新人教版七年级上册数学正数和负数教案

合集下载

最新2024人教版七年级数学上册1.1 正数和负数--教案

最新2024人教版七年级数学上册1.1 正数和负数--教案

1.1 正数和负数主要师生活动一、创设情境,导入新知观看下面的视频,体会数的产生过程.师生活动:老师点击视频让学生观看,体会数的产生过程.回忆自然数的研究过程,探讨我们该如何研究数.师生活动:老师引导学生根据自然数的研究过程,说出有理数接下来研究的过程.二、小组合作,探究概念和性质知识点一:正数和负数数的产生:点击红包封口查看你所扮演的角色,说说你会遇见哪些具有相反意义的量.第一个红包:某天天气预报截图:第二个红包:某新闻报道:第三个红包:某新闻报道:师生活动:学生上台点击红包,说出红包中所观察的数字.观察同学们提到的部分数,你能找到什么规律吗?预设:-3,-11.43,-9.7% 前面有符号6,3.97,16.0% 大于0师生活动:学生思考,师生共同归纳同,老师给出定义:正数:大于0 的数.负数:在正数前面加上符号“-”(负)的数.例如:7、3、6453、1549、1864.例如:-6、-9、-10、-585.8、-293.师追问:特殊的0 呢?练一练:1.请将下列各数进行分类.正数:____________________________;负数:____________________________.预设:正数:2024、1.8、+56、+73、0.1.负数:−12、-2.93、-0.5师生活动:师提问:所以特殊的0 是正数还是负数?学生观察分析得出:数0既不是正数,也不是负数.合作探究:在温度、盈利亏损、存入和支出的数中,0 有什么特殊含义,请分组思考并举例.小组回答:1. 0℃ 是一个确定的温度;2. 海拔0 m 表示海平面的平均高度;3. 0 是正数和负数的分界.知识点二:正数和负数的意义合作探究:思考:图1 是地理中的等高线图,图2 是手机中的部分收支款账单,其中的正数和负数的意义分别是什么? 你能再举一些用正数、负数表示具有相反意义的量的例子吗?图1 图2预设:图1:A 地高于海平面4600 米,B 地低于海平面100 米.图2:收入15 元,支出30 元.教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.本课时内容是学生在小学学过的数的基础上,通过用简洁清楚的方式表示实际。

新人教版七年级数学上1.1《正数和负数》教案

新人教版七年级数学上1.1《正数和负数》教案

正数和负数( 1)1.整理前两个学段学的整数、分数(包含小数)的知,掌握正数和数的观点;教课目 2. 能划分两种不一样意的量,会用符号表示正数和数;3.体数学展的一个重要原由是生活的需要,激学生学数学的趣。

教课点正确划分两种不一样意的量。

知要点两种相反意的量教课程(生活)理念上开始,教通详细的例子,要明在先回小学前两个学段我已学的数,并由此学生思虑:生里学的数的活中有些“从前学的数” 用了?下边的例子型,出我已供参照.学了整数和分:今日我已是七年的学生了,我是你的数,而后,一些数学老.下边我先向你做一下自我介,我的名字生活中共有置情境是 XXX,身高 1.69 米,体重 74.5 千克,今年 43 .我相反意的量,引入的班是七 (2) 班,有 50 个同学,此中男同学有27明了表示相反个,占全班人数的 54%⋯意的量,我需1:老才的介中出了几个数?分是什要引入数,么?你能将些数按从前学的数的分方法行分做了数学的?密性,但于学学生活:思虑,沟通生来,更多地感师:从前学过的数,实质上主要有两大类,分别是整数和分数(包含小数).问题 2:在生活中,仅有整数和分数够用了吗?请同学们看书(察看本节前方的几幅图顶用到了什么数,让学生感觉引入负数的必需性)并思虑议论,然后进行沟通。

(也能够出示气象预告中的气温图,地图中表示地形高低地形图,薪资卡中存取钱的记录页面等)学生沟通后,教师概括:从前学过的数已经不够用了,有时需要一种前方带有“-”的新数。

问题 3:前方带有“一”号的新数我们应如何命名到了数学的无聊无聊为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设以下的问题情境,以尽量切近学生的实质.这个问题能激发学生探究的欲念,学生自己看书学习是培养学生自主学习的重要门路,都应予以重视。

以上的情境和实例使学生体会生活中到处有数学,经过实例,使学生获得大量的感性资料,为正确成立相反意义的量奠定基础。

这些问题是剖析问题研究新知它呢?为何要引人负数呢?往常在平时生活中我们用这节课的主要知正数和负数分别表示如何的量呢?识,教师要清楚地这些问题都一定要修业生理解.向学生说明,并且教师能够用多媒体出示这些问题,让学生带着这些要注意语言的准问题看书自学,而后师生沟通.确与规范,要舍得这阶段主假如让学生学会正数和负数的表示.花时间让学充足重申:用正,负数表示实质问题中拥有相反意义的发布想法。

新人教版七年级数学上册 1.1《正数和负数》教案

新人教版七年级数学上册 1.1《正数和负数》教案

1.1《正数和负数》单元要点分析教学内容1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例, 从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、 电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念, 从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义, 一种是几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离;另一种是代数意义.绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义则是给出了求绝对值的法则,由绝对值的两种意义可知,有理数a 的绝对值可表示为:│a│=(0) 0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来, 能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义, 会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、 负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:准确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1正数和负数2课时1.2有理数5课时1.3有理数的加减法4课时1.4有理数的乘除法5课时1.5有理数的乘方4课时数学活动1课时回顾与思考1课时1.1正数和负数第一课时正数和负数(一)教学内容课本第2页至第4页.教学目标1.知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.2.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.3.情感态度与价值观培养学生积极思考,合作交流的意识和能力.重、难点与关键1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生身边熟悉的事物, 加深对负数意义的理解.教具准备投影仪.教学过程一、负数的引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”, 测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2 页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%, 它们与负数具有相反的意义,我们把这样的数(即以前学过的0 以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+13,…就是3,2,0.5,13,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.二、加深对数0的认识数0既不是正数,也不是负数,但0是正数与负数的分界数.0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.三、用正负数表示具有相反意义的量把0以外的数分为正数和负数,起源于表示两种相反意义的量. 正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.你能再举一些用正负数表示数量的实际例子吗?例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.四、巩固练习课本第3页,练习1、2、3、4题.五、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数, 但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.六、作业布置1.课本第5页习题1.1复习巩固第1、2、3题.2.选用课时作业设计.第一课时作业设计一、填空题.1.如果向北走5米记作+5,那么向南走10米记作________.2.如果节约30千瓦·时电记作+30千瓦·时,那么浪费10千瓦·时电记作_____.3.如果-26.80表示亏损26.80元,那么+100元表示________.4.如果体重增加1.5千克记作+1.5千克,那么-0.5千克表示________.二、选择题.5.下列说法正确的是().A.0是正数B.0是负数C.0是整数D.0不是自然数6.有六个数:-5,0,312,-0.3,+13,-14,π,其中正数的个数是().A.1B.2C.3D.47.有六个数:-7,512,0,-6.3,18,-π,下列说法完全正确的是().A.-7,-π是负整数B.512,0,18是正数C.-7,-6.3,-π是负数D.只有-6.3是负分数三、解答题.8.指出下列各数中哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?0,-2,312,-0.08,-37,92,-413,3.14,77,-103.9.石英钟的产品说明书上写着“一昼夜误差小于±0.5秒”, 你对此怎样理解?10.若把公元1997年记作+1997,那么-97表示什么?答案:。

