初一上册数学 绝对值练习
初中数学七年级上册绝对值练习题含答案
初中数学七年级上册绝对值练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 化简−|−3|等于( )A.−3B.−13C.13D.32. 如果一个数的绝对值等于它的相反数,那么这个数一定是( )A.正数B.负数C.非正数D.非负数3. 已知a、b、c都是负数,且|x−a|+|y−b|+|z−c|=0,则xyz是()A.负数B.非负数C.正数D.非正数4. 下列推断正确的是( )A.若|a|=|b|,则a=bB.若|a|=|b|,则a=−bC.若|m|=|−n|,则m=−nD.若m=−n,则|m|=|n|5. 已知x、y、z为有理数,且x+y+z=0,xyz<0,则y−z|x|+x−z|y|+x+y|z|的值为().A.−1B.1C.1或−1D.−36. 下列判断正确的是()A.−14>−15B.−35<−45C.−34>−45D.−1>−0.017. 若关于x的方程|2x−3|+m=0无解,|3x−4|+n=0只有一个解,|4x−5|+k=0有两个解,则m, n, k的大小关系是()A.m>n>kB.n>k>mC.k>m>nD.m>k>n8. 下列四组有理数大小的比较正确的是()A.−12>13B.−|−1|>−|+1|C.12<13D.|−12|>|−13|9. 绝对值大于2,且不大于5的整数有( )10. 以下选项中比|−12|小的数是( )A.2B.32C.12D.−1311. 在数−4,−3,−1,2中,大小在−2和1之间的数是________.12. 已知1<x <2,化简|x −1|+|x −2|=________.13. √3−2的相反数是________,绝对值是________.14. 绝对值小于227的整数有________.15. 若|x −1|=|−3|,那么x =________.16. 当a =________时,代数式|a −4|+3有最小值是________.17. 已知|a −2|+|b −4|=0,则2a +3b =________.18. 已知,则的值可能是________.19. 已知有理数a ,b 在数轴上的位置如图所示,则︱b −a ︱=________.20. 比较大小:−34________−45;−(−2)________−|−2|.21. 已知|x −1|+|y +2|=0,则x −y =________.22. 比较下列各对数的大小:(2)−518和−29.23. 已知|x|=3,|y|=4,且xy <0,求x +y 的值.24.(1)计算:|−6|−√9+(1−√2)0−(−3).(2)如图,BD 是菱形ABCD 的对角线,∠ABF =30∘,EF 为AB 的垂直平分线, 垂足为E ,交AD 于F ,连接BF ,求∠ABD 的度数.25. 某检修小组从A 地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下(单位:千米):(1)求收工时检修小组是否回到A 地?(2)在第________次纪录时距A 地最远.(3)若每千米耗油0.2升,每升汽油需8元,问检修小组工作一天需汽油费多少元?26. 问题:比较 −|65| 与+(−43) 的大小. 解:化简可得−|65|=−65,+(−43)=−43①,因为|65|=65,|−43|=43②又65=1815<2015=43③,所以−65<−43④,所以−|6|<+(−4)⑤(2)请按照上述方法比较 −(+1011)与−|910|的大小.27. 比较下列各数的大小,用“<”连接起来.−1017,−1219,−1523,−3031,−6091.28. 已知a =−4,b =−5,求a −b 的值.29. 已知|a|=2,|b|=3,且a +b <0,求a +b 的值.30. 比较下面两个数的大小.(1)−43与−32(2)比较−(−3.1)与3.2的绝对值.31. 比较有理数的大小.(1)−57与23(2)−8与−5(3)−57与−34(4)已知a >b >0,试比较−a 和−b 的大小.32. 已知a <b <0<c ,化简|a|−|−b|+|c|.33. 有理数a 、b 在数轴上的位置如图,计算|a −b|−2|a −c|−|b +c|.(1)如果甲报的数为x ,则乙报的数为x −1,丙报的数为________,丁报的数为________;(2)若丁报出的答案为2,则甲报的数是多少?35. 大家都知道,|5−(−2)|表示5与−2之差的距离,试探索:若x 表示一个有理数,且|x −2|+|x +4|>6,则有理数x 的取值范围是________.36. 若|a −2|+|b −3|+|c −1|=0,求a +2b +3c 的值.37. 已知x|=|−7|,|y|=|−5|,求x +y 的值.38. 若|x|<1,化简|x +1|+|x −1|.39. 已知下列有理数:−(−3)、−4、0、+5、−12(1)这些有理数中,整数有________个,非负数有________个.(2)画数轴,并在数轴上表示这些有理数.(3)把这些有理数用“<“号连接起来:________.40. 利用绝对值比较大小(1)−3.14与−π(2)−32与−54(3)−56与−57参考答案与试题解析初中数学七年级上册绝对值练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答3.【答案】A【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答4.【答案】D【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答5.【答案】B此题暂无解析【解答】此题暂无解答6.【答案】C【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答7.【答案】A【考点】有理数大小比较非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答8.【答案】D【考点】有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答9.【答案】D【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答10.有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−1【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答12.【答案】1【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答13.【答案】2−√3,2−√3【考点】绝对值的意义相反数的意义【解析】此题暂无解析【解答】此题暂无解答14.【答案】7个【考点】绝对值【解析】此题暂无解析【解答】【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答16.【答案】4,3【考点】绝对值的意义非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答17.【答案】16【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答18.【答案】2或0或−2【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答19.【答案】a−b【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】3【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:(1)∵−(−5)=5,−(+6)=−6,∴−(−5)>−(+6);(2)∵|−518|=518,|−29|=29,∴−518<−29.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答23.【答案】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy<0,∴x=3时,y=−4,x+y=−1,x=−3时,y=4,x+y=−3+4=1,综上所述,x+y的值是1或−1.【考点】绝对值【解析】此题暂无解析【解答】24.【答案】解:(1)原式=6−3+1+3=7.(2)∵ EF 为AB 的垂直平分线,∴ FA =FB ,∴ ∠A =∠ABF =30∘.∵ 四边形ABCD 是菱形,∴ AD =AB ,∴ ∠ABD =180∘−30∘2=75∘.【考点】绝对值的意义零指数幂、负整数指数幂二次根式的性质与化简菱形的性质线段垂直平分线的性质【解析】此题暂无解析【解答】此题暂无解答25.【答案】解:(1)−3+8−9+10+4−6−2=2(千米).∴ 收工时检修小组未回到A 地.五(3)(3+8+9+10+4+6+2)×0.2×8=42×0.2×8=67.2(元)答:检修小组工作一天需汽油费67.2元.【考点】绝对值的意义有理数的混合运算正数和负数的识别【解析】此题暂无解析【解答】此题暂无解答26.【答案】(1)②(2)解:化简可得−(+1011)=−1011,−|910|=−910,因为|−1011|=1011,|−910|=910, 又1011=100110>99110=910,所以−1011<−910, 所以−(+1011)<−|910|.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答27.【答案】解:∵ |−1017|=1017=60102,|−1219|=1219=6095,|−1523|=1523=6092,|−3031|=3031=6062,|−6091|=6091 ∴ −3031<−6091<−1523<−1219<−1017.