六年级数学上册第一单元 圆 知识整理

合集下载

数学六年级上册圆形知识点

数学六年级上册圆形知识点

数学六年级上册圆形知识点圆形是我们在日常生活中经常遇到的图形之一。

它具有独特的性质和特点,在数学学科中有着重要的地位。

本文将为大家介绍数学六年级上册的圆形知识点,包括圆的定义、圆的要素、圆的性质以及圆的应用等内容。

一、圆的定义圆是由平面上距离一个确定点(圆心)相等的所有点组成的图形。

以大写字母O表示圆心,小写字母r表示圆的半径,用圆周上的一点A和圆心O来表示一个圆,记作⊙O,圆的名称为⊙O。

二、圆的要素1. 圆心:圆的中心点,用大写字母O表示。

2. 半径:圆心到圆周上任意一点的距离,用小写字母r表示。

3. 直径:通过圆心的两个点构成的线段,它的长度等于圆的半径的两倍,用小写字母d表示。

4. 弦:圆上任意两点之间的线段。

5. 弧:圆上两点之间的部分。

6. 弧长:弧的长度,通常用小写字母l表示。

三、圆的性质1. 圆的半径相等:圆心到圆周上任意一点的距离都相等。

2. 圆的直径是半径的两倍:d = 2r。

3. 弦的长度小于等于直径:对于同一个圆来说,任意一个弦的长度都小于等于它的直径。

4. 圆的周长公式:设圆的半径为r,则圆的周长C=2πr,其中π≈3.14。

5. 圆的面积公式:设圆的半径为r,则圆的面积S=πr²,其中π≈3.14。

6. 圆心角和对应弧关系:圆心角的度数等于它所对应的弧所占据的圆心角的度数,即对于同一条弧来说,圆心角的度数等于它所对应的弧的度数。

四、圆的应用1. 圆在建筑设计中的应用:圆形的建筑物如圆形剧场、圆形体育馆等,不仅具有美观的外形,还能提供更好的空间利用效率。

2. 圆在机械加工中的应用:在车床加工、铣床加工等制造过程中,圆形工件的加工操作较为简单,容易控制质量。

3. 圆在艺术设计中的应用:圆形作为一种基本的图形元素,经常被用于绘画、雕塑、标志设计等领域,能够带来视觉上的舒适感和美感。

4. 圆在日常计算中的应用:在计算机图形学、地图测量、天体运动等领域,圆的相关概念和公式被广泛应用。

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理
以下是六年级上册数学《圆》的主要知识点整理:
1. 圆的定义:圆是由平面上距离一个定点(圆心)相等的所有点组成的图形。

2. 圆的要素:圆心、半径、弧、弦、直径。

3. 圆心角:以圆心为顶点的角叫做圆心角。

4. 圆周角:在圆上的两条弧所对的圆心角叫做圆周角。

5. 弧长:圆的弧的长度。

6. 第一惯性定理:同一圆上的任意两个圆心角相等的弧长也相等。

7. 第二惯性定理:在同一圆上,相等的弦所对的圆周角相等。

8. 第三惯性定理:在同一圆上,相等的弧所对的圆周角相等。

9. 相交弧:两个圆相交所形成的弧。

10. 接触弧:两个圆的外接或内切所形成的弧。

11. 切线:与圆只有一个公共点的直线叫做切线。

12. 切点:切线与圆的交点叫做切点。

13. 弦与切线定理:一条弦与切线在弦的两侧交于一点,这个点到弦的两个端点所形成的两个角相等。

14. 弦的性质:相等弦所对的两个圆心角相等;在同一圆上,离圆心较近的弦较长。

15. 弧和角的关系:相等的弧所对的圆心角相等;弧所对的圆心角越大,弧越长;弧所对的圆周角越大,弧越小。

16. 圆与直线的位置关系:圆与直线有内切、外切和相交三种关系。

这些是六年级上册数学《圆》的主要知识点,希望对你有帮助!。

小学六年级上册1单元数学知识点(圆的认识)

小学六年级上册1单元数学知识点(圆的认识)

