最新简易逻辑精选练习题和答案
逻辑灵活测试题及答案
逻辑灵活测试题及答案1. 题目:如果所有的苹果都是水果,所有的水果都是食物,那么苹果是食物吗?答案:是的,苹果是食物。
2. 题目:如果一个数是偶数,那么它一定能被2整除。
如果一个数是4的倍数,那么它一定是偶数吗?答案:是的,如果一个数是4的倍数,那么它一定是偶数。
3. 题目:如果所有的狗都是哺乳动物,而所有的猫也是哺乳动物,那么狗和猫是同类吗?答案:不是,狗和猫是不同的物种,尽管它们都属于哺乳动物。
4. 题目:如果一个物体是红色的,那么它的颜色是红色。
如果一个物体的颜色是蓝色,那么它是红色的吗?答案:不是,如果一个物体的颜色是蓝色,那么它不是红色的。
5. 题目:如果所有的学生都需要参加考试,那么没有学生需要参加考试吗?答案:不是,如果所有的学生都需要参加考试,那么所有学生都需要参加考试。
6. 题目:如果一个数是奇数,那么它不能被2整除。
如果一个数是3的倍数,那么它是奇数吗?答案:不一定,一个数是3的倍数并不意味着它是奇数,因为3的倍数中也有偶数。
7. 题目:如果所有的鸟都会飞,那么企鹅是鸟吗?答案:是的,企鹅是鸟,但它们不会飞。
8. 题目:如果所有的植物都需要水,那么仙人掌需要水吗?答案:是的,仙人掌需要水,尽管它们能在干旱环境中生存。
9. 题目:如果所有的金属都是导电的,那么塑料是金属吗?答案:不是,塑料不是金属,它们通常不导电。
10. 题目:如果所有的正方形都是四边形,那么四边形都是正方形吗?答案:不是,四边形包括正方形,但并非所有的四边形都是正方形。
11. 题目:如果所有的人都需要氧气才能生存,那么植物需要氧气吗?答案:不是,植物在光合作用过程中释放氧气,而不是需要氧气来生存。
12. 题目:如果所有的汽车都有轮子,那么自行车有轮子吗?答案:是的,自行车有轮子,尽管它们不是汽车。
13. 题目:如果所有的三角形都有三个角,那么一个有四个角的图形是三角形吗?答案:不是,一个有四个角的图形不是三角形。
(完整版)简易逻辑练习题及答案
、选择题:1若命题p : 2n — 1是奇数,q : 2n + 1是偶数,则下列说法中正确的是()A . p 或q 为真B . p 且q 为真C .非p 为真D .非p 为假2.“至多三个”的否定为()A .至少有三个B .至少有四个C .有三个D . 有四个3.△ ABC 中,若/ C=90°则/ A 、/ B 都是锐角”的否命题为 A . △ ABC 中,若/ C M 90° 则/ A 、/ B 都不是锐角 B . △ ABC 中,若/ C M 90° 则/ A 、/ B 不都是锐角 C . △ ABC 中,若/ C M 90°则/ A 、/ B 都不一定是锐角 D .以上都不对4. 给出 4 个命题:① 若 x 2 3x 2,则 x=1 或 x=2;② 若 2 x 3,则 (x 2)(x 3) 0; ③ 若 x=y=0 ,则 x 2 y 2 0 ;④ 若x, y N , x + y 是奇数,则x , y 中一个是奇数,一个是偶数. 那么:A . p 且q 为假 D .非p 为假6 .命题 若厶ABC 不是等腰三角形,则它的任何两个内角不相等• ”的逆否命题是()A .若厶ABC 是等腰三角形,则它的任何两个内角相等 .”B .若厶ABC 任何两个内角不相等,则它不是等腰三角形 .”C .若厶ABC 有两个内角相等,则它是等腰三角形 .”D .若厶ABC 任何两个角相等,则它是等腰三角形•”简易逻辑A .①的逆命题为真B .②的否命题为真C .③的逆否命题为假D .④的逆命题为假5 .对命题p : A n,命题q : A U = A ,下列说法正确的是B . p 或q 为假C . 非 p 为真7.设集合 M={x| x >2} , P={x|x v 3},那么 X € M ,或 x € P”是“ € M n P”的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件&有下列四个命题:① 若x + y=0,则x , y 互为相反数”的逆命题; ② 全等三角形的面积相等”的否命题;③ 若q < 1贝U x 2 + 2x + q=0有实根”的逆否命题; ④ 不等边三角形的三个内角相等 ”逆命题; 其中的真命题为 ()A .①②B .②③C .①③D .③④9•设集合A={ xlx 2 + x -6=0} , B={x|mx +仁0},贝V B 是A 的真子集的一个充分不必要的条件是()13 .由命题p:6是12的约数,q:6是24的约数,构成的“ p 或q ”形式的命题是: _________ _ ,“p 且q ”形式的命题是 ___________________ , “非p ”形式的命题是 _____________________ 14.设集合A={ x|x 2 + x - 6=0} , B={ x|mx +仁0},则B 是A 的真子集的一个充分不必要的条件是 __________________________________________ .15. _____________________________________________________________________________ 设1 1 1 A . mB . m=—2 32io . a 2 b 2 o ”的含义是A . a,b 不全为0 C . a,b 至少有一个为0 C . 1 1 m 0,,D .2 3m 0E( )B . a,b 全不为0D . a 不为0且b 为0, 或b 不为0且a 为011.如果命题非p ”与命题“戯q”都是真命题,那么A .命题p 与命题q 的真值相同B .命题q —定是真命题C .命题q 不一定是真命题D .命题p 不一定是真命题12.命题P :若A n B=B ,则A B ;命题q :若AB ,贝y A n B 工B .那么命题p 与命题q 的关系是 A .互逆、填空题:B .互否( )C .互为逆否命题D .不能确定集合M={x|x>2}, P={x|x v 3},那么x€ M,或x €P”是“X M n P”的___________________________三、解答题:16•命题:已知a、b为实数,若x2+ ax+ b< 0有非空解集,则a2—4b>0•写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.17. 已知关于x的一元二次方程(m € Z)① mx2—4x+ 4 = 0 ② x2—4mx+ 4m2—4m—5= 0求方程①和②都有整数解的充要条件•18 •分别指出由下列各组命题构成的逻辑关联词或”、且”、非”的真假.