1.1 正数和负数 教案 2024-2025-学年度-人教版(2024)数学七年级上册

1.1 正数和负数 教案 2024-2025-学年度-人教版(2024)数学七年级上册

1.1正数和负数教学过程设计课题1.1正数和负数授课人教学目标1.理解正、负数的概念,会判断一个数是正数还是负数.2.会用正、负数表示具有相反意义的量,会用数学的方法表达实际情境.3.通过对具体情境的观察和思考,知晓负数概念形成的过程,培养学生的数感、符号意识,培养学生用数学眼光看待、观察现实世界的意识与习惯.教学重点能理解正、负数的概念,会判断一个数是正数还是负数.教学难点会用正、负数表示具有相反意义的量.教学活动教学步骤师生活动设计意图活动一: 创设情境导入新课【课堂引入】数的产生和发展离不开生活和生产的需要.人们对于数的认识就是伴随着记数、测量、运算等方面的需求不断拓展的(如图1-1-2).在小学,我们学过自然数、小数和分数,它们都是大于或等于0的数,但是在日常生活和生产实践中,为了表达和运算的需要,还有必要引入一类新的数.图1-1-2(1)北京冬季某一天的最高气温为零上3摄氏度,最低气温为零下结合已有的知识经验和生活常识,通过问题的形式引导学生发现“新数”,进而引入课题.3摄氏度.如何用数区分“零上3摄氏度”和“零下3摄氏度”? (2)某公司今年7月份盈利50万元,8月份亏损10万元.该公司在记账时如何用数分别表示“盈利50万元”和“亏损10万元”? (3)某年,我国棉花产量比上年增长7.8%,玉米产量比上年减少0.7%.统计这两种农作物产量的变化情况时,如何用数分别表示“增长7.8%”和“减少0.7%”?活动二: 探究与应用【探究1】正、负数的概念正数:像3,50,7.8%这样大于0的数叫作正数.负数:像-3,-10,-0.7%这样在正数前加上符号“-”的数叫作负数.3或+3读作“3或正3”,-3读作“负3”.注意:(1)有时,为了明确表达与负数的相反意义,在正数的前面也加上符号“+”.例如,+10,+2,+2.7%.一般情况下,正数前面的“+”省略不写.采取比较轻松的方式,尽量避免使概念复杂化,让学生觉得数学并不难学,增强学生的自信心!活动二: 探究与应用(2)一个数前面的“+”“-”号叫作这个数的符号.例如,+10读作“正10”;-3读作“负3”.【探究2】0我们在小学时知道:0表示没有,0不能作除数,0乘任何数都等于0.从本节课的学习中我们知道,0不仅仅表示没有,0 ℃不是没有温度,而是规定冰水混合物的温度为0 ℃.在实际意义中,0往往表示基准,比如海平面、警戒水位等,有着丰富的内涵.总结:0既不是正数,也不是负数.【探究3】用正、负数表示具有相反意义的量甲汽车向东行驶3 km,乙汽车向西行驶1 km.蔬菜店某天上午购进黄瓜50 kg,下午售出黄瓜2 kg.教师:你会用正、负数来表示这些具有相反意义的量吗?总结:对0的分析,能够帮助学生加深对0的内涵的理解.用趣味情境启发学生用正、负数表示具有相反意义的量.让学生初步认识负数,知道负数的产生是生活的需要.(1)定义:在生活中存在各种各样的量,其中有一种量,它们的属性相同(即同类量),但表示的意义却相反,我们把这样的量叫作相反意义的量.(2)表示法:用正数与负数表示一对具有相反意义的量.把其中一种意义的量规定为正,把另一种与之意义相反的量规定为负. 【应用举例】例1 指出下面各数中的正数、负数: -2,+313,0,45,2024,-0.02,+3.65,-112.例2 某校组织学生去劳动实践基地采摘橘子,并称重、封装.一箱橘子的标准质量为2.5 kg .如果用正数表示超出标准质量的克数,那么(1)比标准质量多65 g 和比标准质量少30 g 各怎么表示? (2)50 g,-27 g 各表示什么意思?例3 (1)一个月内,李明体重增加1.2 kg,张华体重减少0.5 kg,刘伟体重无变化,写出他们这个月的体重增长值.(2)四种品牌的手机今年第二季度的销售量与第一季度相比,变化率如下:A 品牌减少2%,B 品牌增长4%,C 品牌增长1%,D 品牌减少3%.写出今年第二季度这些品牌的手机销售量的增长率. 通过对实例的分析,让学生知道如何用正、负数表示具有相反意义的量.【拓展提升】例4 一批螺帽产品的内径允许的偏差是±0.02 mm,现抽查5个样品,超过规定的毫米数记为正数,不足的毫米数记为负数,检查结果(单位:mm)如下表,则符合要求的产品有 ( )序号 12345结果+0.031 +0.017 +0.023 -0.021 -0.015A .1个B .2个C .3个D .5个例5 某粮食加工厂生产的大米,每袋的标准质量是20 kg,规定合格产品最重不超过20.5 kg,最轻不低于19.8 kg .用正数表示超通过练习进行针对性的巩固,使学生在掌握基础知识的同时,拓展提升.过标准的质量,用负数表示不足标准的质量,现有10袋大米,它们的质量分别记作-0.3 kg,0.4 kg,-0.1 kg,-0.2 kg,0 kg,-0.25 kg,0.5 kg,-0.15 kg,0.6 kg,-0.06 kg,则这10袋大米的合格率是多少? 活动 三: 课堂 总结 反思【当堂训练】1.下列结论正确的是 ( )A .0既是正数,又是负数B .0是最小的正数C .0是最大的负数D .0既不是正数,也不是负数 2.在-7,0,-3.78,+100,-0.27中,负数有 ( )A .0个B .1个C .2个D .3个 3.若-50元表示支出50元,则+100元表示 .4.正常水位为0 m,如果用正数表示水面高于正常水位的高度,那么水位高于正常水位0.2 m 记作 ,低于正常水位0.3 m 记作 .5.指出下面各数中的正数、负数:-0.3,52,+312,-135,0,-4,2024.6.某商店利用公式:利润=售价-进价,计算该商店星期一的利润为-30元,星期二的利润为+300元,请说明-30元和+300元的含义. 通过检测发现学生对本节课知识的掌握情况,总结本节课的教学效果,并为课下辅导做好准备.【知识网络】提纲挈领,重点突出. 【作业布置】教材P3练习,P5练习、习题1.1T4,T5,T6.根据内容,重点设置作业,巩固课堂教学效果.【教学反思】①[授课流程反思]通过身边常见的生活情境,让学生感受到数不够用了,进而引入新课,容易调动学生的积极性,更能体现正、负数的实际意义.②[讲授效果反思]通过对实际问题的探究,感受正、负数的实际意义,更好地理解负数的概念.让学生正确理解“一个数,如果不是正数,必定是负数或0”,强调“0既不是正数,也不是负数”.③[师生互动反思]④[习题反思]好题题号错题题号反思,更进一步提升.。

2022年《正数和负数教案》4篇

2022年《正数和负数教案》4篇

2022年《正数和负数教案》4篇《正数和负数教案》篇1教学内容:人教版七年级上册第一章有理数 1.1 正数和负数教学目标:在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。

使学生经历数学化,符号化的过程,体会负数产生的必要性。

感受正、负数和生活的密切联系,享受创造性学习的乐趣.教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。

教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。

教学过程:一、感受相反方向的数量,经历负数产生的过程。

1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。

2、引入负数的概念3、总结正负数(1)这些数很特别,都带上了符号,它们是一种“新数”。

-9、-4.5等都叫负数; +7、+988等都叫正数。

你会读吗?请你读给大家听。

注意“-”叫负号,“+”叫正号。

(2)读给你的同伴听。

(3)把你新认识的负数再写两个,读一读。

下面让我们走进正数和负数的世界,进一步了解它们。

(板书课题)二、借助实际生活情境的直观,丰富对正负数的认识。

1、负数有什么用?用正数或负数表示下列数量。

(1向东走200米,用+200米表示;那么向西走200米元用表示。

2.说说实际问题中负数的确定(1.)表示海拔高度(2.)解释温度中正负数的含义(3)做练习三3、怎样理解具有相反意义的量三、理解01、0既不是正数也不是负数。

0是正负数的分界。

2、0只表示没有吗?1).空罐中的金币数量;2).温度中的0℃;3).海平面的高度;4).标准水位;5).身高比较的基准;6.)正数和负数的界点;3、总结0既不是正数,也不是负数;0是正数负数的分界。

