相交线(垂线)PPT课件

合集下载

《垂线》相交线与平行线2PPT课件 图文

《垂线》相交线与平行线2PPT课件 图文

解:∵∠ABC=90°( 已知) A
∠1=60°(已知)
O
∴∠ABO=30°(互余的定义) 2
∵又∴B∵∠O∠B⊥O2=CA=C∠于910O°点((垂(已直已知的知)定)义B))1 D
C
∴∠2=60° (等量代换)
∴∠BOD=30°(互余的定义)
选择题
巩固练习
1.下面四种判断两条直线垂直的方法正确的有___
0m 10m 20m 30m
例1、如图,量出(1)村庄A与货场B 的距离,(2)货场B到铁道的距离。
A
25m
8m C B
例2、如图, 1)画出线段BC的中点M,连结AM; 2)比较点B与点C到直线AM的距离。
A 9cm
∴BP=CQ Q
B
0cm
P10Mcm
9cm
C
20cm 30c
例3、如图,点M、N分别在直线AB、CD
A
CF⊥AB于F
3、如图,过P作直线
PM⊥OA,垂足为点M. 过P作线段PN⊥OB于N点O。
解:如图、直线PM⊥OA 于M、线段PN⊥OB于N
B F
CE D MA
P
NB
2、如图,∠ABC=90° ,∠1=60° ,过B作 AC的垂线BO,垂足是O,过O作BC的垂线, 垂足是D,若∠1= ∠2,求∠ABO, ∠BOD.
2.两条直线相交所成的四个角中,下列条
件中能判定两条直线垂直的是 [ C ]
A.有两个角相等 B.有两对角相等 C.有三个角相等 D.有四对邻补角
3.两个角的平分线相互垂直的有 [ D ]
A.两角互补; B.两角互为对顶角; C.两角都是直角; D.两角为邻补角
P
AB C

《垂线》_PPT1

《垂线》_PPT1
9.(北京中考)如图所示,点P到直线l的距离是(B ) A.线段PA的长度 B.线段PB的长度 C.线段PC的长度 D.线段PD的长度
10.(2019·广州)如图,点A,B,C在直线l上,PB⊥l,PA=6 cm, PB=5 cm,PC=7 cm,则点P到直线l的距离是___5cm.
11.如图,直线AB,CD相交于点O,下列条件中, 不能说明AB⊥CD的是( )C A.∠AOD=90° B.∠AOC=∠BOC C.∠BOC+∠BOD=180° D.∠AOC+∠BOD=180°
D.两点之间,线段最短
PB=5 cm,PC=7 cm,则点P到直线l的距离是___ cm.
D.两点之间,线段最短
4.(探究变式)下列选项中,过点P画AB的垂线CD,
C.过一点有且只有一条直线与已知直线垂直
他从地面跳板P处起跳落到沙坑中,两脚印分别为A,B两点,
人未站稳,一只手撑到沙坑C点.
C.线段AD是点D到BC的垂线段
不能说明AB⊥CD的是( ) B.点C到AB的垂线段是线段AC A.线段PA的长度 B.线段PB的长度 4.(探究变式)下列选项中,过点P画AB的垂线CD, 请你画出小云跳远成绩所在的垂线段,并说明理由. 5.在同一平面内,下列语句正确的是( ) D.两点之间,线段最短 请说明理由.(补全解题过程) 不能说明AB⊥CD的是( ) (2)画直线DF⊥OA.
为 OC 平分∠AOD,
所以可设∠AOC=∠COD=x°,而∠AOC=13 ∠BOC, 所以∠BOC=3∠AOC=3x°,因为∠AOC+∠BOC=180°, 所以 x+3x=180,所以 x=45, 所以∠AOD=2∠COD=90°,即 OD⊥AB
7.如图,下列说法不正确的是( )C A.点B到AC的垂线段是线段AB B.点C到AB的垂线段是线段AC C.线段AD是点D到BC的垂线段 D.线段BD是点B到AD的垂线段

人教版七年级下册第五章相交线和平行线-5.1.2垂线(共21张PPT)

人教版七年级下册第五章相交线和平行线-5.1.2垂线(共21张PPT)