小学六年级上册1单元数学知识点(圆的认识)1、圆所占平面的大小叫圆的面积。

把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。

2、如果用S表示圆的面积, r表示圆的半径,那么圆的面积公式:S圆=pi;r2。

3、半圆的周长不是圆的周长的一半,而是圆的周长的一半再加上一条直径长,即pi;r+2r;pi;r 半圆的面积是圆的面积的一半,即。

24、当长方形、正方形、圆的周长相等时,圆的面积最大,长方形的面积最小。

当长方形、正方形、圆的面积相等时,长方形的周长最大,圆的周长最小。

5、一个圆的半径扩大(缩小)几倍,直径就扩大(缩小)几倍,周长也扩大(缩小)几倍,面积就扩大(缩小)几的平方倍,但圆周率永远不变。

26、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=pi;中R=r+环的宽度。

环形的周长=外圆周长+内圆周长。

7、几个公式: R2-pi;r2或 S=pi;(R2- r2)。

其C圆=pi;d =2pi;d = 2r pi;S圆=pi;r 2Cdr = r = 2pi; 28、永远记住要带单位,周长是(cm),面积是平方(cm),体积是立方(cm)。

9、常用的3.14的倍数:3.14times;2=6.28 3.14times;3=9.423.14times;4=12.56 3.14times;5=15.7 3.14times;6=18.843.14times;7=21.98 3.14times;8=25.123.14times;9=28.26 3.14times;12=37.683.14times;14=43.963.14times;16=50.24 3.14times;18=56.523.14times;24=75.36 3.14times;25=78.53.14times;36=113.04 3.14times;49=153.863.14times;64=200.96 3.14times;81=254.34希望为大家提供的小学六年级上册1单元数学知识点,能够对大家有用,更多相关内容,请及时关注我们!。

六年级上册数学圆的知识点

六年级上册数学圆的知识点

六年级上册数学圆的知识点
一、圆的定义
1.圆(circle)是一种特殊的平面图形,是由一组等距离的点连线构成的,既不留空又不闭合的图形,称为圆。

2. 两点组成的圆,也可以理解为一种椭圆形,即是一个中心和半径组成的圆环形。

3. 由任意三个不共线点组成的圆,其中一点作为圆心,距离圆心相等的两点分别位于圆的两端,这两端之间的距离即为圆的半径。

二、圆的数学表达式
1. 圆的数学表达式通常由三部分组成,即圆心坐标、圆上一点坐标和它们之间的距离。

2. 以圆心坐标(x0,y0)和圆上任意一点坐标(x,y)为例,可以用下列几种表达式表示圆:(1)(x-x0)2+(y-y0)2=r2 (2) (x-x0)2/a2 + (y-
y0)2/b2 =1,其中a和b分别为长轴和短轴长度;(3)(x-x0)2 + (y-y0)2-r2 = 0,其中r为半径;(4)(x-x0)2 + (y-y0)2-d2 = 0,其中d为圆心到圆上任意一点的距离。

三、圆的性质
1.内心角性质:圆上任意三点,其三条连线所成的三个内角加起来总等于 180°。

2. 弦长性质:圆上任意两点与圆心所成的角相同,那么它们之间的弦
长也相等。

3. 周长性质:圆周长(C)与圆直径(D)的关系为,C=2πr,其中r为圆的半径长度。

四、圆的定理
1.圆周面积公式:面积S=πr2,其中r为圆的半径长度。

2. 三角形面积公式:S=(h1+h2)ab/2,其中h1、h2分别为三角形的凸角到边之间的距离,a和b分别为三角形的两边长度。

3. 利用弧长来求圆心角:圆心角θ = 弧长L/半径r = 2πr/r = 2π。

【小学数学】六年级上册数学《圆》知识点整理

【小学数学】六年级上册数学《圆》知识点整理

【小学数学】六年级上册数学《圆》知识点整理1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次;折痕相交于圆中心的一点;这一点叫做圆心。

如下图中;中心的一点O 。

一般用字母O 表示。

它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r 表示。

如下图红色线。

把圆规两脚分开;两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d 表示。

如下图蓝色线。

直径是一个圆内最长的线段。

85、圆心确定圆的位置;半径确定圆的大小。

如果已知的是直径;我们要把直径除以2换成半径,确定圆心;然后才开始画圆。

(画圆给出半径标半径r=?;给出直径标直径d=?) 要比较两圆的大小;就是比较两个圆的直径或半径。

6、在同圆或等圆内;有无数条半径;有无数条直径。

同圆中所有的半径、直径都相等。

7.在同圆或等圆内;直径的长度是半径的2倍;半径的长度是直径的21。

用字母表示为:d = 2r 或r =2d 或r=d ÷2 8、轴对称图形:如果一个图形沿着一条直线对折;两侧的图形能够完全重合;这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形;都有对称轴。

