【新课标】2018年最新沪教版(五四制)八年级数学下册《一次函数的应用》课堂巩固练习题
沪教版(五四制)八年级下册第二十章:一次函数的应用学案
一次函数的应用【知识重点】1.务实质应用问题中的一次函数关系的步骤:(1)设定实质问题中的自变量与因变量;(2)成立变量之间的函数关系,并化为一般式;(3)确立自变量的取值范围,保证有实质意义。
2.利用一次函数的图象解决实质问题(1)从函数图象的形状能够判断函数种类;(2)从 x 轴、y 轴的实质意义去理解图象上点的坐标的实质意义.【典型例题】一、最短距离类问题例 1 要在街道旁修筑一个奶站,向居民区 A、B 供给牛奶,奶站应建在什么地方,才能使从 A、B 到它的距离之和最短?小聪依据实质状况,以街道旁为 x 轴,成立了以下图的平面直角坐标系,测得 A点的坐标为( 0,3),B 点的坐标为( 6,5),则从 A、B 两点到奶站距离之和的最小值是 ______.二、分段函数类问题例 2-1(一题多变)为缓解用电紧张矛盾,某电力企业特别定了新的用电收费标准,每个月用电量x(度)与对付电费y(元)的关系如图所示。
依据图象,请分别写出当0x50和x 50时,y与x的函数关系式。
y/元变式题 1 例题条件不变,当每个月用电量不超出5075度时,收费标准是7050第 1页 /共 10页2502550 75 100x/ 度多少?当每个月用电量超出50 度时,收费标准是多少?变式题 2 例题条件不变,若有一用户某月电费缴费88 元,该用户当月用电量是多少度?变式题 3 例题中条件不变,有一用户记录了6、 7、8 月份的用电量与缴费状况。
(如表所示)该用户表中填写的缴费与实质的用电量吻合吗?若有不符合的,找出是哪月不符合,并计算处实质的缴费量。
6 月7 月8 月用电量(度)4060100缴费(元)163450变式题 4 某市为了鼓舞市民节俭用水,规定自来水的收费标准如表所示。
每个月每户用水不超出 10 吨部超出 10 吨而不超出 20 吨部分量分超出 20 吨部分每吨价(元)0.500.75 1.50(1)现已知胡老师家四月份用水18 吨,则应缴水费元;(2)写出每个月每户的水费 y(元)与用水量 x(吨)之间的函数关系式;(3)若已知胡老师家五月份的水费为 17 元,问他家五月份用水多少吨?例 2-2 “母亲节”到了,九年级( 1)班班委倡始慰劳烈属王大妈的活动,决定在“母亲节”时期全班同学利用课余时间去卖鲜花筹第 2页 /共 10页集慰劳金.已知同学们从花店按每支 1.2 元买进鲜花,并按每支3元卖出.(1)求同学们卖出鲜花的销售额y(元)与销售量x(支)之间的函数关系式;(2)若从花店购置鲜花的同时,还总合用去 40 元购置包装资料,求所筹集的慰劳金w(元)与销售量x(支)之间的函数关系式;若要筹集许多于500 元的慰劳金,则起码要卖出鲜花多少支?(慰劳金=销售额-成本)三、追击类问题例 3 甲乙两人同时登西山,甲、乙两人距地面的高度y(米)与爬山时间 x(分)之间的函数图象以下图,依据图象所供给的信息解答以下问题:(1)甲爬山的速度是每分钟______米,乙在 A 地加速时距地面的高度 b 为______米.(2)若乙加速后,乙的速度是甲爬山速度的3 倍,请分别求出甲、乙二人爬山全过程中,爬山时距地面的高度(y米)与爬山时间x(分)之间的函数关系式.(3)爬山多长时间时,乙追上了甲?此时乙距A 地的高度为多少米?四、分派类问题例 4 “一方有难,八方增援” .在抗击“ 5.12”汶川特大地震灾祸中,某市组织 20 辆汽车装运食品、药品、生活用品三种救灾物质第 3页 /共 10页共 100 吨到难民布置点.按计划 20 辆汽车都要装运,每辆汽车只好装运同一种救灾物质且一定装满.依据表中供给的信息,解答以下问题:食药生活用物质种类品品品每辆汽车运载量654(吨)每吨所需运费(元120 160100/吨)(1)设装运食品的车辆数为 x,装运药品的车辆数为 y.求 y 与 x 的函数关系式;(2)假如装运食品的车辆数许多于 5 辆,装运药品的车辆数许多于4 辆,那么车辆的安排有几种方案 ?并写出每种安排方案;(3)在( 2)的条件下,若要求总运费最少,应采纳哪一种安排方案?并求出最少总运费.五、更大优惠类问题例 5某单位要印刷一批北京奥运会宣传资料,在需要支付制版费600 元和每份资料0.3 元印刷费的前提下,甲、乙两个印刷厂分别提出了不一样的优惠条件,甲印刷厂提出:凡印刷数目超出2019 份的,超出部分的印刷费可按9 折收费,乙印刷厂提出:凡印刷数目超出3000 份的,超出部分印刷费可按8 折收费。
【新课标】2018—2019年最新沪教版(五四制)八年级数学下册《一次函数与方程、不等式》测试题及答案