(1)p:梯形有一组对边平行;q:梯形有一组对边相等.2 2(2)p: 1是方程x 4x 3 0的解;q: 3是方程x 4x 3 0的解.(3)p:不等式X2 2x 1 0解集为R;q:不等式X2 2x 2 1解集为用1P:{0}; q:0X 1 2 219.已知命题p: 1 ----- 2 ;q: x 2x 1 m 0(m 0)若p是q的充分非必要3条件,试求实数m的取值范围.20.已知命题p:|x2—X |> 6, q:x€ Z,且p且q”与非q”同时为假命题,求x的值.21.已知p:方程x2+ mx+仁0有两个不等的负根;q:方程4x2+ 4(m —2)x+ 1 = 0无实根.若"p 或q”为真,“ p且q”为假,求m的取值范围.参考答案一、选择题:ABBAD CACBA BC二、填空题:13•若△ ABC有两个内角相等,则它是等腰三角形.14.6是12或24的约数;6是12的约数,也是24的约数;6不是12的约数.1 115.m= (也可为m -). 16.必要不充分条件.2 3三、解答题:2 217.解析:逆命题:已知a、b为实数,若a 4b 0,则x ax b 0有非空解集否命题:已知a、b为实数,若x2ax b 0没有非空解集,则a24b 0., 2 2逆否命题:已知a、b为实数,若a 4b 0.则x ax b 0没有非空解集原命题、逆命题、否命题、逆否命题均为真命题18. 解析:方程①有实根的充要条件是16 4 4 m 0,解得m 1.m 1 •而m 乙故m= —1 或m=0 或m=1. 4当m=—1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m=1.反之,m=1①②都有整数解• ••①②都有整数解的充要条件是m=1.19 .解析:⑴I p真,q假,"戯q”为真,"诅q”为假,非p”为假.⑵•••p真,q真,“P或q”为真,“P且q”为真,非p”为假.⑶•••p 假, q假,“p q”为假, “p且q”为假,非p”为真⑷•p真,q假,“1或q”为真,“p且q”为假,非p”为假x 120.解析:由1 ---------- 2,得2x10. p: A x| x 2或x 103由x22x 1 m20(m 0),得1 m x 1 m.q : B={ x | x 1 m或x 1 m, m 0}.p是q的充分非必要条件,且m 0, A B.方程②有实根的充要条件是16m24(4m24m 5) 0,解得mm 0 1 m 10 即 0 m31 m 2即 p : m >2若方程4x 2 + 4(m — 2)x + 1 = 0无实根,则△= 16(m — 2)2— 16= 16(m 2— 4m + 3)v 0 解得:1 v m v 3•即 q : 1 v m v 3.因此,p 、q 两命题应一真一假,即 p 为真,q 为假或p 为假,q 为真.m 2 亠 m 2 *^或m 1或 m3 1 m 3解得:m 》3或1 v m W 2.由p 为假且 q 为真,可得: |xx| 6x Zx 2 x 6 2x x 6 0 2x3 即x 2 x6 •2 xx 6 0x R x Zx Zx Z故x 的取值为:一1、0、1、2.21、解析:•/ p 且q 为假p 、q 至少有一命题为假,又 非q”为假••• q 为真,从而可知p 为假• 22.解析: 若方程X + mx +仁0有两不等的负根,则因p 或q”为真,所以p 、q 至少有一为真,又 p 且q”为假,所以p 、q 至少有一为假, m 2 4 m 0解得m >2,。
逻辑练习题及答案
逻辑练习题及答案1. 如果所有的猫都怕水,而小明养的宠物是一只猫,那么小明的宠物怕水吗?- 答案:是的,如果小明的宠物是猫,根据题目条件,它应该怕水。
2. 假设在一个岛上,所有的居民要么喜欢足球,要么喜欢篮球。
如果张三不喜欢足球,那么他喜欢篮球吗?- 答案:是的,根据题目条件,张三必须喜欢篮球,因为他不喜欢足球。
3. 一个逻辑问题:如果今天是星期三,那么明天是星期四吗?- 答案:是的,如果今天是星期三,那么按照一周七天的顺序,明天确实是星期四。
4. 一个推理问题:如果所有的苹果都是水果,而你手中有一个苹果,那么你手中的东西是水果吗?- 答案:是的,根据题目条件,你手中的苹果是一种水果。
5. 一个条件问题:如果下雨,那么地面会湿。
如果地面湿了,那么一定是因为下雨吗?- 答案:不一定,地面湿可能是因为其他原因,比如洒水或者有人倒水。
练习题答案解析1. 这个问题是一个典型的三段论,通过两个前提得出结论。
第一个前提是“所有的猫都怕水”,第二个前提是“小明的宠物是一只猫”,根据这两个前提,我们可以得出结论:小明的宠物怕水。
2. 这个问题也是一个三段论,通过条件“所有的居民要么喜欢足球,要么喜欢篮球”和“张三不喜欢足球”,我们可以推断出张三喜欢篮球。
3. 这个问题是一个简单的逻辑推理,基于一周的天数顺序,可以很容易地得出结论。
4. 这个问题涉及到类别的包含关系,苹果是水果的一个子集,所以如果你手中有一个苹果,那么你手中的东西自然是水果。
5. 这个问题涉及到因果关系的判断,虽然下雨会导致地面湿,但地面湿并不一定是由下雨引起的,可能还有其他原因。
逻辑练习题可以帮助学生提高他们的分析、推理和判断能力。
通过解决这些问题,学生可以更好地理解和应用逻辑规则,提高解决问题的能力。
逻辑测试题目及答案
逻辑测试题目及答案
1. 如果所有的猫都怕水,而有些动物不是猫,那么以下哪项陈述是正
确的?
A. 所有怕水的动物都是猫
B. 所有不怕水的动物都是猫
C. 有些怕水的动物不是猫
D. 有些不怕水的动物是猫
答案:C
2. 假设在一个房间里,如果灯是开着的,那么门就是关着的。
如果门
是开着的,那么灯就是关着的。
现在灯是开着的,那么门是什么状态?
A. 门是开着的
B. 门是关着的
C. 门的状态无法确定
D. 门是半开半关的
答案:B
3. 有三扇门,一扇门后面有一辆车,另外两扇门后面是山羊。
如果你
选择了一扇门,主持人会打开另外两扇门中的一扇,露出一只山羊,
然后问你要不要换门。
以下哪项策略会增加你赢得汽车的概率?
A. 坚持最初的选择
B. 换门
C. 随机换门
D. 换门与否无关紧要
答案:B
4. 如果所有的苹果都是水果,所有的水果都含有维生素C,那么以下哪项陈述是正确的?
A. 所有的苹果都含有维生素C
B. 所有的维生素C都在水果中
C. 有些水果不是苹果
D. 所有的维生素C都在苹果中
答案:A
5. 假设在一个逻辑游戏中,如果玩家A赢了,那么玩家B就会输。
如果玩家B赢了,那么玩家A就会输。
现在玩家A赢了,那么玩家B的状态是什么?