为()
• A,8cm
P
• B,5cm
• C,小于5cm
• D,不大于5cm
A3 A2 A1 O
小刚早上从家(A)出发,先到小明家(B)再一同去公路(l) 边植树,请画出小刚行走的最短路线。
解:
总结:
• 两线相交,有一个角是90°(直角),两直线垂直。
• 两直线垂直,形成的四个角都是90°。∵AB⊥CD
解:∵AB⊥OF,CD⊥OE(已知) ∴∠BOF=∠DOE=90°(垂直定义) ∵∠BOD=∠BOF-∠DOF=90°-65°=25° ∴∠AOC=∠BOD=25°(对顶角相等) ∠BOE=∠DOE-∠BOD=90°-25°=65°
如图,直线AB,CD相交于点O,OE⊥OF,OC平分∠AOE且 ∠BOF=2∠BOE,∠DOE度数。
利用垂线定义解题:
例:如图,已知AB┴CD,垂足为O,图中∠1与∠2的关系是
C
F
A

1B
2
E
D
A.∠1+∠2=180° B.∠1+∠2=90° C.∠1=∠2 D.无法确定
如图所示:∠1与∠2满足什么条件时,AB⊥CD.
如图,直线AB,CD相交于点O,OE⊥CD,OF⊥AB, ∠DOF=65°,求∠BOE和∠AOC的度数。
画已知直线的垂线,有两种方法。:
• 1.利用三角尺。画一只直线的垂线 • 具体画法:分三步“一落,二移,三画” • 一落:将三角尺的一条直角边。落在已知直线上。使其与已知直线重合。 • 二移:沿直线移动三角尺。使其另一直角边经过已知点。 • 三画:沿此直角边画直线,则这条直线就是已知直线的垂线。
性质:在同一平面内。过一点。有且只有一条直线与已知直线垂 直。(基本事实)

人教版数学七年级下册垂线(第2课时)教学课件

人教版数学七年级下册垂线(第2课时)教学课件
人教版 数学(shùxué) 七年级 下册
5.1 相交 线 (xiāngjiāo) 5.1.2 垂线(第2课时)
第一页,共二十一页。
导入新知
在灌溉时,要把河里的水引到农田里的P处,如何(rúhé)挖渠能使渠 道最短呢?
第二页,共二十一页。
素养目标
3. 掌握垂线段最短的性质,并会利用所学知识解决简 单的实际问题.
第四页,共二十一页。
探究新知
P
垂线(chuíxiàn)段最短
斜线段
垂线段
AB C
Dm
连接直线(zhíxiàn)外一点与直线(zhíxiàn)上各点的所有线段中,
垂线段最短.
简单说成:垂线段最短. 垂线的性质2 ∵PB⊥m于B, ∴PB<PC.
第五页,共二十一页。
探究新知
特别强调:
垂线段是垂线上的一部分,它是线段,一端(yīduān)是一个点, 另一端(yīduān)是垂足.
第二十一页,共二十一页。
第十三页,共二十一页。
课堂检测
基础巩固题
1.如图,下列说法正确的是( D) A.线段(xiànduàn)AB叫做点B到直线AC的距离 B.线段AB的长度叫作点A到直线AC的距离 C.线段BD的长度叫作点D到直线BC的距离 D.线段BD的长度叫作点B到直线AC的距离
AD
B
C
第十四页,共二十一页。
课堂检测
第十九页,共二十一页。
课堂小结
相两 交条
直 线
(yībān) (zhíxiàn)
情一 况般
对顶角:相等 邻补角:互补
特殊 情况
相交成 直角
垂 线
第二十页,共二十一页。
垂线的存在 性和唯一性