这些图形都是轴对称图形。

10、常见图形的对称轴:只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形 只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。

圆是轴对称图形;有无数条对称轴;对称轴就是直径所在的直线。

11、正方形里最大的圆。

两者联系:边长=直径;圆的面积=78.5%正方形的面积画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心;以边长为直径画圆。

12、长方形里最大的圆。

两者联系:宽=直径画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心;以宽为直径画圆。

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

如下图中,中心的一点O 。

一般用字母O 表示。

它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r 表示。

如下图红色线。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d 表示。

如下图蓝色线。

直径是一个圆内最长的线段。

85、圆心确定圆的位置,半径确定圆的大小。

如果已知的是直径,我们要把直径除以2换成半径,确定圆心,然后才开始画圆。

(画圆给出半径标半径r=?,给出直径标直径d=?)要比较两圆的大小,就是比较两个圆的直径或半径。

6、在同圆或等圆内,有无数条半径,有无数条直径。

同圆中所有的半径、直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。

用字母表示为:d = 2r 或r = 2d 或r=d ÷2 8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、常见图形的对称轴:只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。

圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。

11、正方形里最大的圆。

两者联系:边长=直径;圆的面积=78.5%正方形的面积画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

12、长方形里最大的圆。

两者联系:宽=直径画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。

六年级数学上册圆形知识点

六年级数学上册圆形知识点

六年级数学上册圆形知识点
六年级数学上册圆形知识点包括:
1. 圆的定义:圆是由平面上所有到一个固定点的距离都相等的点的集合。

2. 圆的元素:圆心(固定点),半径(连接圆心和圆上任意一点的线段)。

3. 圆的直径:通过圆心的两个点,长度是半径的两倍。

4. 圆的周长:圆的周长等于圆的直径乘以π,其中π约等于3.14159。

5. 圆的面积:圆的面积等于半径的平方乘以π。

6. 弧:圆上的一段弧是圆的一部分。

7. 弧长:弧的长度。

8. 弧度制:以半径为单位度量角度的一种方式。

9. 切线和半切线:切线是与圆只有一个交点的直线,半切线是与圆只有一个交点的射线。

10. 弦:圆上的两点间的线段。

11. 正切线:与圆只有一个交点且垂直于半径的直线。

12. 圆内接多边形和外接多边形:内接多边形的顶点都在圆上,外接多边形的边都与圆相切。

以上是六年级数学上册关于圆形的主要知识点,希望对你有帮助!。

六年级上册数学《圆》知识点+同步练习,全是重点!

六年级上册数学《圆》知识点+同步练习,全是重点!

六年级上册数学《圆》知识点+同步练习,全是重点!一、圆的特征1、圆是平面内封闭曲线围成的平面图形。

2、圆的特征:外形美观,易滚动。

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

圆多次对折之后,折痕的相交于圆的中心即圆心。

圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。

在同一个圆里,有无数条半径,且所有的半径都相等。

半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。

在同一个圆里,有无数条直径,且所有的直径都相等。

直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。

同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径。

(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π= 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr圆周率π是一个无限不循环小数,3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

