乘法公式应用与拓展-几何背景下的乘法公式
乘法公式的拓展及常见题型
乘法公式的拓展及常见题型一.公式拓展:拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+aa a a 拓展二:ab b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=-拓展三:bc ac ab c b a c b a 222)(2222---++=++拓展四:杨辉三角形3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=-二.基本考点例1:已知:32a b +=,1ab =,化简(2)(2)a b --的结果是 . 例2:化简与计算 221999922011();()()()()()222x 3y 3m n 42x+32x 3-+----;();();()。
练习:1、(a+b -1)(a -b+1)= 。
2.若x 2-y 2=30,且x -y=-5,则x+y 的值是( )A .5B .6C .-6D .-53、已知 2()16,4,a b ab +==求223a b +与2()a b -的值.4、试说明不论x ,y 取何值,代数式226415x y x y ++-+的值总是正数.5、(a -2b +3c )2-(a +2b -3c )2= 。
6、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值.7、2200720092008⨯-(运用乘法公式)题型一:乘法公式在解方程和不等式组中的应用解方程:()()()()()()2x 12x 13x 2x 27x 1x 1+-+-+=+-题型二:应用完全平方公式求值设m+n=10,mn=24,求()222m n m n +-和的值。
乘法公式综合-拓展篇
【答案】a = 2, b = -1 【解析】由已知可得 : a + b - 1 2 + 2a - 2 2 < 1, ∵ a、b 为整数,∴ 0 ≤ a + b - 1 2 + 2a - 2 2 < 1, ∴ a + b - 1 2+ 2a - 2 2= 0, ∴ a = 2,b = -1. 例 2 - 2.已知 a2 + b2 + c2 - ab - bc - ca = 8,b - c = 3,求 (b - a) (c - a) 的值.
乘法公式综合拓展
【必记公式】
1.平方差公式:(a + b) (a - b) = a2 - b2;
2.完全平方公式:(a + b)2 = a2 + 2ab + b2,(a - b)2 = a2 - 2ab + b2;
公式推广:(x1 + x2 +⋯ +xn)2 = x12 + x22 +⋯ +xn2 + 2x1x2 + x1x3 +⋯ +x1xn + x2x3 +⋯ +xn-1xn ; 3.完全立方:(a + b)3 = a3 + 3a2b + 3ab2 + b3,(a - b)3 = a3 - 3a2b + 3ab2 - b3;
4.立方和公式:a + b a2 - ab + b2 = a3 + b3;
5.立方差公式:a - b a2 + ab + b2 = a3 - b3;
6.大立方公式:a3 + b3 + c3 - 3abc = a + b + c a2 + b2 + c2 - ab - bc - + c = 0 时,a3 + b3 + c3 = 3abc;
第二讲乘法公式的几何意义
第二讲乘法公式的几何意义乘法公式是数学中非常重要的一个基本概念,它描述了两个数相乘的结果。
在几何学中,乘法公式有着丰富的几何意义,可以帮助我们理解和解释各种几何现象和关系。
一、面积的乘法公式:在平面几何中,我们知道任意矩形的面积可以通过将它的长度乘以宽度得到。
这个面积的计算公式就是乘法公式的简单形式。
即,对于一个矩形,其长为a,宽为b,则其面积S可以表示为S=a×b。
几何意义上,乘法可以看作是两个向量之间的数量乘法。
对于矩形的面积,我们可以将其长和宽看作两个向量,通过将向量a向量b的长度相乘来得到面积。
同时,这个面积也可以理解为向量a和向量b之间的叉积的模长。
二、体积的乘法公式:在空间几何中,乘法公式也可以应用于描述体积的计算。
例如,对于一个长方体,其三个边长分别为a,b,c,则其体积V可以表示为V=a×b×c。
类似地,几何意义上,也可以将三个边长看作三个向量。
这个体积可以理解为这三个向量之间的混合积的绝对值。
三、比例关系的乘法公式:乘法公式还可以描述比例关系。
例如,对于一个直角三角形,根据勾股定理可以得到a²=b²+c²。
我们可以将这个等式写成a/b=c/b,即a与b 的比例等于c与b的比例。
几何意义上,这个乘法公式可以解释为两个长度的比例乘以一个相同的长度,得到另外两个长度的比例。
四、扩大、缩小和相似的乘法公式:在几何学中,也经常会涉及到图形的扩大和缩小。
乘法公式可以很好地描述这种变换关系。
例如,对于一个图形A,我们可以通过将其按照一些比例因子k进行扩大或缩小得到一个新的图形B。
此时,图形B的面积、周长等可以通过乘以k得到。
即,图形B的面积等于图形A的面积乘以k²,周长等于图形A的周长乘以k。
相似的几何图形之间具有相似的形状和比例关系。
例如,两个相似三角形的三条边长的比例是相等的。
这个比例关系可以通过乘法公式进行描述。
在几何意义上,乘法公式可以理解为长度和面积的伸缩变换。
最经典的乘法公式综合应用与拓展分析
最经典的乘法公式综合应用与拓展分析乘法公式是数学中常用的公式之一,它们在各个数学领域中都有广泛的应用。
本文将从学生和教师两个角度综合分析乘法公式的最经典的应用与拓展。
首先,对于学生而言,乘法公式是他们掌握数学知识的基础。
学生在学习数学的过程中,会接触到很多与乘法相关的知识,如乘法口诀、乘法逆元等。
通过乘法公式的学习,学生可以更好地理解和应用乘法的原理和方法。
比如,在解决乘法运算中的复杂问题时,学生可以灵活运用乘法公式,提高解题的效率和准确性。
其次,对于教师而言,乘法公式是他们教学的重要工具。
教师在教授数学知识时,可以通过乘法公式来引导学生掌握乘法的基本操作和运算规则。
此外,乘法公式还可以作为教师讲解和解决数学问题的案例,帮助学生从实践中理解乘法的原理和应用。
例如,在教授高中数学中的二次方程时,教师可以通过乘法公式来引导学生求解方程的根,帮助学生加深对乘法公式的理解和运用。
乘法公式还有很多拓展应用,以下是一些经典的拓展案例:1.方阵乘法:方阵乘法是线性代数中的常用运算,通过乘法公式可以方便地计算两个方阵的乘积。
在实际应用中,方阵乘法广泛用于图像处理、数据压缩等领域。
2.应用于几何图形:通过乘法公式可以计算图形的面积和周长。
例如,计算矩形的面积可以使用乘法公式的形式:面积=长度x宽度。
3.二项式展开:二项式展开是代数中常用的运算,通过乘法公式可以方便地展开一个二项式。
在高中数学中,二项式展开广泛应用于排列组合、概率等问题的求解中。
4.概率与统计:乘法公式在概率和统计中有广泛的应用。
例如,计算多事件的概率时,可以使用乘法公式计算独立事件的联合概率。
此外,在统计学中,乘法公式也被用于计算随机变量的期望和方差等。
总而言之,乘法公式作为数学中的重要工具,在学生和教师的学习和教学中都起到了至关重要的作用。
通过乘法公式的学习和应用,学生可以提高解题的效率和准确性,教师可以引导学生更好地掌握乘法的原理和应用。
此外,乘法公式还有许多拓展应用,可以在其他数学领域中发挥重要作用。
乘法公式的应用
乘法公式的应用乘法公式是数学中常用的公式之一,用于解决乘法运算问题。
在现实生活中,乘法公式的应用十分广泛,涵盖了经济、工程、科学等多个领域。
以下是乘法公式的一些应用供参考:1.计算面积和体积:乘法公式可以用来计算各种形状的面积和体积。
例如,矩形的面积可以通过将矩形的长乘以宽来计算,即面积=长×宽。