A. 玩家B赢了
B. 玩家B输了
C. 玩家B的状态无法确定
D. 玩家B既没有赢也没有输
答案:B
结束语:以上是逻辑测试题目及答案,希望这些题目能够帮助你提高逻辑思维能力。
简易逻辑精选练习题和答案
简易逻辑练习题一、选择题1. “21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 2. 设集合A ={x |11+-x x <0},B ={x || x -1|<a },若“a =1”是“φ≠⋂B A ”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3. 命题p :“有些三角形是等腰三角形”,则┐p 是( )A .有些三角形不是等腰三角形B .所有三角形是等腰三角形C .所有三角形不是等腰三角形D .所有三角形是等腰三角形4. 设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( )A .0B .1C .2D .35.“a >b >0”是“ab <222b a +”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件6. 若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( )A .a ≤1B .a ≤3C .a ≥1D .a ≥37. 下列命题中,其“非”是真命题的是( )A .∀x ∈R ,x ²-22x + 2 ≥ 0B .∃x ∈R ,3x-5 = 0C .一切分数都是有理数D .对于任意的实数a,b,方程ax=b 都有唯一解8. 0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件二、填空题9. (1)命题:,R x ∈∃ x 2+x +1<0的否定是 ,(2) 命题“∀x ∈R ,x 2-x +3>0”的否定是 ,(3) 命题 “对任意的x ∈{x|-2<x<4},|x-2|<3”的否定形式(4)命题 “∀x ,y ∈R ,有x ²+ y ² ≥ 0”的否定是(5) 命题 “不等式x 2+x -6>0的解是x <-3或x >2”的逆否命题是(6)命题“∀a ,b ∈R ,如果ab >0,则a >0”的否命题是(7)命题 “△ABC 中,若∠C=90°,则∠A 、∠B 都是锐角”的否命题为: ,否定形式: 。
简易逻辑精选练习题和答案
简易逻辑精选练习题和答案1.“m=”是“直线(m+2)x+3my+1=与直线(m-2)x+(m+2)y-3=相互垂直”的充要条件。
2.设集合A={x| |x-1|<}。
B={x| |x-1|<1}。
若a=1,则A∩B≠。
3.命题p:“有些三角形是等腰三角形”,则┐p是“所有三角形不是等腰三角形”。
4.命题“¬p”、“¬q”、“p∧q”、“p∨q”中假命题的个数为2.5.“a>b>0”是“a2+b2<”的必要而不充分条件。
6.实数a的取值范围是a≥1.7.“∀x∈R,x²-22x + 2≥0”的非命题为“∃x∈R,x²-22x + 2<0”。
8.a<是方程ax+2x+1=至少有一个负数根的充分不必要条件。
9.(1)“∀x∈R,x2+x+1≥0” (2)“∃x∈R,x2-x+3≤0” (3)“存在x∈{x|-2<x<4},|x-2|≥3” (4)“∃x,y∈R,x²+y²<” (5)“x≥-3且x≤2时,x+x-6≤0” (6)“∃a,b∈R,ab>且a≤” (7)“△ABC中,若∠A或∠B是钝角,则∠C是锐角”。
10.选项不完整,无法填空。
11.(1)充分条件 (2)必要条件 (3)充分条件 (4)必要条件12.(1)假(2)m≤3 (3)x≤-2或x≥4 (4)真13.a≤-1或a≥214.解得A={1,2},B={1-m,2/m},则A是B的必要不充分条件,即1-m∈A但2/m∉A,解得m∈(-∞,1)U(2,∞)15.解得p的判别式D<0且m<0,q的判别式D<0且m∈(0,2),则m∈(0,2)16.解得p的解集为[-1,1],q无实根且判别式D<0,解得a∈(-∞,-1)U(1/2,∞)17.(1)不存在 (2)存在,m>0。
高中简易逻辑试题及答案
高中简易逻辑试题及答案一、单选题(每题2分,共20分)1. 下列命题中,哪一个是真命题?A. 所有学生都是高中生。
B. 有些学生是高中生。
B. 没有学生是高中生。
D. 所有学生都不是高中生。
2. 如果“如果下雨,地面就会湿”为真,那么下列哪个命题必然为真?A. 如果地面湿,那么一定下雨了。
B. 如果地面不湿,那么没有下雨。
C. 如果没有下雨,地面一定不湿。
D. 如果地面湿,那么可能下雨了。
3. 以下哪个命题是“所有猫都怕水”的逆命题?A. 所有怕水的都是猫。
B. 所有不怕水的都不是猫。
C. 有些猫不怕水。
D. 有些怕水的不是猫。
4. 如果“所有A都是B”为真,那么“有些A不是B”是:A. 真命题B. 假命题C. 可能命题D. 不可能命题5. 以下哪个命题是“有些A是B”的逆否命题?A. 所有B都是A。
B. 所有B都不是A。
C. 有些B不是A。
D. 没有B是A。
6. 如果“如果A,则B”为真,且A为假,那么B的真值是什么?A. 真B. 假C. 不确定D. 既非真也非假7. “所有A都是B”和“有些A不是B”这两个命题:A. 可以同时为真B. 可以同时为假C. 一个为真,另一个为假D. 一个为假,另一个为真8. 下列哪个命题是“如果A,则B”的等价命题?A. 如果B,则A。
B. 如果非B,则非A。
C. 如果A且B,则B。
D. 如果B且A,则A。
9. 如果“有些A是B”为真,那么“所有B都是A”是:A. 真命题B. 假命题C. 可能命题D. 不可能命题10. 如果“如果A,则B”为真,且B为真,那么A的真值是什么?A. 真B. 假C. 不确定D. 既非真也非假二、多选题(每题3分,共15分)11. 下列哪些命题是“如果A,则B”的逻辑等价命题?A. 如果非A,则非B。
B. 如果B,则A。
C. 如果非B,则非A。
D. 如果A且非B,则非A。
12. 如果“所有A都是B”和“有些C是A”为真,那么下列哪些命题必然为真?A. 所有C都是B。
逻辑思维题30题
逻辑思维题30题一、数字规律类1. 找规律:1,3,6,10,15,()- 解析:相邻两个数的差值依次为2、3、4、5,那么下一个差值应该是6。
15+6 = 21,所以括号里应填21。
2. 2,4,8,16,32,()- 解析:这组数字是后一个数为前一个数的2倍,32×2 = 64,所以括号里应填64。
3. 1,4,9,16,25,()- 解析:这些数依次是1²、2²、3²、4²、5²,那么下一个数就是6² = 36,括号里应填36。
二、逻辑推理类4. 甲、乙、丙三人中有一人是牧师,一人是骗子,一人是赌棍。
牧师只说真话,骗子只说假话,赌棍有时说真话有时说假话。
甲说:“丙是牧师。
”乙说:“甲是赌棍。
”丙说:“乙是骗子。
”那么甲、乙、丙分别是什么人?- 解析:假设甲是牧师,那么甲说“丙是牧师”就是假话,这与牧师说真话矛盾,所以甲不是牧师;假设丙是牧师,那么丙说“乙是骗子”是真话,此时甲就是赌棍,乙就是骗子,而甲说“丙是牧师”为真,不符合赌棍有时说真话有时说假话,所以丙不是牧师;所以乙是牧师,那么丙说的是假话,丙是骗子,甲就是赌棍。
5. 有四个孩子在一个房间里,他们分别是A、B、C、D。
A说:“B比C高。
”B说:“A比D高。
”C说:“我比D高。
”D说:“C比B高。
”如果他们之中只有一个人说的是真话,那么谁最高?- 解析:A说的“B比C高”和D说的“C比B高”相互矛盾,必然一真一假。
因为只有一个人说的是真话,所以B和C说的都是假话。