4、半圆周长=圆周长一半+直径= πr+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

六年级上册数学第1单元圆知识点

六年级上册数学第1单元圆知识点

六年级上册数学第1单元圆知识点一、圆的认识。

1. 圆的定义。

- 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。

固定的端点O叫做圆心,线段OA叫做半径。

- 以点O为圆心的圆,记作“⊙O”,读作“圆O”。

2. 圆的各部分名称。

- 半径(r):连接圆心和圆上任意一点的线段。

- 直径(d):通过圆心并且两端都在圆上的线段。

直径是圆内最长的线段。

- 在同圆或等圆中,直径的长度是半径的2倍,即d = 2r,半径的长度是直径的(1)/(2),即r=(d)/(2)。

3. 圆的对称性。

- 圆是轴对称图形,直径所在的直线是圆的对称轴。

圆有无数条对称轴。

- 圆也是中心对称图形,圆心是它的对称中心。

二、圆的周长。

1. 圆周长的意义。

- 围成圆的曲线的长叫做圆的周长,用字母C表示。

2. 圆周率。

- 圆的周长与直径的比值是一个固定的数,叫做圆周率,用字母π表示。

π是一个无限不循环小数,π = 3.1415926·s,在实际应用中,一般取π≈3.14。

3. 圆周长的计算公式。

- 根据C=π d或C = 2π r。

三、圆的面积。

1. 圆面积的意义。

- 圆所占平面的大小叫做圆的面积,用字母S表示。

2. 圆面积的推导过程。

- 将圆平均分成若干个(偶数个)近似的等腰三角形(分的份数越多,拼成的图形越接近长方形)。

- 拼成后的长方形的长近似于圆周长的一半,即π r,宽近似于圆的半径r。

- 根据长方形面积公式S = 长×宽,得出圆的面积公式S=π r^2。

3. 圆环的面积。

- 圆环的面积S=π R^2-π r^2=π(R^2 - r^2),其中R为外圆半径,r为内圆半径。

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理

六年级上册数学《圆》知识点整理一、圆的概念和记号1.圆的定义:圆是平面上所有到一个定点的距离都相等的点的集合。

2.圆的记号:大写字母O表示圆心,小写字母o表示圆。

二、圆相关术语的解释1.圆心:圆中心点的位置,用大写字母O表示。

2.半径:从圆心到圆上任意一点的距离,用小写字母r表示。

3.直径:通过圆心并且两端点都在圆上的线段,它的长度是半径的两倍,用d表示。

4.弦:连接圆上两个点的线段。

5.弧:弦所在的圆上的部分。

6.弧长:弧所对应的圆周的长度。

三、圆的性质1.圆是宽度相等的最短封闭曲线。

2.圆的直径是最长的弦,且等于两个半径的和。

3.圆的周长等于圆周上的所有弧长之和,即C=πd或C=2πr。

4.圆的面积是圆周和半径的函数,用S表示。

公式为S=πr²。

5.圆的任意一条弦所对应的弧相等。

6.圆心角:以圆心为顶点的角度,所对的弧长是其他弧长的两倍。

圆心角的度数是弧度数的两倍。

四、圆的相关定理1.平行弦定理:如果两条弦平行,那么它们所夹的圆心角相等。

2.余弦定理:对于一个圆内的三角形,圆内切椭圆的两条直径平分大圆上的连结两点的弧,并且圆内切椭圆外切于三角形的三个顶点。

3.切线定理:如果一条直线与圆相切,那么与这条切线垂直的直径会同时截取相同的切线段。

五、圆的应用1.圆的应用非常广泛,如建筑设计中的圆形平台、造型设计中的圆形雕塑等。

2.圆也常常用于计算圆形面积、圆周长等实际问题中。

以上是关于六年级上册数学《圆》知识点的整理。

通过学习本文档,你将会对圆的概念、术语、性质和应用有更加深入的了解。

希望能对你的学习有所帮助!。

人教版六年级数学上册 圆 知识点归纳

人教版六年级数学上册 圆 知识点归纳

《圆》知识点归纳知识点一、圆的概念1、在一个平面内,一个点绕着另一个定点,以一定长度为距离,旋转一周所形成的封闭曲线叫做圆。

这个定点叫做圆的圆心,一般用字母O表示,这段距离叫做圆的半径,一般用字母r表示,通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