2017-2018学年(新课标)沪教版五四制八年级下册《13.3、13.4》同步测试题(范围:13.3一次函数与一次方程、一次不等式 13.4二元一次方程组的图象解法)一、慎重选择,展示技巧!(每小题4分,共32分) 1.函数y=12-x+3与x 轴的交点的横坐标为( )A .-3B .6C .3D .-6 2.一次函数1y kx b =+与2y x a =+的图象如图1所示,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的有( ) A .0个B .1个C .2个D .3个3.如图2,直线y kx b =+与x 轴交于点A (-4,0),则当y <0时,x 的取值范围是( • )A .x >-4B .x >0C .x <-4D .x <4.已知一次函数y kx b =+的图象如图3所示,则当0<x <1时,y 的取值范围是( • )A .y >0B .y <0C .-2<y <0D .y <-25.如果直线y=3x+6与y=2x-4的交点坐标为(a ,b ),则下列方程组中解是x ay b =⎧⎨=⎩的是( • )A .3624y x y x -=⎧⎨+=-⎩ B .3624y x y x -=⎧⎨-=-⎩ C .3624x y x y -=-⎧⎨+=⎩ D .3624x y x y -=-⎧⎨-=⎩6.直线AB ∥y 轴,且A 点坐标为(1,-2),则直线AB 上任意一点的横坐标都是 1,我们称直线AB 为直线x=1,那么直线y=2与直线x=-3的交点的坐标是( )A .(-3,2)B .(2,3)C .(-2,-3)D .(-3,-2)7.对于函数y=-x+4,当x >1时,y 的取值范围是( )A .y <5B .y >5C .y <3D .y > 3xyO3 2y x a =+1y kx b =+图1 图28.已知方程2x+1=-x+4的解是x=1,则直线y=2x+1与y=-x+4的交点坐标为( ) A .(1,0) B .(1,3) C .(-1,-1) D .(-1,5)二、精心填空,展示耐心!(每小题4分,共24分)9.关于x 的方程3x+4a=2的解是正数,则a .10.用加减法解方程组53x y x y +=⎧⎨-=⎩得其解为,则直线y=-x+5和y=x-3的交点的坐标为.•11.已知关于x 的方程ax-5=6的解为x=3,则一次函数y=ax-11与x •轴的交点的坐标为.12.二元一次方程113y x =+和230x y -=的图象的交点的坐标为.13.已知3x-2y=0,且x-1>y ,则x 的取值范围是.14.直线y=2x+1b 与y=x+2b 的交点坐标是(4,3),则当x_______时,直线y=2x+1b •上的点在直线y=x+2b 上相应的点的上方. 三、全面作答,展示智慧!(共34分) 15.(8分)已知一次函数y 1=-2x+1,y 2=x-2. ⑴当x 分别满足什么条件时,y 1=y 2,y 1<y 2,y 1>y 2?⑵在同一直角坐标系中作出这两个函数的图象,并用自己的话归纳出⑴中的答案与函数图象之间的关系.16.(8分)利用图象法解二元一次方程组:图3124x y y x +=⎧⎨-=⎩.17.(9分)在同一直角坐标系中画出一次函数y 1=-2x+1与y 2=2x-3的图象,并根据图象解答下列问题:⑴直线y 1=-x+1、y 2=2x-2与y 轴分别交于点A 、B ,请写出A 、B 两点的坐标;⑵写出直线y 1=-2x+1与y 2=2x-3的交点P 的坐标;⑶求△PAB 的面积.18.(9分)某学校为改善老师的办公条件,计划购买若干台电脑,现从两个电脑城了解到某品牌同一型号的电脑每台标价都是4000元,但学校集体购买都有一定的优惠.甲电脑城的优惠方法是:第一台按标价收费,其余每台可优惠15%.则甲电脑城的总收费y 1(元)与学校所买电脑的台数x 之间的关系式是.乙电脑城的优惠方法是:每台都优惠12%.则乙电脑城的总收费y 2(元)与学校所买电脑的台数x 之间的关系式是.⑴学校在什么情况下到甲电脑城购买更优惠?⑵学校在什么情况下到乙电脑城购买更优惠?四、自主探索,展示素质!(10分)19.某产品每件的成本是100元,为了解市场对该产品的认可规律,销售部门分别按两种方案组织了试销售,情况如下:方案A:固定以每件140元的价格销售,日销售量为50件;方案B:每天都适当调整售价,发现日销售量y (件)近似是售价x(元)的一次函数,且前三天的销售情况如下表所示:x(元)130 140 150 y(件)70 50 30 如果方案B中的第四天的售价为155元、第五天的售价为160元,那么前五天中,哪种方案的销售总利润大?备用题:1.张翔有将平时的零用钱节约一些存起来的习惯,他已经存了98元,从现在起每月固定存8元.⑴请写出张翔存款的总数y1(元)与从现在开始的月数x之间的函数关系式;⑵张翔的好朋友李飞以前没有存过零用钱,知道张翔存了98元零用钱后决定从现在起每个月存14元.请你在同一平面直角坐标系中分别画出张翔和李飞的存款总数与月份数的函数关系的图象.一年以后李飞的存款总数是多少?超过张翔了吗?•至少多少个月后李飞的存款总数才超过张翔?2.有两条直线y=kx+b和y=ax+3,学生甲求得它们的交点坐标为(2,-1),学生乙因抄错了a而求得它们的交点坐标为(1,4).请求出这两条直线的解析式.《13.3、13.4》同步测试题参考答案: 1.B 2.B 3.C 4.C 5.D 6.A 7.C 8.B 9.<1210.41x y =⎧⎨=⎩,41x y =⎧⎨=⎩11.(3,0) 12.(3,2)13.x <-214.x >415.⑴当y 1=y 2时,-2x+1=x-2,-3x=-3,所以x=1;当y 1>y 2时,-2x+1>x-2,-3x >-3,所以x<1;当y 1<y 2时,-2x+1<=x-2,-3x <-3,所以x >1;即,当x=1时,y1=y2;当x<1时,y1>y2;当x>1时,y1<y2..