0是整数,0是偶数,0是最小的自然数。

四、探究活动(出示课件):1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。

2024-2025学年初中数学七年级上册(人教版)教案1.1正数和负数

2024-2025学年初中数学七年级上册(人教版)教案1.1正数和负数

第一章有理数1.1 正数和负数教学目标课题 1.1 正数和负数授课人素养目标1.理解具有相反意义的量及正数、负数的意义.2.会用正数、负数表示具体情境中具有相反意义的量,体会数学知识与生活的密切联系,进一步增强符号意识,培养应用意识.3.理解0的意义,体会0在解决实际问题中的“基准”作用,初步培养抽象能力.教学重点1.能理解正数、负数的概念,会判断一个数是正数还是负数.2.会用正数、负数表示具体情境中具有相反意义的量.教学难点1.用正数、负数表示具有相反意义的量时描述向指定方向变化的情况.2.理解0的意义,体会0在解决实际问题中的“基准”作用.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境导入】1.观察下面三幅图,这些自然数、分数以及小学时学过的小数是由生活实际的需要产生的,那么它们能否完全满足我们目前生产、生活的需要呢?2.思考教材P1引言中的三个问题.在这三个问题中,“零下3摄氏度”“亏损10万元”“减少0.7%”能够用上面的数表示吗?这说明了什么?【教学建议】引导学生通过观察三幅图,体会小学学过的几个数都是基于现实需要产生的,然后引导学生思考三个问题,提出疑问,使学生产生探索欲望.设计意图先通过图片形式让学生体会已学过的数的产生具有必然性与局限性,然后通过列举的三个问题为引入新知做准备.活动二:实践探究,获取新知探究点1 具有相反意义的量及正数、负数的认识Ⅰ.具有相反意义的量问题1结合下面图示,对于引言中的问题(1),我们如何用数区分“零上3摄氏度”和“零下3摄氏度”呢?观察图①,零上温度和零下温度是以0 ℃为分界点的具有相反意义的量.观察图②中的天气预报可以看出,零上3摄氏度用3 ℃表示,零下3摄氏度用-3 ℃表示.问题2类似地,对于引言中的问题(2)(3),应如何用【教学建议】这里要结合教材引言中的问题进行分析,其中第一个问题与生活实际密切相关,学生通过平时看天气预报已经对此有一定的了解,教师要结合实际情境进行说明.可在最后指出具有相反意义的量的一些特点.“属性相同”,也就是同类量,比如“盈利”与“亏损”是同类量,但“盈利”与“减少”就不是设计意图借助生活实例,引导学生理解具有相反意义的量,通过相应出现的数,进一步引入正数、负数的概念,并借此体会正数、负数的意义.数分别表示“盈利50万元”“亏损10万元”以及“增长7.8%”“减少0.7%”呢?如果用“50万元”表示盈利50万元,就可以用“-10万元”表示亏损10万元.如果用“7.8%”表示增长7.8%,就可以用“-0.7%”表示减少0.7%.问题3通过问题1,2,你认为具有相反意义的量有哪些特点?成对出现、属性相同(同类量)、意义相反.Ⅱ.正数、负数的认识问题1通过上面对“具有相反意义的量”的介绍,我们已经知道有-3,-10,-0.7%这样的数,对于这种类型的数,我们该如何进行定义?概念引入:问题2正数前面的“+”号和负数前面的“-”号是否都可以去掉?为什么?正数前面的“+”号可以去掉也可以不去掉,负数前面的“-”号不能去掉.因为正数就是大于0的,加不加“+”号都没有影响;但对负数而言,只有在正数前面加上“-”号才是负数,所以“-”号不能去掉.如果一个问题中出现具有相反意义的量,就可以用正数和负数分别表示它们.我们一起来看下面的例题.例1(教材P3例1)某校组织学生去劳动实践基地采摘橘子,并称重、封装.一箱橘子的标准质量为2.5 kg.如果用正数表示超过标准的质量,那么(1)比标准质量多65 g和比标准质量少30 g各怎么表示?(2)50 g,-27 g各表示什么意思?填空分析:(1)前面我们讲到“零上温度和零下温度是以0 ℃为分界点的具有相反意义的量”,那么本题中的分界点是标准质量2.5 kg.(2)题目中比标准质量多×× g 和比标准质量少×× g 是具有相反意义的量.解:(1)比标准质量多65 g用+65 g表示,比标准质量少30 g用-30 g表示.(2)50 g表示这箱橘子的质量比标准质量多50 g,-27 g表示这箱橘子的质量比标准质量少27 g.【对应训练】教材P3练习同类量;“意义相反”指变化的方向相反,不要与意义相近混淆(比如增长与增加就不构成具有相反意义的量).另外需注意:具有相反意义的量要求意义相反,但不要求数量相等.如盈利3`000元与亏损400元是具有相反意义的量.【教学建议】这里注意引导学生正确理解正数、负数的概念.注意前面有“-”号的数不一定是负数,比如-(-3)就不是负数,这涉及后面的知识,教师知道即可,如学生有疑问可适当解释,本课时不作要求. 【教学建议】例1可让学生回答下什么是“分界点”,什么是具有相反意义的量,便于加深理解.设计意图探究点20的意义正数和负数在实践中有着广泛的应用.如图,在表示某地的高度时,通常以海平面为基准,用0 m表示海平面的海拔.【教学建议】教师提醒学生注意,生活中有在用正数、负数表示具有相反意义的量的基础上,以海拔说明0的“基准”作用,丰富0的意义. 用正数表示高于海平面的海拔,用负数表示低于海平面的海拔,如图中用正数、负数分别表示世界最高峰的海拔和我国陆地最低处的海拔.问题1结合上面这个实际应用和上面所学知识,你认为0还只仅仅表示“没有”吗?0是正数与负数的分界.0 ℃是一个确定的温度,海拔0 m是一个确定的海拔.0已不只是表示“没有”.问题2(教材P4思考)如图①是地理中的分层设色地形图,图②是手机中的部分收支款账单,其中的正数和负数的意义分别是什么?你能再举一些用正数、负数表示具有相反意义的量的例子吗?图①中的正数表示A地高于海平面4 600 m,负数表示B地低于海平面100 m.图②中的正数表示收入15元,负数分别表示支出10元、支出30元.其他例子:比如叶宇同学向南走20 m记为+20 m,那么他向北走30 m可记为-30 m.例2(教材P4例2)(1)一个月内,李明体重增加1.2 kg,张华体重减少0.5 kg,刘伟体重无变化,写出他们这个月的体重增长值.(2)四种品牌的手机今年第二季度的销售量与第一季度相比,变化率如下:A品牌减少2%,B品牌增长4%,C品牌增长1%,D品牌减少3%.写出今年第二季度这些品牌的手机销售量的增长率.填空分析:第(1)小题要求写出“增长值”,所以,用正数表示体重增加量,用负数表示体重减少量.这样,直接翻译“体重减少1 kg”就是体重增长-1 kg.第(2)小题可以此类推.解:(1)这个月李明体重增长1.2 kg,张华体重增长-0.5 kg,刘伟体重增长0 kg.(2)四种品牌的手机今年第二季度销售量的增长率是:A品牌-2%,B品牌4%,C品牌1%,D品牌-3%.追问增长-2%是什么意思?什么情况下增长率是0?增长-2%就是减少2%.第二季度的手机销售量与第一季度相同时,增长率是0.【对应训练】些具有相反意义的量没有明确的分界,一般把某一个量规定为“0”,即基准,习惯上,超过基准的部分用正数表示,低于基准的部分用负数表示.【教学建议】这个问题2继续说明0作为正数、负数的“分界”,在解决实际问题中的“基准”作用.注意例子中地形图上的海拔一般不标单位,实际采用米作单位W.手机收付款的收支平衡可以用0表示.【教学建议】用正数、负数表示具有相反意义的量时,难点是描述向指定方向变化的情况,即:向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示.这与学生的日常经验有一定的矛盾,需要一个“心理转换”:把“体重减少0.5 kg”,转换为“体重增加-0.5 kg”,需要对“负”与“正”的相对性有较好的理解.实际上,只要问题中包含具有相反意义的量,就可以用正数和负数分别表示,而哪个量用负数表示,可以视实际需要而定,教学时要注意引导.教材P5练习.活动三:知识升华,巩固提升例3(教材P5习题1.1第6题)某班七组同学分别测量同一座楼的高度,测得的数据(单位:m)分别是:79.4,80.6,80.8,79.1,80,79.6,80.5.这些数据的平均值是多少?以平均值为标准,用正数表示超出的部分,用负数表示不足的部分,它们对应的数分别是什么?解:平均值是(79.4+80.6+80.8+79.1+80+79.6+80.5)÷7=560÷7=80.即这些数据的平均值是80 m.它们对应的数分别是-0.6 m,0.6 m,0.8 m,-0.9 m,0 m,-0.4 m,0.5 m.【对应训练】1.体育锻炼标准规定:13岁男生每分钟做22个仰卧起坐为达标,超过标准的个数用正数表示,不足标准的个数用负数表示.八位同学的成绩分别记录为:+3,-1,+1,0,-2,+2,+4,-3.这八位同学中达标的有(B)A.4人B.5人C.6人D.8人2.某校七年级利用劳动实践课开展创意点心制作比赛活动.李龙制作了一盒精美点心(共计6枚),现在他把6枚点心称重(单位:g)后统计列表如下:第1枚第2枚第3枚第4枚第5枚第6枚68.4 g 71.3 g 70.7 g 68.6 g 69.1 g 72 g为了简化运算,李龙依据比赛的标准质量,把超出部分记为正,不足部分记为负,列出下表(数据不完整),请你把表格补充完整:第1枚第2枚第3枚第4枚第5枚第6枚-1.6 g +1.3 g +0.7 g -1.4 g -0.9 g +2 g解:补充表格如上所示.【教学建议】对于例题中求平均值,小学时已经学过,只要将各个数据相加求和再除以7即可,这个可由学生自主完成.难点主要在于以平均值为标准,用负数表示不足的部分.这里没学有理数的加减运算,可让学生用较大数减去较小数,然后根据具有相反意义的量的知识来表示.设计意图安排此例题和对应训练是想让学生体会以平均值为标准,用正数表示超出的部分,用负数表示不足的部分的方法.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是正数,什么是负数,0是什么数?2.怎么表示具有相反意义的量?3.0的意义是什么?【知识结构】【作业布置】1.教材P5习题1.1第1,2,3,4,5题.2.《创优作业》主体本部分相应课时训练.板书设计1.1 正数和负数1.具有相反意义的量:①“零上3摄氏度”与“零下3摄氏度”②“盈利50万元”与“亏损10万元”……2.正数和负数教学反思本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分.学生通过经历讨论、探索、交流、合作等过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,提升学生的能力,促进学生的发展,使每个学生在教学中都能得到收获.解题大招一用正数、负数表示具有相反意义的量当题目中已明确“一种意义”的量对应的是正数(负数)时,我们就可以判断“与之具有相反意义”的量所对应的是负数(正数).如果没有明确哪种意义的量用正数表示,那么我们可以任选一种意义的量用正数表示,而另一种意义的量必须用负数表示.例1(1)在知识竞赛中,如果用-10分表示扣10分,那么加20分记为(C)A.+10分B.-10分C.+20分D.-20分(2)如果风车顺时针旋转66°,记作+66°,那么逆时针旋转78°,记作(A)A.-78°B.78°C.-12°D.12°(3)我国古代数学名著《九章算术》中对正数和负数的概念注有“今两算得失相反,要令正负以名之”.如:库管员把仓库运进30 t粮食记为“+30”,则“-30”表示运出30 t粮食.解题大招二用正负数表示允许偏差例2某品牌饮料外包装上标明“净含量:200 mL ±5 mL”,随机抽取四种口味的这种饮料分别检测如表.其中,净含量不合格的是(B)种类原味草莓味香草味巧克力味净含量/ mL 195 210 200 205A.原味B.草莓味C.香草味D.巧克力味分析:先计算净含量范围,比较即可求解.由题目中200 mL±5 mL可知,200+5=205(mL),200-5=195(mL),所以净含量合格范围是195 mL~205 mL之间.因为210>205,所以净含量不合格的是草莓味.故选B.解题策略:解这类题关键是知道“±××”表示的是允许偏差的范围.以本题为例,200 mL±5 mL表示饮料净含量最大可以是(200+5)mL,最小可以是(200-5)mL.培优点实际问题中“基准”的相对性例如图,已知摩天轮的最高点距地面165 m,最低点距地面5 m.(1)若以地面为基准,则摩天轮最高点和最低点的高度分别如何表示?(2)若以摩天轮最低点的位置为基准,则最高点和地面的高度分别如何表示?分析:(1)以地面为0 m时,高出地面都记为正数;(2)以该摩天轮最低点的位置为0 m时,最高点的高度为正数,地面高度为负数.解:(1)若以地面为基准,该摩天轮最高点和最低点的高度分别表示为+165 m,+5 m.(2)若以该摩天轮最低点的位置为基准,则最高点的高度为165-5=160(m).最高点的高度可表示为+160 m,地面高度表示为-5 m.。

