠⎩, 、、ADC ≌、AFB (ASA ).10.解:证明:∵AE=CF ,∴AE -EF=CF -EF即AF=CE ,∵AD ∥CB ,∴∠A=∠C ,在△ADF 和△CBE 中,A C AF CE DB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADF ≌△CBE (ASA ),∴DF=BE .11.(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt △ABE 和Rt △CBF 中,AE CF AB BC=⎧⎨=⎩, ∴Rt △ABE ≌Rt △CBF (HL );(2)解:∵AB=BC ,∠ABC=90°,∴∠CAB=∠ACB=45°,又∵∠BAE=∠CAB -∠CAE=45°-30°=15°,由(1)知:Rt △ABE ≌Rt △CBF ,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=15°+45°=60°.12.∵AB ⊥BC ,DC ⊥BC ,∴∠B=∠C=90°,在Rt △AEB 和Rt △EDC 中,AB EC AE DE =⎧⎨=⎩, ∴Rt △AEB ≌Rt △EDC (HL ),∴DC=BE ,∵BC=BE+CE ,∴AB+DC=BC .13.(1)∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F , ∴CF=CE ,∠DFC=∠BEC=90°,在Rt △BCE 和Rt △DCF 中,CE CF BC CD =⎧⎨=⎩, ∴Rt △BCE ≌Rt △DCF (HL );(2)∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F , ∴CF=CE ,∠CFA=∠CEA=90°,在Rt △AFC 和Rt △AEC 中,CF CE AC AC =⎧⎨=⎩,∴Rt △AFC ≌Rt △AEC (HL ),∴AF=AE ,由(1)知Rt △BCE ≌Rt △DCF ,则BE=DF ,∵AB=21,AD=9,∴AB=AE+EB=AF+EB=AD+DF+ DF =AD+2DF=9+2DF=21, 解得,DF=6,∴AE=AF=AD+DF=9+6=15,即AE 的长是15.14.证明: ∵AD ⊥BC ,∴∠BDF =∠ADC =90°.又∵BF =AC ,FD =CD ,∴△RtADC ≌Rt △BDF (HL ).∴∠EBC =∠DAC .又∵∠DAC +∠ACD =90°,∴∠EBC +∠ACD =90°.∴BE ⊥AC .15.(1)证明:点P 为EAF ∠平分线上一点,PB AE ⊥于B ,PC AF ⊥于C , PB PC ∴=,在Rt PBM ∆和Rt PCN ∆中,PB PC PM PN =⎧⎨=⎩, Rt PBM Rt PCN ∴∆≅∆,BM CN ∴=;(2)AM CN AC +=,理由如下:在Rt PBA ∆和Rt PCA ∆中,PB PC AP AP =⎧⎨=⎩, Rt PBA Rt PCA ∴∆≅∆,AB AC ∴=,AM CN AM BM AB AC ∴+=+==,故答案为:AM CN AC +=;(3):2:1AC PC =,4PC =,8AC ∴=,PB AE ⊥,PC AF ⊥,90ABP ACP ∴∠=∠=︒,180MAN BPC ∴∠+∠=︒,又180MAN MPN ∠+∠=︒, MPB NPC ∴∠=∠,在PBM ∆和PCN ∆中,BPM CPN PB PCPBM PCN ∠=∠⎧⎪=⎨⎪∠=∠⎩, PBM PCN ∴∆≅∆,∴四边形ANPM 的面积=四边形ABPC 的面积1842322=⨯⨯⨯=. 16.解:(1)结论:PM =PN ,PM ⊥PN .理由如下:如图1中,连接OP .∵A 、B 坐标为(6,0)、(0,6),∴OB =OA =6,∠AOB =90°,∵P为AB的中点,∴OP=12AB=PB=P A,OP⊥AB,∠PON=∠P AM=45°,∴∠OP A=90°,在△PON和△P AM中,ON AMPON PAMOP AP=⎧⎪∠=∠⎨⎪=⎩,∴△PON≌△P AM(SAS),∴PN=PM,∠OPN=∠APM,∴∠NPM=∠OP A=90°,∴PM⊥PN,PM=PN.(2)结论:OD=AE.理由如下:如图2中,作AG⊥x轴交OP的延长线于G.∵BD⊥OP,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO,∵OB=OA,∴△DBO≌△GOA,∴OD=AG,∠BDO=∠G,∵∠BDO=∠PEA,∴∠G=∠AEP,在△P AE和△P AG中,AEP GPAE PAGAP AP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△P AE≌△P AG(AAS),∴AE=AG,∴OD=AE.。

人教版八年级上册第12章《全等三角形》培优练习题 含答案

人教版八年级上册第12章《全等三角形》培优练习题   含答案

人教版2020年八年级上册第12章《全等三角形》培优练习题一.选择题1.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F2.如图,已知AB⊥BC于B,CD⊥BC于C,BC=13,AB=5,且E为BC上一点,∠AED =90°,AE=DE,则BE=()A.13B.8C.6D.53.平面内,到三角形三边距离相等的点有()个.A.4B.3C.2D.14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠DAC交CD于点F,点E为AB上一点,AE=AC,连接EF,若∠B=56°,则∠AEF=()A.34°B.46°C.56°D.60°5.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处6.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°7.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1B.2C.3D.48.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.609.如图,已知点E、F在线段BC上,BE=CF,DE=DF,AD⊥BC,垂足为点D,则图中共有全等三角形()对.A.2B.3C.4D.510.如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则下列结论:①DF+AE>AD;②DE=DF;③AD⊥EF;④S△ABD:S△ACD=AB:AC,其中正确结论的个数是()A.1个B.2个C.3 个D.4个二.填空题11.如图,∠1=∠2,BC=EC,请补充一个条件:能使用“AAS”方法判定△ABC ≌△DEC.12.如图,OP平分∠MON,P A⊥ON,垂足为A,Q是射线OM上的一个动点,若P、Q两点距离最小为8,则P A=.13.如图为6个边长相等的正方形的组合图形,则∠1﹣∠2+∠3=.14.如图,AB=AC,AD=AE,点B、D、E在一条直线上,∠BAC=∠DAE,∠1=35°,∠2=30°,则∠3=度.15.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为48和26,求△EDF的面积.16.如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P 从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动秒时,△BCA与点P、N、B为顶点的三角形全等.三.解答题17.已知:如图,∠BAC=∠DAC.请添加一个条件,使得△ABC≌△ADC,然后再加以证明.18.小明家门前有一条小河,村里准备在河面上架上一座桥,但河宽AB无法直接测量,爱动脑的小明想到了如下方法:在与AB垂直的岸边BF上取两点C、D使CD=,再引出BF的垂线DG,在DG上取一点E,并使A、C、E在一条直线上,这时测出线段的长度就是AB的长.(1)按小明的想法填写题目中的空格;(2)请完成推理过程.19.在△ABC中,D是AB的中点,E是CD的中点.过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF.20.如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若BF=3,求CE的长度.21.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.22.如图,AD是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、DF,且∠AFD+∠B=180°.(1)求证:BD=FD;(2)当AF+FD=AE时,求证:∠AFD=2∠AED.23.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB 的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动.同时,点Q在线段CA上由C点以a厘米/秒的速度向A点运动.设运动的时间为t秒.(1)直接写出:①BD=厘米;②BP=厘米;③CP=厘米;④CQ=厘米;(可用含t、a的代数式表示)(2)若以D,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,试求a、t的值;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动.设运动的时间为t秒;直接写出t=秒时点P与点Q第一次相遇.24.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).参考答案一.选择题1.解:A、添加AC=DF,满足SAS,可以判定两三角形全等;B、添加∠B=∠E,满足ASA,可以判定两三角形全等;C、添加BC=EF,不能判定这两个三角形全等;D、添加∠C=∠F,满足AAS,可以判定两三角形全等;故选:C.2.解:在△ABE和△ECD中∴△ABE≌△ECD(AAS).∴CE=AB=5.∴BE=BC﹣CE=13﹣5=8.故选:B.3.解:如图,△ABC外角平分线的交点共有3个,内角平分线的交点有1个,所以,到三边距离相等的点共有3+1=4个.故选A.4.解:∵AF平分∠DAC,∴∠CAF=∠EAF,又∵AC=AE,AF=AF,∴△ACF≌△AEF,∴∠AEF=∠ACF,又∵CD⊥AB,∠ACB=90°,∴∠B+∠BAC=90°=∠ACD+∠DAC,∴∠B=∠ACD,∴∠AEF=∠B=56°,故选:C.5.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.故选:A.6.解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.7.解:以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选:D.8.解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故选:B.9.解:∵BE=CF,DE=DF,AD⊥BC,∴AD垂直平分BC,AD垂直平分EF,∴AB=AC,AE=AF,又∵AD=AD,∴△ABD≌△ACD(SSS),△AED≌△AFD(SSS),∵BE=CF,DE=DF,∴BF=CE,又∵AB=AC,AE=AF,∴△ABF≌△ACE(SSS),∵AB=AC,AE=AF,BE=CF,∴△ABE≌△ACF(SSS),∴图形中共有全等三角形4对,故选:C.10.解:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴∠AED=∠AFD=90°,DE=DF,故②正确;在Rt△AED和Rt△AFD中,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,故③正确;∵在△AFD中,AF+DF>AD,又∵AE=AF,∴AE+DF>AD,故①正确;∵S△ABD=,S△ACD=,DE=DF,∴S△ABD:S△ACD=AB:AC,故④正确;即正确的个数是4个,故选:D.二.填空题11.解:可以添加∠A=∠D,理由是:∵∠1=∠2,∴∠ACB=∠DCE,∴在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).故答案是:∠A=∠D.12.解:过点P作PQ⊥OM,垂足为Q,则PQ长为P、Q两点最短距离,∵OP平分∠MON,P A⊥ON,PQ⊥OM,∴P A=PQ=8,故答案为:8.13.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1﹣∠2+∠3=90°﹣45°=45°.故答案为:45°.14.解:如图所示:∵∠BAC=∠DAE,∠BAC=∠1+∠DAC,∠DAE=∠DAC+∠4,∴∠1=∠4,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ADB=∠AEC,又∵∠2+∠4+∠AEC=180°,∴∠AEC=115°,∴∠ADB=115°,又∠ADB+∠3=180°,∴∠3=65°,故答案为65.15.解:如图,作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,DH⊥AC,∴DF=DH,在Rt△FDE和Rt△HDG中,,∴Rt△FDE≌Rt△HDG(HL),同理,Rt△FDA≌Rt△HDA(HL),设△EDF的面积为x,由题意得,48﹣x=26+x,解得x=11,即△EDF的面积为11,故答案为:11.16.解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.三.解答题17.解:若添加的条件为:AB=AD,则在△ABC与△ADC中,,∴△ABC≌△ADC(SAS).若添加的条件为:∠B=∠D,则在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).若添加的条件为:∠ACB=∠ACD,则,∴△ABC≌△ADC(ASA).故答案为:AB=AD(或∠B=∠D或∠ACB=∠ACD)(答案不唯一).18.解:(1)在与AB垂直的岸边BF上取两点C、D使CD=CB,再引出BF的垂线DG,在DG上取一点E,并使A、C、E在一条直线上,这时测出线段DE的长度就是AB的长.故答案为:CB,DE;(2)由题意得DG⊥BF,∴∠CDE=∠CBA=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴DE=AB(全等三角形的对应边相等).19.证明:∵E为CD的中点,∴CE=DE,∵∠AED和∠CEF是对顶角,∴∠AED=∠CEF.∵CF∥AB,∴∠EDA=∠ECF.在△EDA和△ECF中,,∴△ADE≌△FCE(ASA),∴AD=FC,∵D为AB的中点,∴AD=BD.∴DB=CF.20.解:如图所示:(1)∵AD⊥BC,BE⊥AC,∴∠FDB=∠FEA=∠ADC=90°,又∵∠FDB+∠1+∠BFD=180°,∠FEA+∠2+AFE=180°,∠BFD=∠AFE,∴∠1=∠2,又∠ABC=45°,∴BD=AD,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA)∴BF=AC;(2)∵BF=3,∴AC=3,又∵BE⊥AC,∴CE=AE==.21.证明:(1)∵BE⊥CD,∴∠BEC=∠DEA=90°,又∵BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.22.证明:(1)过点D作DM⊥AB于M,DN⊥AC于N,如图1所示:∵DM⊥AB,DN⊥AC,∴∠DMB=∠DNF=90°,又∵AD平分∠BAC,∴DM=DN,又∵∠AFD+∠B=180°,∠AFD+∠DFN=180°,∴∠B=∠DFN,在△DMB和△DNF中,∴△DMB≌△DNF(AAS)∴BD=FD;(2)在AB上截取AG=AF,连接DG.如图2所示,∵AD平分∠BAC,∴∠DAF=∠DAG,在△ADF和△ADG中.,∴△ADF≌△ADG(SAS).∴∠AFD=∠AGD,FD=GD又∵AF+FD=AE,∴AG+GD=AE,又∵AE=AG+GE,∴FD=GD=GE,∴∠GDE=∠GED又∵∠AGD=∠GED+∠GDE=2∠GED.∴∠AFD=2∠AED23.解(1)由题意得:①BD=12,②BP=4t;③CP=16﹣4t,④CQ=at,故答案为:①12,②4t,③(16﹣4t),④at;(2)∵BP=4t,BD=12,CP=16﹣4t,CQ=at,∵∠B=∠C,∴分两种情况:①若△DBP≌△QCP,则,∴,∴,②若△DBP≌△PCQ,则,∴,∴;(3)①若a=4 时,P,Q不能相遇,②若a=6 时,由题意得:6t﹣4t=48,t=24,答:t=24秒时点P与点Q第一次相遇.故答案为:24.24.解:(1)由题可得,BD=CE=2t,∴CD=12﹣2t,AE=8﹣2t,∴当AE=DC,时,8﹣2t=(12﹣2t),解得t=3,故答案为:3;(2)当△ABD≌△DCE成立时,AB=CD=8,∴12﹣2t=8,解得t=2,∴运动2秒时,△ABD≌△DCE能成立;(3)当△ABD≌△DCE时,∠CDE=∠BAD,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,∴∠ADE=∠B,又∵∠BAC=α,AB=AC,∴∠ADE=∠B=(180°﹣α)=90°﹣α.故答案为:90°﹣α.。