⑵y1与y2的图象如图1所示.利用图象也能得出⑴中相同的答案,即两条直线的交点的横坐标就是y1=y2时x的值;直线y1=-2x+1位于直线y2=x-2上方的部分所对应的x 的取值范围就是第2问的答案;直线y1=-2x+1位于直线y2=x-2下方的部分所对应的x的取值范围就是第3问的答案.16.主要步骤是:⑴分别列表得到两个二元一次方程的两组解;⑵分别描点画出两个方程的图象;⑶找到两条直线的交点的坐标;⑷根据坐标写出方程组的解.答案为:12xy=-⎧⎨=⎩.17.①A(0,1)、B(0,-2);②P(1,-1);③1.5 .18.y1=4000+(1-15%)×4000(x-1),化简得y1=3400x+600;y2=(1-12%)×4000x,化简得y2=3520x;⑴当y1<y2时,3400x+600<3520x,即x>5.所以当学校所买电脑的台数超过5时,去甲电脑城更优惠.⑵当y1>y2时,3400x+600>3520x,即x<5.所以当学校所买电脑的台数小于5时,去乙电脑城更优惠.19.设y与x之间的函数关系式为y=kx+b,把x=130,y=70和x=140,y=50分别代入函数关系式中,得7013050140k bk b=+⎧⎨=+⎩,解得2330kb=-⎧⎨=⎩.所以,函数关系式为y=-2x+330.当x=155时,y=20;当x=160时,y=10.则方案A的总利润为(140-100)×50×5=10000(元);方案B的总利润为30×70+40×50+50×30+55×20+60×10=7300(元).所以,前5天中销售方案A获得的总利润大.备用题答案:1.⑴y1=98+8x;⑵设李飞的存款总数为y2,则y2=14x.图象略.当x=12时,y1=98+12×8=98+96=194;y2=14×12=168.所以一年后李飞的存款总数为168元,还没有超过张翔.当y2>y1时,14x>98+8x,x>1613, 所以,至少17个月后李飞的存款总数才会超过张翔.2.根据题意得231214ak bk b+=-⎧⎪+=-⎨⎪+=⎩,解得295abk=-⎧⎪=⎨⎪=-⎩,所以两条直线得解析式分别为y=-5x+9,y=-2x+3.。
沪教版数学八年级下册20.3《一次函数的应用》教学设计1
沪教版数学八年级下册20.3《一次函数的应用》教学设计1一. 教材分析《一次函数的应用》是沪教版数学八年级下册第20.3节的内容。
本节主要让学生学会运用一次函数解决实际问题,培养学生的数学应用能力。
教材通过引入实际问题,引导学生列出一次函数关系式,并利用一次函数图象解决问题。
教材内容紧凑,逻辑清晰,注重培养学生的问题解决能力。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对函数有一定的认识。
但学生在解决实际问题时,往往不能将实际问题与函数很好地结合起来,对函数在实际生活中的应用还不够明确。
因此,在教学本节内容时,要注重引导学生将实际问题转化为数学问题,提高学生的数学应用能力。
三. 教学目标1.理解一次函数在实际问题中的应用;2.学会将实际问题转化为数学问题,列出一次函数关系式;3.利用一次函数图象解决实际问题;4.培养学生的数学应用能力。
四. 教学重难点1.一次函数在实际问题中的应用;2.将实际问题转化为数学问题,列出一次函数关系式;3.利用一次函数图象解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,让学生感受函数在生活中的应用;2.实例分析法:分析具体实例,引导学生学会将实际问题转化为数学问题;3.数形结合法:利用一次函数图象,让学生直观地理解函数在实际问题中的应用;4.小组合作学习:鼓励学生分组讨论,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示一次函数图象和实际问题;2.实例材料:收集一些实际问题,用于引导学生分析和讨论;3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实际问题,如购物、出行等,引导学生思考这些问题与数学的关系。
2.呈现(10分钟)呈现一个实际问题,如购物问题,让学生尝试解决。
学生在解决过程中,引导他们发现实际问题可以转化为数学问题,即找出变量之间的关系,列出一次函数关系式。
【新课标】最新沪教版(五四制)八年级数学下册《一次函数的应用》同步测试题及解析
2017-2018学年(新课标)沪教版五四制八年级下册一次函数应用(2015年虹口22)某商店试销一种成本为10元的文具.经试销发现,每天销售件数y (件)是每件销售价格x (元)的一次函数,且当每件按15元的价格销售时,每天能卖出50件;当每件按20元的价格销售时,每天能卖出40件.(1)试求y 关于x 的函数解析式(不用写出定义域);(2)如果每天要通过销售该种文具获得450元的利润,那么该种文具每件的销售价格应该定为多少元?(不考虑其他因素) 解:(1)由题意,知:当15x =时,50y =;当20x =时,40y =设所求一次函数解析式为y kx b =+.由题意得:5015,4020.k b k b =+⎧⎨=+⎩解得:2,80.k b =-⎧⎨=⎩∴所求的y 关于x 的函数解析式为280y x =-+.