人教版七年级数学下册《垂线》课件ppt

人教版七年级数学下册《垂线》课件ppt
解:∵∠BOE=∠NOE, ∴∠BON=2∠EON=40°, ∴∠NOC=180°-∠BON
=180°-40°=140°, ∠MOC=∠BON=40°. ∵AO⊥BC, ∴∠AOC=90°, ∴∠AOM=∠AOC-∠MOC=90°-40°=50°, ∴∠NOC=140°,∠AOM=50°.
垂线的画法及基本事实
如图,当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O.
符号语言:
①判定:∵∠AOD=90°,(已知) ∴AB⊥CD.(垂直的定义)
A
D
反之,若直线AB与CD垂直,垂足为O,则∠AOD=90°.
O
符号语言:
C
B
②性质:∵ AB⊥CD ,(已知)
∴ ∠AOD=90° .(垂直的定义) (∠AOC=∠BOC=∠BOD=90°)
A.4
B.3
C. 2
D. 1
(1)如图1,若直线m、n相交于点O,∠1=90°,则m⊥n;
(2)若直线AB、CD相交于点O,且AB⊥CD,则∠BOD =___9_0_°_; (3)如图2,BO⊥AO,∠BOC与∠BOA的度数之比为1∶5,那么∠COA=_7_2_°_, ∠BOC的补角为 162°.
条? 一条
B
l
垂线的性质1:过一点有且只有一条直线与已知直线垂直。
垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直.
注意: 1.“过一点”中的点,可以在已知直线上,也可以在已知直线外; 2.“有且只有”中,“有”指存在,“只有”指唯一性.
点到直线的距离
如图,从A点向已知直线 l 画一条垂直的线段和几条不垂直的线段.
下面四种判定两条直线的垂直的方法,正确的有( A )个

七年级数学下册5.1-相交线--5.1.2.1:垂线(1)(共31张)PPT优秀课件

七年级数学下册5.1-相交线--5.1.2.1:垂线(1)(共31张)PPT优秀课件

∵ ∠BOD= ∠1=55°(对顶角相等) A O
B
∴ ∠ EOD= ∠ EOB+ ∠ BOD
D
=90 °+55 °=145 °
16
知识点一:垂直的定义
归纳总结
定义
当两条直线所 成的四个角中 有一个角是直 角时,我们就 说这两条直线 互相垂直.
图示
A
┓1
C OD
B
文字语言 符号语言
几何语言
直线AB垂直 于直线CD, O为垂足.
19
知识点二:垂直的性质
新知探究
2.如图(1):直线a上有一点A,经过点 A,你能折出几条与a垂直的直线? 如图(2):直线a外有一点B,经过点B, 你能折出几条与a垂直的直线?
过点A、B分别可以作直线a的几条垂线呢?
20
知识点二:垂直的性质
新知探究 垂线的画法:
工具:直尺、三角板
A
如图,已知直线 l,作l的垂线。
∠2=55°,则OE与AB的位置关系是 OE⊥AB.
C
联想数学
A
1O
B
切记:要证垂直必先想到直角(90°)
2 E
D
15
知识点一:垂直的定义
例题讲评
例1 如图,直线AB、CD相交于点O,OE⊥AB,∠1=55°,
求∠EOD的度数.
解: ∵ AB⊥OE (已知)
CE
∴ ∠EOB=90°(垂直的定义)
1(
则AB⊥CD。
A
D
几何语言:
①判定:∵∠AOD=90°(已知)
O
∴AB⊥CD(垂直的定义)
C
B
反之,若直线AB⊥CD,垂足为O,那么,∠AOD=90°。

七年级数学下册《-垂线》课件

七年级数学下册《-垂线》课件
l O
1放、 2靠、 3画线、
0
1
2
3
4
5
6
7
8
9
10
11
孝感市文昌中学学生专用尺
Cm
1.垂线的画法:
如图,已知直线 l 和l上的一点A ,过点A作l
的垂线.
B
问题:这样的垂
线能画几条?
A
则所画直线AB 是过点A的直线l的 垂线.
l
1放:放直尺,直尺的一边要与已知直线重合;
0 2靠1 :靠2 三3 角板4 ,把5 三6 角7板的8 一9直角10 边11 靠在直尺上;
B
∴AB⊥CD(垂直的定义)
反之,若直线AB与CD垂直,垂足为O,那么, ∠AOD=90°。
书写形式:∵ AB⊥CD (已知) ∴ ∠AOD=90° (垂直的定义)
应用垂直的定义:∠AOC=∠BOC=∠BOD=90°
垂直定义练习:
C
E
填空
⑴已知:AB⊥CD,∠1=∠2
求证:EF⊥AB 证明:∵CD⊥AB
与射线、线段、射线与直线垂直, 特指它们所在的直线互相垂直.
请你画图,
并用尺量一下,
看看哪一条线
段最短?
P
此问题就是“直线外一点与已知直线上 各点所连的线段中,有没有最短的线段?”
垂线段的概念:
由直线外一点向直线引
P
垂线,这点与垂足间的线段
叫做垂线段。
l
A
例如:如图,PA⊥l于点A ,线 段PA叫做点P到直线l的垂线段.
在相交线的模型中,固定木条a,转动木条b,
当b的位置变化时,直线a、b
bb b
所成的∠α也会发生变化.
当∠α =90°时,