(各负数绝对值的分子相同,分母越小,其绝对值就越大,本身反而越小)【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答28.【答案】解:因为a =−4,b =−5,所以a −b =−4+5=1.【考点】实数的运算【解析】此题暂无解析【解答】此题暂无解答29.【答案】解:由题意得|a|=2,|b|=3,a +b <0,∴ a =±2 ,b =−3,①当a =2,b =−3时,a +b =−1;②当a =−2,b =−3时,a +b =−5.∴a+b=−1或−5【考点】绝对值的意义绝对值【解析】此题暂无解析【解答】此题暂无解答30.【答案】解:(1)∵|−43|=43=86,|−32|=32=96,∴−43>−32.(2)∵−(−3.1)=3.1,3.2的绝对值是3.2,∴−(−3.1)<3.2的绝对值.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答31.【答案】解:(1)−57<23;(2)−8<−5(3)∵57<34,∴−57>−34;(4)∵a>b>0,∴|a|>|b|>0,又∵−a<0,−b<0,∴−a<−b.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答32.【答案】解:∵a<b<0<c,|a|−|−b|+|c|=−a−(−b)+c=−a+b+c.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答33.【答案】解:根据数轴可知:b<a<0<c,且|a|<|c|<|b|,∴a−b>0,a−c<0,b+c<0,∴|a−b|−2|a−c|−|b+c|=a−b+2a−2c+b+c=3a−c.【考点】有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答34.【答案】|x−1|,|x−1|−1设甲为x,则|x−1|−1=2,解得:x=4或x=−2.所以甲报的数是4或者−2.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答35.【答案】x>2或x<−4【考点】绝对值的意义绝对值【解析】此题暂无解析【解答】此题暂无解答36.【答案】解:根据题意得:{a −2=0b −3=0c −1=0,解得:{a =2b =3c =1,则原式=2+6+3=11.【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答37.【答案】解:∵ |x|=|−7|=7,|y|=|−5|=5, ∴ x =±7,y =±5,∴ 当x =7、y =5时,x +y =12, 当x =7、y =−5时,x +y =2, 当x =−7、y =5时,x +y =−2, 当x =−7、y =−5时,x +y =−12.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答38.【答案】解:∵ 由|x|<1可得−1<x <1, ∴ x −1<0,x +1>0,则|x +1|+|x −1|=x +1+1−x =2.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答39.【答案】4,3解:在数轴上表示这些有理数如图:−4<-12<0<−(−3)<+5【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答40.【答案】解:∵ |−3.14|<|−π|, ∴ −3.14>−π 解:∵ |−32|>|−54|,∴ −32<−54解:∵ |−56|>|−57|,∴ −56<−57【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答。
(完整版)七年级上册绝对值练习题及答案
6.七年级上册绝对值练习题及答案同步练习1:1 .右 a=-3 则-a =()A. 2 >-3 >0 B. 2 >0>- 3 C. -3<2 < 0D.0< -3<24. 下列各式中,正确的是 4 5A. -16 >0 B. 0.2 >0.2 C. -> - D. 6 <01 15. 在-0.1 , 2,1,2这四个数中,最小的一个数是()1 1 A. -0.1 B. — C. 1 D.-226. (1)1= _______ ; 3.5 = ______ ; 0 = ____ ; 5(2)-3 = _____ ;- 0.37 = _____ ;6.57. - 31的绝对值是 ________ ;绝对值等于31的数是 _________ ,他们互为 _______2 2 8. 绝对值最小的数是 _______ ,绝对值最小的整数是 ________ . 9. 绝对值小于4的整数有 _______ . 10. 用“〉”或“ 填空: 11. 计算:2 一 22 -3 2 匕2 2与 _B.与一C.与一D.3332333“> '连接, 23 ,0,正确的是()或3 D.以上都不对2.下列各组数中,互为相反数的是A.3.用 与?2 A.-3 B.3 C.-3(1)| 3+ | 101 ;( 2) 2432 ;8 + 2 6I 3= ---------------51 =6.12. 在数轴上表示下列各数:5 11 623(3)3(4)绝对值是2的负数。
413•比较下列各数的大小(要有解答过程)135 5 (2)-2486的值。
Q a c^2-515•某制衣厂本周计划每日生产 100套西服,由于工人实行轮休,每日上班人数不一定相等, 实行14. a=2,b=-2,c=3,故 a+b+c=315. 因为-5 <-3,-5 <-2,-5 <+4,-5 <+7, 所以星期五生产的西服产量最小,生产量为95套。
(完整版)初一绝对值练习(含例题、基础、拨高)
综合练习题一1、有理数的绝对值一定是( )A 、正数B 、整数C 、正数或零D 、自然数 2、绝对值等于它本身的数有( )A 、0个B 、1个C 、2个D 、无数个 3、下列说法正确的是( ) A 、—|a |一定是负数B 只有两个数相等时它们的绝对值才相等C 、若|a|=|b |,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数 4、比较21、31、41的大小,结果正确的是( ) A 、21<31<41 B 、21<41<31 C 、41<21<31 D 、31<21<415 )A 、a 〉|b |B 、a<bC 、|a |〉|b |D 、|a|〈|b | 6、判断。
(1)若|a|=|b |,则a=b 。
(2)若a 为任意有理数,则|a|=a 。
(3)如果甲数的绝对值大于乙数的绝对值,那么甲数一定大于乙数( ) (4)|31_|和31_互为相反数。
( ) 7、相反数等于-5的数是______,绝对值等于5的数是________。
8、-4的倒数的相反数是______.9、绝对值小于∏的整数有________。
10、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。
11、实数|b|的大小关系是_______。
12、比较下列各组有理数的大小。
(1)—0。
6○-60 (2)-3.8○—3。
9(3)0○|-2| (4)43-○54-13、已知|a|+|b|=9,且|a|=2,求b的值.14、已知|a|=3,|b|=2,|c|=1,且a〈b〈c,求a、b、c的值.绝对值综合练习题二一、选择题1、 如果m 〉0, n<0, m 〈|n|,那么m ,n ,-m, -n 的大小关系( ) A.-n>m>-m 〉n B.m>n>-m 〉-n C 。
—n 〉m 〉n 〉—m D.n>m 〉-n 〉—m2、绝对值等于其相反数的数一定是…………………( ) A .负数 B .正数 C .负数或零 D .正数或零3、给出下列说法:①互为相反数的两个数绝对值相等; ②绝对值等于本身的数只有正数; ③不相等的两个数绝对值不相等; ④绝对值相等的两数一定相等.其中正确的有…………………………………………( ) A .0个 B .1个 C .2个 D .3个 4、如果,则的取值范围是 ………………………( )A .>OB .≥OC .≤OD .<O5、绝对值不大于11.1的整数有………………………………( )A .11个B .12个C .22个D .23个 6、绝对值最小的有理数的倒数是( )A 、1B 、-1C 、0D 、不存在 7、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个 8、下列各数中,互为相反数的是( )A 、│-32│和-32B 、│-23│和-32C 、│-32│和23D 、│-32│和329、下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数10、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数11、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
初一有理数绝对值题50道