(2)由题意,可得:(10)(280)450x x --+=解得:1225x x ==答:该种文具每件的销售价格应该定为25元.(2015年黄浦二模21).温度通常有两种表示方法:华氏度(单是一次函数关系.下表列出了部分华氏度与摄氏度之间的对应关系. 摄氏度数x(C ) … 0 … 35 … 100 …华氏度数y(F )… 32 … 95 … 212 …(1)选用表格中给出的数据,求y 关于x 的函数解析式(不需要写出该函数的定义域);(2)已知某天的最低气温是5-C ,求与之对应的华氏度数. 解:(1)设函数解析式为y kx b =+(0k ≠).由0x =时,32y =, 得 320k b =⋅+.解得32b = . 由100x =时,212y =,得2121003k =+. 解得95k =. ∴y 关于x 的函数解析式是9325y x =+. ………………………………………………(1分)(2)将5x =-,代入9325y x =+,得9(5)325y =⋅-+. 解得 23y =.∴这天的最低气温是23F .(2015年黄浦二模21.) 温度通常有两种表示方法:华氏度之间是一次函数关系.下表列出了部分华氏度与摄氏度之间的对应关系. 摄氏度数x(C ) … 0 … 35 … 100 …华氏度数y(F )… 32 … 95 … 212 …(1)选用表格中给出的数据,求y 关于x 的函数解析式(不需要写出该函数的定义域);(2)已知某天的最低气温是5-C ,求与之对应的华氏度数.21. (本题满分10分,第(1)满分7分,(2)小题满分3分) 解:(1)设函数解析式为y kx b =+(0k ≠).由0x =时,32y =, 得 320k b =⋅+.解得32b = . 由100x =时,212y =,得2121003k =+. 解得 95k =.∴y 关于x 的函数解析式是9325y x =+. (2)将5x =-,代入9325y x =+,得9(5)325y =⋅-+. 解得 23y =.∴这天的最低气温是23F .(2015年嘉定二模22).已知一水池的容积V (公升)与注入水的时间t (分钟)之间开始是一次函数关系,表中记录的是这段时间注入水的时间与水池容积部分对应值. 注入水的时间t(分钟)0 10 … 25 水池的容积V(公升)100 300 … 600 (1)求这段时间时V 关于t 的函数关系式(不需要写出函数的定义域);(2)从t 为25分钟开始,每分钟注入的水量发生变化了,到t 为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率.解:(1)设V 关于t 的函数解析式为:b kt V+=………………1分 由题意得:⎩⎨⎧=+=30010100b k b …………………………………1分解此方程组得:⎩⎨⎧==10020b k ……………………………………2分所以V 关于t 的函数解析式为:10020+=t V……………1分(2)设这个百分率为x (1)分 由题意得:726)1(6002=+x (2)分解此方程得:%101.01==x ,1.22-=x (不符合题意舍去)……1分答这个百分率为%10 (1)分(2015年静安)21. 如图,在直角坐标系xOy 中,反比例函数图像与直线2-=x y 相交于横坐标为3的点A .(1)求反比例函数的解析式;(2)如果点B 在直线2-=x y 上,点C 在反比例函数图像上,BC//x 轴,BC=4,且BC 在点A 上方,求点B 的坐标.解:(1)设反比例函数的解析式为x k y =. ∵横坐标为3的点A 在直线2-=x y 上,∴点A 的坐标为(3,1),∴1=3k ,∴3=k ,∴反比例函数的解析式为xy 3=. (2点C (m m ,3),则点B (m m ,2+). ∴BC=m m 32-+= 4,∴m m m 4322=-+,∴0322=-+m m ,1,321-==m m ,1,321-==m m 都是方程的解,但1-=m 不符合题意,∴点B 的坐标为(5,3). A C BO y x(第21题图)(2015年上海闵行二模22.)货车在公路A处加满油后,以每小时60千米的速度匀速行驶,前往与A处相距360千米的B 处.下表记录的是货车一次加满油后油箱内剩余油量y(升)与行驶时间x(时)之间关系:行驶时间x0 1 2 3 4(时)余油量y150 120 90 60 30(升)(1)如果y关于x的函数是一次函数,求这个函数的解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到达C处,C的前方12千米的D处有一加油站,那么在D处至少加多少升油,才能使货车到达B处卸货后能顺利返回D处加油?(根据驾驶经验,为保险起见,油箱内剩余油量应随时不少于10升)解:(1)设所求函数为 y k x b =+.根据题意,得150,120.b k b =⎧⎨+=⎩解得 30,150.k b =-⎧⎨=⎩ ∴ 所求函数的解析式为30150y x =-+. (2)设在D 处至少加w 升油.根据题意,得 360460121504303021060w -⨯--⨯+≥⨯⨯+. 解得 94w ≥.答:D 处至少加94升油,才能使货车到达B 处卸货后能顺利返回D 处加油..