《垂线》相交线与平行线3精品 课件

《垂线》相交线与平行线3精品 课件


三、从晨昏到日暮,从清贫到富足,从 少年到 老迈, 从相遇 到余生 ,只想 和你十 指相扣 ,从此 再不分 开。

四、你的名字,是我读过最短的情诗。 我很喜 欢你, 像春去 秋来, 海棠花 开。

五、秒回的人应该很温柔吧,因为一直 在等喜 欢的人 ,也舍 不得让 喜欢的 人等。

六、多想和你有一个长久的未来,陪你 走完这 一生。 让所有 人祝福 我们, 彼此温 暖,互 不辜负 。
B 则所画直线AB是过
点A的直线l的垂线.
l A
1放:放直尺,直尺的一边要与已知直线重合;
0 2靠1 :靠2 三3 角4板,把5 三6 角7板的8 一9 直角10 边11 靠在直尺上;
孝感市文昌中学学生专用尺
Cm
3移:移动三角板到已知点;
4画线:沿着三角板的另一直角边画出垂线.
1.垂线的画法:
如图,已知直线 l 和l外的一点A ,作l的垂线.
②性质:∵ AB⊥CD (已知) ∴ ∠AOD=90° (垂直的定义)
(∠AOC=∠BOC=∠BOD=90°)
练习1.两条直线相交所成的四个角中,下列条件中 能断定两条直线垂直的是( A C D F G )
(A)有一个角为90° (B)有两个角相等 (补角 (F)有一对对顶角互补 (G)有一对邻补角相等 (H)有两组角相等
过点A、B分别可以做直线a的几条垂线呢?
垂线的画法
问题: 怎么样画垂线?
1.垂线的画法:
工具:直尺、三角板 如图,已知直线 l,作l的垂线。
问题:
A
这样画l的
垂线可以 画几条?
O
l
无数条
1放、 2靠、 3画线、
0

人教版初中数学《垂线》_教学课件

人教版初中数学《垂线》_教学课件
第5章 相交线与平行线
5.1 相交线
第3课时 垂线段
1 课堂讲解 垂线段的定义
垂线段的性质 点到直线的距离
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
如图所示, 村庄A要从河流 l 引水入庄, 需修筑一 水渠, 如何修水渠最短呢?
知识点 1 垂线段的定义
知1-讲
如图所示,点P是直线l外的一点,PO与直线l垂 直,点O为垂足,我们把线段PO叫做点P到直线l的 垂线段.
【获奖课件ppt】人教版初中数学《垂 线》_ 教学课 件1-课 件分析 下载
知2-练
2 如图,AD⊥BD,BC⊥CD,AB=6 cm,BC=4 cm, 则BD的长度的取值范围是( ) A.大于4 cm B.小于6 cm C.大于4 cm或小于 6 cm D.大于 4 cm且小于 6 cm
【获奖课件ppt】人教版初中数学《垂 线》_ 教学课 件1-课 件分析 下载
【获奖课件ppt】人教版初中数学《垂 线》_ 教学课 件1-课 件分析 下载
知2-练
3 如图,三角形ABC中,∠C=90°,AC=3,点P 可以在直线BC上自由移动,则AP的长不可能是 () A.2.5 B.3 C.4 D.5
【获奖课件ppt】人教版初中数学《垂 线》_ 教学课 件1-课 件分析 下载
【获奖课件ppt】人教版初中数学《垂 线》_ 教学课 件1-课 件分析 下载
知2-练
1 如图,计划在河边建一水厂,过C点作CD⊥AB于D 点.在D点建水厂,可使______________.
【获奖课件ppt】人教版初中数学《垂 线》_ 教学课 件1-课 件分析 下载
归纳
知2-导
连接直线外一点与直线上各点的所有线段中, 垂线段最短.