2020年人教版八年级数学上册《全等三角形》单元培优(含答案)

2020年人教版八年级数学上册《全等三角形》单元培优(含答案)

2020年人教版八年级数学上册《全等三角形》单元培优一、选择题1.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA2.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1B.2C.3D.43.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PNB.PM<PNC.PM=PND.不能确定4.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()。

A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定5.如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25° B.30° C.35° D.40°6.如图,在△ABC中,∠C=900,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.其中正确的有( )A.1个B.2个C.3个D.4个7.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.48.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3B.5C.7D.3或7二、填空题9.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).10.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.11.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB= .12.在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为 .13.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是.14.如图,△ABC的三条角平分线交于O点,已知△ABC的周长为20,OD⊥AB,OD=5,则△ABC 的面积= .15.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题16.如图,已知AB=AC,AD=AE,BD=CE,求证:∠3=∠1+∠2.17.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.18.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.19.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB 和∠CAP的度数.20.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.21.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.22.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.参考答案1.D2.C3.C4.C5.C6.C.7.D.8.D9.答案为:①②③.10.答案为:相等或互补.11.答案为:128°.12.答案为:(-2,0),(-2,4),(2,4);13.答案为:1<AD <9.14.答案为:50.15.答案为:①②④.16.证明:在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE(SSS).∴∠BAD=∠1,∠ABD=∠2.∵∠3=∠BAD +∠ABD ,∴∠3=∠1+∠2.17.证明:(1)∵AE ⊥AB ,AF ⊥AC ,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC ,即∠EAC=∠BAF ,在△ABF 和△AEC 中,∵,∴△ABF ≌△AEC (SAS ),∴EC=BF ;(2)如图,根据(1),△ABF ≌△AEC ,∴∠AEC=∠ABF ,∵AE ⊥AB ,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM (对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.18.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠ABE=∠CBE所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE19.答案为:80°,50°;20.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB,∠EAD=∠BAD,AD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B21.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.22.证明:如图,连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.。

人教版 八年级数学上册 第12章 全等三角形 综合培优训练(含答案)

人教版 八年级数学上册 第12章 全等三角形 综合培优训练(含答案)

人教版 八年级数学上册 第12章 全等三角形综合培优训练一、选择题(本大题共12道小题)1. 如果两个图形全等,那么这两个图形必定()A .形状、大小均不相同B .形状相同,但大小不同C .大小相同,但形状不同D .形状、大小均相同2. 如图1所示的图形中与图2中图形全等的是 ( )图1 图23. 如图,△ABC ≌△EDF ,DF=BC ,AB=ED ,AC=15,EC=10,则CF 的长是( )A .5B .8C .10D .154.如图,在△ABC 和△DEC 中,已知AB =DE ,还需添加两个条件才能使△ABC△△DEC ,不能添加的一组条件是( )A .BC =EC ,△B =△E B .BC =EC ,AC =DC C .BC =DC ,△A =△DD .△B =△E ,△A =△D5. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A.0.5 B.1C.1.5 D.26. 下面是黑板上出示的尺规作图题,需要回答横线上符号代表的内容.如图,已知△AOB,求作:△DEF,使△DEF=△AOB.作法:(1)以__△__为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,__○__长为半径画弧交EG于点D;(3)以点D为圆心,__△__长为半径画弧交前弧于点F;(4)作__△__,则△DEF即为所求作的角.则下列回答正确的是()A.△表示点E B.○表示EDC.△表示OP D.△表示射线EF7. 如图,点B,F,C,E在一条直线上,AB△ED,AC△FD,那么添加下列一个条件后,仍无法判定△ABC△△DEF的是()A.AB=DE B.AC=DFC.△A=△D D.BF=EC8. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A.3B.-3C.2D.-29. 如图,OP平分∠AOB,点P到OA的距离为3,N是OB上的任意一点,则线段PN 的长度的取值范围为()A.PN<3B.PN>3C.PN≥3D.PN≤310. 如图,已知在四边形ABCD中,△BCD=90°,BD平分△ABC,AB=6,BC =9,CD=4,则四边形ABCD的面积是()A.24 B.30C.36 D.4211. 如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为51和38,则△EDF的面积为()A.6.5B.5.5C.8D.1312. 如图,∠AOB=120°,OP平分△AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A. 1个B. 2个C. 3个D. 3个以上二、填空题(本大题共12道小题)13. 如图,已知点B,C,F,E在同一直线上,△1=△2,△A=△D,要使△ABC△△DEF,还需添加一个条件,这个条件可以是____________(只需写出一个).14. 如图所示,把△ABC沿直线AC翻折,得到△ADC,则△ABC△________,AB 的对应边是________,AC的对应边是________,△BCA的对应角是________.15. 已知△ABC的三边长分别是6,8,10,△DEF的三边长分别是6,6x-4,4x +2.若两个三角形全等,则x的值为________.16. △ABC的周长为8,面积为10,若其内部一点O到三边的距离相等,则点O 到AB的距离为________.17. 如图K-10-10,CA=CD,AB=DE,BC=EC,AC与DE相交于点F,ED 与AB相交于点G.若△ACD=40°,则△AGD=________°.18. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E.若AE=12 cm,则DE的长为cm.19. 如图,要测量河岸相对两点A,B之间的距离,从B点沿与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续向前走50米到D处,在D处转90°沿DE方向再走17米到达E处,这时A,C,E三点在同一直线上,则A,B之间的距离为________米.20. 如图,AB△CD,点P到AB,BD,CD的距离相等,则△BPD的度数为________.21. 如图所示,AE=AD,∠B=∠C,BE=4,AD=5,则AC=.22. 如图所示,已知AD△BC,则△1=△2,理由是________________;又知AD =CB,AC为公共边,则△ADC△△CBA,理由是______,则△DCA=△BAC,理由是__________________,则AB△DC,理由是________________________________.23. 如图,若AB=AC,BD=CD,△A=80°,△BDC=120°,则△B=________°.24. 如图,在Rt△ABC中,∠C=90°,E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是.三、作图题(本大题共2道小题)△,请根据“S 25. 尺规作图(只保留作图痕迹,不要求写出作法):如图,已知ABCAS”基本事实作出DEF△≌△.△,使DEF ABC26. 如图,已知△ABC.求作:直线MN,使MN经过点A,且MN∥BC.(尺规作图,保留作图痕迹,不写作法)四、解答题(本大题共6道小题)27. 已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE、CF,求证:△ADE△△CDF.28. 已知:如图12-3-12,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.29. 如图,现有一块三角形的空地,其三条边长分别是20 m,30 m,40 m.现要把它分成面积比为2△3△4的三部分,分别种植不同种类的花,请你设计一种方案,并简单说明理由.(要求:尺规作图,保留作图痕迹,不写作法)30. 如图,BD是△ABC的平分线,AB=BC,点P在BD上,PM△AD,PN△CD,垂足分别是M,N.求证:PM=PN.31. 如图,已知△C=60°,AE,BD是△ABC的角平分线,且交于点P.(1)求△APB的度数.(2)求证:点P在△C的平分线上.(3)求证:△PD=PE;△AB=AD+BE.32. 如图,BE,CF都是△ABC的高,在BE上截取BD=AC,在射线CF上截取CG=AB,连接AG,AD.求证:(1)△BAD△△CGA;(2)AD △AG .人教版 八年级数学下册 第12章 全等三角形综合培优训练-答案一、选择题(本大题共12道小题)1. 【答案】D2. 【答案】B3. 【答案】A[解析] ∵△ABC ≌△EDF ,AC=15,∴EF=AC=15. ∵EC=10,∴CF=EF -EC=15-10=5.4. 【答案】C5. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .6. 【答案】D7. 【答案】C[解析] 选项A 中添加AB =DE 可用“AAS”进行判定,故本选项不符合题意;选项B 中添加AC =DF 可用“AAS”进行判定,故本选项不符合题意;选项C 中添加△A =△D 不能判定△ABC△△DEF ,故本选项符合题意; 选项D 中添加BF =EC 可得出BC =EF ,然后可用“ASA”进行判定,故本选项不符合题意. 故选C.8. 【答案】A[解析] 如图,过点D 作DE ⊥AB 于点 E.∵点D 的坐标是(0,-3), ∴OD=3.∵AD 是△OAB 的角平分线, ∴ED=OD=3,即点D 到AB 的距离是3.9. 【答案】C[解析] 作PM ⊥OB 于点M.∵OP 平分∠AOB ,PE ⊥OA ,PM ⊥OB ,∴PM=PE=3.∴PN ≥3.10. 【答案】B[解析] 过点D 作DH ⊥AB 交BA 的延长线于点H.∵BD 平分∠ABC ,∠BCD =90°, ∴DH =CD =4.∴四边形ABCD 的面积=S △ABD +S △BCD =12AB·DH +12BC·CD =12×6×4+12×9×4=30.11. 【答案】A[解析] 如图,过点D 作DH ⊥AC 于点H.∵AD 是△ABC 的角平分线,DF ⊥AB ,DH ⊥AC ,∴DF=DH.在Rt △DFE 和Rt △DHG 中,∴Rt △DFE ≌Rt △DHG. 在Rt △ADF 和Rt △ADH 中,∴Rt △ADF ≌△ADH. 设△EDF 的面积为x.由题意得,38+x=51-x ,解得x=6.5,∴△EDF 的面积为6.5.12. 【答案】D【解析】如解图,①当OM 1=2时,点N 1与点O 重合,△PMN 是等边三角形;②当ON 2=2时,点M 2与点O 重合,△PMN 是等边三角形;③当点M 3,N 3分别是OM 1,ON 2的中点时,△PMN 是等边三角形;④当取∠M 1PM 4=∠OPN 4时,易证△M 1PM 4≌△OPN 4(SAS),∴PM 4=PN 4,又∵∠M 4PN 4=60°,∴△PMN 是等边三角形,此时点M ,N 有无数个,综上所述,故选D.二、填空题(本大题共12道小题)13. 【答案】AB =DE(答案不唯一)14. 【答案】△ADCAD AC △DCA [解析] △ABC 与△ADC 重合,则△ABC△△ADC.15. 【答案】2[解析] 由全等三角形的对应边相等可知有以下两种情况:△4x +2=10,解得x =2; 6x -4=8, 解得x =2.由于2=2,所以此种情况成立. △4x +2=8,解得x =32; 6x -4=10,解得x =73.由于32≠73,所以此种情况不成立. 综上所述,x 的值为2.16. 【答案】2.5[解析] 设点O 到AB ,BC ,AC 的距离均为h ,△S △ABC =12×8·h=10,解得h =2.5,即点O 到AB 的距离为2.5.17. 【答案】40 [解析] 在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,AB =DE ,BC =EC ,△△ABC△△DEC(SSS). △△A =△D.又△△AFG =△DFC ,△△AGD =△ACD =40°.18. 【答案】12 [解析] 如图,连接BE.∵D 为Rt △ABC 中斜边BC 上的一点,过点D 作BC 的垂线,交AC 于点E ,∴∠A=∠BDE=90°.在Rt △DBE 和Rt △ABE 中,∴Rt △DBE ≌Rt △ABE (HL).∴DE=AE.∵AE=12 cm ,∴DE=12 cm .19. 【答案】17 [解析] 在△ABC 和△EDC 中,⎩⎨⎧∠ABC =∠EDC =90°,BC =DC ,∠ACB =∠ECD ,∴△ABC ≌△EDC(ASA).∴AB =ED =17米.20. 【答案】90° [解析] △点P 到AB ,BD ,CD 的距离相等,△BP ,DP 分别平分△ABD ,△BDC.△AB△CD ,△△ABD +△BDC =180°.△△PBD +△PDB =90°.故△BPD =90°.21. 【答案】 922. 【答案】两直线平行,内错角相等SAS 全等三角形的对应角相等 内错角相等,两直线平行23. 【答案】20 [解析] 如图,过点D 作射线AF.在△BAD 和△CAD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,△△BAD△△CAD(SSS).△△BAD =△CAD ,△B =△C.△△BDF =△B +△BAD ,△CDF =△C +△CAD ,△△BDF +△CDF =△B +△BAD +△C +△CAD ,即△BDC =△B +△C +△BAC.△△BAC =80°,△BDC =120°,△△B =△C =20°.24. 【答案】16 [解析] ∵BF ∥AC ,∴∠EBF=∠EAD.在△BFE 和△ADE 中,∴△BFE ≌△ADE (ASA).∴BF=AD.∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD.∵当FD ⊥AC 时,FD 最短,此时FD=BC=5,∴四边形FBCD 周长的最小值为5+11=16.三、作图题(本大题共2道小题)25. 【答案】如图,DEF △即为所求.26. 【答案】解:如图所示,作∠MAB=∠B ,则直线MN 即为所求(其他方法合理也可).四、解答题(本大题共6道小题)27. 【答案】证明:∵四边形ABCD 是菱形,∴AD =CD.(2分)又∵E 、F 分别为边CD 、AD 的中点,∴DE =DF.(4分)在△ADE 和△CDF 中,⎩⎨⎧AD =CD∠ADE =∠CDF DE =DF,∴△ADE ≌△CDF(SAS ).(8分)28. 【答案】解:PD ⊥OA ,PE ⊥OB ,垂足分别为D ,EPD=PE证明:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO=∠PEO=90°.在△PDO 和△PEO 中,∴△PDO ≌△PEO (AAS).∴PD=PE.29. 【答案】解:(答案不唯一)如图,分别作△ACB 和△ABC 的平分线,相交于点P ,连接PA ,则△PAB ,△PAC ,△PBC 的面积之比为2△3△4.理由如下:如图,过点P 分别作PE△AB 于点E ,PF△AC 于点F ,PH△BC 于点H. △P 是△ABC 和△ACB 的平分线的交点,△PE =PF =PH.△S △PAB =12AB·PE =10PE ,S △PAC =12AC·PF =15PF ,S △PBC =12BC·PH =20PH , △S △PAB △S △PAC △S △PBC =10△15△20=2△3△4.30. 【答案】证明:△BD 是△ABC 的平分线,△△ABD =△CBD.在△ABD 和△CBD 中,⎩⎨⎧AB =CB ,△ABD =△CBD ,BD =BD ,△△ABD△△CBD(SAS).△△ADB =△CDB.△点P 在BD 上,PM△AD ,PN△CD ,△PM =PN.31. 【答案】解:(1)△AE ,BD 是△ABC 的角平分线,△△BAP =12△BAC ,△ABP =12△ABC.△△BAP +△ABP =12(△BAC +△ABC)=12(180°-△C)=60°.△△APB =120°.(2)证明:如图,过点P 作PF△AB ,PG△AC ,PH△BC ,垂足分别为F ,G ,H.△AE ,BD 分别平分△BAC ,△ABC ,△PF =PG ,PF =PH.△PH =PG.又△PG△AC ,PH△BC ,△点P 在△C 的平分线上.(3)证明:△△△C =60°,PG△AC ,PH△BC ,△△GPH =120°.△△GPE +△EPH =120°.又△△APB =△DPE =△DPG +△GPE =120°,△△EPH =△DPG.在△PGD 和△PHE 中,⎩⎨⎧△PGD =△PHE =90°,PG =PH ,△DPG =△EPH ,△△PGD△△PHE.△PD =PE.△如图,在AB 上截取AM =AD.在△ADP 和△AMP 中,⎩⎨⎧AD =AM ,△DAP =△MAP ,AP =AP ,△△ADP△△AMP.△△APD =△APM =60°.△△EPB =△MPB =60°.在△EBP 和△MBP 中,⎩⎨⎧△EPB =△MPB ,BP =BP ,△EBP =△MBP ,△△EBP△△MBP.△BE =BM.△AB =AM +BM =AD +BE.32. 【答案】证明:(1)∵BE ,CF 都是△ABC 的高,∴∠ABE +∠BAC =90°,∠ACF +∠BAC =90°.∴∠ABE =∠ACF.在△BAD 和△CGA 中,⎩⎨⎧AB =GC ,∠ABD =∠GCA ,BD =CA ,∴△BAD ≌△CGA(SAS).(2)∵△BAD ≌△CGA ,∴∠G =∠BAD.∵∠AFG =90°,∴∠GAD =∠BAD +∠BAG =∠G +∠BAG =90°.∴AD ⊥AG.。