圆的面积可以通过将π(圆周率)乘以半径的平方来计算,即面积=π×半径²。
立方体的体积可以通过将边长相乘三次来计算,即体积=边长×边长×边长。
2.计算物品的价格:在购买物品时,乘法公式可以用来计算物品的总价格。
例如,如果一件衣服的价格为100元,而购买了10件相同的衣服,那么总价格可以通过将价格乘以数量来计算,即总价格=价格×数量=100×10=1000元。
3.计算利润和损失:在经济领域中,乘法公式可以用来计算利润和损失。
例如,如果一个商人以每件商品10元的价格购买了100件商品,并以每件商品15元的价格出售,那么他的总利润可以通过将销售价格减去购买价格后再乘以商品的数量来计算,即总利润=(销售价格-购买价格)×数量=(15-10)×100=500元。
4.求解几何问题:乘法公式可以用来求解各种几何问题。
例如,两条平行线之间的距离可以通过将一条平行线上两个点之间的距离乘以一个比例因子来计算。
另外,三角形的面积可以通过将底边的长度乘以高度再除以2来计算。
5.计算光速和速度:乘法公式可以用来计算光速和速度。
光速是物理学中的一个重要常数,音速和其他速度也可以通过光速乘以相应的倍数来计算。
除了以上提及的应用,乘法公式还广泛应用于科学实验、财务分析、统计学和工程等领域。
通过运用乘法公式,我们可以更加准确地解决实际问题,并得出相关结论。
因此,掌握和理解乘法公式的应用对于数学和各个领域的研究和应用都具有重要意义。
总结起来,乘法公式的应用十分广泛,涵盖了数学、经济、工程、科学等多个领域。
乘法公式的常用方法和技巧
乘法公式的常用方法和技巧乘法公式是数学中常用且重要的计算方法之一,它能够帮助我们在进行乘法运算时更加高效和准确。
下面,将为大家详细介绍乘法公式的常用方法和技巧。
一、乘法公式的基本原理乘法公式是指两个或多个数相乘的计算规则。
在进行乘法运算时,我们往往需要根据这些基本原理进行计算。
1.乘法的交换律:a×b=b×a交换律可以帮助我们改变两个数的位置,使乘法运算更加方便。
例如,3×2=2×3=62.乘法的结合律:(a×b)×c=a×(b×c)结合律指的是,当多个数相乘时,它们的乘积不受括号的位置影响。
例如,(2×3)×4=2×(3×4)=243.乘法的分配律:a×(b+c)=a×b+a×c分配律适用于当一个数与多个数的和相乘时,可以先将这个数与每个加数分别相乘,再将乘积相加。
例如,2×(3+4)=2×3+2×4=14二、基本的乘数口诀为了在进行乘法运算时更加快速和准确,我们可以掌握一些基本的乘数口诀。
下面列举了几个常用的口诀:1.小学生口诀:小学生口诀是一种简单易记的乘法口诀,通常用于计算两个一位数相乘的结果。
例如,2×3=6,可以快速记忆为“脸上三毛”。
2.九九口诀:九九口诀是指九九乘法口诀表,其中列举了所有1-9的乘法结果。
学习并熟记九九口诀可以帮助我们快速计算两个一位数相乘的结果。
三、乘法的近似计算在实际应用中,我们有时候需要对两个较大的数进行乘法运算,这时候我们可以使用一些近似计算的方法,以减小计算量和提高计算速度。
1.精确数的近似:当两个数中至少有一个数很大时,我们可以对其中一个数取舍近似的值,以减小计算量。
例如,计算142×8时,我们可以近似后计算140×8=1120。
2.分割数的近似:对于两个较大的数相乘,我们可以将其中一个数分解成较小的数的和,再进行计算。
乘法公式的应用
乘法公式的应用乘法公式是数学中常见且重要的概念之一,它在实际问题中有着广泛的应用。
通过乘法公式,我们可以简化计算过程,解决复杂的数学题目。
本文将探讨乘法公式在不同领域的应用,并展示其强大的计算能力。
一、金融领域中的乘法公式应用在金融领域,乘法公式被广泛用于计算复利。
复利是指在一定时间内,利息会再次产生利息的现象。
如果我们假设初始本金为P,年利率为r,投资期限为n年,根据乘法公式,最终的本金将成为P(1+r)^n。
通过使用乘法公式,我们可以非常方便地计算复利,从而帮助我们做出更明智的理财决策。
二、科学研究中的乘法公式应用在科学研究中,乘法公式被广泛应用于计算物理量之间的关系。
例如,在物理学中,功可以表示为力乘以位移。
如果我们需要计算一段物体所做的功,可以利用乘法公式 W = F * s,其中W表示功,F表示力,s表示位移。
通过运用乘法公式,我们可以从力和位移这两个基本信息中得出物体做功的数值,进而研究力和位移对物体运动的影响。
三、商业领域中的乘法公式应用在商业领域,乘法公式被广泛应用于计算销售额、利润和成本等指标之间的关系。
例如,我们可以将总销售额表示为单价乘以销售量,即 S = P * Q。
通过运用乘法公式,我们可以根据给定的单价和销售量计算出总销售额。
同样地,我们还可以使用乘法公式计算利润和成本,以便更好地管理企业的经营状况。
四、生活中的乘法公式应用在日常生活中,乘法公式也有着广泛的应用。
比如,我们经常需要计算购物总价,在给定的物品单价和购买数量下,我们可以通过乘法公式 P * Q 来计算购物总价。
又如,我们在做饭的过程中,需要根据菜谱上的比例关系,使用乘法公式来计算食材的用量。
乘法公式帮助我们快速、准确地计算各种日常场景中的数值关系。
总结:乘法公式作为基本的数学工具,在各个领域都有着广泛的应用。
它简化了复杂的计算过程,提高了计算的准确性和效率。
通过运用乘法公式,我们能够更好地理解和应用数学知识,解决实际问题,拓宽思维,提高解决问题的能力。
乘法公式的应用与推导
乘法公式的应用与推导乘法是数学中基本的运算之一,而乘法公式则是在乘法运算中常被用到的一些特殊公式。
在本文中,我们将探讨乘法公式的应用以及推导过程。
一、乘法公式的应用乘法公式在数学中的应用非常广泛,尤其是在代数、几何和物理等领域。
以下是一些常见的乘法公式应用:1. 二项式定理二项式定理是乘法公式的一个重要应用,在代数中经常被使用。
它可以用来展开二项式的幂,形式如下:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ... + C(n, n)b^n其中,C(n, k)表示从n个元素中选取k个元素的组合数。
2. 高中数学中的三角函数公式在高中数学中,我们经常会遇到一些三角函数的乘法公式,如正弦定理、余弦定理等。
这些公式的应用可以帮助我们解决与三角函数相关的各种问题,如计算角度、边长等。
3. 几何中的面积和体积计算在几何学中,我们常常需要计算各种图形的面积和体积。
乘法公式可以帮助我们计算复杂图形的面积和体积,如长方体、圆柱体等。
通过将长度、宽度和高度相乘,我们能够得到物体的体积。
二、乘法公式的推导过程乘法公式的推导通常基于递归关系或组合数学的原理。
以下是一些常见的乘法公式的推导过程:1. 二项式定理的推导二项式定理的推导可以通过使用组合数学中的组合公式来完成。
假设我们要将一个二项式展开成多项式,我们可以使用组合公式来求解每一项的系数。
具体来说,我们可以使用组合数来表示每一项的系数,然后将它们与相应的幂相乘,最终得到展开后的多项式。
2. 正弦和余弦的乘法公式的推导正弦和余弦的乘法公式可以通过使用欧拉公式和复数的表示来推导。
具体来说,我们可以将正弦和余弦用欧拉公式表示,然后将它们相乘并使用欧拉公式的性质进行变换,最终得到乘法公式。
3. 长方体体积的推导长方体体积的推导可以通过将长度、宽度和高度相乘来获得。
这个推导过程非常直观,我们可以将长方体看作由多个小立方体组成,每个小立方体的体积都是边长的乘积,最终将它们相加即可得到长方体的体积。
几何背景下的乘法公式
(1 m
2
1 2
n )2
1 4
m2
1 mn
2
1 n2
4
(1 a 3b)2 (1 a 3b)2
2
2
1 a4
16
9 a 2b 2
2
81b 4
弄应 清用 公乘 式法 特公 点式 ,时 灵, 活关 套键 用在 !于
议3·如果我们把大正方形的边长变成3x+y, 小正方形的边长变成2z,你又能得到一个 什么样的乘法算式,它还可以用平方差公 式进行计算吗?