初一有理数绝对值题50道一、基础巩固1、绝对值等于 5 的数是()A 5B -5C 5 或-5D 02、绝对值小于 4 的整数有()A 3 个B 5 个C 7 个D 9 个3、若|x|=3,则 x=()A 3B -3C 3 或-3D 04、计算:| 7 |=()A -7B 7C 1/7D 1/75、若|a|= a,则 a 是()A 正数B 负数C 非正数D 非负数6、绝对值最小的数是()A 1B 0C -1D 不存在7、若|x 2|=0,则 x=()A 2B -2C 0D ±28、若|x + 3|=5,则 x=()A 2 或-8B -2 或 8C 2 或 8D -2 或-89、下列说法正确的是()A | 5 |= 5B | 06 |= 06C | 1/3 |= 1/3D | 8 |=810、比较大小:| 3 |()| 4 |A >B <C =D 无法比较二、能力提升11、若|a|=5,|b|=3,且 a>b,则 a + b 的值为()A 8B 2C 8 或 2D ±8 或 ±212、已知|x|=4,|y|=1/2,且 xy<0,则 x/y 的值为()A -8B 8C 1/8D 1/813、若|x 1| +|y + 2| = 0,则 x + y 的值为()A -1B 1C -3D 314、当 a<0 时,化简|a 1| |a 2| =()A -1B 1C 2a 3D 3 2a15、若 0<x<1,则 x,1/x,x²的大小关系是()A x<x²<1/xB x²<x<1/xC 1/x<x<x²D 1/x<x²<x16、有理数 a,b 在数轴上的位置如图所示,则|a b| =()(数轴略)A a bB b aC a + bD a b17、若|x + 1| +|x 2| = 5,则 x 的值为()A 3B -2C 3 或-2D 不存在18、已知 a,b 互为相反数,c,d 互为倒数,m 的绝对值为 2,求|a + b|/m cd + m 的值。
初一数学《绝对值》专项练习(含答案)
绝对值姓名:__________班级:__________考号:__________一 、选择题1.已知|x|=0.19,|y|=0.99,且0<yx ,则x-y 的值为( ) A 、1.18或-1.18 B 、0.8或-1.18 C 、0.8或-0.8 D 、1.18或-0.82.已知:x <0<z ,xy >0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值( )A 、是正数B 、是负数C 、是零D 、不能确定符号3.如果|-a|=-a ,则a 的取值范围是(A 、a >OB 、a ≥OC 、a ≤OD 、a <O4.如果a 的绝对值是2,那么a 是( )A 、2B 、-2C 、±2D 、21±5.已知a 、b 互为相反数,且|a-b|=6,则|b-1|的值为( )A 、2B 、2或3C 、4D 、2或46.若|x+y|=y-x ,则有( )A 、y >0,x <0B 、y <0,x >0C 、y <0,x <0D 、x=0,y ≥0或y=0,x ≤07.下列说法,不正确的是( )A .数轴上的数,右边的数总比左边的数大B .绝对值最小的有理数是0C .在数轴上,右边的数的绝对值比左边的数的绝对值大D .离原点越远的点,表示的数的绝对值越大8.给出下面说法,其中正确的有( )(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m ,则m <0;(4)若|a|>|b|,则a >b ,A 、(1)(2)(3)B 、(1)(2)(4)C 、(1)(3)(4)D 、(2)(3)(4)9.一个数与这个数的绝对值相等,那么这个数是( )A 、1,0B 、正数C 、非正数D 、非负数11.若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数12.若|a-3|=2,则a+3的值为( )A 、5B 、8C 、5或1D 、8或413.如果|x-1|=1-x ,那么( )A 、x <1B 、x >1C 、x ≤1D 、x ≥114.已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A 、7或-7B 、7或3C 、3或-3D 、-7或-315.如图,下列各数中,数轴上点A 表示的可能是( )A .2的平方B .-3.4的绝对值C .-4.2的相反数D .512的倒数16.已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是() A 、1-b >-b >1+a >aD 、1-b >1+a >-b >aC 、1+a >1-b >a >-bB 、1+a >a >1-b >-b17.a <0,ab <0,计算|b-a+1|-|a-b-5|,结果为( )A 、6B 、-4C 、-2a+2b+6D 、2a-2b-618.在-(-2),-|-7|,3-+,23-,115⎛⎫-+⎪⎝⎭中,负数有()A.1个B.2个C.3个D.4个19.若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a20.有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0 (2)|a-b|+|b-c|=|a-c| (3)(a-b)(b-c)(c-a)>0 (4)|a|<1-bc其中正确的命题有()A、4个B、3个C、2个D、1个21.下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥22.到数轴原点的距离是2的点表示的数是()A、±2B、2C、-2D、4二、填空题23.若220x x-+-=,则x的取值范围是24.23-的相反数的绝对值的倒数是25.已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________26.若3230x y-++=,则yx的值是多少?27.若x<2,则|x-2|+|2+x|=________________28.当x __________时,|2-x|=x-229.在数轴上表示数a的点到原点的距离是13,那么a=30.计算:3π-= ,若23x-=,则x=31.已知|x|=2,|y|=3,且xy<0,则x+y的值为 _________同可能.当a、b、c都是正数时,M= ______;当a、b、c中有一个负数时,则M= ________;当a、b、c中有2个负数时,则M= ________;当a、b、c都是负数时,M=__________ .33.若x<-2,则|1-|1+x||=______;若|a|=-a,则|a-1|-|a-2|= ________34.如图,有理数x,y在数轴上的位置如图,化简:|y-x|-3|y+1|-|x|= ________35.绝对值不大于7且大于4的整数有个,是36.2的绝对值是.37.绝对值等于2的数有个,是38.已知00x z xy y z x <<>>>,,,那么x z y z x y +++--=39.的相反数是 ;倒数是 ;绝对值是 . 40.若|a|+a=0,|ab|=ab ,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|= ________41.如图所示,a 、b 是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为 __________43.已知a ,b ,c 的位置如图,化简:|a-b|+|b+c|+|c-a|= ______________三 、解答题44.已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 45.如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.46.如果3a b -+47.已知:①52a b ==,,且a b <;分别求a b ,的值48.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-49.已知x ,y ,z满足21441()02x y z -+-=,求()x z y -的值. 50.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-51.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--52.已知a a =-,0b <,化简22442(2)24323a ba b a b b a +--+++-- 53.()02b 1a 2=-++,分别求a ,b 的值54.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--绝对值答案解析一、选择题1.A2.C;由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=03.C4.C5.D6.D;解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0 又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0 ∴x=0,y≥0或y=0,x≤0选D.7.C8.A9.D10.B11.B12.D13.C14.C15.B16.D17.A;根据已知条件先去掉绝对值即可求解.18.C19.C20.B21.B22.A二 、填空题23.2x ≤24.3227.4或-2x28.x ≥229.13a =±30.3π-,5x =或1-31.±132.当a 、b 、c 中都是正数时,M=1+1+1=3;当a 、b 、c 中有一个负数时,不妨设a 是负数,则M=-1+1+1=1;当a 、b 、c 中有2个负数时,不妨设a ,b 是负数,则M=-1-1+1=-1; 当a 、b 、c 都是负数时,M=-1-1-1=-3;故M 有4种不同结果.33.-2-x ,-134.2y+3;根据数轴图可知:x >0,y <-1,∴|y-x|=x-y ,|y+1|=-1-y ,|x|=x ;∴|y-x|-3|y+1|-|x|=x-y+3(1+y )-x=2y+3. 35.6个,5±、6±、7±237.2个,2±38.解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y ->∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=;.40.∵|a|+a=0,|ab|=ab,|c|-c=0,∴a≤0,b≤0,c≥0,∴a+b≤0,c-b≥0,a-c≤0,∴原式=-b+a+b-c+b-a+c=b.