B说“ A比D高”为假,那么D比A高;C说“我比D高”为假,那么D比C高。
所以A说的是真话,B>C,又因为D>A,D>C,所以最高的是B。
6. 一个岛上住着两种人,一种是骑士,总是说真话;一种是无赖,总是说假话。
一天,你遇到岛上的两个人A和B。
A说:“或者我是无赖,或者B是骑士。
”根据这句话,你能判断出A和B分别是什么人吗?- 解析:假设A是无赖,那么他说的话就是假话。
最新经典逻辑思维训练题(25题-带答案)
经典逻辑思维训练题(25题,带答案)快去训练一下你的大脑的逻辑思维能力吧!1.世界级的马拉松选手每天跑步不超过6公里。
因此,如果一名选手每天跑步超过6公里,它就不是一名世界级马拉松选手。
以下哪项与上文推理方法相同?(A)跳远运动员每天早晨跑步。
如果早晨有人跑步,则他不是跳远运动员。
(B)如果每日只睡4小时,对身体不利。
研究表明,最有价值的睡眠都发生在入睡后第5小时。
(C)家长和小孩做游戏时,小孩更高兴。
因此,家长应该多做游戏。
(D)如果某汽车早晨能起动,则晚上也可能起动。
我们的车早晨通常能启动,同样,它晚上通常也能启动。
(E)油漆三小时之内都不干。
如果某涂料在三小时内干了,则不是油漆。
2.19世纪有一位英国改革家说,每一个勤劳的农夫,都至少拥有两头牛。
那些没有牛的,通常是好吃懒做的人。
因此它的改革方式便是国家给每一个没有牛的农夫两头牛,这样整个国家就没有好吃懒做的人了。
这位改革家明显犯了一个逻辑错误。
下列选项哪个与该错误相类似?(A)天下雨,地上湿。
现在天不下雨,所以地也不湿。
(B)这是一本好书,因为它的作者曾获诺贝尔奖。
(C)你是一个犯过罪的人,有什么资格说我不懂哲学?(D)因为他躺在床上,所以他病了。
3.有一天,某一珠宝店被盗走了一块贵重的钻石。
经侦破,查明作案人肯定在甲、乙、丙、丁之中。
于是,对这四个重大嫌疑犯进行审讯。
审讯所得到的口供如下:甲:我不是作案的。
乙:丁是罪犯。
丙:乙是盗窃这块钻石的罪犯。
丁:作案的不是我。
经查实:这四个人的口供中只有一个是假的。
那么,以下哪项才是正确的破案结果?(A)甲作案。
(B)乙作案。
(C)丙作案。
(D)丁作案。
(E)甲、乙、丙、丁共同作案。
4.古代一位国王和他的张、王、李、赵、钱五位将军一同出外打猎,各人的箭上都刻有自己的姓氏。
打猎中,一只鹿中箭倒下,但不知是何人所射。
张说:“或者是我射中的,或者是李将军射中的。
王说:“不是钱将军射中的。
李说:“如果不是赵将军射中的,那么一定是王将军射中的。
(完整版)简易逻辑练习题及答案
简易逻辑一、选择题:1.若命题p :2n -1是奇数,q :2n +1是偶数,则下列说法中正确的是 ( )A .p 或q 为真B .p 且q 为真C . 非p 为真D . 非p 为假2.“至多三个”的否定为( ) A .至少有三个 B .至少有四个 C . 有三个 D . 有四个 3.“△ABC 中,若∠C=90°,则∠A 、∠B 都是锐角”的否命题为 ( )A .△ABC 中,若∠C ≠90°,则∠A 、∠B 都不是锐角 B .△ABC 中,若∠C ≠90°,则∠A 、∠B 不都是锐角 C .△ABC 中,若∠C ≠90°,则∠A 、∠B 都不一定是锐角D .以上都不对 4.给出4个命题:①若0232=+-x x ,则x =1或x =2; ②若32<≤-x ,则0)3)(2(≤-+x x ; ③若x =y =0,则022=+y x ;④若*∈N y x ,,x +y 是奇数,则x ,y 中一个是奇数,一个是偶数. 那么:( )A .①的逆命题为真B .②的否命题为真C .③的逆否命题为假D .④的逆命题为假5.对命题p :A ∩∅=∅,命题q :A ∪∅=A ,下列说法正确的是( )A .p 且q 为假B .p 或q 为假C .非p 为真D .非p 为假6.命题“若△ABC 不是等腰三角形,则它的任何两个内角不相等.”的逆否命题是( )A .“若△ABC 是等腰三角形,则它的任何两个内角相等.”B .“若△ABC 任何两个内角不相等,则它不是等腰三角形.”C .“若△ABC 有两个内角相等,则它是等腰三角形.”D .“若△ABC 任何两个角相等,则它是等腰三角形.”7.设集合M={x | x >2},P={x |x <3},那么“x ∈M ,或x ∈P”是“x ∈M ∩P”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件8.有下列四个命题:①“若x +y =0 ,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆否命题; ④“不等边三角形的三个内角相等”逆命题;其中的真命题为 ( )A .①②B .②③C .①③D .③④9.设集合A={x |x 2+x -6=0},B={x |mx +1=0} ,则B 是A 的真子集的一个充分不必要的条件是 ( )A .11,23m ⎧⎫∈-⎨⎬⎩⎭B .m=21-C .110,,23m ⎧⎫∈-⎨⎬⎩⎭D .10,3m ⎧⎫∈⎨⎬⎩⎭10.“220a b +≠”的含义是 ( )A .,a b 不全为0B . ,a b 全不为0C .,a b 至少有一个为0D .a 不为0且b 为0,或b 不为0且a 为0 11.如果命题“非p”与命题“p 或q”都是真命题,那么( )A .命题p 与命题q 的真值相同B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 不一定是真命题12.命题p :若A ∩B=B ,则A B ⊆;命题q :若A B ⊄,则A ∩B ≠B .那么命题p 与命题q 的关系是 ( )A .互逆B .互否C .互为逆否命题D .不能确定二、填空题:13.由命题p :6是12的约数,q :6是24的约数,构成的“p 或q ”形式的命题是:_ ___,“p 且q ”形式的命题是__ _,“非p ”形式的命题是__ _. 14.设集合A={x |x 2+x -6=0}, B={x |mx +1=0},则B 是A 的真子集的一个充分不必要的条件是__ __.15.设集合M={x |x >2},P={x |x <3},那么“x ∈M ,或x ∈P”是“x ∈M ∩P”的三、解答题:16.命题:已知a 、b 为实数,若x 2+ax +b ≤0 有非空解集,则a 2- 4b ≥0.写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.17.已知关于x 的一元二次方程 (m ∈Z)① mx 2-4x +4=0 ② x 2-4mx +4m 2-4m -5=0 求方程①和②都有整数解的充要条件.18.分别指出由下列各组命题构成的逻辑关联词“或”、“且”、“非”的真假.(1)p : 梯形有一组对边平行;q :梯形有一组对边相等.(2)p : 1是方程0342=+-x x 的解;q :3是方程0342=+-x x 的解. (3)p : 不等式0122>+-x x 解集为R ;q : 不等式1222≤+-x x 解集为.(4)p : ∅⊂≠∈0:};0{q19.已知命题1:123xp--≤;)0(012:22>≤-+-mmxxq若p⌝是q⌝的充分非必要条件,试求实数m的取值范围.20.已知命题p:|x2-x|≥6,q:x∈Z,且“p且q”与“非q”同时为假命题,求x的值.21.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根.若“p 或q”为真,“p且q”为假,求m的取值范围.参考答案一、选择题: ABBAD CACBA BC 二、填空题:13.若△ABC 有两个内角相等,则它是等腰三角形.14.6是12或24的约数;6是12的约数,也是24的约数;6不是12的约数. 15.m=21-(也可为31-=m ). 