人教版初二上全等三角形培优练习题

人教版初二上全等三角形培优练习题

人教版初二上全等三角形培优练习题篇一:人教版初二、上《三角形部分》培优测试题人民教育版第二天“三角部分”优秀试题(全卷150分时间120分钟)一、选择题(共10小题,每小题4分,共40分)1.下列图形中轴对称图形是:--------------()问题2.点(2,3)关于x轴对称的点的坐标是:----------------()a.(-3,-2)b.(2,-3)c.(-2,3)d.(-2,-3)3.三角形可通过以下长度组的线段作为边形成:-------------------()a.3cm、4cm、8cmb。

5厘米,5厘米,11厘米。

12厘米,5厘米,6厘米。

8厘米、6厘米和4厘米。

如图所示,△ ABC和△ a′B′C′与直线L对称∠ a=105°,∠ C′=30°,则∠B=--------------()a.25°B.45°c.30°d.20°5.在△abc与△a′b′c′中,已知∠a=∠a′,ac=a′c′,下列说法错误的是:-------------()a.若添加条件ab=a′b′,则△abc≌△a′b′c′b.若添加条件∠c =∠c′,则△abc≌△a′b′c′c.若添加条件∠b=∠b′,则△abc≌△a′b′c′d.若添加条件bc=b′c′,则△abc≌△a′b′c′6.已知等腰的底边bc=8cm,且|ac-bc|=3cm,则腰ac的长为:---------------()a.11cmb.11cm 或5cmc.5cmd.8cm或5cm7※.如图,m是线段ad、cd的垂直平分线交点,ab⊥bc,∠d =65°,则∠mab+∠mcb的大小是:a.140°b.130°c.120°d.160°--------------()※8.如图,四边形abcd中,ab∥cd,ad∥bc,且∠bad、∠adc的角平分线ae、df 分别交bc于点e、f.若ef=2,ab=5,则ad的长为:--------------------()a.7b.6c.8d.9※9.如图,在四边形abcd中,ab=ac,∠abd=60°,∠adb=78°,∠bdc=24°,则∠dbc=()a.18°7个问题8个问题9个问题10个问题※10.如图,等腰rt△abc中,∠bac=90°,ad⊥bc于点d,∠abc的平分线分别交ac、ad于e、f两点,m为ef的中点,am的延长线交bc于点n,连接dm,下列结论:①df=dn;②△dmn为等腰三角形;③dm平分∠bmn;④ae=二ec;⑤ae=nc,其中正确结论的个3b、20°c.25°d.15°数是:---()a、 2 B.3 C.4 d.5 II。

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

《全等三角形》培优专题训练1 全等三角形的概念两个能够完全重合的三角形叫做全等三角形.把两个全等三角形重合在一起,重合的角叫做对应角,重合的边叫做对应边.全等三角形的对应角相等,对应边相等. 经典例题如图所示,ABC DEF ∆≅∆,30A ∠=︒,50B ∠=︒,2BF =.求DFE ∠的度数与EC 的长.解题策略在ABC ∆中,+180A B ACB ∠∠+∠=︒ (三角形内角和为180°).因为30A ∠=︒,50B ∠=︒(已知),所以1803050100ACB ∠=︒-︒-︒=︒ 因为ABC DEF ∆≅∆ (已知),所以ACB DFE ∠=∠(全等三角形对应角相等) BC EF =(全等三角形对应边相等), 因此100DFE ∠=︒,所以2EC EF FC BC FC BF =-=-== 画龙点睛1. 在解答与全等三角形有关的问题时,要充分利用全等三角形的定义所得到的对应边相等、对应角相等的结论.2. 在本题中求EC 的长时,不能直接求,可将之转化为两条线段的差,这也是将来求线段长的一种常用的转化方法.举一反三1. 如图,若ABC ADE ∆≅∆,则这对全等三角形的对应边是 ;对应角是 .2. 如图,若ABD ACD ∆≅∆,试说明AD 与BC 的位置关系.3. 如图所示,斜折一页书的一角,使点A 落在同一页书内'A 处,DE 为折痕,作DF平分'A DB ∠,试猜想FDE ∠等于多少度,并说明理由.融会贯通4. 如图,ABE ∆和ACD ∆是ABC ∆分别沿着AB 、AC 边翻折180°形成的,若θ∠的度数50°,则BAC ∠的度数是 .2 三角形全等的判定判断两个三角形全等,并非需要证明两个三角形的三条边以及三个角均对应相等,而只需满足全等三角形的判定定理就可以了. 经典例题已知:如图,AO 平分EAD ∠和EOD ∠,求证:(1)AOE AOD ∆≅∆;(2) BOE COD ∆≅∆.解题策略证明:(1)因为AO 平分EAD ∠和EOD ∠,所以OAD OAE ∠=∠,AOE AOD ∠=∠,又因为AO AO =,所以AOE AOD ∆≅∆ ( ASA).(2)由AOE AOD ∆≅∆,得OE OD =,且AEO ADO ∠=∠.又180BEO AEO ∠=︒-∠,180CDO ADO ∠=︒-∠,所以B E O C D O ∠=∠.在AOE ∆和AOD ∆中,因为B E O C D O ∠=∠,OE OD =,BOE COD ∠=∠,所以B O E C O D ∆≅∆(ASA). 画龙点睛1. 判定两个三角形全等,往往需要三个条件,根据题目已知的条件可以得到两个条件(要注意公共角及公共边),这时.设法证明所缺的条件也成立就是证题的关键了. 2. 要证明两条线段或者两个角相等,常用的方法是证明它们是一对全等三角形的对应边或者对应角.举一反三1. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆≅∆的是( ).(A) CB CD = (B)BAC DAC ∠=∠ (C)BCA DCA ∠=∠ (D)90B D ∠=∠=︒2. 如图所示,点D 、C 在BF 上,//AB EF ,A E ∠=∠,BC DF =.求证AB EF =.3. 如图,AB 交CD 于点O ,AD 、CB 的延长线相交于点E ,且OA OC =,EA EC =,你能证明A C ∠=∠吗?点O 在AEC ∠的平分线上吗?融会贯通4. 如图所示,已知BD 、CE 分别是ABC ∆的边AC 和AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =;(2)AP AQ ⊥.3 全等三角形的应用全等三角形的判定和性质被广泛地应用于几何证明题中。