故答案为b.41.3b-a42.【解析】根据绝对值的定义,对本题需去括号,那么牵涉到x的取值,因而分①当x<-1;②当-1≤x≤5;③当x>5这三种情况讨论该式的最小值.【答案】①当x<-1,|x+1|+|x-5|+4=-(x+1)+5-x+4=8-2x>10,②当-1≤x≤5,|x+1|+|x-5|+4=x+1+5-x+4=10,③当x>5,|x+1|+|x-5|+4=x+1+x-5+4=2x>10;所以|x+1|+|x-5|+4的最小值是10.故答案为:10.43.2a;由数轴可知a<c<0<b,所以a-b<0,b+c<0,c-a>0,则|a-b|+|b+c|+|c-a|=b-a-b-c+c-a=-2a.三、解答题44.解:∵a a=-∴0a≤∵0b<∴20a b+<,230a-<∴原式=22(2)42(2)24323a ba b a b b a-++-++++-=242222a b a b a b-+++++=42a b+45.解:如图所示,得0a b<<,01c<<∴0a b+<,10b-<,0a c-<,10c->∴原式=()(1)()(1)a b b a c c-++-+---=11a b b a c c--+-+--+=2-46.有题可知30220a ba b-+=⎧⎨+-=⎩解得4353ab⎧=-⎪⎪⎨⎪=⎪⎩3=.47.解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±48.∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=49.由题可知441020102x y y z z ⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y -1111()()22416=--⨯-=.50.解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=51.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=52.解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+ 53.()02,012≥-≥+b a 可得02,01=-=+b a ;所以2,1=-=b a54.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2 -++-+-+=--+-++=a b b a b a a a b b a b a b。
初一数学绝对值经典练习题
绝对值经典演习【1 】1、断定题:⑴.|-a|=|a|.⑵.-|0|=0.⑶.|-3|=-3.⑷.-(-5)›-|-5|.⑸.假如a=4,那么|a|=4.⑹.假如|a|=4,那么a=4.⑺.任何一个有理数的绝对值都是正数.⑻.绝对值小于3的整数有2, 1, 0.⑼.-a必定小于0.⑽.假如|a|=|b|,那么a=b.⑾.绝对值等于本身的数是正数.⑿.只有1的倒数等于它本身.⒀.若|-X|=5,则X=-5.⒁.数轴上原点两旁的点所暗示的两个数是互为相反数.⒂.一个数的绝对值等于它的相反数,那么这个数必定是负数.2、填空题:⑴.当a_____0时,-a›0;⑵.当a_____0时,‹0;⑶.当a_____0时,-›0;⑷.当a_____0时,|a|›0;⑸.当a_____0时,-a›a;⑹.当a_____0时,-a=a;⑺.当a‹0时,|a|=______;⑻.绝对值小于4的整数有_____________________________;⑼.假如m‹n‹0,那么|m|____|n|;⑽.当k+3=0时,|k|=_____;⑾.若a.b都是负数,且|a|›|b|,则a____b;⑿.|m-2|=1,则m=_________;⒀.若|x|=x,则x=________;⒁.倒数和绝对值都等于它本身的数是__________;⒂.有理数a.b在数轴上的地位如图所示,则|a|=___;|b|=____;⒃.-2的相反数是_______,倒数是______,绝对值是_______;⒄.绝对值小于10的整数有_____个,个中最小的一个是_____;⒅.一个数的绝对值的相反数是-0.04,这个数是_______;⒆.若a.b互为相反数,则|a|____|b|;⒇.若|a|=|b|,则a和b的关系为__________.3、选择题:⑴.下列说法中,错误的是_____A.+5的绝对值等于5 B.绝对值等于5 的数是5C.-5的绝对值是5 D.+5.-5的绝对值相等⑵.假如|a|=||,那么a与b之间的关系是A.a与b互为倒数B.a与b互为相反数C.a〮b=-1D.a〮b=1或a〮b=-1⑶.绝对值最小的有理数是_______⑷.假如a+b=0,下列格局不必定成立的是_______A.a=⑸.假如a,那么_______A.|a|‹0 B.-(-a)›0 C.|a|›0 D.-a‹0⑹.有理数a.b在数轴上的对应点的地位,分离在原点的两旁,那么|a|与|b|之间的大小关系是_______⑺.下列说法准确的是________C.|-(+x)|=x D.-|-2|=-2⑻.绝对值最小的整数是_______⑼.下列比较大小准确的是_______A. B.-(-21)‹+(-21) C.-|-10|›8 D.-|-7|=-(-)⑽.绝对值小于3的负数的个数有______⑾.若a.b为有理数,那么下列结论中必定准确的是_____A.若a‹b,则|a|‹|b| B.若a›b,则|a|›|b|C.若a=b,则|a|=|b|D.若a≠b,则|a|≠|b|4.盘算下列各题:⑴.|-8|-|-5| ⑵.(-3)+|-3| ⑶.|-9|(+5) D.15|-3|5.填表a12-(0.1) -a-57+|a|0126.比较下列各组数的大小:⑴.-3与-7.把下列各数用“‹”衔接起来:⑴. 5, 0, |-3|, -3, |-|, -(-8), -;⑵.1, -, 0, -6;⑶.|-5|, -6, -(-5), -(-10), -|-10|⑷(|+|)(-)=-10,求O.,个中O和暗示整数.8.比较下列各组数的大小:⑴.-(-9)与-(-8);⑵.|-|与50⑶.-与-3.14 ⑷.-绝对值经典演习答案:1.⑴.√⑵.√⑶.×⑷.√⑸.√⑹.×⑺.×⑻.×⑼.×⑽.×⑾.×⑿.×⒀.×⒁.×⒂.×2.⑴‹ ⑵‹ ⑶‹ ⑷≠ ⑸‹ ⑹= ⑺-a ⑻±1,±2,±3,0⑼.>⑽3 ⑾‹ ⑿3或1 ⒀≧0 ⒁1 ⒂-a.b ⒃2⒄19 -9 ⒅±0.04 ⒆⒇相等或互为相反数3.⑴B ⑵D ⑶B ⑷A ⑸C ⑹D ⑺D ⑻C ⑼A ⑽D ⑾C4.⑴3 ⑵0 ⑶45 ⑷55a50-7-0-12 -a-|a|576.⑴‹ ⑵‹ ⑶› ⑷›7.⑴‹-3‹0‹|-|‹|-3|‹5‹-(-8);⑵-6‹-5‹0‹1;⑶-|-10|‹-6‹-|-5|‹|-5|‹-(-10);⑷5, 5, 1或1, 1, 5或-1, -1, 5或-5, -5, 18.⑴›⑵‹⑶‹⑷›。
七年级数学上册绝对值专项练习题
七年级数学上册绝对值专项练习题1.绝对值为4的数是()A.±4B.4C.﹣4D.2答案:A解析:绝对值为4的数有两个,即±4.2.当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为()A.﹣12B.﹣2或﹣12C.2D.﹣2答案:B解析:由题意得,a+b的绝对值为a+b,即a+b的值非负,所以a和b符号相同。
又因为|a|=5,|b|=7,所以a和b的值只能是±5和±7,且符号相同。
又因为a+b的值非负,所以a和b 的值只能是±5和±7中绝对值较大的那个数,即a和b的值分别为±5和±7.所以a﹣b的值为﹣2或﹣12.3.下面说法正确的是()A.绝对值最小的数是0B.绝对值相等的两个数相等C.﹣a一定是负数 D.有理数的绝对值一定是正数答案:B解析:A、C、D说法都是错误的。
B说法正确,因为绝对值相等的两个数要么相等,要么互为相反数。
4.下列式子中,正确的是()A。
B.﹣|﹣5|=5 C.|﹣5|=5 D。
答案:A、B、C解析:A、B、C都正确。
D不正确,因为绝对值只能是非负数。
5.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…依此类推,则a2017的值为()A.﹣1009B.﹣1008C.﹣2017D.﹣2016答案:B解析:a1=0,a2=﹣1,a3=﹣3,a4=﹣6,a5=﹣10,a6=﹣15…可得an=﹣n(n﹣1)/2,所以a2017=﹣2017×2016/2=﹣1008×2017.6.下列说法正确的个数是()①|a|一定是正数;②﹣a一定是负数;③﹣(﹣a)一定是正数;④一定是分数.A.1个B.2个C.3个D.4个答案:A解析:只有①正确,其他都是错误的。
②中a可能是0,③中a可能是0或正数,④中a可能是整数或0.所以正确的只有一个。
七年级上册数学绝对值专项训练
人教版七年级上册数学绝对值专项训练一、绝对值的概念1. 定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|。
2. 性质:-绝对值具有非负性,即|a|≥0。
-互为相反数的两个数的绝对值相等,即若a 与b 互为相反数,则|a| = |b|。
二、典型例题1. 求一个数的绝对值-例1:求|-5|的值。
解:|-5| = 5。
-例2:求|0|的值。
解:|0| = 0。
-例3:求|3.5|的值。
解:|3.5| = 3.5。
2. 已知一个数的绝对值求这个数-例4:已知|a| = 4,求a 的值。
解:因为|a| = 4,所以 a = 4 或 a = -4。
-例5:已知|b| = -2,求b 的值。
解:因为绝对值具有非负性,所以不存在一个数的绝对值为负数,此题无解。
3. 绝对值的化简-例6:化简|2 - 5|。
解:|2 - 5| = |-3| = 3。
-例7:化简|x - 3|(x<3)。