活动二: b
图1是由边长为a和边长为b的正方 形,构成的边长为a+b的正方形, 大正方形的面积有几种计算方法呢? a 你发现它能验证那个乘法公式呢?
a
b
ab
b2 b
a2
ab a
a 图1
b
大正方形的面积计算方法1: (a b)2
;
大正方形的面积计算方法2: a2 2ab b2 ;
验证的公式: (a b)2 a2 2ab b2 .
4
(a b)2 (a b)2 4ab
四·【练】
解答下列各题:
(1)·已知 : a b 8 , ab 7 ,求下列式子的值:
① a2 b2 ; ② a3b ab3; ③ a4 b4.
① 解:∵ 2 b 2 ( b)2 2b
把 b 5,ab 6 代入上式得:
∴原式= 52 -2 6 25 - 12 13
活动三:对于乘法公式有 (a b)(a b) a2 b2 ; (a b)2 a2 2ab b2 ,那么式子 (a b c)2 怎么计算呢?能利用以上乘法公式吗?式子 (a+b+c)(a-b-c)呢?
2)我们知道x-y+y-z等于x-z,若实数x、y、z满足式
乘法公式的基础与拓展应用
乘法公式的基础与拓展应用乘法公式是数学中常用的计算工具,它包含了一系列基础与拓展应用。
基础乘法公式常用于计算两个数之间的乘积。
它们包括:1.乘法交换律:a×b=b×a。
这意味着两个数的乘积与它们的顺序无关。
2.乘法结合律:(a×b)×c=a×(b×c)。
这意味着无论是先将前两个数相乘然后与第三个数再相乘,还是先将后两个数相乘然后与第一个数再相乘,得到的结果都是相同的。
3.分配律:a×(b+c)=(a×b)+(a×c)。
这意味着将一个数与两个数的和相乘,等于将这个数分别与两个数相乘得到的结果再相加。
基础乘法公式还可以进行简化,例如:1. 平方公式:(a + b)² = a² + 2ab + b²。
这意味着一个数的平方可以通过将该数与自身相乘得到。
2. 立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³。
这意味着一个数的立方可以通过将该数与自身的平方相乘得到。
乘法公式还可以应用于解决实际问题,例如:1.面积计算:通过乘法公式可以计算出各种形状的面积。
例如,长方形的面积可以通过将长与宽相乘得到;圆的面积可以通过将π与半径的平方相乘得到。
2.体积计算:通过乘法公式可以计算出各种形状的体积。
例如,长方体的体积可以通过将长、宽和高相乘得到;圆柱体的体积可以通过将π、半径的平方和高相乘得到。
拓展应用方面,乘法公式也可以用于解决一些更复杂的问题。
例如:1.组合问题:组合问题是指从一个集合中选取若干个元素组成一个子集的问题。
乘法公式可以应用于计算组合问题的总数。
如果一些集合有n个元素,需要选取r个元素组成子集,那么组合问题的总数可以通过计算n!/(r!(n-r)!)得到,其中"!"表示阶乘。
2.概率问题:概率问题是指计算一些事件发生的可能性的问题。
几何背景下的乘法公式
议2·如果把以上大正方形边长变为 1 x ,小正方形边长
3
变为
1 4
y
,你能得到乘法什么算式?结果得多少呢?
乘法算式:(1
3
x
1 4
y )(1 x
3
1 4
y)
(1 3
x )2
(
1 4
y )2
你能从几何意义上解释下列算式吗? 你能计算吗? 动手做一做
① 解:∵ 2 b 2 ( b)2 2b
把 b 5,ab 6 代入上式得:
∴原式= 52 -2 6 25 - 12 13
② 解:∵ a3b ab3
b( 2 b 2)
b( b)2 2ab
把a b 5,ab 6代入上式得: 原式 6 (52 2 6)
活动二: b
图1是由边长为a和边长为b的正方 形,构成的边长为a+b的正方形, 大正方形的面积有几种计算方法呢? a 你发现它能验证那个乘法公式呢?
a
b
ab
b2 b
a2
ab a
a 图1
b
大正方形的面积计算方法1: (a b)2
;
大正方形的面积计算方法2: a2 2ab b2 ;
验证的公式: (a b)2 a2 2ab b2 .