全等三角形培优综合练习题 2021-2022学年八年级数学人教版上册

全等三角形培优综合练习题  2021-2022学年八年级数学人教版上册

全等三角形培优综合练习题一、单选题1.如图,在中,是边上的高,,, .连接,交的延长线于点E,连接, .则下列结论:① ;② ;③ ;④ ,其中正确的有()A. ①②③B. ①②④C. ①③④D. ①②③④2.如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+ ∠C;②当∠C=60°时,AF+BE=AB;③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是()A. ①②B. ②③C. ①②③D. ①③3.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=30°,连接AC,BD交于点M,AC与OD相交于E,BD与OA相交于F,连接OM.则下列结论中:①AC=BD;②∠AMB=30°;③△OEM≌△OFM;④MO平分∠BMC.正确的个数有()A. 4个B. 3个C. 2个D. 1个4.如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON的值不变;③MN的长不变;④四边形PMON的面积不变,其中,正确结论的是()A. ①②③B. ①②④C. ①③④D. ②③④5.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D,E,AD=3,BE=1,则DE的长是()A. 1B. 2C. 3D. 46.如图,AD是的中线,E是AD上一点,连接BE并延长交AC于点F,若EF=AF,BE=7.5,CF=6,则EF=( ).A. 2.5B. 2C. 1.5D. 17.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A. B. C. D.8.如图,点A,C,D,E在Rt△MON的边上,∠MON=90°,AE⊥AB且AE=AB,BC⊥CD且BC=CD,BH⊥ON于点H,DF⊥ON于点F,OM=12,OE=6,BH=3,DF=4,FN=8,图中阴影部分的面积为()A. 30B. 50C. 66D. 809.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当PA=CQ时,连结PQ交AC边于D,则DE的长为()A. B. C. D.10.如图,点P在∠MAN的角平分线上,点B,C分别在AM,AN上,作PR⊥AM,PS⊥AN,垂足分别是R,S.若∠ABP+∠ACP=180°,则下面三个结论:①AS=AR;②PC∥AB;③△BRP≌△CSP.其中正确的是()A. ①②B. ②③C. ①③D. ①②③二、填空题1.在△ABC中,AC=5,中线AD=7,则AB边的取值范围是 .2.如图, ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF,则下列结论中正确的是 .①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB;④S△PAC=S△MAP+S△NCP.3.如图,在直角三角形中,直角边,,以它的三边分别作出了正方形、、,把、、的面积分别记为、、,则 .4.如图,在四边形中,于点,且平分,若的面积为,则的面积为 .5.如图,在中,,、分别为和的角平分线,的周长为20,,则的长为.6.如图,在锐角中,AC=10,,∠BAC的平分线交BC于点D,点M,N分别是AD 和AB上的动点,则BM+MN的最小值是7.如图,是的角平分线,,垂足为F,,和的面积分别为52和36,则的面积为________.8.如图,,点是边上的点,平分,平分,有下列结论:①,② 为的中点,③ ,④ ,其中正确的有________.(填序号)三、解答题1.如图,在△ABC中,AB=BC,∠B=90°,AD是∠BAC的平分线,CE⊥AD于点E.求证:AD=2CE.2.如图,在△ABC中,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)求证:∠EFA=90°- ∠B;(2)若∠B=60°,求证:EF=DF.3.提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了.解决问题:请你选择上述一种方法给予证明.问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.4.如图,已知△OMN为等腰直角三角形,∠MON=90°,点B为NM延长线上一点,OC⊥OB,且OC=OB,连接CN.(1).如图1,求证:CN=BM;(2).如图2,作∠BOC的平分线交MN于点A,求证:AN2+BM2=AB2;(3).如图3,在(2)的条件下,过点A作AE⊥ON于点E,过点B作BF⊥OM于点F,EA,BF的延长线交于点P,请探究:以线段AE,BF,AP为长度的三边长的三角形是何种三角形?并说明理由.5.在正方形中,点、分别在边、上,且 .(1).将绕点顺时针旋转,得到(如图,求证:;(2).若直线与、的延长线分别交于点、(如图,求证:;(3).将正方形改为长与宽不相等的矩形,其余条件不变(如图,直接写出线段、、之间的数量关系.6.如图,在,,,是上一点,于,是上一点,于.(1).如图1,求证:;(2).如图2,在射线上有一点,连接,,求的度数;(3).在(2)的条件下,如图3,连接,若,求的长.7.课外兴趣小组活动时,老师提出了如下问题:如图1,在中,若,,求边上的中线的取值范围.小颖在组内经过合作交流,得到了如下的解决方法:如图2,延长到点E,使,连接,可证得,即,请根据小颖的方法思考下列问题.(1).由“三角形的三边关系”可求得的取值范围是.(2).解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.完成上题之后,小颖善于探究,她又提出了如下的问题,请你解答.如图3,在中,若是的中线,E是上一点,连接并延长交边于点F,且,求证:.(3).如图4,在中,D是的中点,分别以,为直角边向外作等腰直角三角形和等腰直角三角形,其中,连接,试探索与之间的数量与位置关系,并说明理由.8.在等边三角形ABC中,点E为线段AB上一动点,点E与A,B不重合,点D在CB的延长线上,且ED =EC.(1)当E为边AB的中点时,如图1所示,确定线段AE与BD的大小关系,并证明你的结论;(2)如图2,当E不是边AB的中点时,(1)中的结论是否成立?若不成立,请直接写出BD与AE的数量关系;若成立,请给予证明;(提示:过E作交AC于点F)(3)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,的边长为1,AE=2,请直接写出CD的长.9.如图(1)[发现]:如图1.在△ABC中,AB=AC,∠BAC=90°,过点A作AH⊥BC于点H,求证:AH= BC.(2)[拓展]:如图2.在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=90°,点D、B、C在同一条直线上,AH为△ABC中BC边上的高,连接CE.则∠DCE的度数为________,同时猜想线段AH、CD、CE之间的数量关系,并说明理由.(3)[应用]:在图3、图4中.在△ABC中,AB=AC,且∠BAC=90°,在同一平面内有一点P,满足PC=1,PB=6,且∠BPC=90°,请求出点A到BP的距离.10.如图(1)问题背景:如图①,在四边形中,.E,F 分别是上的点,且,请探究图中线段之间的数量关系.小明同学探究此问题的方法是:延长到点G,使.连接,先证明,得;再由条件可得,证明,进而可得线段之间的数量关系是________.(2)探索延伸:如图②,在四边形中,.E,F分别是,上的点,且.问(1)中的线段之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.(3)实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西的A处,舰艇乙在指挥中心南偏东的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度前进,舰艇乙沿北偏东的方向以60海里/小时的速度前进.2小时后,甲、乙两舰艇分别到达E,F处,此时在指挥中心观测到两舰艇之间的夹角为,试求此时两舰艇之间的距离.11.在中,,点是直线上一点(不与,重合),以为一边在的右侧作,使,,连接.(1)如图1,当点在线段上,如果,则 ________度;(2)如图2,如果,求的度数是多少?(3)设,.①如图3,当点在线段上移动,则,之间有怎样的数量关系?请说明理由;②当点在直线上移动,请直接写出,之样的数量关系,不用证明.12.(1).猜想:如图1,已知:在中,,,直线m经过点A,直线m,直线m,垂足分别为点D、E试猜想、、有怎样的数量关系,请直接写出;(2).探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在中,,D,A、E三点都在直线m上,并且有(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由.(3).解决问题:如图3,F是角平分线上的一点,且和均为等边三角形,D、E分别是直线m上A点左右两侧的动点D、E、A互不重合,在运动过程中线段的长度始终为n,连接、,若,试判断的形状,并说明理由.13.据图回答问题:(1)感知:如图①.AB=AD,AB⊥AD,BF⊥AF于点F,DG⊥AF于点G.求证:△ADG≌△BAF;(2)拓展:如图②,点B,C在∠MAN的边AM,AN上,点E,F在∠MAN在内部的射线AD上,∠1,∠2分别是△ABE,△CAF的外角,已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)应用:如图③,在△ABC中,AB=AC,AB>BC,点在D边BC上,CD=2BD,点E,F在线段AD 上,∠1=∠2=∠BAC.