(2015年上海普陀区二模21) 已知:如图7,在平面直角坐标系xOy 中,直线1122y x =+与x 轴交于点A ,在第一象限内与反比例函数图像交于点B ,BC 垂直于x 轴,垂足为点C ,且OC=2AO .求(1)点C 的坐标;(2)反比例函数的解析式.21.解:(1) 对于直线1122y x =+,当y=0时,得11022x +=, 解得1x =-.图7 C B A O y x∴直线1122y x =+与x 轴的交点A 的坐标为(-1,0). ∴AO=1.∵OC=2AO ,∴OC=2.∴点C 的坐标为(2,0) .(2)∵BC ⊥x 轴,垂足为点C ,∴点B 的横坐标为2.∵点B 在直线1122y x =+上, ∴1132222y =⨯+=. ∴点B 的坐标为3(22,). 设反比例函数解析式xk y =()0k ≠ , ) ∵反比例函数图像过点B 3(22,),∴322k =.解得3k =. ∴反比例函数的解析式为3y x=.2015年上海徐汇二模21.某公司市场营销部的某营销员的个人月收入与该营销员每月的销售量成一次函数关系,其图像如图所示.根据图像提供的信息,解答下列问题:(1)求营销员的个人月收入y 元与该营销员每月的销售量x 万件(x ≥0)之间的函数关系式;(2)若两个月内该营销员的销售量从2万件猛增到5万件,月收入两个月大幅度增长,且连续两个月的月收入的增长率是相同的,试求这个增长率(2 1.414≈,保留到百分位);解:(1)设函数关系式为=+y kx b 将(0,800)、(2,2400)代入得到:8002+2400=⎧⎨=⎩b k b ,解得800800=⎧⎨=⎩k b ∴函数关系式为800800=+y x(2)当58005800=4800==⨯+x y 时,设这个增长率为a ,由题意有22400(1)=4800+a解得1212,12=-+=--a a (舍)120.4140.4141%=-+≈≈=a 答:函数关系式为800800=+y x ,这个增长率为41%(2015年上海长宁区21) 在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回甲地.设汽车从甲地出发x (h )时,汽车与甲地的距离为y (km ),第21题图xy (km )(h )52120 2.5Oy 与x 的关系如图所示.根据图像回答下列问题:(1)汽车在乙地卸货停留 (h );(2)求汽车返回甲城时y 与x 的函数解析式,并写出定义域;(3)求这辆汽车从甲地出发4 h 时与甲地的距离.解:(1)0.5;(2分)(2)设)0(≠+=k b kx y (1分)把(2.5,120)和(5,0)分别代入得⎩⎨⎧+=+=bk b k 505.2120, 解得⎩⎨⎧=-=24048b k (3分)∴解析式为()55.224048≤≤+-=x x y .(1分)(3)当 x = 4时,48240448=+⨯-=y (2分)∴这辆汽车从甲地出发4 h 时与甲地的距离48 km. (1分)(2015年崇明二模22.) 周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为 千米/小时,y (km )在甲地游玩的时间为小时;(2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?(美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!。
沪教版数学八年级下册20.3《一次函数的应用》教学设计2
沪教版数学八年级下册20.3《一次函数的应用》教学设计2一. 教材分析沪教版数学八年级下册20.3《一次函数的应用》是学生在学习了函数的基本概念和一次函数的性质的基础上进行学习的。
本节课主要让学生了解一次函数在实际生活中的应用,通过解决实际问题,进一步理解和掌握一次函数的性质和应用。
教材通过丰富的实例,引导学生探究一次函数的应用,培养学生的实际问题解决能力。
二. 学情分析学生在八年级上学期已经学习了函数的基本概念和一次函数的性质,对一次函数有一定的了解。
但部分学生对一次函数的应用还不够熟练,需要通过本节课的学习进一步巩固。
同时,学生在生活中已经积累了一定的数学经验,对实际问题有一定的解决能力。
三. 教学目标1.了解一次函数在实际生活中的应用,培养学生的实际问题解决能力。
2.进一步理解和掌握一次函数的性质。
3.培养学生的合作交流能力和数学思维能力。
四. 教学重难点1.一次函数在实际生活中的应用。
2.一次函数的性质的理解和掌握。
五. 教学方法采用问题驱动法,引导学生通过探究实际问题,了解一次函数的应用。
同时,运用小组合作交流的方式,培养学生的合作交流能力和数学思维能力。
六. 教学准备1.教材、教案。
2.教学多媒体设备。
3.实际问题素材。
七. 教学过程1.导入(5分钟)通过引入一些生活中的实际问题,如购物时如何选择商品使得花费最少,引导学生思考一次函数的应用。
2.呈现(10分钟)呈现一次函数的性质,引导学生通过观察、分析、归纳,理解并掌握一次函数的性质。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用一次函数的知识进行解决。
教师巡回指导,帮助学生解决遇到的问题。
4.巩固(10分钟)让学生选取一个实际问题,运用一次函数的知识进行解决,并分享解题过程和结果。