解:因为x<3,所以x - 3<0,那么|x - 3| = 3 - x。
4. 绝对值的运算-例8:计算|3| + |-2|。
解:|3| + |-2| = 3 + 2 = 5。
-例9:计算|5 - 3| - |2 - 4|。
解:|5 - 3| - |2 - 4| = |2| - |-2| = 2 - 2 = 0。
三、专项练习1. 填空题- |-8| = ____。
-若|x| = 6,则x = ____。
-绝对值等于3 的数是____。
- |0 - 5| = ____。
2. 选择题-下列说法正确的是()。
A. 绝对值等于它本身的数只有0B. 绝对值等于它本身的数是正数C. 绝对值等于它本身的数是非负数D. 绝对值等于它本身的数是负数-若|a| = -a,则a 一定是()。
A. 正数B. 负数C. 非正数D. 非负数3. 解答题-已知|a - 2| + |b + 3| = 0,求a、b 的值。
-化简|x - 1| + |x - 3|(1<x<3)。
七年级数学上绝对值专项练题
七年级数学上绝对值专项练题一、绝对值专项练习题。
1. 求下列各数的绝对值:- 5- -3- 0- -(2)/(3)解析:- 根据绝对值的定义,正数的绝对值是它本身,所以|5| = 5。
- 负数的绝对值是它的相反数,所以| - 3|=3。
- 0的绝对值是0,即|0| = 0。
- |-(2)/(3)|=(2)/(3)。
2. 已知| a| = 3,求a的值。
解析:- 因为| a| = 3,根据绝对值的定义,绝对值等于3的数有两个,一个是3,另一个是-3,所以a = 3或a=-3。
3. 比较大小:| - 5|与4。
解析:- 先求出| - 5| = 5。
- 因为5>4,所以| - 5|>4。
4. 计算:| - 2|+|3|。
解析:- 先分别求出绝对值,| - 2| = 2,|3| = 3。
- 然后计算2 + 3=5。
5. 计算:| - 4|-| - 2|。
解析:- 先求绝对值,| - 4| = 4,| - 2| = 2。
- 再计算4-2 = 2。
6. 若| x - 1| = 0,求x的值。
解析:- 因为| x - 1| = 0,根据绝对值的性质,只有0的绝对值是0,所以x - 1 = 0,解得x = 1。
7. 已知| a|=| - 2|,求a的值。
解析:- 先求出| - 2| = 2。
- 因为| a| = 2,所以a = 2或a=-2。
8. 计算:| - 3|×| - 2|。
解析:- 先求绝对值,| - 3| = 3,| - 2| = 2。
- 然后计算3×2 = 6。
9. 计算:(| - 6|)/(|2|)。
解析:- 先求绝对值,| - 6| = 6,|2| = 2。
- 再计算(6)/(2)=3。
10. 若| a| = 5,| b| = 3,且a < b,求a、b的值。
解析:- 因为| a| = 5,所以a = 5或a=-5;因为| b| = 3,所以b = 3或b=-3。
七年级数学上册《绝对值》练习题(附答案解析)
七年级数学上册《绝对值》练习题(附答案解析)一、选择题(共13小题)1. −3的绝对值是( )A. 3B. −3C. −13D. 132. −2的绝对值是( )A. 2B. −2C. ±2D. √23. 绝对值不大于3的正整数有( )A. 1个B. 2个C. 3个D. 4个4. 若∣x∣=∣y∣,则x与y的关系是( )A. 都是零B. 互为相反数C. 相等D. 相等或互为相反数5. 下列大小关系中错误的是( )A. −1<−1.5B. −12<−13C. ∣∣−12∣∣>∣∣−13∣∣ D. π>3.146. 小明和小兰玩游戏,小兰说出一个数,小明要说出它的相反数,如果小兰说出的数是−2021,那么小明要说出的数是( )A. 12021B. −12021C. 2021D. −20217. 如图,数轴上有A,B,C,D四个点,其中表示的数互为相反数的点是( )A. 点A与点DB. 点A与点CC. 点B与点DD. 点B与点C8. 已知∣x∣=3,∣y∣=8,且xy<0,则x+y的值等于( )A. ±5B. ±11C. −5或11D. −5或−119. 在数轴上有两个点,分别表示数x和y,已知∣x∣=1,且x>0,∣y+1∣=4,那么这两个点之间距离为( )A. 2或6B. 5或3C. 2D. 310. 在−3,−1,1,3四个数中,比−2小的数是( )A. −3B. −1C. 1D. 311. 下面两个数互为相反数的是( )A. −(+2015) 与 +(−2015)B. −0.8 和 −(+0.8)C. −1.25 和 45 D. +(−0.02) 与 −(−150)12. −2021 的绝对值是 ( )A. −2021B. 2021C. ±2021D. 1202113. 有理数 a 、 b 、 c 表示的点在数轴上的位置如下图所示,则 ∣a +c∣−∣c −b∣−2∣b +a∣= ( )A. 3a −bB. −a −bC. a +3b −2cD. a −b −2c二、填空题(共7小题)14. −12 的相反数是 .15. 方程 ∣x −3∣=2 的解是 .16. 若 x <y <0,则 −x y ,x −y ,∣x ∣ ∣y ∣.(填“>”“<”或“=”)17. 若 ∣a ∣=5,b =3,且 a <b ,则 a = .18. 数轴上到原点的距离小于 3.2 的点中,表示整数的点共有 个.19. 若有理数 a ,b 满足 ab ≠0,则 m =a∣a∣+∣b∣b 的值为 .20. 如图,在数轴上,点 A 表示的数是 ,其绝对值是 ;点 B 表示的数是 ,其绝对值是 ;点 C 表示的数是 ,其绝对值是 .三、解答题(共5小题)21. 求下列各数的绝对值:−5,4.5,−0.5,+1,0,π−3.22. 若点 A ,B ,C ,D 分别表示 −(−52),−(+12),+(−4),+(+712),点 E ,F 分别表示 +(−4) 与 +(+712) 的相反数,请画出数轴并在数轴上标出点 A ,B ,C ,D ,E ,F .23. 如果 1<x <2,求代数式 ∣x−2∣x−2−∣x−1∣1−x +∣x∣x 的值.24. 已知a>0,b<0,且a+b<0,请利用数轴比较a,b,−a,−b的大小,并用“<”号连接.25. 比较下列每组数的大小:(1)−334和−323;(2)−∣∣212∣∣和−(−314);(3)−1327和−3029;(4)−5.34和−∣∣−513∣∣.参考答案与解析1. A【解析】负数的绝对值是它的相反数,−3的绝对值是3.2. A【解析】负数的绝对值是它的相反数,故−2的绝对值是2.3. C4. D【解析】因为∣x∣=∣y∣,所以x,y在数轴上对应的点到原点的距离相等,则x=y或x=−y.5. A【解析】∵−1>−1.5,故选项A错误;∵∣∣−12∣∣=12,∣∣−13∣∣=13,且12>13,∴−12<−13,选项B和C都是正确的.选项D中π>3.14故选项D正确.故选:A.6. C7. A【解析】由题图可知,点A,B,C,D到原点的距离分别为2,1,0.5,2,到原点的距离相等的点是点A与点D,故选A.8. A【解析】∵∣x∣=3,∣y∣=8,∴x=±3,y=±8.∵xy<0,∴当x=3时,y=−8,当x=−3时,y=8.当x=3,y=−8时,x+y=3+(−8)=−5;当x=−3,y=8时.x+y=−3+8=5.9. A【解析】∵∣x∣=1,且x>0,∴x=1,∵∣y+1∣=4,∴y=−5或3,∴这两个点之间距离为1−(−5)=6或3−1=2.10. A11. D【解析】−(+2015)=−2015,+(−2015)=−2015,两数相等,A不合题意;−(+0.8)=−0.8,两数相等,B不合题意;−1.25和45不是互为相反数,C不合题意;+(−0.02)=−150,−(−150)=150,两个数互为相反数,D符合题意.12. B13. C14. 12【解析】根据只有符号不同的两个数叫做互为相反数,可得一个数的相反数.所以−12的相反数是12.15. x1=1,x2=516. >,<,>17. −5【解析】因为∣a∣=5,所以a=±5.又b=3,且a<b,所以a=−5.18. 719. 2或0或−220. 5.5,5.5,−3,3,−0.5,0.521. 5;4.5;0.5;1;0;π−3.22. −(−52)=52,−(+12)=−12,+(−4)=−4,+(+712)=712,+(−4) 的相反数是 4,+(+712) 的相反数是 −712,画出的数轴及各点在数轴上的位置如图.23. 当 1<x <2 时,x >0,x −1>0,x −2<0,原式=∣x−2∣x−2+∣x−1∣x−1+∣x∣x=−1+1+1=1.24. ∵a >0,b <0,且 a +b <0, ∴∣b ∣>∣a ∣, 在数轴上表示为:b <−a <a <−b . 25. (1) −334<−323;(2) −∣∣212∣∣<−(−314); (3) −1327>−3029;(4) −5.34<−∣∣−513∣∣.。
完整版)初一数学绝对值经典练习题
完整版)初一数学绝对值经典练习题绝对值的经典练1.判断题:⑴、对⑵、对⑶、错。
正确的是 |-3^2|=3^2=9⑷、对⑸、对⑹、错。
正确的是如果 a=4,那么 a 或 -a 都可以⑺、对⑻、错。
正确的是 -2,-1,0,1,2⑼、错。
正确的是 a 可以是 0 或负数⑽、错。
正确的是如果 a=b 或 a=-b,那么 |a|=|b|⑾、对⑿、错。
正确的是只有 1 的倒数等于 1⒀、对⒁、对⒂、错。
正确的是这个数既可以是正数也可以是负数2.填空题:⑴、当 a0⑵、当 a>0 时,a>0⑶、当 a0⑷、当a≠0 时,|a|>0⑸、当 a>0 时,-a<a⑹、当 a=0 时,-a=a⑺、当 a<0 时,|a|=-a⑻、绝对值小于 4 的整数有 -3,-2,-1,0,1,2,3⑼、如果 mn⑽、当 k+3=0 时,|k|=3⑾、如果 a、b 都是负数,且 |a|>|b|,则 a<b⑿、如果 |m-2|=1,则 m=3 或 m=1⒀、如果 |x|=x,则x≥0⒁、倒数和绝对值都等于它本身的数是 1 或 -1⒂、|a|=3,|b|=1⒃、-2/3 的相反数是 2/3,倒数是 -3/2,绝对值是 2/3⒄、绝对值小于 10 的整数有 19 个,其中最小的一个是 -9⒅、一个数的绝对值的相反数是 -0.04,这个数是 0.04 或-0.04⒆、如果 a、b 互为相反数,则 |a|=|b|⒇、如果 |a|=|b|,则 a 可以等于 b 或 -b3.选择题:⑴、选 D。