若△ABC的面积为12,则△ABE与△CDF的面积之和为________.答案解析部分一、单选题1. D2.C3.B4. B5.B6.C7.D8. B9.A 10.C二、填空题1.9<AB<192.①②③④3.18 14.205.86. 57. 88. ②③④三、解答题1.【答案】证明:延长AB、CE交于点F,∵∠ABC=90°,CE⊥AD,∠ADB=∠CDE,∴∠BAD=∠ECD,在△ABD和△CBF中,,∴△ABD≌△CBF(SAS),∴AD=CF,∵AD是∠BAC的平分线,∴∠CAE=∠FAE,在△CAE和△FAE中,,∴△CAE≌△FAE(ASA),∴CE=EF,∴AD=CF=2CE.2.【答案】(1)证明:∵∠BAC+∠BCA=180°-∠B,又∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC= ∠BAC,∠FCA= ∠BCA,∴∠FAC+∠FCA= ×(180°-∠B)=90°- ∠B,∵∠EFA=∠FAC+∠FCA,∴∠EFA=90°- ∠B.(2)证明:如图,过点F作FG⊥BC于G,作FH⊥AB于H,作FM⊥AC于M.∵AD、CE分别是∠BAC、∠BCA的平分线,∴FG=FH=FM,∵∠EFH+∠DFH=120°,∠DFG+∠DFH=360°-90°×2-60°=120°,∴∠EFH=∠DFG,在△EFH和△DFG中,,∴△EFH≌△DFG(AAS),∴EF=DF.3.【答案】证明:如图1,∵四边形ABCD为正方形,∴∠BCD=90°,AC平分∠BCD,∵PM⊥BC,PN⊥CD,∴四边PMCN为矩形,PM=PN,∵∠BPE=90°,∠BCD=90°,∴∠PBC+∠CEP=180°,而∠CEP+∠PEN=180°,∴∠PBM=∠PEN,在△PBM和△PEN中∴△PBM≌△PEN(AAS),∴PB=PE;如图2,连结PD,∵四边形ABCD为正方形,∴CB=CD,CA平分∠BCD,∴∠BCP=∠DCP,在△CBP和△CDP中,∴△CBP≌△CDP(SAS),∴PB=PD,∠CBP=∠CDP,∵∠BPE=90°,∠BCD=90°,∴∠PBC+∠CEP=180°,而∠CEP+∠PEN=180°,∴∠PBC=∠PED,∴∠PED=∠PDE,∴PD=PE,∴PB=PD;如图3,PB=PE还成立.理由如下:过点P作PM⊥BC,PN⊥CD,垂足分别为M,N,∵四边形ABCD为正方形,∴∠BCD=90°,AC平分∠BCD,∵PM⊥BC,PN⊥CD,∴四边PMCN为矩形,PM=PN,∴∠MPN=90°,∵∠BPE=90°,∠BCD=90°,∴∠BPM+∠MPE=90°,而∠MEP+∠EPN=90°,∴∠BPM=∠EPN,在△PBM和△PEN中,∴△PBM≌△PEN(AAS),∴PB=PE.4.【答案】(1)证明:∵OC⊥OB,∴∠BOC=90°,∵∠MON=90°,∴∠BOC-∠COM=∠MON-∠COM,∴∠BOM=∠CON,在△CON和△BOM中,,∴△CON≌△BOM(SAS),∴CN=BM;(2)证明:连接AC,∵OA平分∠BOC,∴∠BOA=∠COA,在△BOA和△COA中,,∴△BOA≌△COA(SAS),∴AB=AC,∵△OMN是等腰直角三角形,∴∠ONM=∠OMN=45°,∵△CON≌△BOM,∴∠ONC=∠OMB=135°,∴∠ANC=∠ONC-∠ONM=135°-45°=90°,∴AN2+CN2=AC2,∴AN2+BM2=AB2.(3)解:以线段AE,BF,AP为长度的三边长的三角形是直角三角形,理由如下:∵,由勾股定理得:,∵,∴,由勾股定理得:,∵,∴,由勾股定理得:,∵AN2+BM2=AB2,∴,∴,∴以线段AE,BF,AP为长度的三边长的三角形是直角三角形.5.【答案】(1)证明:如图1中,绕着点顺时针旋转,得到,,,,,在与中,,,,,.(2)证明:如图2中,设正方形的边长为 .将绕着点顺时针旋转,得到,连接 .则, .由(1)知,.,、、均为等腰直角三角形,,,,,,,,,,,,.(3)解:6.【答案】(1)证明:∵,∴,∴,∴,∵,∴,∵,∴≌(AAS),∴.(2)解:由(1)可知:,∴,∵,∴,∵,∴,∴,∴,∵,,∴,∴.(3)解:延长、交于,过点作于,如图所示:由(1)(2)可证,,,∴,,∵,∴,∴,∵,∴≌(ASA),∴,∵都为等腰直角三角形,且BC为它们的公共斜边,∴,∴,∵,∴,∵,∴≌(AAS),∴.7.【答案】(1)(2)证明:如图,延长到点G,使,连接,∵,,,∴,∴,,∵,∴,∴,∴,∴;(3)解:,,理由如下:如图,延长至点E,使,连接,由题意得,∴,,∵,∴,即∵,∴,∵和是等腰直角三角形,∴,,∴,在和中,∴,∴,,∴,延长交于点,∵,∴,∴,∴,∴.8.【答案】(1)解:AE=BD;证明:∵△ABC为等边三角形,AE=BE,∴CE平分∠ACB,∴∠ECB=30°.∵DE=CE,∴∠D=∠ECB=30°.∵∠ABC=∠D+∠DEB=60°,∴∠DEB=30°,∴∠D=∠DEB,∴BD=BE.∵AE=BE,∴AE=BD;(2)解:当E为边AB上任意一点时,AE=BD仍成立;证明:如图1,过E作EF∥BC交AC于点F.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°, ∴△AEF是等边三角形,∴AE=EF=AF.∵∠ABC=∠ACB=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,∴△DEB≌△ECF(AAS),∴BD=EF,∴AE=BD;(3)解:CD的长为3或1如图2,作EF∥BC交CA的延长线于点F,则△AEF为等边三角形,∴AF=AE=EF=2,∠BEF=60°,∴∠CEF=60°+∠BEC.∵∠EDC=∠ECD=∠B+∠BEC=60°+∠BEC,∴∠CEF=∠EDB.又∵EB=CF=3,∠F=∠B=60°,∴△CEF≌△EDB(AAS),∴BD=EF=2,∴CD=BD-BC=1,如图3,同理可得CD=3,综上所述,CD的长为3或19.【答案】(1)证明:∵AH⊥BC,∠BAC=90°,∴∠AHC=90°=∠BAC.∴∠BAH+∠CAH=90°,∠BAH+∠B=90°.∴∠CAH=∠B,在△ABH和△CAH中,,∴△ABH≌△CAH.(AAS).∴BH=AH,AH=CH.∴AH= BC(2)解:∠DCE的度数为90°,线段AH、CD、CE之间的数量关系为:CE+2AH=CD,理由如下:∵∠DAB+∠BAE=90°,∠EAC+∠BAE=90°,∴∠DAB=∠EAC,∵AD=AE,AB=AC,∴△ADB≌△AEC (SAS),∴∠ABD=∠ACE,∵AB=AC,∠BAC=90°∴∠ABC=∠ACB=45°,∴∠ABD=135°,∴∠DCE=90°;∵D、B、C三点共线,∴DB+BC=CD,∵DB=CE,AH= BC,∴CE+2AH=CD(3)解:点A到BP的距离为:或.理由如下:如图3,过点A作AH⊥BP于点H,连接AP,作∠PAD=90°,交BP于点D,∴∠BAC=∠DAP=90°,∴∠BAD=∠CAP,∵∠BDA=∠APC=90°+∠APD,∴△APC≌△ADB(AAS),∴BD=CP=1,∴DP=BP-BD=6-1=5,∵AH⊥DP,∴AH= DP= ;如图4,过点A作AH⊥BP于点H,作∠PAD=90°,交PB的延长线于点D,∴∠BAC=∠DAP=90°,∴∠BAD=∠CAP,∵∠BAC=90°,∠BPC=90°,∴∠ACP+∠ABP=180°,∴∠ACP=∠ABD,∵AB=AC,∴△APC≌△ADB(AAS),∴BD=CP=1∴DP=BP+BD=6+1=7.∵AH⊥DP,∴AH= DP= .综上所述:点A到BP的距离为:或10.【答案】(1)EF=BE+DF(2)解:仍然成立.证明:如图1,延长到G,使,连接,∵,∴.在和中,,∴,∴,∵,∴,∵,∴,∴,在和中,,∴,∴,∵,∴(3)解:如图2,连接,延长、相交于点G.∵∠AOB=20°+90°+(90°-80°)=120°,∠EOF=60°,∴,又∵,∴符合(2)中探索延伸中的条件,∴结论成立,即海里.答:此时两舰艇之间的距离是220海里.11.【答案】(1)90(2)解:∵∠BAC=60°,AB=AC,∴△ABC为等边三角形,∴∠ABD=∠ACB=60°,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,∵∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE=60°,∴∠BCE=∠ACE+∠ACB=60°+60°=120°,故答案为:120.(3)解:①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°.②如图1:当点D在射线BC上时,α+β=180°,连接CE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,在△ABC中,∠BAC+∠B+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,即:∠BCE+∠BAC=180°,∴α+β=180°,如图2:当点D在射线BC的反向延长线上时,α=β.连接BE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠ABD=∠ACE=∠ACB+∠BCE,∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAC=∠BCE.∴α=β;综上所述:点D在直线BC上移动,α+β=180°或α=β.12.【答案】(1)(2)解:结论成立;理由如下:∵,,,∴,在和中,,∴,∴,,∴;(3)解:为等边三角形,理由:由(2)得,,∴,,∴,即,在和中,,∴,∴,,∴,∴为等边三角形.13.【答案】(1)证明:∵AB⊥AD,BF⊥AF,∴∠DAG+∠BAF=90°,∠B+∠BAF=90°,∴∠DAG=∠B,在△ADG和△BAF中,,∴△ADG≌△BAF(AAS);(2)证明:∵∠1=∠2,∴∠AEB=∠CFA,∠1=∠ABE+∠BAE,∠BAC=∠CAF+∠BAE,∠1=∠BAC,∴∠ABE=∠CAF,在△ABE和△CAF中,,∴△ABE≌△CAF(AAS);(3)8。

