电力调度自动化系统基础

合集下载

电力系统调度自动化

电力系统调度自动化

电力系统调度自动化电力系统调度自动化是指利用先进的信息技术和自动控制技术,对电力系统运行过程中的各种数据进行采集、处理和分析,实现对电力系统的调度操作自动化。

通过电力系统调度自动化,可以提高电力系统的运行效率和稳定性,减少人为操作的风险,提高电力系统的安全性和可靠性。

一、电力系统调度自动化的基本原理和功能1. 基本原理电力系统调度自动化的基本原理是通过对电力系统运行过程中的各种数据进行实时采集,利用先进的计算机技术和通信技术对数据进行处理和分析,然后根据系统运行状态和调度要求,自动产生调度命令,实现对电力系统的自动调度操作。

2. 主要功能(1)数据采集功能:通过自动化设备对电力系统的各种数据进行实时采集,包括电压、电流、功率、频率等参数的采集,以及设备状态、告警信息等数据的采集。

(2)数据处理功能:对采集到的数据进行处理和分析,包括数据的计算、校验、筛选等,以及数据的存储和备份。

(3)系统监控功能:通过对电力系统运行状态的监测和分析,实时显示电力系统的运行情况,包括设备状态、负荷状况、电压、频率等参数的监测和显示。

(4)调度命令生成功能:根据电力系统的运行状态和调度要求,自动生成相应的调度命令,包括设备操作命令、负荷调度命令等。

(5)调度命令执行功能:将生成的调度命令发送给相应的设备,实现对电力系统的自动调度操作。

二、电力系统调度自动化的优势和应用1. 优势(1)提高效率:电力系统调度自动化可以实现对电力系统的实时监测和分析,快速生成调度命令,减少人为操作的时间和成本,提高调度效率。

(2)提高稳定性:通过对电力系统运行状态的实时监测和分析,可以及时发现和处理异常情况,保证电力系统的稳定运行。

(3)降低风险:电力系统调度自动化可以减少人为操作的风险,避免操作失误导致的事故和故障,提高电力系统的安全性。

(4)提高可靠性:通过自动化设备对电力系统数据的实时采集和处理,可以准确获取电力系统的运行状态,提高电力系统的可靠性。

简述电力系统调度自动化系统的组成。

简述电力系统调度自动化系统的组成。

电力系统调度自动化系统是指用于对电网进行实时监视、运行控制和故障处理的一套系统。

它主要由以下几部分组成:1. 电网数据采集系统电网数据采集系统是整个调度自动化系统的底层基础,它负责采集和传输电网的各类数据。

这些数据包括电网的电压、电流、功率、频率等实时状态信息,以及设备的运行参数、故障信息等。

数据采集系统通常由远程终端单元(RTU)和传输网络组成,RTU负责在现场对数据进行采集和处理,而传输网络则负责将采集到的数据传输到上级系统中进行处理。

2. 调度自动化主站系统调度自动化主站系统是电力系统调度自动化系统的核心部分,它负责对采集到的实时数据进行监视、分析和决策。

主站系统通常由计算机、数据库、通信设备等组成,它可以对整个电网的运行状态进行实时监视,并可以根据需要进行相应的控制操作。

主站系统还可以通过与其他辅助系统的接口,进行故障处理、预测分析、计划调度等工作。

3. 运行控制与保护系统运行控制与保护系统是调度自动化系统的另一个重要组成部分,它主要负责对电网的运行状态进行实时控制和保护。

运行控制系统可以根据电网的实时数据,进行自动化的设备控制操作,调整电网的运行状态,保证电网的安全稳定运行。

保护系统负责在电网发生故障时,对故障进行快速的检测和隔离,保证电网的安全运行。

4. 调度自动化辅助系统除了上述几个主要组成部分外,调度自动化系统还包括一些辅助系统,用于实现一些特定的功能。

这些辅助系统包括电网模拟仿真系统、故障录波分析系统、远程通信系统等。

这些系统可以为电力系统的调度运行提供支持,提高系统运行效率和可靠性。

电力系统调度自动化系统是一个复杂的系统工程,它包括了多个不同的组成部分,这些部分相互协作,共同完成对电力系统的实时监视、运行控制和故障处理等工作。

这些系统的良好运行,对于保障电力系统的安全运行和提高电网运行效率具有重要意义。

电力系统调度自动化系统的组成是电力系统运行中不可或缺的重要部分,我们继续深入了解这些组成部分,以及它们如何共同发挥作用,保障电力系统的安全、稳定运行。

电力系统调度自动化 复习题

电力系统调度自动化 复习题

电力系统调度自动化复习题引言概述:电力系统调度自动化是指利用先进的信息技术手段,对电力系统运行过程中的各种数据进行实时监测、分析和控制,以提高电力系统的运行效率和安全性。