+5 和 -5 的绝对值相等。
⑵、选 C。
|a|=|b| 表示 a 和 b 的距离相等,所以它们互为相反数。
⑶、选 C。
绝对值最小的有理数是 0,但是它不是一个负数。
4、计算下列各题:⑴、|-8|-|-5|=8-5=3⑵、(-3)+|-3|= -3+3=0⑶、|-9|×(+5)= 45D、15÷|-3|= -55、填表a -a |a|1 -1 13 -3 357 57 571 -1 12 2 24 -4 41/12 -1/12 1/1212 12 120.1) 0.1 0.16、比较下列各组数的大小:⑴、-3< -2⑵、-0.5<|-2.5|⑶、-π<-3.14⑷、-0.2731<-2/57、把下列各数用“‹”连接起来:⑴、5‹|-3|‹-3‹|-3|‹-8‹-8⑵、1‹-5‹-6⑶、|-5|‹-6‹-5‹-10‹10⑷(|∆|+|∆|)×(-O)=-10,求O、∆,其中O和∆表示整数.10/-O,因为绝对值为正数,所以-10/-O必须为正数,即O>0.因此,O只能为1,此时|∆|+|∆|=10,∆只能为5.所以,O=1,∆=5.2.该公式表示:当a不等于b时,c等于d减去a与b之差的绝对值加上1,2或3,否则c等于3或1,取决于a是否大于等于1或小于等于-2.改写:这个公式描述了一个条件语句,如果a不等于b,则c等于d减去a和b之间的差的绝对值加上1、2或3.如果a等于b,则c等于3或1,具体取决于a是否大于等于1或小于等于-2.3.这个问题是一个选择题,答案分别是B、D、B、A、C、D、D、C、A、D、C。
初一上册数学 绝对值 专项练习带答案
绝对值一.选择题(共16小题)1.相反数不大于它本身的数是()A.正数 B.负数 C.非正数D.非负数2.下列各对数中,互为相反数的是()和 B.﹣和 C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)4.下列式子化简不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣)=C.﹣|+3|=﹣3 D.﹣(+1)=15.若a+b=0,则下列各组中不互为相反数的数是()和b3和b2C.﹣a和﹣b D.和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣8.﹣2018的相反数是().﹣2018 C. D.﹣9.下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A表示的数是()A.﹣4 B.﹣5 C.﹣6 D.﹣211.化简|a﹣1|+a﹣1=()﹣2 C.2a﹣2或0 D.2﹣2a 12.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()或R 或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()﹣b>﹣b>1+a>+a>a>1﹣b>﹣b+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁15.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()<aB.|b|>|a| C.a+b>0 D.ab<016.﹣3的绝对值是()A.3 B.﹣3 C. D.二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|的值为.18.已知|x|=4,|y|=2,且xy<0,则x﹣y的值等于.19.﹣2的绝对值是,﹣2的相反数是.20.一个数的绝对值是4,则这个数是.21.﹣2018的绝对值是.22.如果x、y都是不为0的有理数,则代数式的最大值是.23.已知+=0,则的值为.24.计算:|﹣5+3|的结果是.25.已知|x|=3,则x的值是.26.计算:|﹣3|= .三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.28.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|= .(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|是否有最小值如果有,写出最小值;如果没有,说明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x﹣y)的值.30.求下列各数的绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是;②数轴上表示﹣2和﹣6的两点之间的距离是;③数轴上表示﹣4和3的两点之间的距离是;(2)归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a= ;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少请说明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x= ;(2)当x= 时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F 的距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与﹣2的两点之间的距离是.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3)代数式|x+8|可以表示数轴上有理数x与有理数所对应的两点之间的距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x﹣1007|的最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.36.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求的值;(2)若b≠0,且,求的值.参考答案与试题解析一.选择题(共16小题)1. D.2. B.3. D.4. D.5. B.6.B.7. B .8. A.9. A.10. A.11. C.12.A.13. D.14.C.15.C.16. A.二.填空题(共10小题)17..18.6或﹣6 .19. 2 , 2 .20.4,﹣4 .21.2018 .22. 1 .23.﹣1 .24. 2 .25.±3 .26. = 3 .三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7;(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间的距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x ﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P 到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为|x﹣7|,(3)代数式|x+8|可以表示数轴上有理数x与有理数﹣8所对应的两点之间的距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|的最小值即|1007﹣(﹣1008)|=2015.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,因为a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,因为a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,因为a﹣b=﹣10<0,符题意;所以a+b=﹣6;④当a=﹣8,b=﹣2时,因为a﹣b=﹣6<0,符题意,所以a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一个0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。
初一有理数绝对值题50练
初一有理数绝对值题50练一、基础概念理解1、绝对值的定义:数轴上表示一个数的点与原点的距离叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0。
例如,5 的绝对值是 5,-3 的绝对值是 3,0 的绝对值是 0。
练习 1:求下列各数的绝对值:(1)-7 (2)8 (3)0 (4)-12练习 2:若一个数的绝对值是 4,求这个数。
练习 3:绝对值等于本身的数是()A 正数B 负数C 非负数D 非正数二、简单计算2、计算绝对值的运算。
例如:| 5 + 3 |=| 2 |= 2练习 4:计算:(1)| 7 9 |(2)| 3 + 8 |(3)| 5 12 |练习 5:已知| a |= 3,| b |= 5,且 a < b,求 a + b 的值。
练习 6:若| x 2 |= 5,求 x 的值。
三、比较大小3、利用绝对值比较有理数的大小。
两个负数比较大小,绝对值大的反而小。
例如:比较 3 和 5 的大小。
因为| 3 |= 3,| 5 |= 5,3 <5,所以 3 > 5。