人教版 八年级数学上册12.2 全等三角形的判定 培优训练(含答案)

人教版 八年级数学上册12.2 全等三角形的判定 培优训练(含答案)

人教版八年级数学12.2 全等三角形的判定培优训练一、选择题1. 如图所示,AC,BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于点E,则图中与∥ABC全等的三角形共有()A.1个B.2个C.3个D.4个2. 如图,小强画了一个与已知∥ABC全等的∥DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画∥HDE=∥A,∥GED=∥B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS3. 如图所示,已知AB∥DE,点B,E,C,F在同一直线上,AB=DE,BE=CF,∥B=32°,∥A=78°,则∥F等于()A.55° B.65° C.60° D.70°4. 如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去()A.只带∥ B.只带∥C.只带∥ D.带∥和∥5. 如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带哪块玻璃碎片去玻璃店()A.①B.②C.③D.④6. 如图,添加下列条件,不能判定∥ABD∥∥ACD的是()A.BD=CD,AB=ACB.∥ADB=∥ADC,BD=CDC.∥B=∥C,∥BAD=∥CADD.∥B=∥C,BD=CD7. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=EDB.∠A=∠DEF,AC=EDC.AC=ED,AB=EFD.∠A=∠DEF,BC=FD8. 如图,已知∥ABC=∥DCB,添加以下条件,不能判定∥ABC∥∥DCB的是()A.∥A=∥DB.∥ACB=∥DBCC.AC=DBD.AB=DC9. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误10. 如图,∠AOB=120°,OP平分∥AOB,且OP=2.若点M,N分别在OA,OB上,且∥PMN为等边三角形,则满足上述条件的∥PMN有()A. 1个B. 2个C. 3个D. 3个以上二、填空题11. 如图,已知∥B=∥C,添加一个条件使∥ABD∥∥ACE(不标注新的字母,不添加新的线段),你添加的条件是__________(填一个即可).12. 如图,已知点B,C,F,E在同一直线上,∥1=∥2,∥A=∥D,要使∥ABC∥∥DEF,还需添加一个条件,这个条件可以是____________(只需写出一个).13. 如图,已知AB=BC,要使∥ABD∥∥CBD,还需要添加一个条件,你添加的条件是____________.(只需写一个,不添加辅助线)14. 如图,在∥ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是________.15. 如图,在Rt ABC△中,90C∠=︒,以顶点B为圆心,适当长度为半径画弧,分别交AB BC,于点MN,,再分别以点M N,为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若30A∠=︒,则BCDABDSS=△△______ ____.16. 如图,∥C=90°,AC=10,BC=5,AX∥AC,点P和点Q是线段AC与射线AX上的两个动点,且AB=PQ,当AP=________时,∥ABC与∥APQ全等.三、解答题17. 如图,AD、BC相交于点O,AD=BC,∠C=∥D=90°.(1)求证:∥ACB∥∥BDA;(2)若∥ABC=35°,则∥CAO=________°.18. 如图,沿AC 方向开山修路,为了加快施工进度,要在山的另一面同时施工,工人师傅在AC 上取一点B ,在小山外取一点D ,连接BD 并延长,使DF =BD ,过点F 作AB 的平行线FM ,连接MD 并延长,在延长线上取一点E ,使DE =DM ,在点E 开工就能使A ,C ,E 三点成一条直线,你知道其中的道理吗?19. (2019•苏州)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G . (1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.20. (2019•重庆A 卷)如图,在△ABC 中,AB=AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F . (1)若∠C=36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF ∥AC 叫AD 的延长线于点F .求证:FB=FE .21. 观察与类比(1)如图∥,在∥ABC中,∥ACB=90°.点D在∥ABC外,连接AD,作DE∥AB于点E,交BC于点F,AD=AB,AE=AC,连接AF.求证:DF=BC +CF;(2)如图∥,AB=AD,AC=AE,∥ACB=∥AED=90°,延长BC交DE于点F,写出DF,BC,CF之间的数量关系,并证明你的结论.人教版 八年级数学 12.2 全等三角形的判定培优训练-答案一、选择题1. 【答案】D[解析] 与已知三角形全等的三角形有∥DCB ,∥BAD ,∥DCE ,∥CDA.2. 【答案】A3. 【答案】D[解析] 因为AB∥DE ,所以∥B =∥DEF.由条件BE =CF 知BC =EF.结合条件AB =DE ,可由“SAS”判定∥ABC∥∥DEF ,所以∥F =∥ACB =180°-(∥A +∥B)=180°-(78°+32°)=70°.4. 【答案】C[解析] 由“ASA”的判定方法可知只带∥去就可以配出一块和以前一样(全等)的三角形玻璃.5. 【答案】D[解析] 第①块只保留了原三角形的一个角和部分边,根据这块玻璃碎片不能配一块与原来完全一样的玻璃;第②③块只保留了原三角形的部分边,根据这两块玻璃碎片中的任一块均不能配一块与原来完全一样的玻璃;第④块玻璃碎片不仅保留了原来三角形的两个角,还保留了一条完整的边,则可以根据“ASA”来配一块完全一样的玻璃.最省事的方法是带④去.6. 【答案】D[解析] A .在∥ABD 和∥ACD 中,⎩⎨⎧AD =AD ,AB =AC ,BD =CD ,∥∥ABD∥∥ACD(SSS),故本选项不符合题意; B .在∥ABD 和∥ACD 中,⎩⎨⎧AD =AD ,∥ADB =∥ADC ,BD =CD ,∥∥ABD∥∥ACD(SAS),故本选项不符合题意; C .在∥ABD 和∥ACD 中,⎩⎨⎧∥BAD =∥CAD ,∥B =∥C ,AD =AD ,∥∥ABD∥∥ACD(AAS),故本选项不符合题意;D .根据∥B =∥C ,AD =AD ,BD =CD 不能推出∥ABD∥∥ACD(SSA),故本选项符合题意.故选D.7. 【答案】C[解析] A.添加BC=FD,AC=ED,可利用“SAS”判定△ABC≌△EFD;B.添加∠A=∠DEF,AC=ED,可利用“ASA”判定△ABC≌△EFD;C.添加AC=ED,AB=EF,不能判定△ABC≌△EFD;D.添加∠A=∠DEF,BC=FD,可利用“AAS”判定△ABC≌△EFD.8. 【答案】C[解析] A.∠A=∠D,∠ABC=∠DCB,BC=BC,符合“AAS”,即能推出∥ABC≌△DCB,故本选项不符合题意;B.∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合“ASA”,即能推出∥ABC ≌△DCB,故本选项不符合题意;C.∠ABC=∠DCB,AC=DB,BC=BC,不符合全等三角形的判定条件,即不能推出∥ABC≌△DCB,故本选项符合题意;D.AB=DC,∠ABC=∠DCB,BC=CB,符合“SAS”,即能推出∥ABC≌△DCB,故本选项不符合题意.故选C.9. 【答案】A[解析] AB=b,AB是斜边,小惠作的斜边长是b符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.10. 【答案】D【解析】如解图,①当OM1=2时,点N1与点O重合,△PMN 是等边三角形;②当ON2=2时,点M2与点O重合,△PMN是等边三角形;③当点M3,N3分别是OM1,ON2的中点时,△PMN是等边三角形;④当取∠M1PM4=∠OPN4时,易证△M1PM4≌△OPN4(SAS),∴PM4=PN4,又∵∠M4PN4=60°,∴△PMN是等边三角形,此时点M,N有无数个,综上所述,故选D.二、填空题11. 【答案】答案不唯一,如AB=AC12. 【答案】AB=DE(答案不唯一)13. 【答案】答案不唯一,如AD=CD[解析] 因为AB=BC,BD=BD,所以:(1)当AD=CD时,∥ABD∥∥CBD(SSS);(2)当∥ABD=∥CBD时,∥ABD∥∥CBD(SAS);(3)当∥A=∥C=90°时,Rt∥ABD∥Rt∥CBD(HL).14. 【答案】2 [解析] ∥CF∥AB ,∥∥A =∥FCE.在∥ADE 和∥CFE 中,⎩⎨⎧∥A =∥FCE ,∥AED =∥CEF ,DE =FE ,∥∥ADE∥∥CFE(AAS). ∥AD =CF =3.∥BD =AB -AD =5-3=2.15. 【答案】12【解析】由作法得BD 平分ABC ∠, ∵90C =︒∠,30A ∠=︒,∴60ABC ∠=︒, ∴30ABD CBD ∠=∠=︒,∴DA DB =, 在Rt BCD △中,2BD CD =,∴2AD CD =,∴12BCD ABD S S =△△.故答案为:12. 16. 【答案】5或10 [解析] ∥AX∥AC ,∥∥PAQ =90°.∥∥C =∥PAQ =90°.分两种情况:∥当AP =BC =5时, 在Rt∥ABC 和Rt∥QPA 中,⎩⎨⎧AB =QP ,BC =PA ,∥Rt∥ABC∥Rt∥QPA(HL); ∥当AP =CA =10时,在Rt∥ABC 和Rt∥PQA 中,⎩⎨⎧AB =PQ ,AC =PA ,∥Rt∥ABC∥Rt∥PQA(HL).综上所述,当AP =5或10时,∥ABC 与∥APQ 全等. 三、解答题17. 【答案】(1)证明:在Rt △ACB 和Rt △BDA 中, ⎩⎨⎧BC =ADAB =BA,(3分) ∴Rt △ACB ≌△Rt △BDA(HL ). (2)20.(6分)【解法提示】∵∠ABC =35°,∴∠CAB =90°-35°=55°,由(1)知∠DAB =∠ABC =35°,∴∠CAO =∠CAB -∠DAB =20°.18. 【答案】解:在∥BDE 和∥FDM 中,⎩⎨⎧BD =FD ,∥BDE =∥FDM ,DE =DM ,∥∥BDE∥∥FDM(SAS). ∥∥BEM =∥FME.∥BE∥MF. 又∥AB∥MF ,∥A ,C ,E 三点在一条直线上.19. 【答案】(1)∵CAF BAE ∠=∠, ∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△, ∴EF BC =.(2)∵65AB AE ABC =∠=︒,, ∴18065250BAE ∠=︒-︒⨯=︒, ∴50FAG ∠=︒, ∵BAC EAF △≌△, ∴28F C ∠=∠=︒, ∴502878FGC ∠=︒+︒=︒.20. 【答案】(1)∵AB AC =,∴C ABC ∠=∠, ∵36C ∠=︒, ∴36ABC ∠=︒,∵D 为BC 的中点,∴AD BC ⊥, ∴90903654BAD ABC ∠=-∠=-︒=︒︒︒. (2)∵BE 平分ABC ∠,∴ABE EBC ∠=∠, 又∵EF BC ∥,∴EBC BEF ∠=∠, ∴EBF FEB ∠=∠,∴BF EF =.21. 【答案】解:(1)证明:∥DE∥AB ,∥ACB =90°, ∥∥AED =∥AEF =∥ACB =90°.在Rt∥ACF 和Rt∥AEF 中,⎩⎨⎧AC =AE ,AF =AF ,∥Rt∥ACF∥Rt∥AEF(HL).∥CF =EF. 在Rt∥ADE 和Rt∥ABC 中,⎩⎨⎧AD =AB ,AE =AC ,∥Rt∥ADE∥Rt∥ABC(HL). ∥DE =BC.∥DF =DE +EF ,∥DF =BC +CF.(2)BC =CF +DF.证明:如图,连接AF.在Rt∥ABC 和Rt∥ADE 中,⎩⎨⎧AB =AD ,AC =AE ,∥Rt∥ABC∥Rt∥ADE(HL).∥BC =DE.∥∥ACB =90°,∥∥ACF =90°=∥AED. 在Rt∥ACF 和 Rt∥AEF 中,⎩⎨⎧AC =AE ,AF =AF ,∥Rt∥ACF∥∥AEF(HL). ∥CF =EF.∥DE =EF +DF ,∥BC =CF +DF.。

培优训练——全等三角形人教版八年级数学上册

培优训练——全等三角形人教版八年级数学上册
培优训练—来自全等三角形人教版八年 级数学 上册
培优训练——全等三角形人教版八年 级数学 上册
(2)AB,AC,AE 之间有什么关系?证明你的结论.
(2)解:AB+AC=2AE.证明如下. ∵AD平分∠BAC, ∴∠EAD=∠FAD. ∵∠E=∠AFD=90°, ∴∠ADE=∠ADF. 在△AED与△AFD中,
(1)试证明 ME=MF; (2)若将 E,F 两点移至图 2 中的位置,其余
条件不变,上述结论是否仍然成立?请说明 理由.
培优训练——全等三角形人教版八年 级数学 上册
培优训练——全等三角形人教版八年 级数学 上册
(1)试证明 ME=MF;
(1)证明:∵A,E,F,C在同一条直线上, DE⊥AC,BF⊥AC, ∴∠AFB=90°,∠DEC=90°. 在Rt△ABF和Rt△CDE中,
培优训练——全等三角形人教版八年 级数学 上册
培优训练——全等三角形人教版八年 级数学 上册
8. 如图,已知在△ABC 中,∠C=90°,AD 平分
∠BAC 交 BC 于点 D,DE⊥AB 于点 E,点 F
在 AC 上,且 BD=FD.求证:AE-BE=AF.
证明:∵AD平分∠BAC交BC于点D, DE⊥AB于点E,∠C=90°, ∴DC=DE. 在Rt△ACD和Rt△AED中,
证明:在△ABE和△ACD中,
∴△ABE≌△ACD(AAS). ∴AB=AC, ∵AE=AD, ∴ BD=CE. 在△BDF和△CEF中,
∴△BDF≌△CEF(AAS). ∴DF=EF.
培优训练——全等三角形人教版八年 级数学 上册
培优训练——全等三角形人教版八年 级数学 上册
7. 如图所示,△ABC 和△DCB 有公共边 BC,且

人教版 八年级数学上册 第12章 全等三角形 培优训练(含答案)

人教版  八年级数学上册 第12章 全等三角形 培优训练(含答案)