人教版初中七年级下册数学课件 《垂线》相交线与平行线教学课件

人教版初中七年级下册数学课件 《垂线》相交线与平行线教学课件
5.1.1垂线
MathematicsTeaching
学习目标
1
2
3
了解垂线和垂线段的概念,会用三角尺画一条直线的垂线
掌握点到直线之间的距离,并且能够测量点到直线的距离
掌握垂线的相关性质,并且会进行简单的推理
生活中的垂直
桌角
窗户
建筑
下列图中你能找到哪些相交的直线?
新知探究
a
b
b
b
b
b
位置关系
巩固练习
探究垂线段
思考:如图是一个同学跳远的位置,跳远成绩怎么量?
过P点作PA⊥l于点A,垂线段PA的长度就是该同学的跳远成绩。
P
A
l
认识垂线段
由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
l
A
P
直线外一点到这条直线的垂线段的长度,叫做点直线的距离。
认识垂线段
连接直线外一点与直线上各点的所有线段中,垂线段最短
1
【垂线的概念】
2
【垂线段概念及性质】
垂线段最短
课堂总结
直线外一点到这条直线的垂线段的长度,叫做点直线的距离
【注意】
3
过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线。
直线外一点到这条直线的垂线段的长度,叫做点直线的距离
∵BO⊥AC于O点
1
2
A
B
C
D
O

)
(已知)
∵∠ABC=90°,∠1=60°
(已知)
∴∠ABO=30°
解:
(已知)
∴∠BOC=90°
∴∠BOD=30°
(余角定义)
(余角定义)

《垂线》相交线与平行线PPT教学课件-人教版七年级数学下册PPT课件

《垂线》相交线与平行线PPT教学课件-人教版七年级数学下册PPT课件

2
了解垂线和垂线段的概念, 条直线的垂线
掌握点到直线之间的距离, 到直线的距离
会用三角尺画一
数学通用课支持不同终端用户快捷上网, 手机浏
并且能够测量点 览器自主研发的X5内核在速度、流量节省、稳定 性上业内领先
3 掌握垂线的相关性质, 并且会进行简单的推理
生活中的垂直 下列图中你能找到哪些相交的直线?
PPT素材:/s ucai/ PPT图表:www.1ppt .co m/tu biao/ PPT教程: /powerpoint/ 个人简历:www.1ppt. co m/jia nli/ 教案下载:www.1ppt. co m/jia oan/ PPT课件:www.1ppt. co m/ ke jian/ 数学课件:www.1ppt.c om/keji an/shuxue/ 美术课件:www.1ppt.c om/keji an/mei shu/ 物理课件:www.1ppt.c om/keji an/wuli / 生物课件:www.1ppt.c om/keji an/sheng wu/ 历史课件:www.1ppt.c om/keji an/lishi /
新知探究
b
➢位置关系
b
αa
∠α=90°时, 木条a和木条b互相垂直 ∠α≠90°时, 木棒a和木棒b不垂直
(斜交)
注意:垂直是相交的一种特殊情况
固定木条a, 转动木条b,观察木条b位置发生变模板:www. 1ppt.co m/ mob an/ PPT背景:/beiji ng/ PPT下载:/xiaz ai/ 资料下载:www. 1ppt.co m/zilia o/ 试卷下载:/shiti / 手抄报:/shouc haobao/ 语文课件:/keji an/yuwen/ 英语课件:/keji an/ying yu/ 科学课件:/keji an/kexue/ 化学课件:/keji an/huaxue/ 地理课件:/keji an/dili/

《垂线》相交线与平行线PPT课件

《垂线》相交线与平行线PPT课件
四、知识应用
1、如图,点A处是一座小屋,BC是一条公路,一人在O处。
(1)此人到小屋去,怎样走最近?为什么?
(2)此人要到公路去,怎样走最近?为什么?
2、下列说法正确的是( )
3、如图所示,有两条高速公路l,m,点P为公路l上的一个出口,现要经过点P建一连接两高速公路的一段通道,欲使炉衬最短,应怎样施工?
∵BO ⊥AC于O点
(已知)
∵∠ABC=90°( )
∠1=60°( )
已知
∴∠ABO=30°
解:
(已知)
∴∠BOC=90°
∴∠BOD=30°
(互余的定义)
(互余的定义)
已知
(垂直的定义)
又∵∠2=∠1
∴∠2=60°
(等量代换)
1.下面四种判断两条直线垂直的方法正确的有___个 [ ](1)两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直.(2)两条直线相交,有一组邻补角相等,则这两条直线互相垂直.(3)两条直线相交,所成的四个角相等,这两条直线互相垂直.(4)两条直线相交,有一组对顶角互补,则这两条直线互相垂直.A.4 B.3 C.2 D.1
选择题
巩固练习
A
看谁做得快
1.若直线m、n相交于点O,∠1=90°,则__________。2.若直线AB、CD相交于点O,且AB⊥CD,那么∠BOD=____。3.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=_____,∠BOC的补角为______度。
m⊥n
90°
72°
2靠:靠三角板,把三角板的一直角边靠在直尺上;
则所画直线AB是过点A的直线l的垂线.
请同学们画一下
结论: 过一点有且只有一条直线与已知直线垂直.