方形的面积:
b
b
中间部分面积计算方法1: (a b)2
;
中间部分面积计算方方法2 (a b)2 4ab Nhomakorabea;
你有什么发现: (a b)2 - 4ab (a b)2
知识点060平方差公式的几何背景解答
知识点060 平方差公式的几何背景(解答)1. 乘法公式的探究及应用(1)如图1,可以求出阴影部分的面积是a2-b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是a-b,长是a+b,面积是(a+b)(a-b)(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式(a+b)(a-b)=a2-b2;(4)运用你所得到的公式,计算下列各题:①10.2×9.8,②(2m+n-p)(2m-n+p).考点:平方差公式的几何背景.专题:计算题.分析:(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.解答:解:(1)利用正方形的面积公式可知:阴影部分的面积=a2-b2;(2)a-b,a+b,(a+b)(a-b);(3)(a+b)(a-b)=a2-b2(等式两边交换位置也可);(4)①解:原式=(10+0.2)×(10-0.2),=102-0.22,=100-0.04,=99.96;②解:原式=[2m+(n-p)]•[2m-(n-p)],=(2m)2-(n-p)2,=4m2-n2+2np-p2.点评:此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.2. 如图是边长为a+2b的正方形(1)边长为a的正方形有1个(2)边长为b的正方形有4个(3)两边分别为a和b的矩形有4个(4)用不同的形式表示边长为a+2b的正方形面积,并进行比较写出你的结论.考点:平方差公式的几何背景;列代数式;完全平方式.分析:(1)(2)(3)根据图直接可以看出,(4)根据正方形的面积公式=边长×边长=(a+2b)(a+2b)=(a+2b)2,然后利用平方差公式把它展开又是另一种表现形式.解答:解:(1)由图可知边长为a的正方形只有一个;(2)由图可知边长为b的正方形有4个;(3)由图可知两边长分别为a和b的矩形有4个;(4)∵S边长为a+2b的正方形=(a+2b)2S边长为a+2b的正方形=a2+4b2+4ab;∴结论是(a+2b)2=a2+4b2+4ab.点评:本题主要考查了同学们的观察能力以及运用面积公式求正方形的面积.3. 如图1所示,边长为a的大正方形中有一个边长为b的小正方形,如图2是由图1中阴影部分拼成的一个长方形.(1)请你分别表示出这两个图形中阴影部分的面积:a2-b2、(a+b)(a-b);(2)请问以上结果可以验证哪个乘法公式?平方差公式;(3)试利用这个公式计算:20092-2010×2008.考点:平方差公式的几何背景.分析:本题通过(1)中的面积=a2-b2,(2)中矩形的面积=(a+b)(a-b),并且两图形阴影面积相等,据此即可得出平方差公式,即a2-b2=(a+b)(a-b).解答:解:(1)a2-b2(1分);(a+b)(a-b).(1分)(2)平方差公式.(2分)(3)20092-2010×2008,=20092-(2009+1)(2009-1),=20092-20092+1,=1.(4分)点评:本题主要考查了利用面积公式证明平方差公式,熟记公式结构是利用平方差公式解决实际问题.4. 乘法公式的探究及应用:(1)如图1所示,可以求出阴影部分的面积是a2-b2(写成两数平方差的形式).(2)若将图1中的阴影部分裁剪下来,重新拼成一个如图2的矩形,此矩形的面积是(a+b)(a-b)(写成多项式乘法的形式).(3)比较两图的阴影部分面积,可以得到乘法公式a2-b2=(a+b)(a-b).(4)应用所得的公式计算:(1-1/22)(1-1/32)(1-1/42)…(1-1/992)(1-1/1002).考点:平方差公式的几何背景.专题:探究型.分析:(1)利用面积公式:大正方形的面积-小正方形的面积=阴影面积;(2)利用矩形公式即可求解;(3)利用面积相等列出等式即可;(4)利用平方差公式简便计算.解答:解:(1)a2-b2;(2)(a+b)(a-b);(3)a2-b2=(a+b)(a-b);(4)原式=(1-1/2)(1+1/2)(1-1/3)(1+1/3)…(1-1/99)(1+1/99)(1-1/100)(1+1/100),=1/2×3/2×2/3×4/3×…×98/99×100/99×99/100×101/100,=101/200.点评:本题综合考查了证明平方差公式和使用平方差公式的能力.5. 如图:大正方形的边长为a,小正方形的边长为b,利用此图证明平方差公式.考点:平方差公式的几何背景.专题:证明题.分析:由大正方形的面积-小正方形的面积=四个等腰梯形的面积,进而证得平方差公式.解答:解:根据题意大正方形的面积-小正方形的面积=a2-b2,四个等腰梯形的面积=1/2(a+b)(1/2a-1/2b)×4=(a+b)(a-b),故a2-b2=(a+b)(a-b).点评:本题主要考查平方差公式的几何背景,不是很难.6. (1)如图1,可以求出阴影部分的面积是a2-b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是a-b,长是a+b,面积是(a-b)(a+b)(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式(a+b)(a-b)=a2-b2(用式子表达).考点:平方差公式的几何背景.分析:(1)中的面积=大正方形的面积-小正方形的面积=a2-b2;(2)中的长方形,宽为a-b,长为a+b,面积=长×宽=(a+b)(a-b);(3)中的答案可以由(1)、(2)得到,(a+b)(a-b)=a2-b2.解答:解:(1)阴影部分的面积=大正方形的面积-小正方形的面积=a2-b2;(2)长方形的宽为a-b,长为a+b,面积=长×宽=(a+b)(a-b);(3)由(1)、(2)得到,(a+b)(a-b)=a2-b2.点评:本题考查了平方差公式的几何表示,利用不同的方法表示图形的面积是解题的关键.7. 会说话的图形.如下图,把正方形的方块,按不同的方式划分,计算其面积,便可得到不同的数学公式.按图1所示划分,计算面积,便得到一个公式:(x+y)2=x2+2xy+y2.若按图2那样划分,大正方形则被划分成一个小正方形和两个梯形,通过计算图中的面积,请你完成下面的填空.(1)图2正方形的面积为x2;(2)图2中两个梯形的面积为1/2(x+y)(x-y);(3)根据(1)和(2),你得到的一个数学公式为x2-y2=(x+y)(x-y).考点:平方差公式的几何背景;完全平方公式的几何背景.专题:图表型.分析:本题的关键是仔细观察图形从图形中找到规律,按正方形,梯形的面积公式进行计算即可.解答:解:(1)图正方形的面积为x2;(2)两个梯形的面积分别为1/2(x+y)(x-y);(3)则有x2-y2=2×1/2(x+y)(x-y);即x2-y2=(x+y)(x-y).故答案为:x2;1/2(x+y)(x-y);x2-y2=(x+y)(x-y).点评:本题考查了平方差公式的几何表示,通过数形结合,推导并验证了平方差公式.8. 请大家阅读下面两段材料,并解答问题:材料1:我们知道在数轴上表示4和1的两点之间的距离为3,(如图)而|4-1|=3,所以在数轴上表示4和1的两点之间的距离为|4-1|.再如在数轴上表示4和-2的两点之间的距离为6,(如图)而|4-(-2)|=6,所以数轴上表示数4和-2的两点之间的距离为|4-(-2)|.根据上述规律,我们可以得出结论:在数轴上表示数a 和数b 两点之间的距离等于|a-b|(如图)材料2:如下左图所示大正方形的边长为a ,小正方形的边长为b ,则阴影部分的面积可表示为:a2-b2.将上图中的左图重新拼接成右图,则阴影部分的面积可表示为(a+b )(a-b ),由此可以得到等式:a2-b2=(a+b )(a-b ),阅读后思考:(1)试一试,求在数轴上表示的数532与-441的两点之间的距离为91211; (2)请用材料2公式计算:(4998)2-(4991)2=77; (3)上述两段材料中,主要体现了数学中数形结合的数学思想.