在电力系统调度自动化的学习和掌握过程中,进行复习题的训练是非常重要的。

本文将从五个大点进行阐述,包括电力系统调度自动化的基本概念、调度自动化的主要任务、调度自动化的技术体系、调度自动化的发展趋势以及调度自动化的应用案例。

正文内容:1. 电力系统调度自动化的基本概念1.1 电力系统调度的定义和作用1.2 电力系统调度自动化的定义和意义1.3 电力系统调度自动化的基本原理2. 调度自动化的主要任务2.1 实时监测和数据采集2.2 运行状态分析与评估2.3 调度决策与控制2.4 调度指令下达与执行2.5 运行数据记录与分析3. 调度自动化的技术体系3.1 电力系统监控与数据采集技术3.2 运行状态分析与评估技术3.3 调度决策与控制技术3.4 调度指令下达与执行技术3.5 运行数据记录与分析技术4. 调度自动化的发展趋势4.1 智能化发展趋势4.2 大数据与云计算的应用4.3 新能源与电力系统调度自动化的结合4.4 人工智能技术在调度自动化中的应用5. 调度自动化的应用案例5.1 调度自动化系统在电力调度中的应用5.2 调度自动化系统在电网运行中的应用5.3 调度自动化系统在电力市场中的应用总结:通过本文的阐述,我们了解了电力系统调度自动化的基本概念、主要任务、技术体系、发展趋势以及应用案例。

电力系统调度自动化的发展对于提高电力系统的运行效率和安全性具有重要意义。

未来,随着智能化、大数据和人工智能等技术的不断发展,电力系统调度自动化将迎来更加广阔的应用前景。

希望本文能够对你复习电力系统调度自动化有所帮助。

电力系统调度自动化

电力系统调度自动化

电力系统调度自动化电力系统调度自动化是指利用先进的信息技术手段和自动化设备,对电力系统进行实时监测、运行控制和优化调度的过程。

通过电力系统调度自动化,可以提高电力系统的运行效率,减少能源浪费,保障电力系统的安全稳定运行。

一、电力系统调度自动化的基本原理和流程电力系统调度自动化的基本原理是通过采集电力系统的实时数据,进行数据处理和分析,然后根据系统运行状态和需求,自动进行控制和调度。

其基本流程如下:1. 数据采集:通过安装在电力系统各个关键节点的传感器和监测设备,实时采集电力系统的各项参数数据,如电压、电流、频率、功率等。

2. 数据处理和分析:将采集到的数据传输到调度中心,经过处理和分析,得到电力系统的运行状态和负荷需求等信息。

3. 控制和调度:根据系统运行状态和需求,自动进行控制和调度,包括发机电组的启停控制、负荷的调节、输电路线的开关控制等。

4. 运行监测:对电力系统的运行状态进行实时监测,及时发现和处理异常情况,保障系统的安全稳定运行。

5. 优化调度:基于电力系统的实时数据和需求,进行优化调度,提高系统的运行效率和经济性。

二、电力系统调度自动化的主要功能和应用电力系统调度自动化具有以下主要功能和应用:1. 实时监测和运行控制:通过实时采集和处理电力系统的数据,对系统的运行状态进行实时监测和控制,及时发现和处理异常情况,保障系统的安全稳定运行。

2. 负荷预测和调节:通过对历史数据和实时数据的分析,预测未来的负荷需求,对发机电组进行启停控制和负荷的调节,保持系统的供需平衡。

3. 输电路线的开关控制:根据系统的负荷需求和故障情况,自动进行输电路线的开关控制,保障系统的供电可靠性。

4. 发机电组的优化调度:根据电力市场的需求和电力系统的运行状态,对发机电组进行优化调度,提高发电效率和经济性。

5. 能源管理和节能减排:通过对电力系统的监测和控制,实现对能源的有效管理和优化利用,减少能源浪费,降低排放量,实现可持续发展。

电力系统调度自动化

电力系统调度自动化

电力系统调度自动化一、引言电力系统调度自动化是指利用先进的信息技术和自动化技术,对电力系统的运行状态进行实时监测、分析、评估和调度控制,以实现电力系统的安全、稳定、经济运行。