《垂线》相交线与平行线PPT课件3

《垂线》相交线与平行线PPT课件3

你能再举出其他(qítā)例子 吗?
第六页,共26页。
第六页,编辑(biānjí)于星期五:十六点 二十七分。
十字路口的两条道路
第七页,共26页。
第七页,编辑(biānjí)于星期五:十六点 二十七分。
围棋盘的横线和竖线
铅垂线和水平线
第八页,共26页。
第八(dì bā)页,编辑于星期五:十六点 二十七 分。
B
2O
1
3
4
A
D
邻补角:互补
第三页,共26页。
第三页,编辑(biānjí)于星期五:十六点 二十七分。
观察与思考
在相交线的模型中,固定木条(mù tiáo)a,转动木条(m
当b的位置(wèi zhi)变化
b
时,a、b所成的角α也会发生 b
b
b
b
变当化α. =90°时,a与b垂直(chuízhí). α )α
第十九页,编辑于星期五:十六点 二十七分。
1.垂线的画法:
如图,已知直线(zhíxiàn) l 和l外的一点A ,作l的垂
线.
A
请同学们
则所画直线AB是过点
画一下
A的直线l的垂线.
l
B
1放:放直尺(zhí chǐ),直尺(zhí chǐ)的一边要与已知
0 直 2靠1线:靠重2 三合3角; 板4 ,把5 三角6 板7 的一8 直9 角边10 靠11在直尺上;
∠AOD=90°。
书写形式:
②性质:∵ AB⊥CD (已知) ∴ ∠AOD=90° (垂直的定义)
(∠AOC=∠BOC=∠BOD=90°)
第十一页,共26页。
第十一页,编辑于星期五:十六点 二十七分。
练习1.两条直线相交所成的四个角中,下列条件中

《垂线》相交线与平行线PPT课件4

《垂线》相交线与平行线PPT课件4
5.1 相交线
练习 1. 过点 P 向线段 AB 所在直线引垂线, 正确的是( C ).
A
B

D
2.画出下列线段、射线的垂线。
P
Q
O
A
B
M
O
A
注意:画线段(或射线)的垂线时,有时要 将线段延长(或将射线反向延长)后再画 垂线.
例1、(1)如图,分 别过A、B、C作BC、 A AC、AB的垂线。
D
想一想:
已知:如图AD<AE <AC<AB 能说AD的长是A到BC的距离吗?
A
答:不能。
B
D E C
小结
回忆两条直线相交这部分知识,并问:你们能够 把它们画成一个知识结构图吗?
小结:今天你有何 收获?