16.必要不充分条件.三、解答题:17.解析:逆命题:已知a 、b 为实数,若0,0422≤++≥-b ax x b a 则有非空解集.否命题:已知a 、b 为实数,若02≤++b ax x 没有非空解集,则.042<-b a 逆否命题:已知a 、b 为实数,若.042<-b a 则02≤++b ax x 没有非空解集. 原命题、逆命题、否命题、逆否命题均为真命题.18.解析:方程①有实根的充要条件是,04416≥⨯⨯-=∆m 解得m ≤1.方程②有实根的充要条件是0)544(41622≥---=∆m m m ,解得.45-≥m,.145Z m m ∈≤≤-∴而故m =-1或m =0或m =1. 当m =-1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m =1.反之,m =1①②都有整数解. ∴①②都有整数解的充要条件是m =1.19.解析:⑴∵ p 真,q 假, ∴“p 或q”为真,“p 且q”为假,“非p”为假.⑵∵ p 真,q 真, ∴“p 或q”为真,“p 且q”为真,“非p”为假. ⑶∵ p 假,q 假, ∴“p 或q”为假,“p 且q”为假,“非p”为真. ⑷∵ p 真,q 假, ∴“p 或q”为真,“p 且q”为假,“非p”为假. 20.解析:由1123x --≤,得210x -≤≤. ∴p ⌝:{}102|>-<=x x x A 或. 由)0(01222>≤-+-m m x x ,得11m x m -≤≤+.∴q ⌝:B={0,11|>+>-<m m x m x x 或}.∵p ⌝是q ⌝的充分非必要条件,且0m >, ∴ A ≠⊂B .∴⎪⎩⎪⎨⎧-≥-≤+>211010m m m 即30≤<m 21、解析: ∵p 且q 为假∴p 、q 至少有一命题为假,又“非q ”为假 ∴q 为真,从而可知p 为假.由p 为假且q 为真,可得:⎩⎨⎧∈<-Z x x x 6||2即⎪⎪⎩⎪⎪⎨⎧∈->-<-Z x x x x x 6622 ∴⎪⎩⎪⎨⎧∈∈<<-∴⎪⎪⎩⎪⎪⎨⎧∈>+-<--ZR Z x x x x x x x x 32060622 故x 的取值为:-1、0、1、2. 22.解析: 若方程x 2+mx +1=0有两不等的负根,则⎩⎨⎧>>-=∆042m m 解得m >2,即p :m >2若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16=16(m 2-4m +3)<0 解得:1<m <3.即q :1<m <3.因“p 或q ”为真,所以p 、q 至少有一为真,又“p 且q ”为假,所以p 、q 至少有一为假, 因此,p 、q 两命题应一真一假,即p 为真,q 为假或p 为假,q 为真.∴⎩⎨⎧<<≤⎩⎨⎧≥≤>312312m m m m m 或或解得:m ≥3或1<m ≤2.。
逻辑题推理题
1、某公司有三个部门:市场部、研发部和财务部。
已知市场部有10名员工,研发部员工数是市场部的两倍,财务部员工数比研发部少5人。
问财务部有多少名员工?A. 5人B. 10人C. 15人D. 20人(答案)C2、五个国家A、B、C、D、E进行足球比赛,已知:A胜了B,B胜了C,C与D平局,D胜了E。
请问下列哪个国家没有胜出过?A. AB. BC. CD. D(答案)C3、一个盒子里有红、黄、蓝三种颜色的球,红球和黄球的总数是20个,黄球和蓝球的总数是18个,红球和蓝球的总数是22个。
问黄球有多少个?A. 8个B. 9个C. 10个D. 11个(答案)A4、四个人(甲、乙、丙、丁)进行象棋比赛,每两人之间都要比赛一场。
已知甲胜了乙,乙和丙平局,丁没有胜过甲。
请问下列哪项陈述是正确的?A. 甲胜了所有人B. 乙一场未胜C. 丙胜了丁D. 丁胜了乙(答案)D5、某班级有五个学习小组,每组人数不同。
已知第一组有6人,第二组人数是第一组的两倍减1,第三组人数比第二组多3人,第四组人数是第三组的一半加2人,第五组有9人。
问哪一组人数最多?A. 第一组B. 第二组C. 第三组D. 第四组(答案)C6、三个学生(小明、小华、小丽)参加数学竞赛,赛后他们预测自己的成绩。
小明说:“我可能是第一名。
”小华说:“我绝对不是第一名。
”小丽说:“我不可能是最后一名。
”成绩公布后,发现他们中只有一个人的预测是错误的。
请问谁是第一名?A. 小明B. 小华C. 小丽D. 无法确定(答案)A7、一家公司有四个部门:销售部、市场部、人事部和研发部。
已知销售部人数最多,市场部人数比人事部多,研发部人数不是最少的,人事部人数不是最多的。
问哪个部门人数最少?A. 销售部B. 市场部C. 人事部D. 研发部(答案)C8、五个城市(P、Q、R、S、T)之间的交通连接情况如下:P与Q、R相连,Q与P、S相连,R与P、T相连,S与Q相连,T与R相连。
逻辑三十道测试题及答案
逻辑三十道测试题及答案1. 如果所有的苹果都是水果,那么以下哪项陈述是正确的?A. 所有的水果都是苹果。
B. 有些水果不是苹果。
C. 所有的水果都是苹果。
D. 有些苹果不是水果。
答案:B2. 假设“如果下雨,那么地面会湿”。
如果地面湿了,以下哪项陈述是正确的?A. 下雨了。
B. 没有下雨。
C. 地面可能湿了,也可能没湿。
D. 地面湿了,但不一定下雨。
答案:D3. 以下哪项陈述是逻辑上有效的?A. 如果我学习,那么我会通过考试。
B. 如果我不学习,那么我会通过考试。
C. 如果我学习,那么我会失败。
D. 如果我不学习,那么我会失败。
答案:A4. 如果所有的猫都是哺乳动物,并且所有的哺乳动物都有毛发,那么以下哪项陈述是正确的?A. 所有的猫都有毛发。
B. 有些猫没有毛发。
C. 所有的哺乳动物都是猫。
D. 有些哺乳动物不是猫。
答案:A5. 假设“如果小明是学生,那么他必须参加考试”。
如果小明参加了考试,以下哪项陈述是正确的?A. 小明是学生。
B. 小明不是学生。
C. 小明可能不是学生。
D. 小明是学生,但不一定参加考试。
答案:C6. 以下哪项陈述是逻辑上无效的?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周一。
C. 如果今天是周一,那么昨天是周日。
D. 如果今天是周一,那么明天是周一。
答案:B7. 假设“如果一个数是偶数,那么它可以被2整除”。
如果一个数可以被2整除,以下哪项陈述是正确的?A. 这个数是奇数。
B. 这个数是偶数。
C. 这个数不能被2整除。
D. 这个数可能是奇数。
答案:B8. 如果所有的鸟都会飞,那么以下哪项陈述是正确的?A. 所有的鸟都不会飞。
B. 有些鸟会飞。
C. 有些鸟不会飞。
D. 所有的鸟都会飞。
答案:D9. 假设“如果一个物体是金属,那么它是导电的”。
如果一个物体是导电的,以下哪项陈述是正确的?A. 这个物体是金属。
B. 这个物体不是金属。
C. 这个物体可能是金属。
逻辑关系试题及答案
逻辑关系试题及答案1. 如果今天是星期三,那么明天是星期四。
请问,如果今天是星期四,那么昨天是星期几?A. 星期一B. 星期二C. 星期三D. 星期五答案:C2. 所有的猫都是哺乳动物。
如果一只动物是猫,那么它一定是哺乳动物。
请问,如果一只动物不是哺乳动物,那么它是不是猫?A. 是B. 不是C. 可能是D. 无法确定答案:B3. 如果一个人是大学生,那么他/她必须通过大学入学考试。
如果张三没有通过大学入学考试,那么张三是不是大学生?A. 是B. 不是C. 可能是D. 无法确定答案:B4. 所有的苹果都是水果。
如果一个物体是苹果,那么它一定是水果。
请问,如果一个物体是水果,那么它是不是苹果?A. 是B. 不是C. 可能是D. 无法确定答案:C5. 如果今天下雨,那么明天会降温。