人教版八年级数学第12章全等三角形培优训练一、选择题1. 如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等,所需的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′2. 用直尺和圆规作一个角的平分线,示意图如图,则能说明OC是∠AOB的平分线的依据是()A.SSS B.SAS C.AAS D.ASA3. 如图,利用尺规作∠AOB的平分线OC,其作法如下:(1)以点O为圆心,适当长为半径画弧,与OA,OB分别交于点D,E;(2)分别以点D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部交于点C;(3)画射线OC,则射线OC就是∠AOB的平分线.这样作图的原理是三角形全等的一种判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS4. 如图,OC平分∠AOB,P是射线OC上的一点,PD⊥OB于点D,且PD=3,动点Q在射线OA上运动,则线段PQ的长度不可能是()A.2 B.3 C.4 D.55. 如图所示,P是∠BAC内一点,且点P到AB,AC的距离PE,PF相等,则△PEA≌△PF A的依据是()A.HL B.ASA C.SSS D.SAS6. 根据下列条件,能画出唯一的△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=50°D.∠A=30°,∠B=70°,∠C=80°7. 如图,点A,E,B,F在同一直线上,在△ABC和△FED中,AC=FD,BC =ED,当利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE =FB;②AB=FE;③AE=BE;④BF=BE,可利用的是()A.①或②B.②或③C.①或③D.①或④8. (2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC 于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为A.2+2B.23+C.32+D.39. 如图,AB⊥BC,BE⊥AC,垂足分别为B,E,∠1=∠2,AD=AB,则下列结论正确的是()A.∠1=∠EFDB.BE=ECC.BF=CDD.FD∥BC10. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于()A.90°B.120 C.135°D.150°二、填空题11. 如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件:______________,使得△ABD≌△CDB.(只需写出一个)12. 已知△ABC≌△DEF,若△ABC的周长为16,AB=6,AC=7,则EF=________.13. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.14. 如图,P A⊥ON于点A,PB⊥OM于点B,且P A=PB.若∠MON=50°,∠OPC =30°,则∠PCA的大小为________.15. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC =2,则S△ABC=.16. 如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q是线段AC与射线AX上的两个动点,且AB=PQ,当AP=________时,△ABC与△APQ全等.三、作图题17. 如图,试沿着虚线把图形分成两个全等图形.18. 如图,要在河流的右侧、公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉点A处的距离为1 cm(指图上距离)的地方,则图中工厂的位置应选在哪里?作出图形(保留作图痕迹,不写作法),并说明理由.四、解答题19. 如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并证明.20. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.21. 已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.(1)如图①,若点O在边BC上,求证:AB=AC;(2)如图②,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.图①图②22. 如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E 的直线分别交AP,BC于点D,C.求证:AD+BC=AB.23. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.人教版八年级数学第12章全等三角形培优训练-答案一、选择题1. 【答案】C2. 【答案】A3. 【答案】A4. 【答案】A[解析] 如图,过点P作PE⊥OA于点E.∵OC平分∠AOB,PD⊥OB,∴PE=PD=3.∵动点Q在射线OA上运动,∴PQ≥3.∴线段PQ的长度不可能是2.5. 【答案】A6. 【答案】C[解析] 对于选项A来说,AB+BC<AC,不能画出△ABC;对于选项B来说,可画出△ABC为锐角三角形或者钝角三角形;对于选项C来说,已知两边及其夹角,△ABC是唯一的;对于选项D来说,△ABC的形状可确定,但大小不确定.7. 【答案】A[解析] 由题意可得,要用“SSS”判定△ABC和△FED全等,需要AB=FE,若添加①AE=FB,则可得AE+BE=FB+BE,即AB=FE,故①可以;若添加AB=FE,则可直接用“SSS”证明两三角形全等,故②可以;而③④都不可以.8. 【答案】A【解析】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CF=DF=1,∴CD=22+=2,DF CF∴BC=BD+CD=22+,故选A.9. 【答案】D[解析] 在△AFD和△AFB中,∴△AFD≌△AFB.∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°. ∴∠ADF=∠ABF=∠C. ∴FD ∥BC.10. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.二、填空题11. 【答案】答案不唯一,如AB =CD [解析] 由已知AB ∥CD 可以得到一对角相等,还有BD =DB ,根据全等三角形的判定,可添加夹这个角的另一边相等,或添加另一个角相等均可.12. 【答案】3[解析] ∵△ABC 的周长为16,AB =6,AC =7,∴BC =3.∵△ABC ≌△DEF ,∴EF =BC =3.13. 【答案】角的内部到角的两边距离相等的点在角的平分线上14. 【答案】55°[解析] ∵PA ⊥ON ,PB ⊥OM ,∴∠PAO =∠PBO =90°.在Rt △AOP 和Rt △BOP 中,⎩⎨⎧PA =PB ,OP =OP ,∴Rt △AOP ≌Rt △BOP(HL). ∴∠AOP =∠BOP =12∠MON =25°.∴∠PCA =∠AOP +∠OPC =25°+30°=55°.15. 【答案】7[解析] 过点P 作PF ⊥BC 于点F ,PG ⊥AB 于点G ,连接AP .∵△ABC 的两条外角平分线BP ,CP 相交于点P ,∴PF=PG=PE=2.∵S △BPC =2,∴BC ·2=2,解得BC=2.∵△ABC 的周长为11,∴AC+AB=11-2=9.∴S △ABC =S △ACP +S △ABP -S △BPC =AC ·PE+AB ·PG-S △BPC =×9×2-2=7.16. 【答案】5或10 [解析] ∵AX ⊥AC ,∴∠PAQ =90°.∴∠C =∠PAQ =90°.分两种情况:①当AP =BC =5时, 在Rt △ABC 和Rt △QPA 中,⎩⎨⎧AB =QP ,BC =PA ,∴Rt △ABC ≌Rt △QPA(HL); ②当AP =CA =10时,在Rt △ABC 和Rt △PQA 中,⎩⎨⎧AB =PQ ,AC =PA ,∴Rt △ABC ≌Rt △PQA(HL).综上所述,当AP =5或10时,△ABC 与△APQ 全等.三、作图题17. 【答案】解:如图所示.18. 【答案】解:工厂的位置应选在∠A 的平分线上,且距A 点1 cm 处.理由:角的平分线上的点到角的两边的距离相等.作图略.四、解答题19. 【答案】解:答案不唯一,如:添加∠BAC =∠DAC. 证明:在△ABC 和△ADC 中,⎩⎨⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC(AAS).20. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=16,BC=10,∴AB=CD=(AD-BC)=3.21. 【答案】(1)证明:如图①,过点O分别作OE⊥AB,OF⊥AC,E、F分别是垂足,由题意知,OE=OF,OB=OC,解图①∴Rt△OEB≌Rt△OFC,∴∠B=∠C,从而AB=AC.(2)证明:如图②,过点O分别作OE⊥AB,OF⊥AC,E、F分别是垂足,由题意知,OE=OF.在Rt△OEB和Rt△OFC中,∵OE=OF,OB=OC,解图②∴Rt△OEB≌Rt△OFC.∴∠OBE=∠OCF,又由OB=OC知∠OBC=∠OCB,∴∠ABC=∠ACB.∴AB=AC.(3)解:不一定成立.(注:当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC,如示例图③)解图③22. 【答案】证明:如图,在AB上截取AF=AD,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎨⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎨⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE , ∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.23. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON , ∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,⎩⎨⎧CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD =CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON.(2)在Rt △ODC 与Rt △OEC 中,⎩⎨⎧CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC.∴OD =OE.设BE =x.∵BO =4,∴OE =OD =4+x.∵AD =BE =x ,∴AO =OD +AD =4+2x =10.∴x =3.∴OD =4+3=7.。

人教版八年级数学上册 全等三角形单元培优测试卷

人教版八年级数学上册 全等三角形单元培优测试卷
A.①②B.①④C.②③D.③④
【答案】C
【解析】
【分析】
根据全等三角形的判定和性质以及等腰三角形的判定进行判断即可.
【详解】
选取①②:
在 和 中
选取①④:
在 和 中
选取③④:
在 和 中
故选C.
【点睛】
本题考查了等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是熟练地运用定理进行推理,是一道开放性的题目,能培养学生分析问题的能力.
人教版八年级数学上册 全等三角形单元培优测试卷
一、八年级数学轴对称三角形填空题(难)
1.如图,在等边 中取点 使得 , , 的长分别为3,4,5,则 _________.
【答案】
【解析】
【分析】
把线段AP以点A为旋转中心顺时针旋转60 得到线段AD,由旋转的性质、等边三角形的性质以及全等三角形的判定定理SAS证得△ADB≌△APC,连接PD,根据旋转的性质知△APD是等边三角形,利用勾股定理的逆定理可得△PBD为直角三角形,∠BPD=90 ,由△ADB≌△APC得S△ADB=S△APC,则有S△APC+S△APB=S△ADB+S△APB=S△ADP+S△BPD,根据等边三角形的面积为边长平方的 倍和直角三角形的面积公式即可得到S△ADP+S△BPD= ×32+ ×3×4= .
即得到∠DEC=α=15°,
故选C.
点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.
14.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为( )

人教版八年级数学上册课时练:第12章 《全等三角形》 (培优篇)

人教版八年级数学上册课时练:第12章 《全等三角形》 (培优篇)

课时练:第12章《全等三角形》(培优篇)一.选择题1.如果两个三角形全等,那么下列结论不正确的是()A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等2.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE3.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可4.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个5.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点6.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°7.如图,已知AB=CD,∠1=∠2,AO=3,则AC=()A.3 B.6 C.9 D.128.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,BC 恰好平分∠ABF,下列结论错误的是()A.DE=DF B.AC=3BF C.BD=DC D.AD⊥BC9.如图,∠A=∠EGF,点F为BE、CG的中点,DB=4,DE=7,则EG长为()A.1.5 B.2 C.3 D.5.510.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定二.填空题11.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=.12.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE=.13.如图,AC=AD,∠1=∠2,只添加一个条件使△ABC≌△AED,你添加的条件是.14.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A→C→B路径向终点运动,终点为B点;点Q从B点出发沿B→C→A路径向终点运动,终点为A点.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,则当t=秒时,△PEC与△QFC全等.15.如图,△ABC的周长是12,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.=36cm2,AB=18cm,BC=12cm,则DE 16.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=cm.17.如图所示的方格中,∠1+∠2+∠3=度.三.解答题18.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=48°,求∠BDE的度数.19.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=,直接写出CE﹣BE的值为.20.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.21.如图、在△ABC中,∠ABC=60°,AC=2AB,AD平分∠BAC交BC于点D,延长DB点F,使BF=BD,连接AF.(1)求证:AF=CD;(2)若CE平分∠ACB交AB于点E,试猜想AC、AF、AE三条线段之间的数量关系,并证明你猜想的结论.22.如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE 的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.23.已知∠MAN=120°,AC平分∠MAN.(1)在图1中,若∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.参考答案一.选择题1.解:因为能够完全重合的两个三角形是全等三角形,所以:A、这两个三角形的对应边相等,正确;B、直角三角形,钝角三角形也能全等,所以全等三角形可以是锐角三角形、直角三角形或钝角三角形,故本选项错误;C、能够完全重合,所以这两个三角形的面积相等,正确;D、能够完全重合,所以这两个三角形的周长相等,正确.故选:B.2.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.3.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选:D.4.解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.5.解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.故选:D.6.解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选:B.7.解:∵AB=CD,∠1=∠2,∠AOB=∠COD,∴△AOB≌△COD(AAS)∴AO=CO=3,∴AC=6故选:B.8.解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故CD正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故A正确;∵没有指明AE=2BF,∴不能得出AC=3BF,故B错误.故选:B.9.解:∵∠A=∠EGF,∠AGD=∠EGF,∴∠A=∠AGD,∴AD=DG,设AD=x,则DG=x,在△EGF和△BCF中,∵,∴△EGF≌△BCF(SAS),∴BC=EG,∠E=∠EBC,∴EG∥BC,∴∠AGD=∠C=∠A,∴BC=AB=x+4=EG,∵DE=7,∴x+x+4=7,x=,∴EG=x+4==5.5.故选:D.10.解:在BA的延长线上取点E,使AE=AC,连接EP,∵AD是∠A的外角平分线,∴∠CAD=∠EAD,在△ACP和△AEP中,,∴△ACP≌△AEP(SAS),∴PE=PC,在△PBE中,PB+PE>AB+AE,∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.故选:A.二.填空题(共7小题)11.解:∵AC⊥DC,∴∠ACB+∠ECD=90°∵AB⊥BE,∴∠ACB+∠A=90°,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴AB=CE=2cm,BC=DE=1cm,∴BE=BC+CE=3cm.故答案为3cm.12.解:∵在△ABC中,∠B=60°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=90°,∵△ABC≌△ADE,∴∠DAE=∠BAC=90°,故答案为:90°.13.解:添加∠C=∠D或∠B=∠E或AB=AE.(1)添加∠C=∠D.∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE,在△ABC与△AED中,,∴△ABC≌△AED(ASA);(2)添加∠B=∠E.∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE,在△ABC与△AED中,,∴△ABC≌△AED(AAS);(3)添加AB=AE∵∠1=∠2∴∠1+∠BAD=∠2+∠BAD∴∠CAB=∠DAE在△ABC与△AED中,,∴△ABC≌△AED(SAS)故填:∠C=∠D或∠B=∠E或AB=AE.14.解:分为三种情况:①如图1,P在AC上,Q在BC上,∵PE⊥l,QF⊥l,∴∠PEC=∠QFC=90°,∵∠ACB=90°,∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,∴∠EPC=∠QCF,则△PCE≌△CQF,∴PC=CQ,即6﹣t=8﹣3t,t=1;②如图2,P在BC上,Q在AC上,∵由①知:PC=CQ,∴t﹣6=3t﹣8,t=1;t﹣6<0,即此种情况不符合题意;③当P、Q都在AC上时,如图3,CP=6﹣t=3t﹣8,t=;④当Q到A点停止,P在BC上时,AC=PC,t﹣6=6时,解得t=12.P和Q都在BC上的情况不存在,∵P的速度是每秒1cm,Q的速度是每秒3cm;故答案为:1或或12.15.解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=3,∴△ABC的面积=×12×3=18.故答案为:18.16.解:过点D作DF⊥BC于点F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∵AB=18cm,BC=12cm,∴S△ABC =S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,∴DE=2.4(cm).故答案为:2.4.17.解:如图,根据网格结构可知,在△ABC与△ADE中,,∴△ABC≌△ADE(SSS),∴∠1=∠DAE,∴∠1+∠3=∠DAE+∠3=90°,又∵AD=DF,AD⊥DF,∴△ADF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.三.解答题(共6小题)18.证明:(1)∵∠ADE=∠1+∠C ∴∠2+∠BDE=∠1+∠C,且∠1=∠2,∴∠C=∠BDE,且AE=BE,∠A=∠B,∴△AEC≌△BED(AAS);(2)∵△AEC≌△BED,∴ED=EC,∠BDE=∠C,∴∠EDC=∠C==66°.19.(1)证明:∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∵∠CDB=∠A+∠ACD=∠CDE+∠BDE∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(2)解:∵CD=BD,∴∠B=∠DCB,由(1)知:∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图②,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴CE﹣BE=DE﹣DF=EF=2HE=2×=.20.证明:(1)作DF∥BC交AC于F,如图①所示:则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,∵△ABC是等腰三角形,∠A=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等边三角形,∠DFC=120°,∴AD=DF,∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD;(2)解:EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图②所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD.21.(1)证明:如图1,取AC的中点G,连接DG,∴AC=2AG=2CG,∵AC=2AB,∴AG=AB=CG,∵AD平分∠BAG,∴∠BAD=∠GAD,在△ADB和△ADG中,∵,∴△ADB≌△ADG(SAS),∴BD=DG,∠ABD=∠AGD,∴∠DGC=∠ABF,∵BD=BF,∴BF=DG,在△ABF和△CGD中,∵,∴△ABF≌△CGD(SAS),∴AF=CD;(2)解:AC=AE+AF,理由是:如图2,在AC上取一点H,使AH=AE,连接OH,同理得△AOE≌△AOH(SAS),∴∠AOE=∠AOH,∵∠ABO=60°,∴∠BAC+∠ACB=120°,∵AD平分∠BAC,CE平分∠ACB,∴∠BAO=∠OAC,∠ACE=∠BCE,∴∠OAC+∠ACO=∠AOE=60°,∴∠AOH=60°,∴∠COH=∠COD=60°,∵∠HCO=∠DCO,OC=OC,∴△HCO≌△DCO(ASA),∴CD=CH,∴AC=AH+CH=AE+CD=AE+AF.22.(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=60.23.解:(1)在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°∴AC=2AD,AC=2AB,∴2AD=2AB∴AD=AB∴AD+AB=AC.(2)(1)中的结论AD+AB=AC成立,理由如下:如图2,在AN上截取AE=AC,连接CE,∵∠CAE=60°,∴△ACE是等边三角形,∴∠DAC=∠CEB=60°,∵∠ADC+∠ABC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,∵在△ADC和△EBC中,,∴△ADC≌△EBC∴DA=BE∵△CAE为等边三角形,∴AC=AE,∴AD+AB=AB+BE=AE=AC,∴AD+AB=AC.。