新人教版七年级数学上册:1.1《正数和负数》教案

新人教版七年级数学上册:1.1《正数和负数》教案

正数和负数一、课题§正数和负数(2)二、教课目的1.使学生理解有理数的意义,并能将给出的有理数进行分类;2.培育学生建立分类议论的思想.三、教课要点和难点要点难点有理数包含哪些数.有理数的分类及其分类的标准.四、教课手段现代讲堂教课手段五、教课方法启迪式教课六、教课过程(一)、从学生原有的认知构造提出问题1.什么是正、负数?2.怎样用正、负数表示拥有相反意义的量?数0 表示量的意义是什么?举例说明.3.任何一个正数都比0 大吗?任何一个负数都比0 小吗?4.什么是整数?什么是分数?依据学生的回答引出新课.(二)、讲解新课1.给出新的整数、分数看法引进负数后,数的范围扩大了.过去我们说整数只包含自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因此整数包含正整数( 自然数) 、负整数和零,相同分数包含正分数、负分数,即2.给出有理数看法整数和分数统称为有理数,即有理数是英语“ Rational number”的译名,更切实的译名应译作“比3.有理数的分类为了便于研究某些问题,经常需要将有理数进行分类,需要不一样,分类的方法也经常不一样依占有理数的定义可将有理数分红两类:整数和分数.有理数还有没有其余的分类方法?待学生思虑后,请学生回答、评论、增补.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即并指出,在有理数范围内,正数和零统称为非负数.并向学生重申:分类能够依据不一样需要,用不一样的分类标准,但一定对议论对象不重不漏地分类.(三)、运用举例变式练习例 1将以下数按上述两种标准分类:例 2以下各数是正数仍是负数,是整数仍是分数:讲堂练习25,-100 按两种准分.2.以下各数是正数是数,是整数是分数?(四)、小教引学生回答以下:本学了哪些基本内容?学了什么数学思想方法?注意什么?七、1.把以下各数填在相的括号里( 将各数用逗号分开 ) :正整数会合:{⋯};整数会合:{⋯};正分数会合:{⋯};分数会合:{⋯}.2.填空:的数是 ______,在分数会合里的数是______;(2)整数和分数合起来叫做 ______,正分数和分数合起来叫做______.3.(1)-100不是[] A.有理数 B .自然数C.整数D.有理数(2) 在以下法中,正确的选项是[]A.非有理数就是正有理数B.零表示没有,不是有理数C.正整数和负整数统称为整数D.整数和分数统称为有理数八、板书设计正数负数(2)(一)知识回首(三)例题分析(五)讲堂小结(二)察看发现例1、例2(四)讲堂练习练习设计九、教课后记在教授知识的同时,必定要重视数学基本思想方法的教课.对于这一点,布鲁纳有过出色的阐述.他指出,掌握数学思想和方法能够使数学更简单理解和更简单记忆,更重要的是领悟数学思想和方法是通向迁徙大道的“光明之路”,假如把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾御数学知识,就能培育学生的数学能力.不只使数学学习变得简单,并且会使得其余学科简单学习.明显,依据布鲁纳的看法,数学教课就不可以就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄详细知识,详细解决问题的方法,逐渐形成和发展数学能力.为了使学生掌握必需的数学思想和方法,需要在教课中联合内容逐渐浸透,而不可以离开内容形式地教授.本课中,我们存心识地突出“分类议论”这一数学思想方法,并在教课中注意浸透两点:1.分类的标准不一样,分类的结果也不相同;2.分类的结果应是无遗漏、无重复,即每一个数一定属于某一类,又不可以同时属于不一样的两类.。