考点:平方差公式的几何背景;数轴.专题:阅读型;数形结合.分析:(1)首先理解材料1的题意,利用它的公式即可求结果;(2)利用平方差公式把题目展开成平方差公式的形式,然后根据有理数的加法法则计算,并且这样计算比较简便;(3)此题把图形和数的计算结合起来,所以容易知道利用的数学思想.解答:解:(1)数532与-441的两点之间的距离为|532+441|=91211; (2)(4998)2-(4991)2=(4998+4991)(4998-4991)=77; (3)数形相结合.故答案为:91211,77,数形结合. 点评:本题考查了平方差公式的几何表示,关键是理解题意,才能根据题目的公式进行计算,此题还考查了数形结合的思想.9. 如图1所示大正方形的边长为a ,小正方形的边长为b ,则阴影部分的面积可表示为:a2-b2,将图1中的图形重新拼接成图2,则阴影部分的面积可表示为(a-b )(a+b ),这样可以得到等式:a2-b2=(a-b )(a+b ).请用此公式计算:(99998)2-(99991)2考点:平方差公式的几何背景.分析:图1阴影部分的面积=大正方形的面积-小正方形的面积,图2阴影部分的面积根据矩形面积公式即可得出,根据阴影部分的面积相等可得等式.计算题直接利用公式即可. 解答:解:a2-b2,(a-b )(a+b ),a2-b2=(a-b )(a+b );(99998)2-(99991)2 =(99998+99991)(99998-99991), =1000×99997, =98998000. 点评:本题利用组合图形考查平方差公式,计算题较为简单,直接利用公式即可.做题时认真观察图形,找到各部分的面积及两面积相等是解决本题的关键.10. 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形( ),把剩下部分拼成一个梯形,通过计算这两个图形阴影部分的面积,可验证公式为?考点:平方差公式的几何背景.分析:要求可验证的公式,可分别求出两个图形的面积,令其相等,即可得出所验证的公式. 解答:解:在边长为a 的正方形中剪去一个边长为b 的小正方形,剩余面积为a •a-b •b=a2-b2图中梯形的上底为2b ,下底为2a ,高为a-b ,∴梯形的面积为1/2(2a+2b)(a-b)=(a+b )(a-b ),∴可验证的公式为a2-b2=(a+b )(a-b ).点评:本题考查了平方差公式的几何意义,用不同的方法求阴影部分的面积是解题的关键,考法较新颖.11. 如图,小刚家有一块“L ”形的菜地,要把这块菜地按图示那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是xm,下底都是ym,高都是(y-x)m,请你帮小刚家算一算菜地的面积是y2-x2平方米.当x=20m,y=30m时,面积是500平方米.考点:平方差公式的几何背景.分析:本题结合图形,根据梯形的面积公式=1/2(上底+下底)×高,列出菜地的面积,再运用平方差公式计算.解答:解:由题意得菜地的面积为2×1/2(x+y)(y-x)=y2-x2.当x=20,y=30时,y2-x2=302-202=900-400=500m2.故答案为:y2-x2;500.点评:本题考查了平方差公式的几何表示,计算菜地的面积时,也可运用边长为y的正方形的面积减去边长为x的正方形的面积求得,这样更为简单.12. 如图,有一位狡猾的地主,把一块边长为a的正方形的土地,租给老汉种植,他对老汉说:“我把你这块地的一边减少4m,另一边增加4m,继续租给你,你也没有吃亏,你看如何”.老汉一听,觉得自己好像没有吃亏,就答应了.同学们,你们觉得老汉有没有吃亏?请说明理由.考点:平方差公式的几何背景.分析:本题只要利用面积公式,再利用平方差公式计算就可知.解答:解:老汉吃亏了.理由:原来的种植面积为a2,变化后的种植面积为(a+4)(a-4)=a2-16,因为a2>a2-16,所以老汉吃亏了.点评:本题考查了平方差公式在实际生活中的运用,只有利用平方差公式计算后才能做出正确的判断.13. (1)通过观察比较左、右两图的阴影部分面积,可以得到乘法公式为(a-b)(a+b).(用式子表达)(2)运用你所学到的公式,计算下列各题:①1022②103×97.考点:平方差公式的几何背景;完全平方公式;平方差公式.分析:(1)本题需先根据图中所给的数据,再根据面积公式进行计算,再与两边的图形进行比较,即可求出答案.(2)本题需先根据平方差公式的求法,分别进行计算,即可求出答案.解答:解:(1)根据题意得:S=a2-b2=(a-b)(a+b).(2)①1022=(100+2)2=1002+400+4=10404,②103×97=(100+3)(100-3)=1002-32=9991.点评:本题主要考查了平方差公式的几何表示,表示出图形阴影部分面积是解题的关键.14. 我们已经知道利用图形中面积的等量关系可以得到某些数学公式,如图一,我们可以得到两数差的完全平方公式:(a-b)2=a2-2ab+b2(1)请你在图二中,标上相应的字母,使其能够得到两数和的完全平方公式(a+b)2=a2+2ab+b2,(2)图三是边长为a的正方形中剪去一个边长为b的小正方形,剩下部分拼成图四的形状,利用这两幅图形中面积的等量关系,能验证公式a2-b2=(a+b)(a-b);(3)除了拼成图四的图形外还能拼成其他的图形能验证公式成立,请试画出一个这样的图形,并标上相应的字母.考点:平方差公式的几何背景;完全平方公式的几何背景.专题:作图题.分析:(1)此题只需将大正方形的边长表示为a,小正方形的边长表示为b即可,(2)此题只需将两个图形的面积表示出来写成等式即可;(3)此题还可以拼成一个矩形来验证公式的成立.解答:解:(1).(2)根据两图形求得两图形的面积分别为:S1=a2-b2;S2=12(2a+2b)(a-b)=(a+b)(a-b)(3)拼成的图形如下图所示:点评:本题考查了平方差公式及完全平方式的几何背景,考查的围比较广.15. 如图,在边长为a的正方形的一角是一个边长为b的正方形,请用这个图形验证公式:a2-b2=(a+b)(a-b).考点:平方差公式的几何背景.专题:计算题.分析:利用正方形的面积减去小正方形的面积,即为所剩部分的面积.解答:解:由图可知:大正方形的面积-小正方形的面积=剩余部分的面积,∴a2-b2=(a-b)b+(a-b)a=(a+b)(a-b),即a2-b2=(a+b)(a-b).点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.16. (1)如图甲所示,可得阴影部分的面积是a2-b2(写成多项式的形式);(2)如图乙所示,若将阴影部分裁剪下来重新拼成一个长方形,它的长是a+b,宽是a-b ,面积是(a+b)(a-b)(写成两式乘积形式);(3)比较图甲和图乙中阴影部分的面积,可得乘法公式(a+b)(a-b)=a2-b2;(4)利用公式计算(-2x+y)(2x+y)=y2-4x2.考点:平方差公式的几何背景.专题:计算题.分析:(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.解答:解:(1)利用正方形的面积公式可知:阴影部分的面积=a2-b2;(2)a+b,a-b,(a+b)(a-b);(3)(a+b)(a-b)=a2-b2(等式两边交换位置也可);(4)①原式=(10+0.2)×(10-0.2),=102-0.22,=100-0.04,=99.96;②原式=(y+2x)(y-2x)=(y)2-(2x)2,=y2-4x2.故答案是:(1)a2-b2(2)a-b,a+b,(a+b)(a-b);(3)(a+b)(a-b)=a2-b2(4)y2-4x2.点评:此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.17. 乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是a2-b2(写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是a-b,长是a+b,面积是(a+b)(a-b).(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式(a+b)(a-b)=a2-b2.