20.不迁怒,不贰过。 ——《论语》 译:犯了错误,不要迁怒别人,并且不要再犯第二次。) 21.小不忍,则乱大谋。 ——《论语》 译:不该干的事,即使很想去干,但坚持不干,叫“忍”。对小事不忍,没忍性,就会影响大局,坏了大事。 22.小人之过也必文。 ——《论语》 译:小人对自己的过错必定加以掩饰。 23.过而不改,是谓过矣。 ——《论语》 译:有了过错而不改正,这就是真的过错了。 24.君子务本,本立而道生。 ——《论语》 译:君子致力于根本,确立了根本,“道”也就自然产生。 25.君子耻其言而过其行。 ——《论语》 译:君子认为说得多做得少是可耻的。 26.三思而后行。 ——《论语》 译:每做一件事情必须要经过反复的考虑后才去做。 27.多行不义必自毙。 ——《左传》 译:坏事做得太多,终将自取灭亡。 28.人谁无过,过而能改,善莫大焉。 ——《左传》 译:人都有可能犯错误,犯了猎误,只要改正了仍是最好的人。 29.不以一眚掩大德。 ——《左传》 译:评价一个人时,不能因为一点过失就抹杀他的功劳。 30.人一能之,己百之;人十能之,己千之。 ——《中庸》 译:人家一次就学通的,我如果花上百次的功夫,一定能学通。人家十次能掌握的,我要是学一千次,也肯定会掌握的。 31.知耻近乎勇。 ——《中庸》 译:知道什么是可耻的行为,那就是勇敢的好表现。 32.以五十步笑百步。 ——《孟子》 译:以为自己的错误比别人的小,缺点比别人少而沾沾自喜。 33.君子莫大乎与人为善。 ——《孟子》 译:君子最大的长处就是用高尚、仁义的心去对待别人。 34.人皆可以为尧舜。 ——《孟子》 译:只要肯努力去做,人人都可以成为尧舜那样的大圣人。 35.千丈之堤,以蝼蚁之穴溃;百尺之室,以突隙之烟焚。 ——《韩非子》 译:千里大堤,因为有蝼蚁在打洞,可能会因此而塌掉决堤;百尺高楼,可能因为烟囱的缝隙冒出火星引起火灾而焚毁。 36.言之者无罪,闻之者足以戒。 ——《诗序》 译:提出批评意见的人,是没有罪过的。听到别人的批评意见要仔细反省自己,有错就改正,无错就当作是别人给自己的劝告。 37.良药苦于口而利于病,忠言逆于耳而利于行。 ——《孔子家语》 译:好的药物味苦但对治病有利;忠言劝诫的话听起来不顺耳却对人的行为有利。 38.良言一句三冬暖,恶语伤人六月寒。 ——明代谚语 译:一句良善有益的话,能让听者即使在三冬严寒中也倍感温暖;相反,尖酸刻薄的恶毒语言,伤害别人的感情和自尊心,即使在六月大暑天,也会让人觉得寒冷。 39.千经万典,孝悌为先。 ——《增广贤文》 译:千万种经典讲的道理,孝顺父母,友爱兄弟是最应该先做到的。 40.善恶随人作,祸福自己招, ——《增广贤文》 译:好事坏事都是自己做的,灾祸幸福也全是由自己的言行招来的。