七年级数学人教版上册1.1正数和负数优秀教学案例

七年级数学人教版上册1.1正数和负数优秀教学案例
在案例中,我还注重培养学生的实际应用能力。通过设置一组实际问题,如计算小明和小华的购物金额、求解正数和负数的和等,让学生在解决问题的过程中,加深对正数和负数的理解和运用。
二、教学目标念,理解正数表示收入、支出等正面的量,负数表示债务、亏损等负面的量。
2.让学生掌握正数和负数的性质,如正数大于0,负数小于0,正数和负数互为相反数等。
3.培养学生运用正数和负数解决实际问题的能力,能够运用正数和负数进行简单的计算和解决问题。
(二)过程与方法
1.通过生活情境的引入,激发学生的学习兴趣,引导学生观察、思考和讨论,培养学生的自主学习能力。
2.运用问题驱动的教学方法,引导学生通过观察、思考、讨论和总结,掌握正数和负数的概念和性质。
3.设计实际问题,让学生通过计算和解决问题,培养学生的实际应用能力和解决问题的能力。
2.提出问题:“小明和小华购物过程中,他们所花费的金额有什么不同?”引导学生思考和讨论,引发对正数和负数的兴趣。
3.引导学生思考:“负数是什么意思?它是如何产生的?”激发学生的好奇心和求知欲。
(二)讲授新知
1.介绍正数和负数的概念,解释正数表示收入、支出等正面的量,负数表示债务、亏损等负面的量。
2.引导学生通过观察和思考,总结正数和负数的性质,如正数大于0,负数小于0,正数和负数互为相反数等。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发学生对数学知识的热爱和追求。
2.培养学生团队合作的精神,通过小组讨论和合作解决问题,培养学生的合作能力和沟通能力。
3.培养学生积极面对困难和挑战的态度,通过解决实际问题,培养学生的自信心和自主性。
三、教学策略
(一)情景创设
1.利用多媒体展示小明和小华购物的图片和信息,让学生直观地感受到正数和负数的实际应用。

新人教版七年级数学上教案及教学反思正数和负数优秀教案

新人教版七年级数学上教案及教学反思正数和负数优秀教案

新人教版七年级数学上教案及教学反思——正数和负数优秀教案一、教学目标1.知识与技能:(1)理解正数和负数的概念。

(2)能够正确表示正数和负数。

2.过程与方法:(1)通过实例引入正数和负数的概念。

(2)运用正数和负数进行数学运算。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生对正数和负数的敏感度。

二、教学重难点1.重点:(1)正数和负数的概念。

(2)正数和负数的表示方法。

2.难点:(1)正数和负数在实际生活中的应用。

(2)正数和负数的运算规律。

三、教学过程1.导入(1)讲解正数和负数的概念。

(2)引导学生关注正数和负数在实际生活中的应用。

2.新课内容(1)讲解正数和负数的表示方法。

(2)通过实例让学生理解正数和负数的含义。

(3)引导学生运用正数和负数进行数学运算。

3.练习与巩固(1)设计一些关于正数和负数的练习题。

(2)让学生分组讨论,互相检查答案。

(2)引导学生思考正数和负数在生活中的作用。

四、教学反思1.本节课通过实例引入正数和负数的概念,让学生在实际生活中感受数学的运用。

2.在讲解正数和负数的表示方法时,注意引导学生理解其含义。

3.通过练习题巩固所学内容,让学生熟练掌握正数和负数的运算规律。

5.不足之处:(1)课堂讲解时,可能存在部分学生听不懂的情况,需要加强个别辅导。

(2)练习题设计不够丰富,需要增加更多有趣的题目。

(3)在课堂互动环节,要更加关注学生的参与度,让每个学生都有机会发言。

五、教学建议1.在讲解正数和负数时,尽量使用生动形象的例子,让学生更容易理解。

2.加强课堂互动,让学生积极参与讨论,提高学生的学习兴趣。

3.设计更多有趣的练习题,让学生在轻松的氛围中学习。

4.关注学生的个体差异,对学习有困难的学生进行个别辅导。

5.定期进行教学反思,不断改进教学方法,提高教学质量。

作为一名教师,我们要关注学生的需求,用心教学,让学生在愉快的氛围中学习数学,掌握正数和负数的知识,为今后的学习打下坚实的基础。

初一数学第一章教案

初一数学第一章教案

初一数学第一章教课方案【篇一:新人教版七年级上册数学第 1 章有理数全章教案[1]】第一章有理数1.1 正数和负数〔一〕教课目的:知识与技术:掌握正数和负数的看法,能划分两种不一样意义的量,会用符号表示正数和负数;培育学生察看、比较和归纳的思想能力。

过程与方法:教法主要采纳启迪式教课学法指引学生自主探究去察看、沟通、归纳.感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,通过本节课的教课,浸透对峙一致的辩证思想。

教课重点:实质需要产生正数与负数.教课难点:正确认识负数,能正确地举出拥有相反意义的量的典型例.教课过程:〔一〕、提出问题〔二〕、试一试章前图中表示温度、净胜球、加工赞同偏差时,用到了-3,3,2,- 2,0,+0.5 ,-0.5 等等.请同学们那些数是从前没有学过的数,有–3,-2,-0.5. 实质意义是零下 3 度,净输 2 球,小于尺寸0.5mm.〔三〕、探究新数–3,-2,-0.5 有什么特点?〔学生回复〕1 正数:从前学过的大于0 的数〔像1、、3 、48 等的数叫正数〕 3 1 负数:在正数前面加上负号“-〞的数.〔像-1、-2.5 ,-,-48 的数叫负数,31 读作负1、负、负、负48.〕3有时正数前面也能够加上正号“+〞,正号“+〞能够省略,但负号“-〞一定不可以够省略.一个数前面的“+〞-〞“叫它的符号〔性质符号〕.重申0 既不是正数,也不是负数,它是中性数.师:〔以温度计为例〕温度计中的0 不是表示没有温度,它往常表示水结成冰时的温度,是零上温度与零下温度的分界点,所以得出:零既不是正数也不是负数。