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n-p)(2m-n+p)考点:平方差公式的几何背景.分析:(1)利用大正方形面积减去小正方形面积即可求出;(2)根据图形中长方形长与宽求出即可;(3)结合(1)(2)即可得出(a+b)(a-b)=a2-b2;(4)利用平方差公式进行运算即可,注意符合(a+b)(a-b)=a2-b2的形式才能运算.解答:解:(1)利用大正方形面积减去小正方形面积即可求出:a2-b2;(2)它的宽是a-b,长是a+b,面积是(a+b)(a-b);(3)根据题意得出:(a+b)(a-b)=a2-b2;(4)①10.3×9.7=(10+0.3)(10-0.3)=100-0.09=99.91;②(2m+n-p)(2m-n+p)=[2m+(n-p)][2m-(n-p)]=4m2-(n-p)2=4m2-n2-p2+2np.点评:此题主要考查了平方差公式的几何背景,利用图形面积得出公式是近几年中考中考查重点,同学们应重点掌握.18. 如图所示,有一位狡猾的老账主,把一块边长为a米(a>30)的正方形土地给老汉种植.隔了一年,他对老汉说:“我把你这块地的一边减少5米,另一边增加5米,继续租给你,你也没有吃亏,你看如何?”老汉一听,觉得好像没有吃亏,就答应了.你觉得老汉有没有吃亏呢?请说明理由.考点:平方差公式的几何背景.专题:几何图形问题.分析:本题只要利用面积公式,再利用平方差公式计算就可知.解答:解:老汉吃亏了.因为他原来所租地的面积为a2平方米,而后经过割补,面积变为(a+5)(a-5)=a2-25(平方米)所以,他实际是少25平方米.因此,他吃亏了.点评:本题考查了平方差公式在实际生活中的运用,只有利用平方差公式计算后才能做出正确的判断.19. 如图:边长为a的大正方形中有一个边长为b的小正方形.(1)通过观察①、②两图的阴影部分面积,可以得到的乘法公式为a2-b2=(a-b)(a+b);(用式子表达)(2)运用你所得到的公式,计算:102×98(不用公式计算不得分)考点:平方差公式的几何背景.专题:计算题.分析:(1)图1阴影部分的面积=大正方形的面积-小正方形的面积,图2阴影部分的面积根据矩形面积公式即可得出,根据阴影部分的面积相等可得等式.(2)计算题直接利用平方差公式即可.解答:解:(1)图1阴影部分的面积a2-b2,图2阴影部分的面积(a-b)(a+b),则a2-b2=(a-b)(a+b).故答案为:a2-b2=(a-b)(a+b);(2)102×98=(100+2)(100-2)=1002-22=10000-4=9996.点评:本题利用组合图形考查平方差公式,计算题较为简单,直接利用公式即可.做题时认真观察图形,找到各部分的面积及两面积相等是解决本题的关键.20. 如图阴影部分,是边长为4cm的正方形纸片,在它的中心剪去一个边长为2.5cm的正方形小纸片得到的,请尝试用最简便方法作一个长方形使其面积等于图中阴影部分的面积.考点:平方差公式的几何背景.专题:计算题.分析:如图,将阴影部分沿虚线剪开,以4+2.5=6.4cm为长,4-2.51.5cm为宽,作出与阴影部分面积相等的长方形.解答:解:如图,作长为6.5cm,宽为1.5cm的长方形;理由:42-2.52=(4+2.5)(4-2.5)=6.5×1.5.点评:本题考查了平方差公式的几何背景.关键是通过将面积合理的分割,解释平方差公式.21. 如图:边长为a,b的两个正方形的中心重合,边保持平行,如果从大正方形中剪去小正方形,剩下的图形可以分割成4个大小相等的等腰梯形.请你用a,b表示出梯形的高和面积,并由此说明a2-b2=(a+b)(a-b)的几何意义.考点:平方差公式的几何背景.分析:根据图形可得等腰梯形的高为1/2(a-b),根据大正方形的面积减去小正方形的面积可作出说明.解答:解:梯形的高=1/2(a-b),面积=1/4(a+b)(a-b),∴a2-b2=(a+b)(a-b)的几何意义是大正方形的面积减去小正方形的面积.点评:本题考查平方差公式的几何背景,属于比较简单的题目,解答本题的关键是正确的求出等腰梯形的高.22. 如图,边长为a的大正方形有一个边长为b的小正方形.(1)阴影部分面积是a2-b2.(2)小欣把阴影部分的两个四边形拼成如图6所示的长方形,则这个长方形的宽是a-b面积是(a+b)(a-b).(3)由此可验证出的结论是(a+b)(a-b)=a2-b2.考点:平方差公式的几何背景.专题:计算题.分析:(1)边长为a的正方形的面积减去边长为b的正方形的面积即可;(2)根据图形求出长方形的长和宽,根据面积公式求出即可;(3)根据阴影部分的面积相等求出即可.解答:解:(1)图中阴影部分的面积是:a2-b2,故答案为:a2-b2.(2)由图象可知:这个长方形的宽是:a-b,长方形的面积是:(a+b)(a-b),故答案为:a-b,(a+b)(a-b).(3)根据阴影部分的面积相等,∴(a+b)(a-b)=a2-b2,故答案为:(a+b)(a-b)=a2-b2.点评:本题考查了平方差公式的应用,解此题的关键是能根据面积公式求出各个部分的面积,题型较好,难度适中,是一道不错的题目,通过此题能培养学生的观察能力.23. 用四块长为acm、宽为bcm的矩形材料(如图1)拼成一个大矩形(如图2)或大正方形(如图3),中间分别空出一个小矩形A和一个小正方形B.(1)求(如图1)矩形材料的面积;(用含a,b的代数式表示)(2)通过计算说明A、B的面积哪一个比较大;(3)根据(如图4),利用面积的不同表示方法写出一个代数恒等式.考点:平方差公式的几何背景.专题:几何图形问题.分析:(1)根据矩形的面积公式可得出答案.(2)分别求出矩形的长和宽,求出正方形的边长,从而计算出面积即可作出比较.(3)求出新形成的矩形的长和宽,根据面积相等即可得出答案.解答:解:(1)S=长×宽=ab;(2)根据图形可得:矩形的长=(2b+a),宽=a;正方形的边长=a+b,矩形的面积=2ab+a2,正方形的面积=a2+2ab+b2,正方形面积-矩形的面积=b2,∴矩形的面积大;(3)根据图形可得:a2-b2=(a-b)(a+b).点评:本题考查平方差公式的背景,难度不大,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.24. (1)比较左、右两图的阴影部分面积,可以得到乘法公式(a+b)(a-b)=a2-b2(用式子表达).(2)运用你所得到的公式,计算(a+2b-c)(a-2b-c).考点:平方差公式的几何背景;完全平方公式的几何背景.分析:(1)首先利用平行四边形与正方形面积求解方法表示出两个图形中的阴影部分的面积,又由两图形阴影面积相等,即可得到答案.(2)利用平方差公式就可简单的计算.注意将a-c看作一个整体.解答:解:(1)(a+b)(a-b)=a2-b2(2分);故答案为:(a+b)(a-b)=a2-b2.(2)(a+2b-c)(a-2b-c),=[(a-c)+2b][(a-c)-2b],=(a-c)2-(2b)2,=a2-2ac+c2-4b2.(8分)点评:本题主要考查了平方差公式的几何表示,表示出图形阴影部分面积是解题的关键.注意可以从第2个图形得出平行四边形的高.25. (1)小思同学用如图所示的A、B、C三类卡片若干,拼出了一个长为2a+b宽为a+b长方形图形.请你求出小思同学拼这个长方形所用A、B、C三类卡片各几(要求:所拼图形中,卡片之间不能重叠,不能有空隙).(2)小明同学用四长为x、宽为y的长方形卡片,拼出如图所示的包含两个正方形的图形(任两相邻的卡片之间没有重叠,没有空隙).①图中小正方形的边长是x-y②通过计算小正方形面积,可推出(x+y)2,xy,(x-y)2三者的等量关系式为:(x+y)2-(x-y)2=4xy③参用②中的结论,试求:当a+b=6,ab=7时(a-b)2的值.考点:平方差公式的几何背景;完全平方公式;矩形的性质;正方形的性质.专题:计算题;图表型.分析:(1)根据长方形的面积公式求出拼接后的长方形的面积,再利用多项式的乘法运算法则进行计算,然后根据系数即可得解;(2)①根据图形中正方形的大正方形的边长解答;②根据大正方形的面积减去小正方形的面积等于四个长方形的面积解答;③代入②的结论进行计算即可.解答:解:(1)(2a+b)(a+b)=2a2+2ab+ab+b2=2a2+3ab+b2;∵A、B、C三类卡片的面积分别为ab、b2、a2,∴所以A、B、C三类卡片分别为3,1,2;(2)①小正方形的边长是x-y;②大正方形的面积为(x+y)2,四周四个小长方形的面积为4xy,中间小正方形的面积为(x-y)2,∴(x+y)2-(x-y)2=4xy;③根据②,∵a+b=6,ab=7,∴(a-b)2=(a+b)2-4ab=62-4×7=36-28=8.点评:本题考查了平方差公式的几何背景以及完全平方公式,矩形的面积公式,利用面积的不同表示求解进行解答是解题的关键,也是此类题目常用的方法之一.。