本文将详细介绍电力系统调度自动化的相关内容,包括系统架构、功能模块、关键技术和应用场景等。

二、系统架构电力系统调度自动化的系统架构主要包括以下几个部分:1. 数据采集与传输:通过各种传感器、测量仪器和遥测设备,采集电力系统的实时运行数据,如电压、电流、频率等。

这些数据通过通信网络传输到调度自动化系统。

2. 数据处理与分析:调度自动化系统对采集到的数据进行处理和分析,包括数据质量检测、数据校正、数据融合等。

通过对数据的分析,可以实时监测电力系统的运行状态,提供决策支持。

3. 调度控制与优化:根据电力系统的实时运行状态和运行策略,调度自动化系统进行调度控制和优化。

这包括发电机组的启停控制、负荷调节、电力市场交易等。

4. 用户界面与人机交互:调度自动化系统提供用户界面,使调度员可以直观地监测电力系统的运行状态,进行操作和决策。

人机交互包括语音交互、图形界面、报警提示等。

5. 安全与保护:调度自动化系统需要具备安全和保护功能,包括数据加密、权限管理、防火墙等,以保证电力系统的安全运行。

三、功能模块电力系统调度自动化的功能模块主要包括以下几个方面:1. 运行监测与评估:通过对电力系统的实时数据进行监测和评估,及时发现运行异常和故障,提供预警和报警功能,以保障电力系统的安全运行。