讲堂练习:读出以下各数,并指出此中那些是正数,那些是负数.-1,,+42 ,0,-3.14 ,120 ,-1.732 ,-. 37在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,比如规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155 米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为-155m.讲堂练习:课本p3 练习〔四〕、归纳小结1、什么是正数和负数2、如何用正数和负数表示拥有相反意义的量〔五〕课内外作业课本p5:1,2,4,51.1 正数和负数〔二〕教课目的:知识与技术:在认识正负数的看法的根基上,使学生灵巧运用正负数的来表示相反意义量过程与方法:经过用正负数的来表示相反意义量的教课,培育学生察看、比较和归纳的思想能力.教法主要采纳启迪式教课学法指引学生自主探究去归纳如何用正负数来表示相反意义量感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,学会沟通教课重点:灵巧掌握正负数的看法.教课难点:灵巧运用正负数的来表示相反意义量.教课过程:〔一〕、提出问题师:为了表示物体的个数和事物的次序,产生了1,2,3,4?? 这些数,我们把它叫做什么数?生:自然数师:为了表示“没有〞,又引入了一个什么数?生:自然数0师:当丈量和计算的结果不是整数时,又引进了什么数?生:分数〔小数〕师:可见数的看法是跟着生产和生活的需要而不停展开的.请同学们想想,在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,以上节课为例:规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为- 155m. 师:为了能灵巧运用正负数的来表示相反意义量,我们连续学习正数与负数就节课的内容.[板书:1、1 正数与负数]〔二〕试一试让学生议论如何用正数和负数表示拥有相反意义的量.1、相反意义的量师:在现实生活中,我们经常碰到一些拥有相反意义的量,比方:a:汽车向东行驶2.5 千米和向西行驶1.5 千米;b: 气温从零上6 摄氏度降落到零下6 摄氏度;c: 风筝上涨10 米或降落5 米.指引学生明确拥有相反意义的量的特点:〔1〕有两个量〔2〕有相反的意义请学生举出一些相反意义的量的实例.教师归纳:相反意义中的一些常用词有:盈余与损失,存入与支出,增添与减少,运进与运出,上涨与降落等.〔三〕、探究如何来表示拥有相反意义的量呢?由师生议论后得出:我们把一种意义的量规定为正的,用“+〞〔读作正〕号来表示,同时把另一种与它相反意义的量规定为负的,用“-〞 〔读作负〕号来表示.比如,假如零上6℃记作+6℃〔读作正 6 摄氏度〕,那么零下6℃记作-6℃〔读作负 6 摄氏度〕,请同学们用相同的方法表示〔1〕、 〔2〕两题.生:〔1〕假如向东行驶 2.5 千米记作+2.5 千米〔读作正 2.5 千米〕,那么向西行驶 1.5 千米记作-1.5 千米〔读作负 1.5 千米〕;〔2〕如果上涨10 米记作+10 米〔读作正10 米〕,那么降落 5 米记作-5 米 〔读作负 5 米〕.师:像+6,+10 ,+2.5 等前面放有“+〞号的数叫做正数,像-6,-5,-1.5 等前面放有“-〞号的数叫做负数.再次重申正号能够省略不写,如+5 能够写成5,但负数的负号能省略不写吗?生:〔议论后得出〕不可以.例教材p4〔板书并解答〕讲堂练习教材p4 的练习学生进行“阅读与思虑〞2、增补练习,-0.35 ,11 中,正数是,负数是;〔2〕〔1〕在-2,,0,假如向东为正,那么走-50 米表示什么意思?假如向南为正,那么走-50 米又表示什么意思?人以地面一层记为0,那么 1 楼、2 楼、3 楼?? 就表示为0,1,2??那么地下第二层表示为.在同一问题中,分别用正数与负数表示的量拥有相反的意义.〔四〕、归纳小结引入负数能够简洁的表示相反意义的量,关于相反意义的量,假如此中一种量用正数表示,那么另一种量能够用负数表示. 在表示拥有相反意义的量时,把哪一种意义的量规定为正,可依据实质状况决定.要特别注意零既不是正数也不是负数,成立正负数看法后,当考虑一个数时,必定要考虑它的符号,这与从前学过的数有很大的区别.1、正数和负数;2、用正数和负数表示拥有相反意义的量.〔五〕课内外作业课本p5:3,6,7,8.1.2 有理数1.2.1 有理数教课目的:知识与技术:1.使学生理解整数、分数、有理数的看法。

人教版七年级数学上册:1.1《正数和负数》教学设计

人教版七年级数学上册:1.1《正数和负数》教学设计

人教版七年级数学上册:1.1《正数和负数》教学设计一. 教材分析《正数和负数》是人教版七年级数学上册的第一章第一节内容。

本节课主要介绍了正数和负数的定义,以及它们的性质。

学生通过本节课的学习,能够理解正数和负数的含义,掌握它们的运算规则,并能运用到实际问题中。

二. 学情分析七年级的学生已经具备了初步的数学基础,但对于正数和负数的概念可能还比较陌生。

因此,在教学过程中,教师需要引导学生从实际情境出发,理解正数和负数的含义,并通过大量的练习让学生熟练掌握它们的运算规则。

三. 教学目标1.知识与技能:理解正数和负数的定义,掌握它们的性质和运算规则。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的数学思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:正数和负数的定义,它们的性质和运算规则。

2.难点:正数和负数的运算规则,以及如何在实际问题中运用。

五. 教学方法1.情境教学法:通过实际情境引导学生理解正数和负数的含义。

2.动手操作法:让学生通过实际操作,加深对正数和负数概念的理解。

3.小组合作学习:培养学生团队合作意识,提高学生的数学思维能力。

六. 教学准备1.教学课件:制作精美的课件,帮助学生直观地理解正数和负数的概念。

2.教学素材:准备一些实际问题,让学生运用正数和负数进行解决。

3.练习题:准备一些练习题,用于巩固学生对正数和负数的掌握程度。

七. 教学过程1.导入(5分钟)利用课件展示一些实际情境,如温度计、体重秤等,引导学生思考正数和负数的含义。

2.呈现(10分钟)讲解正数和负数的定义,通过实例让学生理解正数和负数的概念。

3.操练(10分钟)让学生进行一些简单的正数和负数运算,如加减乘除等,巩固学生对正数和负数的掌握。

4.巩固(10分钟)出示一些实际问题,让学生运用正数和负数进行解决,加深学生对正数和负数的理解。

5.拓展(10分钟)引导学生思考正数和负数在实际生活中的应用,如购物、理财等,培养学生的数学应用能力。

人教版初一数学教案正数和负数(精选9篇)

人教版初一数学教案正数和负数(精选9篇)

初一数学教案正数和负数人教版初一数学教案正数和负数(精选9篇)作为一名专为他人授业解惑的人民教师,有必要进行细致的教案准备工作,借助教案可以让教学工作更科学化。

如何把教案做到重点突出呢?以下是小编为大家收集的初一数学教案正数和负数,希望能够帮助到大家。

初一数学教案正数和负数篇1教学目的:(一)知识点目标:1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:引入新课:1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、最好?内容:老师说出指令:向前两步,向后两步;向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:1.自然数的产生、分数的产生。

2.章头图。

问题见教材。

让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。

根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、-等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

人教版数学七年级上册1.1《正数和负数》教学设计

人教版数学七年级上册1.1《正数和负数》教学设计

人教版数学七年级上册1.1《正数和负数》教学设计一. 教材分析《正数和负数》是人教版数学七年级上册的第一节内容,为学生以后学习更高级的数学知识打下基础。

这一节主要介绍正数和负数的概念,以及它们的性质。

教材通过简单的例子引入正数和负数,使学生能够直观地理解和掌握。

二. 学情分析七年级的学生刚从小学升入初中,对数学的知识体系还不够了解。

他们对正数和负数可能有一定的了解,但对其性质和运算可能还不够熟悉。

因此,在教学过程中,需要注重引导学生从实际情境中发现问题,通过自主探究和合作交流来理解和掌握正数和负数的概念和性质。

三. 教学目标1.理解正数和负数的概念,掌握它们的性质。

2.能够运用正数和负数解决实际问题。

3.培养学生的抽象思维能力和团队合作能力。

四. 教学重难点1.重难点:正数和负数的概念及其性质。

2.难点:理解正数和负数的运算规律。

五. 教学方法1.情境教学法:通过实际情境引导学生理解和掌握正数和负数的概念和性质。

2.自主探究法:鼓励学生自主探究,发现问题,解决问题。

3.合作交流法:引导学生与他人合作,共同解决问题,提高团队协作能力。

六. 教学准备1.教学PPT:制作精美的PPT,展示正数和负数的例子和性质。

2.教学素材:准备一些实际问题,用于引导学生运用正数和负数解决。

3.学生活动材料:准备一些练习题,用于学生在课堂上进行自主学习和巩固。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际情境,如购物、温度等,引导学生发现正数和负数的存在。