2、圆有1个圆心,无数条半径,无数条直径,无数条对称轴。

在同一个圆中,半径的长度都相等,直径的长度也都相等,直径的长度是半径的2倍,公式表示为:d=2r 。

3、圆的位置是由圆心决定的,圆的大小是由半径决定的。

4、用圆规画圆时,针尖所在的点就是圆心,圆规两只脚之间的距离就是半径,通过圆心并且两端都在圆上的线段就是直径。

知识点二、圆的性质1、圆的周长与这个圆的直径之比值,叫做圆周率,记为π。

π是一个无理数,约等于3.14,计算的时候如无特殊说明,就取3.14来计算。

实际上π大于3.14。

2、圆的周长公式:C=πd=2πr 圆的面积公式:S=πr23、周长相等的封闭图形中,圆的面积最大;面积相等的封闭图形,圆的周长最小。

4、如果把一个圆平均分成若干份,再把它们拼成一个近似的长方形,则这个长方形的长等于这个圆的半周长,即πr,宽等于这个圆的半径,即r 。

知识点三、圆的比1、一个圆,半径扩大为原来的x倍,则直径也会扩大为原来的x倍,周长也会扩大为原来的x倍。

而面积会扩大为原来的x2倍。

例、一个圆,半径扩大为原来的3倍,则直径也会扩大为原来的3倍,周长也会扩大为原来的3倍。

而面积会扩大为原来的9倍。

2、两个圆,半径比=直径比=周长比。

面积比等于这个比的平方。

例、已知两个圆的半径比是2:3,则它们的直径比也是2:3,周长比也是2:3。

但面积比是4:9。

知识点四、扇形与圆环1、一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫做扇形。

2、扇形弧长公式:l=n360×2πr3、扇形面积公式:S=n360×πr2S=12lr4、圆环面积公式:S=S大圆-S小圆=πR2-πr2=π(R2-r2)。

六年级数学上册第一单元圆知识整理

六年级数学上册第一单元圆知识整理

六年级数学上册第一单元 圆 知识整理一、圆各部分的名称.1、圆心 圆中心的一点叫圆心。

,一般用字母o 表示也可以用其它字母表示。

圆心确定圆的位置。

把圆形纸片对折再对折,折痕的交点就是圆心。

2、半径 连接圆心到圆上任意一点的线段叫半径。

一般用字母r 表示。

有无数条半径。

半径决定圆的大小。

画圆时,圆规两脚张开的距离就是圆的半径。

3、直径 通过圆心,两端都在圆上的线段叫直径。

一般用字母d 表示。

有无数条直径。

直径所在的直线就是圆的对称轴,圆有无数条对称轴。

4、在同圆或等圆中,所有的半径都相等,所有的直径也都相等,直径的长度是半径的2倍。

可用字母表示为d=2r , r=d 2(或r=d ÷2)二、轴对称图形三、圆的周长1、围成圆的曲线的长叫圆的周长。

2、圆周率表示圆的周长和直径的商,是一个固定的数。

(它不因圆的大小而改变)它是一个无限不循环小数,用字母∏表示,值在(3.1415926-3.1415927)之间,计算时取两位小数3.143、圆的周长计算公式顺用:知道直径:C =πd 知道半径: c=2πr反用:d=c ÷π r= c ÷π÷2四、圆的面积1、圆面积公式的推导过程把圆分成若干等分,剪拼成一个长方形,长方形的长等于圆周长的一半∏r ,宽等于半径r 。

2、圆的面积计算公式: s=πr 23、求面积的4种基本情况(1)已知半径求面积 直接用公式。

(2)已知直径求面积 先求半径,再用公式。

(3)已知周条求面积 先求半径,再用公式。

(4)已知r 2求面积 把r 2看作一个整体直接用公式。

在图中一般用r 2正方形的面积(此时正方形的边长就是圆的半径。

)五、半圆的周长和面积1、半圆的周长等于同圆周长的一半加直径。

2、半圆的面积等于同圆面积的一半。

六、几个常用结论1、等圆的含义是半径相等,直径相等、周长相等、面积相等。

2、一个圆的半径扩大到原来的n 倍,直径、周长也扩大到原来的n 倍,而面积扩大到原来的n2 3、在正方形中画一个最大的圆,边长作圆的直径,在长方形中画一个最大的圆,短边作直径。

六年级上册数学圆知识点总结

六年级上册数学圆知识点总结

六年级上册数学圆知识点总结圆是轴对称、中心对称图形。

对称轴是直径所在的直线。

同时,圆又是“正无限多边形”,而“无限”只是一个概念。

下面是我整理的六年级上册数学圆学问点总结,仅供参考盼望能够关心到大家。

六年级上册数学圆学问点总结一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

一般用字母O表示。

它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d表示。

直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同圆或等圆内,有很多条半径,有很多条直径。

全部的半径都相等,全部的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。

用字母表示为:d=2r或r =8、轴对称图形:假如一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有很多条对称轴的图形是:圆、圆环。