如果明天没有降温,那么今天是否下雨?A. 是B. 不是C. 可能是D. 无法确定答案:D6. 所有的鸟都会飞。
如果一个生物是鸟,那么它一定会飞。
请问,如果一个生物不会飞,那么它是不是鸟?A. 是B. 不是C. 可能是D. 无法确定答案:B7. 如果一个学生通过了所有科目的考试,那么他/她将获得学位。
如果一个学生没有获得学位,那么他/她是否通过了所有科目的考试?A. 是B. 不是C. 可能是D. 无法确定答案:B8. 如果一个物体是金属,那么它导电。
如果一个物体不导电,那么它是不是金属?A. 是B. 不是C. 可能是D. 无法确定答案:C9. 如果一个学生是优秀学生,那么他/她的成绩在班级中排名前10%。
如果一个学生的成绩在班级中排名前10%,那么他/她是不是优秀学生?A. 是B. 不是C. 可能是D. 无法确定答案:C10. 如果一个事件是必然发生的,那么它一定会发生。
如果一个事件没有发生,那么它是不是必然发生的?A. 是B. 不是C. 可能是D. 无法确定答案:B。
逻辑思维测试题及答案
逻辑思维测试题及答案1. 如果所有的苹果都是水果,所有的水果都是食物,那么苹果是:A. 水果B. 食物C. 苹果D. 都不是答案:B2. 一个逻辑学家说:“如果下雨,那么地面会湿。
”今天地面湿了,那么:A. 下雨了B. 可能下雨了C. 没有下雨D. 无法确定答案:B3. 一个房间里有三个人,他们分别是:一个律师,一个医生和一个工程师。
已知:- 律师总是说真话。
- 医生有时说谎。
- 工程师从不说谎。
- 其中一个人说他是律师。
- 另一个人说他不是律师。
- 第三个人说他是工程师。
那么,谁是工程师?A. 第一个人B. 第二个人C. 第三个人D. 无法确定答案:C4. 如果所有的猫都是哺乳动物,而有些哺乳动物不是猫,那么:A. 所有的猫都是哺乳动物B. 有些哺乳动物不是猫C. 所有的哺乳动物都是猫D. 有些猫不是哺乳动物答案:A5. 一个逻辑谜题:如果一个数字乘以3,然后加4,最后减去9,结果是10。
那么原来的数字是多少?A. 1B. 3C. 5D. 7答案:C6. 一个逻辑学家说:“如果一个命题是真的,那么它的逆否命题也是真的。
”如果这个命题是真的,那么它的逆否命题是:A. 真的B. 假的C. 无法确定D. 既是真的也是假的答案:A7. 一个逻辑谜题:如果一个数字加上它自己的两倍等于15,那么这个数字是多少?A. 5B. 3C. 7D. 9答案:B8. 一个逻辑学家说:“如果一个命题和它的逆命题都是真的,那么这个命题是恒真的。
”如果一个命题是恒真的,那么:A. 它的逆命题也是真的B. 它的逆命题是假的C. 无法确定D. 既是真的也是假的答案:A9. 一个逻辑谜题:如果一个数字乘以4,然后除以2,最后减去3,结果是6。
那么原来的数字是多少?A. 6B. 8C. 10D. 12答案:C10. 一个逻辑学家说:“如果一个命题是假言的,那么它需要一个前提和一个结论。
”如果一个命题是假言的,那么:A. 它的前提和结论都是真的B. 它的前提和结论都是假的C. 它的前提和结论可以是真的或假的D. 无法确定答案:C。
逻辑试题及答案
逻辑试题及答案1. 如果所有的猫都怕水,而有些猫是黑色的,那么以下哪项陈述必然为真?A. 所有的猫都怕水。
B. 有些猫不怕水。
C. 所有的黑猫都怕水。
D. 有些黑猫不怕水。
答案:C2. 假设在一个逻辑系统中,如果P则Q为真,且Q为假,那么以下哪项陈述必然为假?A. P为真。
B. P为假。
C. 如果P则Q。
D. 如果Q则P。
答案:C3. 以下哪个选项是有效的逻辑推理?A. 所有的鸟都会飞。
企鹅是鸟。
因此,企鹅会飞。
B. 所有的狗都是哺乳动物。
猫不是狗。
因此,猫不是哺乳动物。
C. 所有的鱼都生活在水中。
鲨鱼是鱼。
因此,鲨鱼生活在水中。
D. 所有的植物都需要阳光。
玫瑰是植物。
因此,玫瑰不需要阳光。
答案:C4. 如果“如果P则Q”和“非Q”都为真,那么以下哪项陈述必然为假?A. P为真。
B. P为假。
C. Q为真。
D. 非P为假。
答案:A5. 在一个逻辑系统中,如果“P且Q”为假,以下哪项陈述必然为真?A. P为真。
B. Q为真。
C. P为假。
D. Q为假。
答案:D6. 如果“P或Q”为真,且“非P”为真,那么以下哪项陈述必然为真?A. P为真。
B. Q为真。
C. P为假。
D. Q为假。
答案:B7. 以下哪个选项是有效的三段论?A. 所有的人都是动物。
苏格拉底是人。
因此,苏格拉底是动物。
B. 所有的猫都怕水。
所有的狗都怕水。
因此,所有的猫都是狗。
C. 所有的植物都是绿色的。
玫瑰是植物。
因此,玫瑰是绿色的。
D. 所有的鸟都会飞。
企鹅是鸟。
因此,企鹅不会飞。
答案:A8. 如果“P当且仅当Q”为真,且“P”为假,那么以下哪项陈述必然为假?A. Q为真。
B. Q为假。
C. P为真。
D. 非Q为真。
答案:A9. 如果“P或Q”为真,且“P”为假,那么以下哪项陈述必然为真?A. P为真。
B. Q为真。
C. P为假。
D. Q为假。
答案:B10. 在一个逻辑系统中,如果“P且Q”为真,那么以下哪项陈述必然为真?A. P为真。
逻辑三十道测试题及答案
逻辑三十道测试题及答案1. 所有的苹果都是水果,所有的水果都是食物,所以所有的苹果都是食物。
A. 正确B. 错误答案:A2. 如果下雨,那么地面会湿。
现在地面湿了,所以一定下雨了。
A. 正确B. 错误答案:B3. 所有的狗都会叫,所有的猫都会喵喵叫,所以会叫的动物都是狗。
A. 正确B. 错误答案:B4. 如果今天是周一,那么明天是周二。
今天是周一,所以明天是周二。
A. 正确B. 错误答案:A5. 所有的鸟都有羽毛,企鹅是鸟,所以企鹅有羽毛。
A. 正确B. 错误答案:A6. 如果你努力学习,你就会通过考试。
你没有通过考试,所以你没有努力学习。
A. 正确B. 错误答案:B7. 所有的植物都需要阳光,仙人掌是植物,所以仙人掌需要阳光。
A. 正确B. 错误答案:A8. 如果你感到口渴,你就会喝水。
你没有喝水,所以你不感到口渴。
A. 正确B. 错误答案:B9. 所有的鱼都生活在水中,海豚生活在水中,所以海豚是鱼。
A. 正确B. 错误答案:B10. 如果你按时完成作业,老师会表扬你。
老师表扬了你,所以你按时完成了作业。
A. 正确B. 错误答案:B11. 所有的金属都是导电的,铜是金属,所以铜是导电的。
A. 正确B. 错误答案:A12. 如果你感到高兴,你就会笑。
你没有笑,所以你不高兴。
A. 正确B. 错误答案:B13. 所有的哺乳动物都是温血动物,蝙蝠是哺乳动物,所以蝙蝠是温血动物。
A. 正确B. 错误答案:A14. 如果你感到冷,你就会穿外套。
你穿了外套,所以你感到冷。
A. 正确B. 错误答案:B15. 所有的电脑都有处理器,手机也有处理器,所以手机是电脑。
A. 正确B. 错误答案:B16. 如果你饿了,你就会吃东西。
你吃东西了,所以你饿了。
A. 正确B. 错误答案:A17. 所有的植物都是绿色的,玫瑰是植物,所以玫瑰是绿色的。
A. 正确B. 错误答案:B18. 如果你累了,你就会休息。
你休息了,所以你累了。
逻辑灵活测试题及答案
逻辑灵活测试题及答案1. 题目:如果所有的猫都怕水,而有的动物不是猫,那么以下哪个陈述是正确的?A. 所有的动物都怕水B. 有的动物不怕水C. 所有的猫都不怕水D. 有的猫不怕水答案:B。
解析:题目中提到所有的猫都怕水,但并没有提及其他动物是否怕水。
因此,我们不能推断出所有动物都怕水(选项A错误),也不能推断出所有猫都不怕水(选项C错误),以及有的猫不怕水(选项D错误)。
唯一正确的陈述是存在一些动物不怕水(选项B 正确)。