乘法公式的综合应用
乘法公式的综合应用乘法公式是数学中常见的一个工具,它可以在各种实际问题中得到广泛的应用。
本文将介绍乘法公式的几个重要应用,包括比例关系、面积和体积计算、概率问题等。
第一部分:比例关系的应用乘法公式在比例关系的建立和求解中起着关键作用。
比例关系是两个或多个量之间的等比关系,常用形式为a:b=c:d。
乘法公式可以用来求解未知量或进行比较。
例子1:若一辆汽车每小时行驶60公里,则2小时行驶的里程是多少?解:根据题意可知,汽车的行驶速度为60公里/小时,行驶时间为2小时。
我们可以用乘法公式来求解问题。
令行驶里程为x公里,则60公里/小时乘以2小时等于x公里,即60*2=x。
通过计算可得,x=120公里。
例子2:一桶水中液位每分钟下降0.5厘米,若桶里的水先后下降了10厘米和15厘米,则这两段时间的时间差是多少?解:设时间差为t分钟,根据题意可得水面下降的速度为0.5厘米/分钟。
利用乘法公式,可以得到0.5厘米/分钟乘以t分钟等于水位下降的总高度,即0.5t=25、通过计算可得,t=50分钟。
第二部分:面积和体积的计算乘法公式在计算面积和体积时也起到重要的作用。
对于不规则图形和立体图形,乘法公式可以通过将各个边长或高度相乘得到最终的结果。
例子3:一个长方形花坛的长为5米,宽为3米,求其面积是多少?解:面积可以通过将长和宽相乘得到,即5米*3米=15平方米。
因此,该花坛的面积为15平方米。
例子4:一个正方体的边长为2厘米,求其体积是多少?解:体积可以通过将边长相乘三次得到,即2厘米*2厘米*2厘米=8立方厘米。
因此,该正方体的体积为8立方厘米。
第三部分:概率问题乘法公式在概率问题中也发挥着重要的作用。
通过乘法公式,可以计算得到事件发生的概率。
例子5:有一个有15个白色球和10个红色球的箱子,从箱子中随机抽取两个球,不放回。
求抽出两个白色球的概率。
解:首先计算抽出第一个白色球的概率,为15/25;然后计算抽出第二个白色球的概率,为14/24、通过乘法公式,可以得到两个白色球同时被抽出的概率为(15/25)*(14/24)=7/20。
乘法公式的几何证明
乘法公式的几何证明
嘿,朋友们!今天咱来聊聊乘法公式的几何证明,可有意思啦!先来说说完全平方公式吧,(a+b)²=a²+2ab+b²。
举个例子哈,就像盖房子,a 和b 就是房子的两边,(a+b)²就是整个房子的面积,那a² 就是一边的面积,2ab 就是中间那两块连接的部分面积,b²就是另一边的面积,这样一理解是不是就很清楚啦!
再看看平方差公式,(a+b)(a-b)=a²-b²。
哎呀呀,这就像是分蛋糕呀!a+b 是整个大蛋糕,a-b 就是分出去一部分后剩下的,而a²-b² 就是分完后多出来或者少掉的那部分蛋糕呀!是不是特别神奇!
还有个立方和公式呢,(a+b)(a²-ab+b²)=a³+b³。
这就好比搭积木,a 和 b 是两种不同的积木,搭成一个更复杂的形状就是a³+b³。
乘法公式的几何证明真的超有趣的,大家自己也可以多去想想,多去发现其中的奥秘呀,相信你们一定会爱上它的!。
乘法公式的应用范文
乘法公式的应用范文乘法公式是数学中常用的一个重要工具,它可以方便地解决许多实际问题。
在此,我将为你详细介绍乘法公式的应用。
乘法公式是指多个因数相乘得到乘积的数学表达式。
在代数中,乘法公式的一般形式可以表示为:a×b=c。
其中,a和b为乘法的因数,c为乘积。
乘法公式可以用于数学中的各个领域,其中包括代数、几何、实际应用等。
首先,乘法公式在代数中的应用非常广泛。
在代数中,乘法公式可以用于多项式的展开和乘法运算。
例如,一个多项式(a + b)(c + d)可以通过应用乘法公式来展开为:ac + ad + bc + bd。
乘法公式还可以用于解决复杂的因式分解问题,例如将一个多项式分解为更简单的积的形式。
其次,乘法公式在几何中也有重要的应用。
在几何中,乘法公式可以用于计算图形的面积和体积。
例如,计算一个矩形的面积可以使用乘法公式的形式:面积=长×宽。
同样,计算一个立方体的体积可以使用乘法公式的形式:体积=长×宽×高。
乘法公式还可以用于解决平移、旋转和缩放等几何变换的问题。
此外,乘法公式还在实际生活中有广泛的应用。
以下是一些实际问题示例:1.购物计算:当我们在商场购物时,乘法公式可以帮助我们计算商品的总价格。
例如,如果一件商品的单价为60元,我们购买了3件商品,那么使用乘法公式60×3,我们可以计算出总价格为180元。
3.人口增长计算:乘法公式还可以应用到人口增长的计算中。
例如,为了预测未来一些城市的人口增长情况,我们可以使用乘法公式计算每年的平均增长率,并将其应用到当前的人口数量上。
假设一些城市当前的人口数量为100万,每年的平均增长率为2%。
使用乘法公式,我们可以预测未来5年后的人口数量为:100×(1+0.02)^5=110.408万。
因此,预测未来5年后,该城市的人口将增长到110.408万人。
这些例子仅仅是乘法公式在实际生活中的一部分应用,实际上乘法公式在各行各业中都有广泛的应用。
乘法公式推广及应用
乘法公式推广及应用乘法公式是数学中的一个重要概念,它展示了两个数相乘的结果。
乘法公式有很多不同的形式,比如普通乘法公式、分配律和因式分解等。
这些公式不仅在纯数学问题中有着广泛应用,还在实际生活、科学研究和工程技术等领域中起到了重要作用。
首先,我们来看看乘法公式的基本形式:a×b=c。
其中,a和b是被乘数,c是积。
这个公式表明,两个数相乘的结果是另一个数。
例如,2×3=6,表示2和3的乘积是6在实际生活中,乘法公式可以用于解决很多实际问题。
比如,假设一个商店每天卖出10个苹果,然后求30天内总共卖出的苹果数量。
根据乘法公式,我们可以将每天卖出的苹果数量10乘以30,即10×30=300。
所以,商店在30天内总共卖出的苹果数量是300个。
在科学研究中,乘法公式也经常被应用于各种实验和观测。
比如,当我们测量一个物体的体积时,可以将其长、宽和高相乘得到体积。
同样地,当我们测量一个物体的质量时,可以将它的密度乘以它的体积得到质量。
这些都是基于乘法公式的推广应用。
在工程技术中,乘法公式也扮演着重要的角色。
比如,在电路设计中,电压和电流的乘积等于功率。
这个公式可以帮助我们计算电路中的能量转化。
另外,根据牛顿第二定律,力和加速度的乘积等于物体的质量乘以物体的加速度,即F = ma。
这个公式是力学问题中经常使用的乘法公式。
除了基本的乘法公式,还有一些乘法的运算规律,如分配律和因式分解。
分配律表示乘法可以在加法或减法运算之前或之后进行。
比如,a×(b+c)等于a×b加a×c,这个公式在数学中经常被用到。
因式分解则是将一个复杂的表达式分解为多个乘法的积的形式。
这个技巧可以帮助我们简化复杂的计算过程。
比如,将x²+3x+2分解为(x+1)(x+2)的形式。
乘法公式的推广和应用不仅限于上述几个领域,还包括金融、统计学、几何学等。
在金融领域中,乘法公式可以用于计算利息、投资回报率和复合增长等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a
1 )2 a
25
a2
2 a
1 a
1 a2
25
a2 2
1 a2
25
a2
1 a2
25
知识
易错点
悟
思想方法
)试试身手,活学活用:
199912 998 199912 919979912 9929
整体换元简化计算,关键看出 整体的共同点。
a b a b ) 如果、满足等式 22 2 6 1 0 ,0
你的发现是:
b2
a2
a2 b2 (ab)2 2ab ;
从右图观察, a2 b2 、与 (a b)2 有什么关系吗?