教师点评并指导。
5.拓展(10分钟)引导学生思考一次函数在其他领域的应用,如科学研究、工程技术等。
6.小结(5分钟)让学生总结本节课所学内容,教师点评并补充。
八年级数学下册20.4一次函数的应用1教学设计沪教版五四制
八年级数学下册20.4一次函数的应用1教学设计沪教版五四制一. 教材分析《沪教版八年级数学下册20.4一次函数的应用1》这一节内容,主要让学生掌握一次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
教材通过具体的例题,引导学生了解一次函数在生活中的意义,学会如何根据实际问题建立一次函数模型,并利用一次函数解决问题。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的知识,对于一次函数的图像和性质有一定的了解。
但是,学生在实际运用一次函数解决生活中的问题方面还比较薄弱,需要通过实例让学生感受一次函数的实际意义,提高学生运用数学知识解决实际问题的能力。
三. 教学目标1.理解一次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
2.学会如何根据实际问题建立一次函数模型,并利用一次函数解决问题。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.重点:一次函数在实际生活中的应用,如何建立一次函数模型,并利用一次函数解决问题。
2.难点:如何引导学生将实际问题转化为一次函数问题,培养学生运用数学知识解决实际问题的能力。
五. 教学方法1.实例教学法:通过具体的例题,让学生了解一次函数在生活中的应用,学会如何建立一次函数模型,并利用一次函数解决问题。
2.问题驱动法:引导学生主动思考,提出问题,并通过小组合作、讨论的方式解决问题。
3.实践操作法:让学生在实际操作中感受一次函数的应用,提高学生运用数学知识解决实际问题的能力。
六. 教学准备1.教材《沪教版八年级数学下册》2.课件PPT3.教学黑板七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如购物时如何计算总价最少,让学生感受一次函数在生活中的应用。
引导学生思考:如何用数学知识解决这些问题?2.呈现(10分钟)呈现教材中的例题,引导学生了解一次函数模型的建立过程。
以购物为例,讲解如何根据商品的价格和数量建立一次函数模型,并利用一次函数解决问题。
沪教版数学八年级下册20.3《一次函数的应用》教学设计1
沪教版数学八年级下册20.3《一次函数的应用》教学设计1一. 教材分析《一次函数的应用》是沪教版数学八年级下册第20.3节的内容,主要介绍了如何运用一次函数解决实际问题。
本节内容是在学生已经掌握了函数的基本概念和一次函数的性质的基础上进行教学的。
教材通过具体的实例,使学生了解一次函数在实际生活中的应用,培养学生的应用意识。
二. 学情分析八年级的学生已经具备了一定的函数知识,对于一次函数的概念和性质有一定的了解。
但是,学生在解决实际问题时,往往不能将数学知识与实际问题有效地结合起来。
因此,在教学过程中,教师需要引导学生将数学知识运用到实际问题中,提高学生的应用能力。
三. 教学目标1.知识与技能:使学生掌握一次函数在实际问题中的应用,培养学生解决实际问题的能力。
2.过程与方法:通过实例分析,让学生了解一次函数在生活中的应用,提高学生的应用意识。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极解决问题的态度。
四. 教学重难点1.重点:一次函数在实际问题中的应用。
2.难点:如何将实际问题转化为一次函数问题,并找出相应的函数关系式。
五. 教学方法采用问题驱动的教学方法,通过具体的实例,引导学生分析问题,找出一次函数的关系式,并运用一次函数解决实际问题。
同时,采用小组合作学习的方式,培养学生的团队协作能力。
六. 教学准备1.准备相关的实例,用于引导学生分析问题。
2.准备一次函数的性质和图象,方便学生理解一次函数的应用。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾一次函数的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)呈现一个实际问题:某商店进行打折活动,原价为100元的商品,打8折后的价格是多少?引导学生分析问题,找出一次函数的关系式。
3.操练(10分钟)让学生分组讨论,每组找出一次函数的关系式,并运用一次函数解决实际问题。
教师巡回指导,帮助学生解决疑难问题。
4.巩固(10分钟)呈现几个类似的问题,让学生独立解决。
【新课标】2018—2019年最新沪教版(五四制)八年级数学下册《一次函数的应用》课堂巩固练习题
2017-2018学年(新课标)沪教版五四制八年级下册20.4 一次函数的应用一、课本巩固练习1、某种储蓄的月利率是0.2%,如果存入1000元本金,不考虑利息税,且不急复利,求本息和y与所存月数x 之前的函数解析式,并计算6个月后的本息和。
2、某长途汽车运输公司对乘客携带行李作如下规定:一个乘客可免费携带30千克行李,如果超过30千克,那么超过部分每千克行李收行李费1元,设一个乘客的行李重量为x千克(x>30)试写出行李费y(元)关于行李重量x(千克)的函数解析式及定义域,并画出函数图像。