2. 题目:在一个逻辑游戏中,如果玩家A说真话,那么玩家B也说真话;如果玩家A说谎,那么玩家B也说谎。
现在玩家A说:“玩家B 说真话。
”根据这个陈述,以下哪个选项是正确的?A. 玩家A和玩家B都说真话B. 玩家A和玩家B都说谎C. 玩家A说真话,玩家B说谎D. 玩家A说谎,玩家B说真话答案:A。
解析:根据题目条件,玩家A和玩家B要么都说真话,要么都说假话。
由于玩家A声称玩家B说真话,如果玩家A说的是真话,那么玩家B也必须说真话,符合题目条件。
如果玩家A说谎,那么玩家B也必须说谎,但这与玩家A的陈述矛盾,因为玩家A声称玩家B说真话。
因此,唯一符合逻辑的选项是A。
3. 题目:在一个团队中,如果张三请假,那么李四也会请假;如果李四请假,那么王五也会请假。
现在张三请假了,以下哪个陈述是正确的?A. 只有张三请假了B. 张三和李四都请假了C. 张三、李四和王五都请假了D. 只有王五请假了答案:C。
解析:根据题目条件,张三请假会导致李四也请假,李四请假又会导致王五也请假。
由于张三已经请假,我们可以推断出李四和王五也会请假。
因此,正确的陈述是张三、李四和王五都请假了(选项C正确)。
结束语:以上是逻辑灵活测试题及答案,希望这些题目能帮助你提高逻辑思维能力。
逻辑思维试题及答案
逻辑思维试题及答案1. 题目:如果所有的猫都怕水,而Tom是一只猫,那么Tom怕水吗?答案:是的,Tom怕水。
2. 题目:如果一个数是偶数,那么它一定能被2整除。
现在有一个数是12,它是偶数吗?答案:是的,12是偶数。
3. 题目:如果所有的植物都需要阳光,而仙人掌是一种植物,那么仙人掌需要阳光吗?答案:是的,仙人掌需要阳光。
4. 题目:如果一个物体在不受外力的情况下会保持静止或匀速直线运动状态,那么如果一个物体正在匀速直线运动,它受到外力了吗?答案:没有,它没有受到外力。
5. 题目:如果所有的鸟都会飞,而企鹅是一种鸟,那么企鹅会飞吗?答案:不会,企鹅不会飞。
6. 题目:如果一个数能被5整除,那么它的个位数一定是0或5。
现在有一个数是25,它的个位数符合这个条件吗?答案:是的,25的个位数是5,符合条件。
7. 题目:如果所有的金属都能导电,而铜是一种金属,那么铜能导电吗?答案:是的,铜能导电。
8. 题目:如果一个三角形的两个角都是锐角,那么第三个角一定是锐角吗?答案:不一定,第三个角可能是直角或钝角。
9. 题目:如果所有的水果都含有维生素C,而苹果是一种水果,那么苹果含有维生素C吗?答案:是的,苹果含有维生素C。
10. 题目:如果一个数是3的倍数,那么它的各位数字之和也是3的倍数。
现在有一个数是123,它的各位数字之和是6,是3的倍数吗?答案:是的,123的各位数字之和6是3的倍数。
11. 题目:如果所有的哺乳动物都是温血动物,而蝙蝠是一种哺乳动物,那么蝙蝠是温血动物吗?答案:是的,蝙蝠是温血动物。
12. 题目:如果一个数是质数,那么它只能被1和它本身整除。
现在有一个数是29,它是质数吗?答案:是的,29是质数。
13. 题目:如果所有的狗都是哺乳动物,而拉布拉多是一种狗,那么拉布拉多是哺乳动物吗?答案:是的,拉布拉多是哺乳动物。
14. 题目:如果一个数是偶数,那么它的平方也是偶数。
现在有一个数是4,它的平方是16,是偶数吗?答案:是的,16是偶数。
最新简易逻辑练习题(包含详细答案)
1.“|a|>0”是“a>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析因为|a|>0⇔a>0或a<0,所以a>0⇒|a|>0,但|a|>0a>0.2.(2012·陕西)设a,b∈R,i是虚数单位,则“ab=0”是“复数a+bi为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析由a+bi为纯虚数可知a=0,b≠0,所以ab=0.而ab=0a=0,且b≠0.故选B项.3.“a>1”是“1a<1”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件答案 B4.(2013·湖北)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(綈p)∨(綈q) B.p∨(綈q)C.(綈p)∧(綈q) D.p∨q答案 A解析綈p:甲没有降落在指定范围;綈q:乙没有降落在指定范围,至少有一位学员没有降落在指定范围,即綈p或綈q发生.故选A.5.命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1答案 D解析原命题的逆否命题是把条件和结论都否定后,再交换位置,注意“-1<x<1”的否定是“x≥1或x≤-1”.6.设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析因为x≥2且y≥2⇒x2+y2≥4易证,所以充分性满足,反之,不成立,如x=y=74,满足x2+y2≥4,但不满足x≥2且y≥2,所以x≥2且y≥2是x2+y2≥4的充分而不必要条件,故选择A.7.已知p:a≠0,q:ab≠0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析ab=0a=0,但a=0⇒ab=0,因此,p是q的必要不充分条件,故选B.8.设M、N是两个集合,则“M∪N≠∅”是“M∩N≠∅”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件答案 B解析M∪N≠∅,不能保证M,N有公共元素,但M∩N≠∅,说明M,N中至少有一元素,∴M ∪N ≠∅.故选B.9.若x ,y ∈R ,则下列命题中,甲是乙的充分不必要条件的是( )A .甲:xy =0 乙:x 2+y 2=0B .甲:xy =0 乙:|x |+|y |=|x +y |C .甲:xy =0 乙:x 、y 至少有一个为零D .甲:x <y 乙:x y <1答案 B解析 选项A :甲:xy =0即x ,y 至少有一个为0,乙:x 2+y 2=0即x 与y 都为0.甲乙,乙⇒甲.选项B :甲:xy =0即x ,y 至少有一个为0,乙:|x |+|y |=|x +y |即x 、y 至少有一个为0或同号.故甲⇒乙且乙甲.选项C :甲⇔乙,选项D ,由甲x <y 知当y =0,x <0时,乙不成立,故甲乙.10.在△ABC 中,设p :a sin B =b sin C =c sin A ;q :△ABC 是正三角形,那么p是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 C解析 若p 成立,即a sin B =b sin C =c sin A ,由正弦定理,可得a b =b c =c a =k .∴⎩⎪⎨⎪⎧ a =kb ,b =kc ,c =ka ,∴a =b =c .则q :△ABC 是正三角形成立.反之,若a =b =c ,∠A =∠B =∠C =60°,则a sin B =b sin C =c sin A .因此p⇒q且q⇒p,即p是q的充要条件.故选C.11.“a=1”是“函数f(x)=lg(ax)在(0,+∞)上单调递增”的()A.充分不必要条件B.充分必要条件C.必要不充分条件D.既不充分也不必要条件答案 A解析∵当a=1时,f(x)=lg x在(0,+∞)上单调递增,∴a=1⇒f(x)=lg(ax)在(0,+∞)上单调递增,而f(x)=lg(ax)在(0,+∞)上单调递增可得a>0,∴“a =1”是“函数f(x)=lg(ax)在(0,+∞)上单调递增”的充分不必要条件,故选A.12.“x>y>0”是“1x<1y”的________条件.