二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。

用字母C表示。

2、圆周率试验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。

发觉一般规律,就是圆周长与它直径的比值是一个固定数(π)。

3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π(pai) 表示。

(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

六年级上册数学第一单元圆知识点

六年级上册数学第一单元圆知识点

第一单元圆一、考点1:圆的基本概念,圆心、半径、直径。

判断:1、通过圆心的线段是半径。

()2、通过圆心的线段是直径。

()3、两端都在圆上的线段是直径。

()4、两端都在圆上并且经过圆心的线段是直径。

()5、所有的直径都相等,所有的半径都相等。

()6、旋转式水龙喷头的射程是8m,8m就是指圆的直径。

()二、考点2:圆心决定圆的位置,半径(直径)决定圆的大小。

填空:1、(圆心)确定圆的位置,(半径)确定圆的大小。

2、()决定圆的大小,()决定圆的位置。

3、圆内最长的线段是(直径),圆规两脚之间的距离是()。

4、圆有(无数)条半径,圆有(无数)条直径。

判断:1、圆心决定圆的位置,半径决定圆的大小。

(√)2、半径决定圆的位置,圆心决定圆的大小。

(×)3、圆心决定圆的大小,半径决定圆的位置。

(×)4、半径决定圆的大小,圆心决定圆的位置。

(√)5、直径3厘米的圆大于半径2厘米的圆。

()6、半径3分米的圆大于直径5分米的圆。

()三、考点3:半径与直径的关系。

1、在同一个圆中,直径的长度是半径的(),半径的长度是直径的()。

2、在同一个圆中,半径的长度是直径的(),直径的长度是半径的()。

3、半径的长度是直径的()。

4、直径的长度是半径的2倍,半径的长度是直径的(50%)。

6、在同一个圆中,直径是半径的(2倍)。

7、在同一个圆中,直径是半径的2倍,半径是直径的(50%)。

8、在同一个圆中,半径是直径的(),直径是半径的()。

9、一个圆的半径是3厘米,它的直径是()。

10、圆规两脚间的距离是10厘米,画成的圆的直径是()。

11、直径是5厘米的圆,它的半径是()。

12、画一个直径为8厘米的圆,圆规两脚间是距离应是()。

四、考点4:正方形、长方形与圆的关系。

1、在边长为6cm的正方形中画一个最大的圆,这个圆的直径是(3cm )。

2、在边长为6cm的正方形中画一个最大的圆,这个圆的半径是(3cm )。

北师大版六年级数学上册第一单元知识点

北师大版六年级数学上册第一单元知识点

北师大版六年级数学上册第一单元知识点第一单元圆知识点一:圆的认识1.圆的定义:平面上的一种曲线图形(有一条曲线围成的封闭图形)。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等。

3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d = 2 r r=1/2d用文字表示为:半径=直径=2 直径=半径x2知识点二:圆的周长1.圆的周长:围成圆的曲线的长度叫做圆的周长。

2.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母表示。

圆周率是一个无限循坏小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

3.圆的周长公式:C=πd 或C=2πr圆周长=πr×直径圆周长=π×半径×2知识点三:圆的面积1.圆的面积:圆所占面积的大小叫圆的面积。

2.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积=Tr×r。

圆的面积公式:S=πr²3. 圆的面积公式:S=Tr2 或者 S=π(d/2)²4.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

5. 在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

6.一个环形,外圆的半径是 R,内圆的半径是r,它的面积是S=πR²-πr²或者S=π(R²-r²)(其中R=r+环的宽度)7.半圆的周长等于圆的周长的一半加直径。