你发现是:
a2 b2 (ab)2 2ab .
综述以上结论:
我们知道 (a b )2 ,、 a ( b )2 、 a 2 b 2 、 ab 之间有 如下关系:
a2 b2 (ab)2 2ab a2 b2 (ab)2 2ab
( ab)24a b(ab)2
ab(ab)2(ab)2 4
(ab)2(ab)24ab
四·【练】
解答下列各题:
()·已知 : ab8, ab7 ,求下列式子的值:
① a2 b2; ② a3bab3; ③ a4 b4.
活动二:直接利用乘法公式(快速写出下列各乘法 算式的计算结果)
(3xy)3( xy) 9x2 y2
弄应
清用
m 5 n 5 n m m2 2n52
公乘 式法
(1 2
m
1 n)2
2
1m2
4
12mn41n2
特公 点式 ,时
(1a3b)2(1a3b)2
2
2
116a4
MN .
MN
. MN .不能确定
( 12 1 2)1( 3 1 2) ( 11192) 91( 92102) 00 MN
) 已知: , =,
=,则多项式
值为( ).
.
..
a2 的b2 c2 abacbc
.
离开图形,你还能计算下列式子吗?
请计算: (3a b 2c)2
离开图形,你还能计算下列式子吗?
(3 1x4 1yz)3 1 (x4 1yz)
个人收集整理,仅供交流学习!
9 2a2b2
8b14
灵, 活关 套键 用在
!于
议·如果我们把大正方形的边长变成, 小正方形的边长变成,你又能得到一个 什么样的乘法算式,它还可以用平方差公 式进行计算吗?
可以得到乘法算式:
xyzxyz xy z ( 3 2 ) 3 ( 2 ) ( 3 ) 2 ( 2 ) 2
活动二:
图是由边长为和边长为的正方 形,构成的边长为的正方形, 大正方形的面积有几种计算方法呢? 你发现它能验证那个乘法公式呢?
b2 a2
图
大正方形的面积计算方法: (a b)2 ; 大正方形的面积计算方法: a22abb2; 验证的公式: ( ab)2a22a bb2 .
如图:最大正方形是边长 为,将其边长缩短,得 到阴影如图所示的阴影部 分,你能写出两种表示阴 影部分面积的方法吗?
是( ) xz2y0 xy2x0
. xyz0 .
y)() 可得等式:()()
面积为( :3a)2 (2b)2
(3a)2 (2b)2
)若 M a 2 a 1 a 2 a 1 , Na12a ,12
其中 a 0 ,则、的大小关系是 ( )
右图是由个长为,宽为的 长方形和一个边长为的正 方形共同组成的边长为正 方形,请用字母表示中间小正 方形的面积:
中间部分面积计算方法:
(a b)2
;
中间部分面积计算方方法 (ab)2 4ab ; 你有什么发现: ( ab)2-4a b(ab)2 .
从右图观察,你发现 a2 b2 、与 (a b)2 有什么关系吗?
议·如果把以上大正方形边长变为 1 x,小正方形边长
3
1
变为 4
y
,你能得到乘法什么算式?结果得多少呢?
乘法算式:( 3 1x4 1y)3 1 ( x4 1y) ( 3 1x) 2 ( 4 1y) 2
你能从几何意义上解释下列算式吗? 你能计算吗? 动手做一做
( ab)2 (ab)2
)
) 5 a 7 b 8 c2 5 a 7 b 8 c2
活动二:
a2 b2 面积为:(a+b)(a-b)
可得算式: a2 b2 ()()
可发现,平方差公式逆用也成立!
在利用规律求值时,关键要弄 清楚完全平方公式的基本特点,记住平
方在两边,乘积两倍在中间,满足特 点直接用,不满足时要等值补全。
观察下列排列规律,填一填:
列你 的发 规现 律它 了们 吗排 ?
根据以上规律,可以快速的对下列式子进行计算:
( a b) 3 、 a b ( ) 4 、 a b5(a b)6
你有兴趣吗?其实这些都是我们学过的乘 法公式也具有的魅力。
议·如上面的方法,我们将图的较大正方形
边长变为,最小正方形的边长变为,则
----几何背景下的乘法公式
··
学习目标:
.从图形面积入手,熟悉每个乘法公式的结构 特征,理解公式几何背景,培养学生的几何直观 和数形结合的思想方法; ·利用图形的直观性和乘法公式结构特征,寻找 完全平方式的派生关系,并解决相关问题;
活动一:
一·【导】
()·()
a2 b2
乘法公式:()()
a2 b2
同样成立,我们把这种变化叫公式逆用。
思考:
x2 y2 (
)(
)
x2 6x9(
2 )
活动五:逆用乘法公式(直接套用公式,化简下列 各式)
( ab)2 (ab)2
5 a 7 b 8 c 2 5 a 7 b 8 c 2
(3ab)22(3ab)( 2ab)(2ab)2
6 13
78
()已知
a
1 a
5,求下列代数式
的值;
①a
方法:
解: ∵2
(
2
1
a2
1
1)222
a
1
( 1 )2 2
把 a 1 5 代入上式得:
原式 5 2 - 2 23
② a4
方法 2:
1
a4
解:将
a
1 a
5 两边同时平方得:
① 解 ∵ 2 : b2 ( b) 2 2 b
把 b5 , a b6代入上式得:
∴原式
52-2 6 25 - 12 13
② 解: ∵ a 3b ab 3
b(2 b2)
b( b)2 2ab
把a b 5,ab 6代入上式得: 原 式 6( 5 226 )
利用最大正方形的面积可以得到什么算式,可
以利用完全平方公式进行计算吗?
算式:
;
议·学
我们知道, ( ab)a( b)a2和 公b式2
( ab) 2a22 a b的b逆2向恒等,也就是
abababaab bab 说
,
2 2 ( ) ( ) 、 2 2 2 ( ) 2
阴影部分的面积计算方法: (a b)2
;
阴影部分的面积计算方法: a2-2abb2 ;
验证乘法公式: ( ab)2a22a bb2 ;
二·学
猜想下列图形可以验证什么关系?
活动三
猜想下列图形可以验证什么关系?
b2
a2
活动四图
猜想下列图形可以验证什么关系?
活动四图
活动三:
三·【议】
议·学 活动三:对于乘法公式有 ( ab)a( b)a2b2; ( ab) 2a22 a bb2,那么式子 (a b c)2
怎么计算呢?能利用以上乘法公式吗?式子 ()()呢?
)我们知道等于,若实数、、满足式
子 (xz)24 (xy)(yz)0则,下列式子一定成立的
则的值是到少?
)为任意有理数,请问当的值为多少时,代
数式 a2 4a7的值最小,能求出最小吗?
逆用公式时,记住公式的特点, 同时要弄清完全平方公式中的 各个项的特点和之间的关系。幻灯片
我们学过那几个乘法公式,你能用字母表示它们吗?
平方差公式 ( ab)a (b)a2b2
完全平方公式 ( a b ) 2 a 2 2 a b b 2