让学生分享他们对正数和负数的理解,为新课的展开做好铺垫。

2.呈现(10分钟)通过PPT呈现正数和负数的概念和性质,用简洁的语言进行讲解。

同时,给出一些例子,让学生跟随老师一起分析和总结正数和负数的性质。

3.操练(10分钟)让学生分成小组,共同解决一些与正数和负数相关的问题。

教师巡回指导,解答学生遇到的问题。

4.巩固(5分钟)挑选几名学生上黑板进行正数和负数的运算练习,让其他学生进行评价和补充。

人教版七年级数学上册:1.1《正数和负数》教学设计3

人教版七年级数学上册:1.1《正数和负数》教学设计3

人教版七年级数学上册:1.1《正数和负数》教学设计3一. 教材分析《正数和负数》是人教版七年级数学上册第一章的第一节内容,本节内容主要介绍正数和负数的定义,以及它们的性质。

通过本节内容的学习,学生能够理解正数和负数的概念,掌握它们的性质,并能够运用正数和负数解决实际问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数的认识已经有了一定的了解。

但是,对于正数和负数的概念和性质,学生可能还比较陌生。

因此,在教学过程中,教师需要引导学生通过观察、思考、操作等活动,理解和掌握正数和负数的概念和性质。

三. 教学目标1.知识与技能目标:学生能够理解正数和负数的概念,掌握它们的性质,并能够运用正数和负数解决实际问题。

2.过程与方法目标:通过观察、思考、操作等活动,学生能够培养观察能力、思考能力和操作能力。

3.情感态度与价值观目标:学生能够体验数学学习的乐趣,培养对数学的兴趣。

四. 教学重难点1.教学重点:正数和负数的概念,它们的性质。

2.教学难点:正数和负数的性质,如何运用正数和负数解决实际问题。

五. 教学方法1.情境教学法:通过生活情境,引导学生理解和掌握正数和负数的概念和性质。

2.启发式教学法:通过提问、讨论等方式,引导学生主动思考和探索正数和负数的性质。

3.操作教学法:通过实际操作,让学生感受和体验正数和负数的性质。

六. 教学准备1.教学课件:制作教学课件,包括正数和负数的定义、性质等内容。

2.教学素材:准备一些实际问题,用于引导学生运用正数和负数解决实际问题。

3.学具:准备一些小卡片,上面写有正数和负数,用于课堂操练。

七. 教学过程1.导入(5分钟)教师通过创设生活情境,如购物、温度等,引导学生理解和掌握正数和负数的概念。

2.呈现(10分钟)教师通过课件呈现正数和负数的定义和性质,引导学生观察和思考,理解正数和负数的性质。

3.操练(10分钟)教师学生进行课堂操练,让学生通过实际操作,感受和体验正数和负数的性质。

人教版七年级数学上册:1.1《正数和负数》教案

人教版七年级数学上册:1.1《正数和负数》教案

人教版七年级数学上册:1.1《正数和负数》教案一. 教材分析《正数和负数》是人教版七年级数学上册第一章的第一节内容,本节课主要让学生初步理解正数和负数的概念,掌握它们的性质,并能够进行简单的运算。

通过本节课的学习,为学生今后的数学学习打下坚实的基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,但对正数和负数的理解可能还比较模糊。

因此,在教学过程中,教师需要注重引导学生从实际问题中抽象出正数和负数的概念,并通过大量的例子让学生加深对它们的理解。

三. 教学目标1.让学生了解正数和负数的概念,掌握它们的性质。

2.培养学生运用正数和负数解决实际问题的能力。

3.培养学生合作交流、积极思考的良好学习习惯。

四. 教学重难点1.重难点:正数和负数的定义,以及它们的性质。

2.难点:如何让学生理解并熟练运用正数和负数解决实际问题。

五. 教学方法采用情境教学法、实例教学法和小组合作学习法,引导学生从实际问题中抽象出正数和负数的概念,通过大量的例子让学生加深对它们的理解,并培养学生的合作交流能力。

六. 教学准备1.准备相关的教学案例和图片。

2.准备课件和板书。

3.分组学生,每组选一个组长。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的图片,如温度计、股票走势图等,引导学生关注正数和负数在实际生活中的应用。

让学生举例说明生活中遇到的正数和负数,从而引出本节课的主题。

2.呈现(10分钟)介绍正数和负数的定义,让学生通过观察、分析、讨论,理解正数和负数的性质。

教师给出一些例子,如5、-3、0.5等,让学生判断它们是正数还是负数,并解释原因。

3.操练(10分钟)让学生进行一些简单的练习,如填空、选择题等,巩固对正数和负数概念的理解。

教师可设置一些实际问题,让学生运用正数和负数进行解答。

4.巩固(10分钟)教师提出一些问题,引导学生运用正数和负数进行思考。

如:“小华往东走了5米,小李往西走了3米,他们之间的距离是多少?”让学生分组讨论,并选出组长进行汇报。

最新-七年级数学教案正数与负数(优秀15篇)

最新-七年级数学教案正数与负数(优秀15篇)

七年级数学教案正数与负数(优秀15篇)作为一名教师,总不可避免地需要编写教案,教案是教学活动的总的组织纲领和行动方案。

来参考自己需要的教案吧!以下是勤劳的小编给大家收集整理的15篇正数与负数教案的相关文章,仅供借鉴,希望对大家有所启发。

七年级数学正数和负数教案篇一1.1《正数和负数》教学设计方案(第1课时)教材分析:一、教材所处的地位及作用:“1.1正数和负数”一节,是人教版七年级上册第一章第一节的内容,本节内容主要是学习正数、负数和零的定义、联系。

是本章有理数学习的基础。

二、教学目标知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。

过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。

2.能结合具体情境出现并提出数学问题,并解释结果的合理性。

情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。

三、教学重、难点重点:体会负数引入的必要性和有理数应用的广泛性,能应用正负数表示生活中的具有相反的意义的量。

难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。

教学方法:采用“现象──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念教学过程教师演示第一节首图片为主体的多媒体课件。

环节教师活动学生活动设计意图创设情境导入新课自主学习师生互动合作探究达标检测学习总结教师出示图片说明自然数的产生、分数的产生。

接着出示问题问题1 天气预报:北京市冬季某天的温度为-3~3℃,它的确切含义是什么?这一天我市的温差是多少?问题2 有三个队参加的足球比赛中,红队胜黄队(4:1),黄队胜蓝队(1:0),蓝队胜红队(1:0),如何确定三个队的净胜球数与排名顺序?问题3 某机器零件的长度设计为100mm,加工图纸标注的尺寸为100 0.5(mm),这里的0.5代表什么意思?合格产品的长度范围是多少?三个问题中的-3、0.5是我们以前没有学过的新数,这说明随着生活和劳动的发展我们以前学过的数,已经不够用了,需要引进新的数。

人教版七年级数学上册1.1-正数和负数(教案)

人教版七年级数学上册1.1-正数和负数(教案)
人教版七年级数学上册1.1-正数和负数(教案)
一、教学内容
本节课选自人教版七年级数学上册1.1节——正数和负数。教学内容主要包括以下几部分:
1.正数与负数的定义;
2.正数与负数的表示方法;
3.正数与负数在数轴上的表示;
4.正数与负数的加减运算;
5.解决实际问题,运用正数与负数。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
在讲授新课的过程中,我尽量用简单明了的语言解释正数和负数的定义,并通过案例分析让学生们看到这些概念在实际中的应用。我觉得这样的方法有助于他们更好地理解抽象的数学概念。但是,我也意识到在讲解重点难点时,可能需要更多的实际操作和直观演示,以便让学生更加直观地感受和理解正负数的运算规律。
实践活动环节,学生们在分组讨论中表现出较高的热情,他们能够围绕正数和负数在实际生活中的应用进行深入的探讨。但在实验操作过程中,我发现有些学生对于数轴上正负数的表示还不够熟练,需要进一步的指导和练习。
3.重点难点解析:在讲授过程中,我会特别强调正数和负数的定义及它们在数轴上的表示。对于难点部分,如正负数的加减运算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正数和负数相关的实际问题,如温度变化、海拔高度等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。如在数轴上表示正数和负数,观察它们之间的相对位置关系。
2.加强学生在数轴上表示正负数的操作练习,提高他们的熟练程度。
3.在小组讨论中,鼓励学生多表达、多交流,提高他们的表达能力和逻辑思维。
三、教学难点与重点
1.教学重点
(1)理解正数与负数的定义:正数与负数是数学中的基本概念,本节课需要让学生明确正数与负数的含义,掌握它们的基本性质。