练习 7:比较下列各组数的大小:(1) 1 和 4 (2)0 和 2 (3) 05 和 2练习 8:如果 a < 0,b < 0,且| a |<| b |,那么 a 和 b 的大小关系是()A a > bB a = bC a < bD 无法确定练习 9:有理数 a、b 在数轴上的位置如图所示,比较| a |和| b |的大小。
(数轴略)四、综合应用4、绝对值在实际问题中的应用。
例如:出租车的收费标准是起步价 8 元(3 千米以内),超过 3 千米的部分每千米 15 元。
某人乘坐出租车行驶了 x 千米(x > 3),则应付车费为 8 + 15(| x 3 |)元。
练习 10:某工厂生产一种零件,规定零件的尺寸误差不能超过±05毫米,若生产的零件尺寸为 x 毫米,用绝对值表示零件尺寸的误差范围。
练习 11:一足球队在一场比赛中的胜负情况可以用净胜球数来表示,若净胜球数为正数,则表示赢球;若净胜球数为负数,则表示输球;若净胜球数为 0,则表示平局。
初一上册数学绝对值专项练习带答案解析
绝对值一.选择题(共16小题)1.相反数不大于它本身的数是()A.正数 B.负数C.非正数D.非负数2.下列各对数中,互为相反数的是()A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a 3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)4.下列式子化简不正确的是()A .+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5C.﹣|+3|=﹣3 D .﹣(+1)=15.若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3 B.a2和b2C.﹣a和﹣b D.和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.﹣2a3和﹣2b3 B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣8.﹣2018的相反数是()A.2018B.﹣2018 C.D.﹣9.下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A表示的数是()A.﹣4 B.﹣5 C.﹣6 D.﹣211.化简|a﹣1|+a﹣1=()A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M 与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁C.甲丙 D.乙丁15.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()A.b<aB.|b|>|a| C.a+b>0 D.ab<0 16.﹣3的绝对值是()A.3 B.﹣3 C.D.二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|的值为.18.已知|x|=4,|y|=2,且xy<0,则x﹣y的值等于.19.﹣2的绝对值是,﹣2的相反数是.20.一个数的绝对值是4,则这个数是.21.﹣2018的绝对值是.22.如果x、y都是不为0的有理数,则代数式的最大值是.23.已知+=0,则的值为.24.计算:|﹣5+3|的结果是.25.已知|x|=3,则x的值是.26.计算:|﹣3|=.三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数围,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m ﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m ﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.28.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x﹣y)的值.30.求下列各数的绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是;②数轴上表示﹣2和﹣6的两点之间的距离是;③数轴上表示﹣4和3的两点之间的距离是;(2)归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F 以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P 到点E,点F的距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与﹣2的两点之间的距离是.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3)代数式|x+8|可以表示数轴上有理数x与有理数所对应的两点之间的距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x﹣1007|的最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.36.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求的值;(2)若b≠0,且,求的值.参考答案与试题解析一.选择题(共16小题)1.D.2.B.3.D.4.D.5.B.6.B.7.B .8.A.9.A.10.A.11.C.12.A.13.D.14.C.15.C.16.A.二.填空题(共10小题)17..18.6或﹣6.19.2,2.20.4,﹣4.21.2018.22.1.23.﹣1.24.2.25.±3.26.=3.三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(围不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(围不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7;(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间的距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x ﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P 到点A,点B的距离之和最小,所以x的取值围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为|x﹣7|,(3)代数式|x+8|可以表示数轴上有理数x与有理数﹣8所对应的两点之间的距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|的最小值即|1007﹣(﹣1008)|=2015.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,因为a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,因为a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,因为a﹣b=﹣10<0,符题意;所以a+b=﹣6;④当a=﹣8,b=﹣2时,因为a﹣b=﹣6<0,符题意,所以a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一个0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。
初一数学绝对值经典练习题
绝对值经典练习1、判断题:⑴、|-a|=|a|.⑵、-|0|=0.⑶、|-3|=-3.⑷、-(-5)?-|-5|.⑸、如果a=4,那么|a|=4.⑹、如果|a|=4,那么a=4.⑺、任何一个有理数的绝对值都是正数.⑻、绝对值小于3的整数有2,1,0.⑼、-a一定小于0.⑽、如果|a|=|b|,那么a=b.⑾、绝对值等于本身的数是正数.⑿、只有1的倒数等于它本身.⒀、若|-X|=5,则X=-5.⒁、数轴上原点两旁的点所表示的两个数是互为相反数.⒂、一个数的绝对值等于它的相反数,那么这个数一定是负数.2、填空题:⑴、当a_____0时,-a?0;⑵、当a_____0时,?0;⑶、当a_____0时,-?0;⑷、当a_____0时,|a|?0;⑸、当a_____0时,-a?a;⑹、当a_____0时,-a=a;⑺、当a?0时,|a|=______;⑻、绝对值小于4的整数有_____________________________;⑼、如果m?n?0,那么|m|____|n|;⑽、当k+3=0时,|k|=_____;⑾、若a、b都是负数,且|a|?|b|,则a____b;⑿、|m-2|=1,则m=_________;⒀、若|x|=x,则x=________;⒁、倒数和绝对值都等于它本身的数是__________;⒂、有理数a、b在数轴上的位置如图所示,则|a|=___;|b|=____;⒃、-2的相反数是_______,倒数是______,绝对值是_______;⒄、绝对值小于10的整数有_____个,其中最小的一个是_____;⒅、一个数的绝对值的相反数是-0.04,这个数是_______;⒆、若a、b互为相反数,则|a|____|b|;⒇、若|a|=|b|,则a和b的关系为__________.3、选择题:⑴、下列说法中,错误的是_____A.+5的绝对值等于5B.绝对值等于5的数是5C.-5的绝对值是5D.+5、-5的绝对值相等⑵、如果|a|=||,那么a与b之间的关系是A.a与b互为倒数B.a与b互为相反数C.a?b=-1D.a?b=1或a?b=-1⑶、绝对值最小的有理数是_______A.1B.0C.