人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题(含答案)

人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题(含答案)

人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题分数:100 考试时间:80分钟一、选择题(10=30分)1. 下列运算正确的是 ( )A 、x 2 + x 3 = x 5B 、-2x ·x 2 =-2x 3C 、x 6÷x 2 = x 3D 、(- x 2 )3 = x 62. 的值是( )A 、0B 、-2C 、2D 、 3. 下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形4. 若二次三项式26x ax +-可分解成,则a ,b 的值分别为( )A . 1,3B . 1-,3C . 1,3-D . 1-,3-5.要使二次三项式25x x p -+在整数范围内能进行因式分解,那么整数p的取值可以有( ) A . 2个 B . 4个 C . 6个 D .无数个6.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能是( ) A 、3.5 B 、4.2 C 、5.8 D 、77.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,对于下列结论,其中说法错误的是( )A.△EBD 是等腰三角形,EB =ED ;B .折叠后∠ABE 和∠CBD 一定相等;C .折叠后得到的图形是轴对称图形 ; D.△EBA 和△EDC 一定是全等三角形。

8.如图,等边三角形△ABC 的边长是6,面积是,AD 是BC 边上的高,点E 是AB 的中点,在AD 上求一点P ,则P B +PE 的和的最小值为( )A 、3B 、6C 、D 、9. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,已知△ABC 的 面积为28.AC =6,DE =4,则AB 的长为( ) A .6 B .8 C .4 D .1010. 如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对 称点B ′恰好落在CD 上,若∠BAD =100°,则∠ACB 的 度数为( )A .40°B .45° C .60° D .80° 二、填空题(5=15分)11. 分解因式得正确结果为. 12. 满足的整数的值是 .13. 如图:在△FHI 中,HF +FG=GI ,HG ⊥FI ,∠F=058,则∠FHI= 度。

人教版八年级上册数学 全等三角形(培优篇)(Word版 含解析)

人教版八年级上册数学 全等三角形(培优篇)(Word版 含解析)

人教版八年级上册数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.【答案】AD的中点【解析】【分析】【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AB的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.2.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.【答案】2.【解析】【分析】【详解】过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B′DE≌△BDE,∴B′F=1B′E=BE=2,DF=23,2∴GD=B′F=2,∴B′G=DF=23,∵AB=10,∴AG=10﹣6=4,∴AB′=27.考点:1轴对称;2等边三角形.3.在平面直角坐标系中,点A在x轴的正半轴上,点B在y轴的正半轴上,∆为等腰三角形,符合条件的C点有∠=︒,在x轴或y轴上取点C,使得ABCABO36__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A为圆心,以AB为半径画弧,与x轴和y轴各有两个交点,但其中一个会与点B重合,故此时符合条件的点有3个;若以点B为圆心,以AB为半径画弧,同样与x轴和y轴各有两个交点,但其中一个与点A重合,故此时符合条件的点有3个;线段AB的垂直平分线与x轴和y轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.4.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.【答案】4【解析】【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据BC=32,∠ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,∵BC=32,∠ABC=45°,BD平分∠ABC,∴△BCE是等腰直角三角形,∴CE=BC•cos45°=32×22=4.∴CM+MN的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.5.等腰三角形顶角为30°,腰长是4cm,则三角形的面积为__________【答案】4【解析】如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm,可求得BD=12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12=4(cm2).故答案是:4.6.如图,点A,B,C在同一直线上,△ABD和△BCE都是等边三角形,AE,CD分别与BD,BE交于点F,G,连接FG,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG;④AD⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】【分析】易证△ABE≌△DBC,则有∠BAE=∠BDC,AE=CD,从而可证到△ABF≌△DBG,则有AF=DG,BF=BG,由∠FBG=60°可得△BFG是等边三角形,证得∠BFG=∠DBA=60°,则有FG∥AC,由∠CDB≠30°,可判断AD与CD的位置关系.【详解】∵△ABD和△BCE都是等边三角形,∴BD=BA=AD,BE=BC=EC,∠ABD=∠CBE=60°.∵点A、B、C在同一直线上,∴∠DBE=180°﹣60°﹣60°=60°,∴∠ABE=∠DBC=120°.在△ABE和△DBC中,∵BD BAABE DBCBE BC∠∠=⎧⎪=⎨⎪=⎩,∴△ABE≌△DBC,∴∠BAE=∠BDC,∴AE=CD,∴①正确;在△ABF和△DBG中,60BAF BDGAB DBABF DBG∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF≌△DBG,∴AF=DG,BF=BG.∵∠FBG=180°﹣60°﹣60°=60°,∴△BFG是等边三角形,∴∠BFG=60°,∴②正确;∵AE=CD,AF=DG,∴EF=CG;∴③正确;∵∠ADB=60°,而∠CDB=∠EAB≠30°,∴AD与CD不一定垂直,∴④错误.∵△BFG是等边三角形,∴∠BFG=60°,∴∠GFB=∠DBA=60°,∴FG∥AB,∴⑤正确.故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE≌△DBC是解题的关键.7.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形培优竞赛训练题
1、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .
(1)直接写出线段EG 与CG 的数量关系; (2)将图1中△BEF 绕B 点逆时针旋转45º,如图2所示,取DF 中点G ,连接EG ,CG . 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.
(3)将图1中△BEF 绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?
2、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .
经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
3、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,
EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证1
2
DEF CEF ABC S S S +=
△△△.
当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.
D
图1
D

2
图3
D
A
E C
F B
D
图1
图3
A
D
F
E
C
B
A
D
B
C
E 图2
F
4、在ABC △中,2120AB BC ABC ==∠=,°,
将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交
AC BC 、于D F 、两点.
(1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;
(2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由; (3)在(2)的情况下,求ED 的长.
5、如图9,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形. (1)当把△ADE 绕A 点旋转到图10的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;(4分)
(2)当△ADE 绕A 点旋转到图11的位置时,△AMN 是否还是等边三角形?若是,请给出证明,并求出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由.(6分)
6、点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,线段AN,MC 交于点E ,BM,CN 交于点F 。

求证: (1)AN=MB.
(2)△CEF 为等边三角形。

(3)将△ACM 绕点C 按逆时针方向旋转一定角度,其他条件不变,(1)中的结论是否依然成立?(只回答不证明), (4)AN 与BM 相交所夹锐角是否发生变化,(只回答不证明)。

A
D
B
E
C
F 1A
1C
A
D
B
E
C
F 1A
1C
图9 图10 图11
O O
F
E
A
B
A
B
M M
C
F E
7、问题:已知ABC △中,2BAC ACB ∠=∠,点D 是ABC △内的一点,且AD CD =,BD BA =.探究DBC ∠与ABC ∠度数的比值.
请你完成下列探究过程:
先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当90BAC ∠=︒时,依问题中的条件补全右图. 观察图形,AB 与AC 得数量关系为________;
当退出15DAC ∠=︒时,可进一步推出DBC ∠的度数为_______; 可得到DBC ∠与ABC ∠度数的比值为_________.
(2)当90BAC ∠≠︒时,请你画出图形,研究DBC ∠与ABC ∠度数的比值是否与(1)中的结论相同,写出你的
猜想并加以证明.
8、直线CD 经过BCA ∠的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠. (1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面两个问题:
①如图1,若90,90BCA α∠=∠=,则EF BE AF -(填“>”,“<”或“=”号);
②如图2,若0180BCA <∠<,若使①中的结论仍然成立,则 α∠与BCA ∠ 应满足的关系是 ; (2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.
9、(1) 如图1,在正方形ABCD 中,点E ,F 分别在边BC ,
CD 上,AE ,BF 交于点O ,∠AOF =90°. 求证:BE =CF .
(2) 如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,
BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°, EF =4.求GH 的长.
C B A 图1
D C B A
A B
C E F D
D
A B C
E F A D F C E B
图1 图2 图3
第23题图1
(3) 已知点E ,H ,F ,G 分别在矩形ABCD 的边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,
∠FOH =90°,EF =4. 直接写出下列两题的答案:
①如图3,矩形ABCD 由2个全等的正方形组成,求GH 的长;
②如图4,矩形ABCD 由n 个全等的正方形组成,求GH 的长(用n 的代数式表示).
10、如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2tan 2CD AD
ABC =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE .
(1)求证:BC CD =;
(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG ..求证:CD 垂直平分EG . (3)延长BE 交CD 于点P .求证:P 是CD 的中点.
11、已知:如图,AF 平分∠BAC ,BC ⊥AF , 垂足为E ,点D 与点A 关于点E 对称,PB 分别与线段CF ,AF 相交于P ,M .
(1)求证:AB =CD ;
(2)若∠BAC =2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由.
12、如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕
点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. ⑴ 求证:△AMB ≌△ENB ;
⑵ ①当M 点在何处时,AM +CM 的值最小;
②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;
A
D
G
E
C
B
F M P E D C
B
A E
A D
N
M
第23题图2
第23题图3。

相关文档
最新文档