人教版七年级数学上册:1.1《正数和负数》教案4

人教版七年级数学上册:1.1《正数和负数》教案4

人教版七年级数学上册:1.1《正数和负数》教案4一. 教材分析《正数和负数》是人教版七年级数学上册的第一单元,主要介绍正数和负数的概念,以及它们的性质。

这一单元为学生以后学习代数、几何等数学知识打下基础。

在教材中,通过丰富的实例和生活中的问题,引导学生认识正数和负数,理解它们的相对性,以及掌握它们的运算规则。

二. 学情分析七年级的学生已经具备了一定的数学基础,对数的概念有了一定的了解。

但正数和负数作为新的数学概念,对学生来说还比较抽象,需要通过具体的生活实例来帮助他们理解和接受。

此外,学生可能对负数在实际生活中的意义和应用还不够明确,需要在教学中加以引导和拓展。

三. 教学目标1.知识与技能:使学生掌握正数和负数的概念,理解它们的性质和运算规则;2.过程与方法:通过实例和问题,培养学生的观察、分析和解决问题的能力;3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:正数和负数的概念,性质和运算规则;2.难点:负数在实际生活中的意义和应用。

五. 教学方法采用情境教学法、实例教学法和小组合作学习法。

通过生活实例引入正数和负数的概念,引导学生观察、分析和解决问题,培养学生的动手操作能力和合作意识。

六. 教学准备1.教具:黑板、粉笔、多媒体教学设备;2.学具:练习本、铅笔、橡皮;3.教学素材:正数和负数的实例、问题。

七. 教学过程1.导入(5分钟)通过展示生活中的一些实例,如温度、海拔、贷款等,引导学生认识正数和负数。

向学生解释,正数表示一种量,而负数表示与这种量相反的另一种量。

2.呈现(10分钟)向学生介绍正数和负数的概念,以及它们的性质。

举例说明,正数是大于0的数,负数是小于0的数。

引导学生观察和分析正数和负数的性质,如它们的相对性、运算规则等。

3.操练(10分钟)让学生进行一些简单的正数和负数的运算练习,如加减乘除、比较大小的。

在练习过程中,引导学生掌握正数和负数的运算规则,并能够灵活运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1正数和负数内容简介1.《正数和负数》是人教版义务教育教科书七年级数学第一章第一节.2.“正数与负数”是“有理数”一章的第一节课,引入负数是实际的需要,也是学好后续内容的需要.本节先回顾数的产生和发展,然后通过引言中温度、产量增长率、收支情况的实例,引出负数,进而给出正数与负数的描述性定义并进一步介绍正负数在实际生活中的应用.学情分析1.学生已经学过了正整数、正分数和零的知识,即正有理数及“0”的知识,还学过用字母表示数的知识,这些都是学习本节内容的基础.2.负数是一个比较抽象的概念,为了让学生能比较容易理解负数,要多采用从学生的生活实际出发,让学生理解由于知识面的不断扩大,引入负数的必要性.教学目标1.借助生活中的实例,感受引入负数的必要性,认识到数的产生和发展离不开生活和生产的需要.2.知道什么是正数和负数,并会用正、负数表示实际问题中的数量.3.理解数“0”表示的量的意义.4.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.5.通过本节课的学习,培养观察、想象、归纳与概括的能力.6.通过正负数的学习,渗透对立、统一的辩证思想.教学重点1.知道什么是正数和负数.2.理解数“0”表示的量的意义.教学难点理解负数、数“0”表示的量的意义.教学策略1.通过师生共同活动,创设问题情景,展示一些在实际生活中出现“负数”应用的图片,激发学生对新知识的兴趣,引入“负数”.2.通过学生主动学习和研讨,让学生自己完成对负数概念的引入.3.课前把学生分成几个学习小组,培养学生主动学习与合作学习的能力.教学资源1.教具:电脑、PPT课件(或相应图片)、投影仪.2.学具:地图册等.3.多媒体教室.教学时数2课时.第1课时教学内容1.1正数和负数.教学目标1.整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念.2.能区分两种相反意义的量,会用符号表示正数和负数.3.体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.教学重点两种相反意义的量.教学难点正确区分两种相反意义的量.教学过程一、设置情境引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.76米,体重74.5千克,今年33岁.我们的班级是七(1)班,有50个同学,其中男同学有27个,占全班总人数的54%……问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看教材(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流.(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数.二、分析问题探究新知问题3:前面带有“-”(负)号的新数我们应怎样命名它呢?为什么要引入负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?建议教师以本章引言中的实例加以说明.这些问题都必须要求学生理解.教师可以用多媒体出示这些问题,然后师生交流.也可以让学生阅读本章引言中的实例,并思考上面的问题.明确:上述问题中,表示温度、产量增长率、收支情况时,既要用到数3,1.8%,3.5等,还要用到数-3,-2.7%,-4.5,-1.2等,它们的实际意义分别是:零下3摄氏度,减少2.7%,支出4.5元,亏空1.2元.我们知道,像3,1.8%,3.5这样大于0的数叫做正数.像-3,-2.7%,-4.5,-1.2这样在正数前加符号“-”(负)号的数叫做负数.有时,为了明确表达意义,在正数前面也加上“+”(正)号.强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量.三、举一反三思维拓展经过上面的讨论交流,学生对为什么要引入负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.问题4:请同学们举出用正数和负数表示的例子.问题5:你是怎样理解“正整数”、“负整数”、“正分数”和“负分数”的呢?请举例说明.四、实例演练深化认识教科书第3页例题.例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.(2)某年,下列国家的商品进口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.解:(1)这个月小明体重增长2kg.小华体重增长-1kg,小强体重增长0kg.(2)六个国家这一年商品进出口总额的增长率是:美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.五、小结围绕下面两点,以师生共同交流的方式进行.1.由于实际问题中存在着相反意义的量,所以要引入负数,这样数的范围就扩大了.2.正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”.本课作业:教科书第5页习题1.1第1,2,4,5题.本课评析密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理.负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点.当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了.第2课时教学内容1.1正数和负数.教学目标1.通过对数“0”的意义的探讨,进一步理解正数和负数的概念.2.利用正负数正确表示相反意义的量(规定了指定方向变化的量).3.进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣.教学重点正确理解和表示向指定方向变化的量.教学难点深化对正负数概念的理解.教学过程一、知识回顾深化理解回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考.)例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示.那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数。

问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?二、实例讲解解决问题问题3:教科书第4页内容.说明:这是一个用正负数描述海拔高度的情况,我们规定:海平面的海拔高度为0m,通常用正数表示高于海平面的某地的海拔高度,用负数表示低于海平面的某地的海拔高度.例如,珠穆朗玛峰比海平面高8844.43m,就表示珠穆朗玛峰的海拔高度为8844.43m,吐鲁番盆地比海平面低155m,就表示吐鲁番盆地的海拔高度为-155m.反之,如果说珠穆朗玛峰的海拔高度为8844.43m,就表示珠穆朗玛峰比海平面高8844.43m,吐鲁番盆地的海拔高度为-155m,就表示吐鲁番盆地比海平面低155m.另外,记帐时,通常用正数表示收入款额,用负数表示支出款额.归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义.类似的例子有很多,教师可以适当补充以深化学生的认识和理解.例如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等.三、思考问题练习巩固教科书第4页“思考”部分.这是正负数应用的很好例子,要花时间让学生讨论交流.让学生仔细观看图片内容,思考教材中的问题:“上面图中的正数和负数的含义是什么?你能再举一些用正数、负数表示数量的实际例子吗?”在学生思考讨论后做教科书第4页的练习部分进行巩固.四、小结用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.五、作业1.必做题:教科书第5页习题1.1第3,6,7,8题.2.选做题:教师自行安排.本课评析1.本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量.2.数0既不是正数,也不是负数.在引入负数后,除了表示一个也没有以外,还是正数和负数的分界.了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.3.教科书的例子是用正负数表示量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.4.本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.。

相关文档
最新文档