最新六年级上册数学 圆单元知识整理

最新六年级上册数学  圆单元知识整理

圆上任意一点到圆将食指绕拇指旋转就画成了用图钉将线就可以用圆规就可以画出一即圆心d,半径决定圆的大小。

汽车车轮、自行车的车轮、球、齿轮、方向盘、圆规、井盖、在食指绕拇指旋转一周的过程中,拇指所按的点不变,食指与拇指间的距离不变。

用图钉、线和笔画圆时,图钉要固定好,线要拉直。

用圆规画圆,针尖所在的位置是圆心,两脚间的距离是半径。

1.同一个圆里有无数条半径,长度都相等。

1.圆的对称性:圆是轴对称图形,直径所在的直线是圆的对称轴。

圆有无数条对称轴。

2 . 常见的轴对称图形的对称轴的数量。

正方形有4条、长方形有2条、等边三角形有3条、等腰三角形有1条、等腰梯形有1条和圆有无数条。

3. 利用圆的对称性确定圆心的方法。

方法一 把圆形纸片按下面的方法对折,两条折痕的交点就是圆心。

方法二 把圆形纸片沿不同的方向任意折出两条直径(直径所在的直线即对称轴),两条直径(折痕)的交点就是圆心。

4.圆与内接或外接正多边形组成的组合图形的对称轴是经过圆心的正多边形的对称轴。

三、欣赏与设计综合运用旋转、轴对称和平移的知识设计图案。

四、圆的周长1.圆的周长的意义。

圆的周长就是圆一周的长度,也可以理解为将圆滚动一圈的长度。

直径的长短决定圆周长的大小。

2.圆周长的测量方法。

方法一 用滚动法测量圆的周长。

在圆形硬纸板的边缘上点一点A,使点A 对准直尺的0刻度,然后使圆形硬纸板在直尺上向右滚动一周,点A 所指的新刻度就是这个圆形硬纸板的周长。

方法二 用绕线法测量圆的周长。

在圆形硬纸板的边缘上点一点A,使点A 对准线的一个点,然后用线从点A 开始绕圆形硬纸板一周,做好标记,再拉直并测量绕圆形硬纸板一周的线的长度,该长度就是圆形硬纸板的周长。

3.圆周率的意义。

圆的周长除以直径的商是一个固定的数,我们把它叫作圆周率,用字母π表示,计算时通常取3.14。

4.圆的周长的计算公式。

如果用字母C 表示圆的周长,那么C=πd 或C=2πr 。

六年级上册数学圆知识点归纳

六年级上册数学圆知识点归纳

六年级上册数学圆知识点归纳一、圆的认识1. 圆是平面上的一个几何图形,用圆规画圆时,圆心决定圆的位置,半径决定圆的大小。

2. 圆的各部分名称:圆心、半径、直径。

在同一个圆中,圆的直径是半径的2倍,d=2r;圆的半径是直径的一半,r=d/2;二、圆的分类1. 根据圆心位置,将圆分为两类:一是平面上的圆,其圆心在任意一点;叫它“定圆”;二是平面上的一个定点O发出一束射线形成的圆,叫它“动圆”。

2. 根据所含半径的条数将圆分为三类:①一个圆;②两个圆:两个半径相等;③多个圆:n个半径相等的圆可组成一个圆(n≥3);多个圆的位置关系可由其半径的长短来确定。

三、圆的周长围成圆的曲线的长度叫做圆的周长。

用字母C表示。

半圆的周长是圆周长的一半加一条直径。

公式表示为:C=πr+2r或C=π+2r四、圆的面积把一个圆形平均分成若干份后,拼成一个近似的长方形,长方形的面积等于原来圆的面积。

长方形的宽是圆的半径,长是圆的周长的一半。

用字母表示圆的面积公式为:S=πr²或S=1/4πd²(d为直径)五、组合图形面积的求法圆形和方形组合在一起就成为风车,它的面积是圆形面积加矩形面积。

风车的面积可以这样求:S风车=S圆十S方(S为矩形面积)六、圆柱的认识圆柱有两个面,都是平面(或曲面),一个圆柱由两个平面和一个曲面组成。

圆柱的上、下两个面叫做底面,它们是完全相同的两个圆;圆柱有一个曲面叫侧面;圆柱有两个底面相对应的侧面叫做高。

侧面展开图是一个长方形(或正方形)。

长方形的长是底面的周长,长方形的宽是圆柱的高。

七、圆柱的表面积圆柱的表面积是指圆柱的侧面积和底面积的和。

侧面积=底面周长×高;底面积=πr²;表面积=侧面积+底面积×2;底面的面和侧面可以展开成一个矩形和圆柱体的高面互相平行。

这样就能清楚的看出矩形和圆柱体的侧面积有什么关系了。

把矩形的一边沿着圆柱体的高卷一圈所得到的矩形和圆柱体的侧面积是完全相同的,两个平行边所对应的高是相同的,矩形周长的长短就可以确定圆柱体侧面积的大小。

人教版六年级上册数学《圆》知识点整理

人教版六年级上册数学《圆》知识点整理

认识圆及圆周长1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

如下图中,中心的一点O 。

一般用字母O 表示。

它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r 表示。

如下图红色线。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d 表示。

如下图蓝色线。

直径是一个圆内最长的线段。

85、圆心确定圆的位置,半径确定圆的大小。

如果已知的是直径,我们要把直径除以2换成半径,确定圆心,然后才开始画圆。

(画圆给出半径标半径r=?,给出直径标直径d=?)要比较两圆的大小,就是比较两个圆的直径或半径。

6、在同圆或等圆内,有无数条半径,有无数条直径。

同圆中所有的半径、直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。

用字母表示为:d = 2r 或r =2d 或r=d ÷28、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、常见图形的对称轴:只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。

圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。

11、正方形里最大的圆。

两者联系:边长=直径;圆的面积=78.5%正方形的面积画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