3、张先生准备租一处临街房屋开一家电脑公司,现有甲乙两家房屋出租,甲屋已装修好,每月租金3000元,乙屋没有装修,每月租金2000元,但要装修成甲屋的模样,需要花费4万元,如果你是张先生,你会如何选择?二、基础过关1、一个水箱内有水80立方米,现要打开水箱的排水箱,以每小时排出的水量为4立方米进行排水. (1)表述水池中的剩余水量()3t h之间的函数关系式;Q m与排水时间()(2)在平面直角坐标系中画出这个函数的图像.2、旅客乘车按规定可随身携带一定重量的行李,如果超过规定,那么需购买行李票,设行李费y(元)是行李x kg的函数,其图像如图所示.重量()(1)求y与x之间的函数关系式;(2)旅客最多可免费携带行李的重量;(3)表述旅客所付的行李费y(元)与他携带x kg之间的函数关系式.的行李重量()3、某单位急需用车,但又不准备买车,他们和一个体车主或一国营出租车公司中的一家签订月租合同,设汽车每月行驶x千米,应付给个体车主的月费用为1y元,应付给出租公司的月费用是2y元,1y、2y分别与x的函数图像(两条射线)如图,根据图中提供的信息解答下列问题:(1)每月行驶的路程在什么范围时,租国营公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家划算?4、一艘轮船和一艘快艇沿相同的路线从甲港出发驶向乙港的过程中,路程()y km 随时间()x h 变化的图像如图所示(分别是正比例函数的图像和一次函数的图像).根据图中提供的信息解答下列问题:(1)分别求出表示轮船和快艇行驶过程中路程()y km 和时间()x h 之间的函数解析式和定义域;(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?(3)快艇出发多长时间赶上轮船?5、某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲乙两个蓄水池中水的深度()y m 与注水时间()x h 之间的函数图像如图,根据图中提供的信息解答下列问题:(1)分别求出甲乙两个蓄水池中水分深度深度()y m 与注水时间()x h 之间的函数解析式;(2)注水多长时间,甲乙两个蓄水池水的深度相同?(3)注水多长时间,甲乙两个蓄水池的蓄水量相同?6、通过电脑拨号上“因特网”的费用是由电话费和上网费两部分组成,过去,某市通过“市民热线”上“因特网”的费用为电话费每3分钟0.18元,上网费每小时7.2元,现在,该市对上“因特网”的费用作了调整:电话费每3分钟0.22元,上网费为每月不超过60小时,按每小时4元计算;超过60小时部分,按每小时8元计算.(1)根据调整后的规定,用解析式表示网民每月上“因特网”的费用y (元)与上网时间()x h 之间的函数关系式;(2)资费调整前,网民小刚在其家庭经济预算中,一直有一笔每月70小时的上网费用支出,因“因特网”资费调整后,小刚要想不超过其家庭经济预算中的上网费用支出,他现在每月至多可上网多少小时?(3)从资费调整前后该市网民上网费用的支出增减情况分析,哪些网民支出增加?哪些网民支出减少?7、某单位计划组织员工到H地旅游,人数估计在1025之间,甲乙两旅行社的服务质量相同,组织到H地旅游的价格都是每人200元,在洽谈时,甲旅行社表示可给予每位旅客七五折(即原价格的75%)优惠;乙旅行社表示可先免去一位旅客的旅游费用,其余旅客八折优惠.(1)该单位怎样选择,才能使其支付的旅游总费用较少?(2)若该单位的员工只能组成一个旅游队,且经核算选择甲旅行社比选择乙旅行社费用要便宜1,46则该单位参加旅游的员工有多少人?8、 某医药研究所研制了一种抗生素新药,据临床观察:如果成人按规定的剂量注射这种抗生素,那么注射药液后每毫升血液中的含药量()y g μ与时间()t h 之间的关系近似地满足如图所示的折线.(1)写出注射药液后,每毫升血液中含药量()y g μ与时间()t h 之间的函数解析式及自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于4g μ时,对控制病情是有效的,如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间是多长?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年(新课标)沪教版五四制八年级下册
20.4 一次函数的应用
一、课本巩固练习
1、某种储蓄的月利率是0.2%,如果存入1000元本金,不考虑利息税,且不急复利,求本息和y 与所存月数x 之前的函数解析式,并计算6个月后的本息和。
2、某长途汽车运输公司对乘客携带行李作如下规定:一个乘客可免费携带30千克行李,如果超过30千克,那么超过部分每千克行李收行李费1元,设一个乘客的行李重量为x 千克(x>30)试写出行李费y (元)关于行李重量x (千克)的函数解析式及定义域,并画出函数图像。
3、张先生准备租一处临街房屋开一家电脑公司,现有甲乙两家房屋出租,甲屋已装修好,每月租金3000元,乙屋没有装修,每月租金2000元,但要装修成甲屋的模样,需要花费4万元,如果你是张先生,你会如何选择?