《垂线》相交线与平行线PPT课件5

《垂线》相交线与平行线PPT课件5
A
C B
例2:如图2-22,AC⊥BC于C,CD⊥AB于D, DE⊥BC于E.试比较四条线段AC,CD,DE和AB 的大小
解:∵ AC⊥BC于C,(已知) ∴ AC<AB.(垂线的性质二) 又∵ CD⊥AD于D,(已知) ∴ CD<AC.(垂线的性质二) ∵ DE⊥CE于E,(已知) ∴ DE<CD.(垂线的性质二) ∴ AB>AC>CD>DE.
时,它的值是4,求p,q的值.
3x 5y 2a,
3.方程组
2x
7
y
a
的解互为相反数,求a的值.
18
ax by 2,
4.甲、乙两位同学一同解方程组 cx 3y 2., 甲正确解出方程组
的解为
x
y
1, 1.,而乙因为看错了
c
,得解为
x 2,
y
6.
试求a, b, c
的值.
5.二元一次方程2m+3n=11 ( C ) A.任何一对有理数都是它的解. B.只有两组解. C.只有两组正整数解. D.有负整数解.
(C)
1
,2
2
(D)
1 ,3 2
3.已知:一次函数
y
kx b
的图象与
y
BC
5、如图所示,在△ABC中,∠ABC=90 ,
①过点B作三角形ABC的AC边上的高BD,过D点作三角 形ABD的AB边上的高DE。
②点A到直线BC的距离是线段
AB .的长度.
点B到直线AC的距离是线段
BD .的长度.
点D到直线AB的距离是线段
DE
. 的长度
线段AD的长度是点 A .到直线 BD
(1).利用等式性质把一个或两个方程的两边都 乘以适当的数,变换两个方程的某一个未知数 的系数,使其绝对值相等;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)、同一平面内,经过一点有且只有一条直线与已知直线垂直.
画垂线的方法:用工具(量角器、三角板)、不用工具(“折”)
(3)、点到直线的距离:
从直线外一点到这条直线的垂线段的长度, 叫做这个点到直线的距离 直线外一点与直线上各点的连线所有线段中,垂线段 最短。 2. 能过一点作出直线(或线段)的垂线(或垂线段), 并能区别两点间 的距离与点到直线的距离,能运用学过的知识解决简单的实际问题
D
如何判断两条直线互相垂直? 由两条直线互相垂直你能 得到什么?
找一找: 在你身边,你能ቤተ መጻሕፍቲ ባይዱ现“垂直”吗?
例. 已知四条直线围成一个长方形ABCD, ①说出图中和直线AB垂直的直线及垂足,并 用符号“ ”表示;②说出图中所有各对互 相垂直的直线(用“ ”表示)
A
D
B
C
例:已知 AO BC ,垂足为O,OA平分 DOE, 1 65,
思考:在同一平面内
1、过一点能不能作已知直线的垂线?
过一点能作已知直线的垂线!----存在性
2、如果能,最多能作几条?
最多能作一条!----唯一性
练一练:
如下图,P是∠AOB的OB边上的一点,请分别过P点 画 OA、OB的垂线
B P
O 画直线的垂线,一定要搞清楚是 过哪一点 向哪一条直线 画垂线
两条直线相交,所成四个角中有一个角是直角时, 我们称这两条直线互相垂直。其中一条直线是另一 条的垂线。这是两条直线相交的一种特殊情况
特殊性1:相交所成的四个角都等于90°
特殊性2:交点有专有名字:垂足
C
特殊性3:画图表示方法独特
A
O
B
特殊性4:记作:AB⊥CD(或CD⊥AB),垂足为O 读作:直线AB垂直于直线CD,垂足为O
假设图中∠BOC=45°, 你知道其他三个角的度数 分别是多少吗? F 两条直线相交,其中一个 角是45 °,还有其他摆 法吗?
当其中一个角∠BOC=90°时,其他三个角有 什么变化?
此时: ∠BOD=∠DOA=∠AOC=∠BOC=90 °
只有如图一种摆法。
这是两条直线相交的特殊情形。我们给它取一个名字,叫 垂直
我们经常经过校门,那么你注意到校门的铁栅栏 是如何分布的呢?
我们再来看看这张图,图中的架管,他们的位置 关系又是怎样的呢?
前两种是直线相交于一点的情况,我们来看小演示:
相交直线的位置,跟他们相交所成的四个角是密切相关的! 我们用其中角的角度来刻画这两条直线的位置关系
E
如图,转到一个角度, 请你量一下其中一个角 是多少度
A
理一理:通过上面的过程,我们体会到:
1、垂直--两条直线相交的一种特殊情况。 用工具 2、过点作已知直线垂线的方法 “折”的方法 3、同一平面内,过一点 有且只有一条直线与已知直线垂直。
现在,我们在来解决刚才跳远的问题:
前面我们已经解决了跳远的起跳方向,以及根据落点 画垂线,现在我们看看跳远成绩的测量
画出示意图,量一量几条线段 的长度,你能得到什么结论?
直线AB外一点M,MN⊥AB,垂足为N, 则把线段MN叫做点M到直线AB的垂线段
类比于“两点之间,线段最短”, 我们可以得到: 点到直线,垂线段 最短。
A N
M
如图中 , MN ⊥ AB,垂足为 N ,我们把 垂线段MN的长度叫做点M到直线AB的距离 B
求的度数。
A D 23 B O 1 E
C
实例:
体育课上跳远,你应该沿什么方向起跳?
那么我们如何画出垂线呢? 你想到哪些画垂线的方法?
已知直线AB以及直线上一点 C,过点C作直线AB的垂线
已知直线AB以及直线外一点 C,过点C作直线AB的垂线
都可以概括成一句话:靠线--找点--画垂线
折折看:
你能用一张纸折出两条相互垂直的线吗?
应用:画三角形的高
锐角三角形
直角三角形
钝角三角形
拓展:如下图有A、B两个村庄。从其中一个出发,修
一条公路经过另一个村庄并与下面的公路MN连接起来, 怎样修,所修的公路最短?画出线路图,并说明理由。
注意:
读懂题意,仔细分析,寻找几何知识与实 际问题的结合点
A B
M
N
小结与目标回顾
1.(1)、垂直的概念: 如果两条直线相交所成的四个角中,有一个是直角, 就说这两条直线互相垂直.
相关文档
最新文档