12、长方形里最大的圆。

两者联系:宽=直径画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。

六年级上册第一单元数学圆

六年级上册第一单元数学圆

六年级上册第一单元数学圆
六年级上册第一单元的数学内容涉及到圆的相关概念和性质。

下面是一些关于圆的常见题型和知识点:
1.圆的定义和要素:
•圆是由一组与某个固定点的距离相等的点构成的集合。

•圆心:圆的中心点,通常表示为O。

•半径:圆心到圆上的任意一点的距离,通常表示为r。

•直径:通过圆心,且两个端点在圆上的线段,直径的长度为圆的半径的两倍。

2.圆的性质:
•圆上任意两点与圆心的距离相等。

•圆上的点到圆心的距离等于圆的半径。

•圆的直径是圆上的最长线段。

•圆的直径等于半径的两倍。

3.知识运用:
•计算圆的周长:周长(C)等于圆的直径(D)乘以圆周率(π),即C = πD或C = 2πr。

•计算圆的面积:面积(A)等于圆的半径(r)的平方乘以圆周率(π),即A = πr²。

4.解题示例:
•已知圆的半径为5cm,求圆的周长和面积。

•已知圆的直径为8cm,求圆的周长和面积。

以上是关于六年级上册第一单元数学中与圆相关的一些常见题型和知识点。

学习和掌握这些知识,可以帮助学生理解圆的概念、性质以及计算相关参数的方法,并能够应用到解决实际问题中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学上册第一单元 圆 知识整理
一、圆各部分的名称.
1、圆心 圆中心的一点叫圆心。

,一般用字母o 表示也可以用其它字母表示。

圆心确定圆的位置。

把圆形纸片对折再对折,折痕的交点就是圆心。

2、半径 连接圆心到圆上任意一点的线段叫半径。

一般用字母r 表示。

有无数条半径。

半径决定圆的大小。

画圆时,圆规两脚张开的距离就是圆的半径。

3、直径 通过圆心,两端都在圆上的线段叫直径。

一般用字母d 表示。

有无数条直径。

直径所在的直线就是圆的对称轴,圆有无数条对称轴。

4、在同圆或等圆中,所有的半径都相等,所有的直径也都相等,直径的长度是半径的2倍。

可用字母表示为d=2r , r=d 2
(或r=d ÷2)
二、轴对称图形
三、圆的周长
1、围成圆的曲线的长叫圆的周长。

2、圆周率表示圆的周长和直径的商,是一个固定的数。

(它不因圆的大小而改变)它是一个无限不循环小数,用字母∏表示,值在(3.1415926-3.1415927)之间,计算时取两位小数3.14
3、圆的周长计算公式
顺用:知道直径:C =πd 知道半径: c=2πr
反用:d=c ÷π r= c ÷π÷2
四、圆的面积
1、圆面积公式的推导过程
把圆分成若干等分,剪拼成一个长方形,长方形的长等于圆周长的一半∏r ,宽等于半径r 。

2、圆的面积计算公式: s=πr 2
3、求面积的4种基本情况
(1)已知半径求面积 直接用公式。

(2)已知直径求面积 先求半径,再用公式。

(3)已知周条求面积 先求半径,再用公式。

(4)已知r 2求面积 把r 2看作一个整体直接用公式。

在图中一般用r 2
正方形的面积(此时正方形的边长就是圆的半径。


五、半圆的周长和面积
1、半圆的周长等于同圆周长的一半加直径。

2、半圆的面积等于同圆面积的一半。

六、几个常用结论
1、等圆的含义是半径相等,直径相等、周长相等、面积相等。

2、一个圆的半径扩大到原来的n 倍,直径、周长也扩大到原来的n 倍,而面积扩大到原来的n
2 3、在正方形中画一个最大的圆,边长作圆的直径,在长方形中画一个最大的圆,短边作直径。

4、周长相等的平面图形,圆的面积最大。

七、有关圆的组合图形中的阴影部分的面积
1、常用方法加减法割补法
2、用认真观察图形发现数据之间的关系,找准条件。

八、重要应用
1、利用车轮的转速,求路程和时间。

2、钟面上的数学
(1)求针尖转动若干周转动的路程或求分针时针转动若干周扫过的面积。

分针1小时1周。

时针12小时1周,一天(一昼夜)2周。

(2)求绕过某个时间,分针或时针转动的角度(四年级)进而求出几分之几个圆。

相关文档
最新文档