-1D.不存在⑷、如果a+b=0,下列格式不一定成立的是_______A.a=B.|a|=|b|C.a=-bD.a时,⑸、如果a,那么_______A.|a|?0B.-(-a)?0C.|a|?0D.-a?0⑹、有理数a、b在数轴上的对应点的位置,分别在原点的两旁,那么|a|与|b|之间的大小关系是_______A.|a|?|b|B.|a|?|b|C.|a|=|b|D.无法确定⑺、下列说法正确的是________A.一个数的相反数一定是负数B.两个符号不同的数叫互为相反数C.|-(+x)|=xD.-|-2|=-2⑻、绝对值最小的整数是_______A.-1B.1C.0D.不存在⑼、下列比较大小正确的是_______A. B.-(-21)?+(-21)C.-|-10|?8D.-|-7|=-(-)⑽、绝对值小于3的负数的个数有______A.2B.3C.4D.无数⑾、若a、b为有理数,那么下列结论中一定正确的是_____A.若a?b,则|a|?|b|B.若a?b,则|a|?|b|C.若a=b,则|a|=|b|D.若a≠b,则|a|≠|b|4、计算下列各题:⑴、|-8|-|-5|⑵、(-3)+|-3|⑶、|-9|(+5)D、15|-3|5、填表6、比较下列各组数的大小:⑴、-3与-;⑵、-0.5与|-2.5|;⑶、0与-|-9|;⑷、|-3.5|与-3.57、把下列各数用“?”连接起来:⑴、5,0,|-3|,-3,|-|,-(-8),-(;⑵、1,-,0,-6;⑶、|-5|,-6,-(-5),-(-10),-|-10|⑷(|+|)(-O)=-10,求O、,其中O和表示整数.8、比较下列各组数的大小:⑴、-(-9)与-(-8);⑵、|-|与50⑶、-与-3.14⑷、-与-0.273绝对值经典练习答案:1.⑴、√⑵、√⑶、×⑷、√⑸、√⑹、×⑺、×⑻、×⑼、×⑽、×⑾、×⑿、×⒀、×⒁、×⒂、×2.⑴?⑵?⑶?⑷≠⑸?⑹=⑺-a⑻±1,±2,±3,0⑼、>⑽3⑾?⑿3或1⒀≧0⒁1⒂-a、b⒃2⒄19-9⒅±0.04⒆⒇相等或互为相反数3.⑴B⑵D⑶B⑷A⑸C⑹D⑺D⑻C⑼A⑽D⑾C4.⑴3⑵0⑶45⑷556.⑴?⑵?⑶?⑷?7.⑴()?-3?0?|-|?|-3|?5?-(-8);⑵-6?-5?0?1;⑶-|-10|?-6?-|-5|?|-5|?-(-10);⑷5,5,1或1,1,5或-1,-1,5或-5,-5,18.⑴?⑵?⑶?⑷?。
初一数学绝对值练习题完整版
初一数学绝对值练习题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】绝对值经典练习1、 判断题:⑴ 、|-a|=|a|. ⑵ 、-|0|=0. ⑶ 、|-312|=-312.⑷ 、-(-5)-|-5|.⑸ 、如果a=4,那么|a|=4. ⑹ 、如果|a|=4,那么a=4.⑺ 、任何一个有理数的绝对值都是正数. ⑻ 、绝对值小于3的整数有2,1,0. ⑼ 、-a 一定小于0.⑽ 、如果|a|=|b|,那么a=b.⑾ 、绝对值等于本身的数是正数. ⑿ 、只有1的倒数等于它本身. ⒀ 、若|-X|=5,则X=-5.⒁ 、数轴上原点两旁的点所表示的两个数是互为相反数.⒂ 、一个数的绝对值等于它的相反数,那么这个数一定是负数.2、 填空题:⑴ 、当a_____0时,-a?0; ⑵⑶ 、当a_____0时,1a 0; ⑷⑸ 、当a_____0时,-1a 0; ⑹⑺ 、当a_____0时,|a|?0; ⑻ 、当a_____0时,-a?a; ⑼⑽ 、当a_____0时,-a=a; ⑾ 、当a?0时,|a|=______;⑿ 、绝对值小于4的整数有_____________________________; ⒀ 、如果mn0,那么|m|____|n|; ⒁⒂ 、当k+3=0时,|k|=_____;⒃、若a 、b 都是负数,且|a|?|b|,则a____b;⒄ 、|m-2|=1,则m=_________;⒅ 、若|x|=x,则x=________;⒆ 、倒数和绝对值都等于它本身的数是__________;⒇ 、有理数a 、b 在数轴上的位置如图所示,则|a|=___;|b|=____; 21 、-223的相反数是_______,倒数是______,绝对值是_______; 22 、绝对值小于10的整数有_____个,其中最小的一个是_____; 23 、一个数的绝对值的相反数是-0.04,这个数是_______; 24 、若a 、b 互为相反数,则|a|____|b|;25、若|a|=|b|,则a 和b 的关系为__________.3、 选择题:⑴ 、下列说法中,错误的是_____A .+5的绝对值等于5B.绝对值等于5的数是5 C .-5的绝对值是5D.+5、-5的绝对值相等 ⑵、如果|a|=| 1b |,那么a 与b 之间的关系是A.a 与b 互为倒数B.a与b互为相反数C.a?b=-1 D.ab=1或ab=-1 ⑶、绝对值最小的有理数是_______A .1B.0C.-1D.不存在⑷、如果a+b=0,下列格式不一定成立的是_______A .a=1b B.|a|=|b|C.a=-bD.a ≤0时,b ≤0⑸、如果a <0,那么_______A .|a|?0B.-(-a) 0C.|a|?0D.-a?0⑹、有理数a 、b 在数轴上的对应点的位置,分别在原点的两旁,那么|a|与|b|之间的大小关系是_______A .|a|?|b|B.|a|?|b|C.|a|=|b|D.无法确定 ⑺、下列说法正确的是________A .一个数的相反数一定是负数B.两个符号不同的数叫互为相反数 C .|-(+x)|=xD.-|-2|=-2 ⑻、绝对值最小的整数是_______A .-1B.1C.0D.不存在⑼、下列比较大小正确的是_______A .−56<−45B.-(-21)+(-21)C.-|-1012|?823D.-|-723|=-(-723)⑽、绝对值小于3的负数的个数有______A.2B.3C.4D.无数⑾、若a 、b 为有理数,那么下列结论中一定正确的是_____A .若ab,则|a||b|B.若ab,则|a||b|C.若a=b,则|a|=|b|D.若a ≠b,则|a|≠|b|4、计算下列各题:⑴ 、|-8|-|-5|⑵、(-3)+|-3|⑶、|-9|×(+5)D 、15÷|-3|5、填表6、比较下列各组数的大小:⑴ 、-3与-12;⑵、-0.5与|-2.5|;⑶、0与-|-9|;⑷、|-3.5|与-3.57、把下列各数用“”连接起来:⑴、5,0,|-3|,-3,|- 13|,-(-8),-[−(−8)]; ⑵ 、123,-512,0,-614;⑶ 、|-5|,-6,-(-5),-(-10),-|-10|⑷ (||+||)×(-O)=-10,求O、,其中O 和表示整数.8、比较下列各组数的大小:⑴、-(-912)与-(-812);⑵、|-572|与50%⑶、-π与-3.14⑷、- 311与-0.273绝对值经典练习答案:1.⑴、√⑵、√⑶、×⑷、√⑸、√⑹、×⑺、×⑻、×⑼、×⑽、×⑾、×⑿、×⒀、×⒁、×⒂、×2.⑴?⑵?⑶?⑷≠⑸?⑹=⑺-a ⑻±1,±2,±3,0⑼、>⑽3⑾?⑿3或1⒀≧0⒁1⒂-a 、b ⒃223 −38 223⒄19-9⒅±0.04⒆=⒇相等或互为相反数3.⑴B ⑵D ⑶B ⑷A ⑸C ⑹D ⑺D ⑻C ⑼A ⑽D ⑾C4.⑴3⑵0⑶45⑷57.⑴[−(−8)]-30|- 13||-3|5-(-8);⑵-614-5120123;⑶-|-10|-6-|-5||-5|-(-10);⑷5,5,1或1,1,5或-1,-1,5或-5,-5,1 8.⑴?⑵?⑶?⑷?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值
一.基本概念
我们知道6与-6互为( )数,在数轴上表示这两个数的点,与原点的距离相等,都是( )。
这个距离6就是6与-6的绝对值。
1、绝对值的定义:一般地,数轴上表示数a 与原点的距离叫做数a 的绝对值,记作 a 。
由此可知,一个整数的绝对值是它本身,一个负数的绝对值是它的( )。
0的绝对值是( )。
即:(1)当a 是正数时,a =( )。
(2)当a 是负数时,a =( )。
(3)当a 是0时,a =( )。
2、若a 、b 互为相反数,则 a = b ,若a = b ,则a 、b ( )或( )。
3、若a +b =0.则有a=( ),b=( )。
4、相反数是它本身的数只有一个,就是( ),而绝对值是它本身的数有无数个,即( )。
二.精学精炼
1、填空
(1)+3的符号是( ),绝对值是( )。
-3的符号是( ),绝对值是( )。
-2
1的符号是( ),绝对值是( )。
(2)符号是+号,绝对值是7的数是( )。
符号是-号,绝对值是7的数是( )。
符号是-号,绝对值是0.35的数是( )。
符号是+号,绝对值是3
11的数是( )。
(3)绝对值是3的数有( )个,它们是( );
绝对值是43
的数有( )个,它们是( );
绝对值是0的数有( )个,它们是( );
(4)用“>”“<”或“=”填空 1.3_____23.0- 71
_____61
- 02.0_____03.0- 3_____3-
2、判断
(1)符号相反的数互为相反数( )。
(2)符号相反且绝对值相等的数互为相反数( )。
(3)一个数的绝对值越大,表示它的点在数轴上越靠右( )。
(4)一个数的绝对值越大,表示它的点在数轴上离原点越远( )。
3、写出下列各数的相反数并将这些数连同它们的相反数在数轴上表示出来。
-4, +2, -1.5, 0, 31
, 49
-
三.活学活用
1、若|a|=a,则a ( ),若|a|=-a ,则a ( )。
2、若a 为整数,且|a|<1,则a ( )。
3、一个数的绝对值大于它本身,则这个数是( ),绝对值等于它本身的数是(
)。
4、一个数与它的绝对值互为相反数,则这个数为( )。
5、如果|b|=|-2|,那么b=( ).
6、计算 |-8|+|7| |-0.31|+|-0.2| |32|-|-21
| |-4|-|4.1|。