二、基础过关
1、一个水箱内有水80立方米,现要打开水箱的排水箱,以每小时排出的水量为4立方米进行排水.
(1)表述水池中的剩余水量()
3Q m 与排水时间()t h 之间的函数关系式;
(2)在平面直角坐标系中画出这个函数的图像.
2、旅客乘车按规定可随身携带一定重量的行李,如果超过规定,那么需购买行李票,设行李费y (元)是行李
重量()x kg 的函数,其图像如图所示.
(1)求y 与x 之间的函数关系式;
(2)旅客最多可免费携带行李的重量;
(3)表述旅客所付的行李费y (元)与他携带
的行李重量()x kg 之间的函数关系式.
3、某单位急需用车,但又不准备买车,他们和一个体车主或一国营出租车公司中的一家签订月租合同,设汽车
每月行驶x 千米,应付给个体车主的月费用为1y 元,应付给出租公司的月费用是2y 元,1y 、2y 分别与x 的函数图像(两条射线)如图,根据图中提供的信息解答下列问题:
(1)每月行驶的路程在什么范围时,租国营公司的车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300千米,
那么这个单位租哪家划算?
4、一艘轮船和一艘快艇沿相同的路线从甲港出发驶向乙港的过程中,路程()y km 随时间()x h 变化的图像如图
所示(分别是正比例函数的图像和一次函数的图像).根据图中提供的信息解答下列问题:
(1)分别求出表示轮船和快艇行驶过程中路程()y km 和时间()x h 之间的函数解析式和定义域;
(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?
(3)快艇出发多长时间赶上轮船?
5、某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲乙两个蓄水池中
水的深度()y m 与注水时间()x h 之间的函数图像如图,根据图中提供的信息解答下列问题:
(1)分别求出甲乙两个蓄水池中水分深度深度()y m 与注水时间()x h 之间的函数解析式;
(2)注水多长时间,甲乙两个蓄水池水的深度相同?
(3)注水多长时间,甲乙两个蓄水池的蓄水量相同?
6、通过电脑拨号上“因特网”的费用是由电话费和上网费两部分组成,过去,某市通过“市民热线”上“因特
网”的费用为电话费每3分钟0.18元,上网费每小时7.2元,现在,该市对上“因特网”的费用作了调整:电话费每3分钟0.22元,上网费为每月不超过60小时,按每小时4元计算;超过60小时部分,按每小时8元计算.
(1)根据调整后的规定,用解析式表示网民每月上“因特网”的费用y (元)与上网时间()x h 之间的函数
关系式;
(2)资费调整前,网民小刚在其家庭经济预算中,一直有一笔每月70小时的上网费用支出,因“因特网”
资费调整后,小刚要想不超过其家庭经济预算中的上网费用支出,他现在每月至多可上网多少小时?
(3)从资费调整前后该市网民上网费用的支出增减情况分析,哪些网民支出增加?哪些网民支出减少?
7、某单位计划组织员工到H地旅游,人数估计在1025之间,甲乙两旅行社的服务质量相同,组织到H
地旅游的价格都是每人200元,在洽谈时,甲旅行社表示可给予每位旅客七五折(即原价格的75%)优惠;乙旅行社表示可先免去一位旅客的旅游费用,其余旅客八折优惠.
(1)该单位怎样选择,才能使其支付的旅游总费用较少?
(2)若该单位的员工只能组成一个旅游队,且经核算选择甲旅行社比选择乙旅行社费用要便宜1
46
,
则该单位参加旅游的员工有多少人?
8、 某医药研究所研制了一种抗生素新药,据临床观察:如果成人按规定的剂量注射这种抗生素,那么注射
药液后每毫升血液中的含药量()y g μ与时间()t h 之间的关系近似地满足如图所示的折线.
(1)写出注射药液后,每毫升血液中含药量()y g μ与时间()t h 之间的函数解析式及自变量的取值范围;
(2)据临床观察:每毫升血液中含药量不少于4g μ时,对控制病情是有效的,如果病人按规定的剂量注射
该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间是多长?。