答案充分不必要解析1x<1y⇒xy·(y-x)<0,即x>y>0或y<x<0或x<0<y.13.“tan θ≠1”是“θ≠π4”的________条件.答案充分不必要解析题目即判断θ=π4是tan θ=1的什么条件,显然是充分不必要条件.14.如果对于任意实数x,〈x〉表示不小于x的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x-y|<1”是“〈x〉=〈y〉”的________条件.答案必要不充分解析可举例子,比如x=-0.5,y=-1.4,可得〈x〉=0,〈y〉=-1;比如x=1.1,y=1.5,〈x〉=〈y〉=2,|x-y|<1成立.因此“|x-y|<1”是〈x〉=〈y〉的必要不充分条件.15.已知A为xOy平面内的一个区域.命题甲:点(a ,b )∈{(x ,y )|⎩⎨⎧ x -y +2≤0,x ≥0,3x +y -6≤0};命题乙:点(a ,b )∈A . 如果甲是乙的充分条件,那么区域A 的面积的最小值是________. 答案 2解析 设⎩⎪⎨⎪⎧ x -y +2≤0,x ≥0,3x +y -6≤0所对应的区域如右图所示的阴影部分PMN 为集合B .由题意,甲是乙的充分条件,则B ⊆A ,所以区域A 面积的最小值为S △PMN = 12×4×1=2.16.“a =14”是“对任意的正数x ,均有x +a x ≥1”的________条件.答案 充分不必要解析 当a =14时,对任意的正数x ,x +a x =x +14x ≥2x ·14x =1,而对任意的正数x ,要使x +a x ≥1,只需f (x )=x +a x 的最小值大于或等于1即可,而在a 为正数的情况下,f (x )=x +a x 的最小值为f (a )=2a ≥1,得a ≥14,故充分不必要.17.已知命题p :|x -2|<a (a >0),命题q :|x 2-4|<1,若p 是q 的充分不必要条件,求实数a 的取值范围.答案 0<a ≤5-2解析 由题意p :|x -2|<a ⇔2-a <x <2+a ,q :|x 2-4|<1⇔-1<x 2-4<1⇔3<x 2<5⇔-5<x <-3或3<x < 5.又由题意知p 是q 的充分不必要条件,所以有⎩⎪⎨⎪⎧ -5≤2-a ,2+a ≤-3,a >0, ①或⎩⎪⎨⎪⎧ 3≤2-a ,2+a ≤5,a >0, ②.由①得a 无解;由②解得0<a ≤5-2.18.已知集合M ={x |x <-3或x >5},P ={x |(x -a )·(x -8)≤0}.(1)求实数a 的取值范围,使它成为M ∩P ={x |5<x ≤8}的充要条件;(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件;(3)求实数a 的取值范围,使它成为M ∩P ={x |5<x ≤8}的一个必要但不充分条件.答案 (1){a |-3≤a ≤5} (2)在{a |-3≤a ≤5}中可任取一个值a =0(3){a |a <-3}解析 由题意知,a ≤8.(1)M ∩P ={x |5<x ≤8}的充要条件-3≤a ≤5.(2)M ∩P ={x |5<x ≤8}的充分但不必要条件,显然,a在[-3,5]中任取一个值都可.(3)若a=-5,显然M∩P=[-5,-3)∪(5,8]是M∩P={x|5<x≤8}的必要但不充分条件.结合①②知a<-3时为必要不充分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简易逻辑精选练习题
一、选择题
1. “2
1m ”是“直线03)2()2(013)2(y m x m my x m 与直线相互垂直”的()A .充分必要条件B .充分而不必要条件
C .必要而不充分条件
D .既不充分也不必要条件
2. 设集合A ={x|11
x x <0},B ={x || x -1|<a },若“a =1”是“A ∩B ≠”的(
)A .充分不必要条件B .必要不充分条件
C .充要条件
D .既不充分又不必要条件
3. 命题p :“有些三角形是等腰三角形”,则┐p 是()
A .有些三角形不是等腰三角形
B .所有三角形是等腰三角形
C .所有三角形不是等腰三角形
D .所有三角形是等腰三角形
4. 设命题p :方程2310x x 的两根符号不同;命题q :方程2310x x 的两根之和为
3,判断
命题“p ”、“q ”、“p q ”、“p q ”为假命题的个数为( )
A .0
B .1
C .2
D .3
5.“a >b >0”是“ab <22
2b
a ”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
6. 若不等式|x -1| <a 成立的充分条件是0<x<4,则实数a 的取值范围是( )
A .a 1
B .a 3
C .a 1
D .a 3
7. 下列命题中,其“非”是真命题的是()
A .?x ∈R ,x2-22x + 2 ≥ 0
B .?x ∈R ,3x-5 = 0
C .一切分数都是有理数
D .对于任意的实数a,b,方程ax=b 都有唯一解
8.0a 是方程2210ax x 至少有一个负数根的()
A .必要不充分条件
B .充分不必要条件
C .充分必要条件
D .既不充分也不必要条件
二、填空题
9. (1)命题:,R x x 2+x +1<0的否定是,
(2)命题“x ∈R ,x 2-x+3>0”的否定是,
(3)命题“对任意的x ∈{x|-2<x<4},|x-2|<3”的否定形式
(4)命题“?x ,y ∈R ,有x2+ y 2≥ 0”的否定是
(5)命题“不等式x 2+x-6>0的解是x<-3或x>2”的逆否命题是
(6)命题“?a ,b ∈R ,如果ab >0,则a >0”的否命题是
(7)命题“△ABC 中,若∠C=90°,则∠A 、∠B 都是锐角”的否命题为:
,否定形式:。
10.下列四个命题:
①“k=1”22sin kx kx 是“函数y=cos 的最小正周期为”的充要条件;
②“a=3”是“直线2303(1)7ax y a x a y a 与直线相互垂直”的充要条件;
③函数2
243x y x 的最小值为2; ④“不等边三角形的三个内角相等”的逆命题
. 其中假命题的序号为
.11. 用充分条件、必要条件填空:
(1)1,23x
y x y 且是的.(2)1,23x y x y 或是的
.(3):1
2p x ,2:56q x x ,则p 是q 的(4) 若:,1A a R a , :B x 的二次方程2(1)20x a x a 的一个根大于零,
另一根小于零,则A 是B 的.
12.判断下列命题的真假性:
①在△ABC 中,“A >B ”是“sinA >sinB ”充分必要条件
②“x ∈R ,x 2+4x 2+1≥m ”恒成立的充要条件是m ≤3
③、对任意的x ∈{x|-2<x<4},|x-2|<3
的否定形式④、△>0是一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件.
其中真命题的序号为
. 13. 已知命题
:p R x ,0122ax ax .若命题p 是假命题,则实数a 的取值范围
是 .三、解答题
14.已知集合A={x|x 2-3x+2=0},B={x|x 2-mx+2=0},若A 是B 的必要不充分条件,求实数
m
范围。
15.已知p :方程210x
mx 有两个不相等的负实根;q :方程244(2)10x m x 无实根. 若"","",p q p q 为真为假求实数m 的取值范围.
16.已知命题p :方程2220a x ax 在[-1,1]上有解; 命题q :只有一个实数x 满足不等式
2220.x ax a 若命题"",p q 是假命题求实数a 的取值范围.。