2. 负荷预测与调度:通过对历史数据和天气数据的分析,预测未来负荷需求,制定合理的负荷调度策略,以优化电力系统的负荷分配和供需平衡。

3. 发电机组调度与控制:根据电力系统的负荷需求和发电机组的特性,自动调度发电机组的运行状态,实现最优的发电机组调度和控制。

4. 电力市场交易:根据电力市场的需求和供应情况,自动进行电力市场交易,包括电力购买和出售等,以实现电力市场的经济运行。

电力系统调度自动化

电力系统调度自动化

对调度自动化的认识及其基本框架的设计一、调度自动化系统的作用:随着微电子技术、计算机技术和通信技术的发展,综合自动化技术也得到迅速发展;近几年来,综合自动化已成为热门话题,引起了电力工业各部门的注意和重视,并成为当前我国电力工业推行技术进步的重点之一;之所以如此,是因为:1、随着我国电力工业和电力系统的发展,对变电站的安全、经济运行要求越来越高,实现变电站综合自动化,可提高电网的安全、经济运行水平,减少基建投资,并为推广变电站无人值班提供了手段;2、随着电网复杂程度的增加,各级调度中心要求更多的信息,以便及时掌握电网及变电站的运行情况;3、为提高变电站的可控性,要求采用更多的远方集中控制、集中操作和反事故措施等;4、利用现代计算机技术、通讯技术等,提供先进的技术装备,可改变传统的二次设备模式,实现信息共享,简化系统,减少电缆,减少占地面积;5、对变电站进行全面的技术改造;变电站综合自动化系统完全可以满足以上要求,因此,近几年得到了迅速的发展;那么,电网调度自动化系统与综合自动化系统的关系是什么呢综合自动化是相对于整个变电站的二次设备来说的,包括各种微机继电保护装置、自动重合闸装置、低频自动减负荷装置、备用电源自投装置、以及远动装置等,它们利用先进的计算机技术、现代电子技术、通信技术和信号处理技术,实现对全变电站的主要设备和输、配电线路的自动监视、测量、自动控制和微机保护,以及与调度通信等综合性的自动化系统,它集保护、测量、控制、调节、通信、调度于一体;相对而言,电网调度自动化是综合自动化的一部分,它只包括远动装置和调度主站系统,是用来监控整个电网运行状态的;为使调度人员统观全局,运筹全网,有效地指挥电网安全、稳定和经济运行,实现电网调度自动化已成为调度现代电网的重要手段,其作用主要有以下三个方面:1、对电网安全运行状态实现监控电网正常运行时,通过调度人员监视和控制电网的周波、电压、潮流、负荷与出力;主设备的位置状况及水、热能等方面的工况指标,使之符合规定,保证电能质量和用户计划用电、用水和用汽的要求;2、对电网运行实现经济调度在对电网实现安全监控的基础上,通过调度自动化的手段实现电网的经济调度,以达到降低损耗、节省能源,多发电、多供电的目的;3、对电网运行实现安全分析和事故处理导致电网发生故障或异常运行的因素非常复杂,且过程十分迅速,如不能及时预测、判断或处理不当,不但可能危及人身和设备安全,甚至会使电网瓦解崩溃,造成大面积停电,给国民经济带来严重损失;为此,必须增强调度自动化手段,实现电网运行的安全分析,提供事故处理对策和相应的监控手段,防止事故发生以便及时处理事故,避免或减少事故造成的重大损失;二、调度自动化的基本内容:现代电网调度自动化所设计的内容范围很广,其基本内容如下:1、运行监视调度中心为了掌握电网正常运行工况、异常及事故状态,为了安全、经济调度和控制提供依据,必须对电网实现以保证安全运行为中心的运行监视,所以称为安全监视;按部颁有关法规、规程的要求和调度的需求,主要内容为:网调、省调要监视电网的频率、电压、潮流、发电与负荷容量、电量、水情河水位等参数;监视断路器、隔离开关、带负荷调压变压器调压分接头以及发电机组等设备的自动调节装置的工作位置状态,主要保护河岸全自动装置的动作状态等信息;地、县调和集控站运行监视的内容相对少一些,但对于大型的地调,所需的信息量仍然较多;运行监视的内容通过屏幕显示、动态调度模拟屏、打印、拷贝、记录及绘图等多种手段完成;2、经济调度电网经济调度的任务是在满足运行安全和供电质量要求的条件下,尽可能提高电网运行的经济性,合理地利用现有能源和设备,以最少的燃料消耗或费用、成本,保证安全发供电;因此,网调和省调要在按规定保证电网的频率和电压质量的前提下,使发电煤耗、水耗及网损最小,即发电成本最低,同时又能保证一定的备用容量,因而网调和省调要进行负荷预测,实现经济负荷与最佳负荷分配,制定发电机华语负荷曲线提供依据;实现水库经济调度与最优潮流分配,为在最佳水能水量综合利用的条件下,使水耗与网损最小;对于地调,则以实现负荷管理及其经济分配为基本内容,还要定时进行电压水平和无功功率分配的优化运算,用以提高电压质量、降低网损,在尖峰负荷时要平衡馈线负荷以降低线损,在有条件的地区电网内,还要实现降压变压器的经济运行,以实现小型梯级水电厂的经济运行等内容;经济调度的各种内容,需要同运行监视、自动控制、安全分析密切结合才能付诸实施;3、安全分析进行安全分析是对电网在正常和异常运行的状态进行分析及对事故发生前的状态预测和事故发生后的状态分析,是保证电网安全稳定运行的重要内容;当电网发生事故后,在实现事故顺序记录、事故追忆等功能的基础上,通过分析,跟踪事故的发展、参数的变化,保护和自动装置及断路器的动作情况,从而提出事故处理的对策,以达到缩短事故处理时间,防止事故扩大的目的;在地区电网发生事故时,还可以通过对配电网的故障分析和实现在线预操作,及时处理事故,改善地区电网的安全运行水平;此外,通过调度员的培训模拟,进行事故预想与事故演习,有效地提高调度人员运用调度自动化系统处理事故的临战能力;4、自动控制电网调度自动控制是在运行监视的基础上,对电网的安全与经济运行实施调节或控制;控制信号自上而下发送给厂、所或下级调度;这类控制范围很广,但主要是对断路器及其它发送发变电设备,例如,发电机、调相机、带负荷调压变压器、电力补偿设备等,通过调度人员实现遥控、遥调或自动实现相应的闭环控制或调节;上述电网调度自动化基本内容是紧密相关的,不论哪一级调度中心都必须以实现电网的全面运行监视为前提,根据各自的特点和需要,积极充实完善,以达到实现电网调度自动化的目的;三、电网调度自动化的基本功能:1、数据采集与安全监控SCADA它主要包括:通过远动系统实现数据采集;通过计算机系统实现数据处理与存储;通过人机联系系统中的屏幕显示CRT与动态调度模拟屏,对电网的运行工况实现在线监视,并具有打印制表、越限报警、模拟量记录、事件顺序记录、事故追忆、画面拷贝、系统自检及远动通道质量监测功能;在实现监视的基础上,通过计算机、远动与人机联系系统,对断路器、发电机组与调相机组、带负荷调压变压器、补偿设施等实现遥控与遥调,以及发送时钟等指令;2、自动发电控制AGC和经济调度控制EDC它们是对电网安全经济运行实现闭环控制的重要功能;在对电网频率调整的同时,实现经济调度控制,直接控制到各调频电厂,并计入线损修正,实现对互联电网联络线净功率频率偏移控制;对于非调频厂,则按日负荷曲线运行;对于有条件的电厂还应实现自动电压和无功功率控制AVC;3、安全分析与对策SA在实现网络结构分析和状态估计的条件下进行的实时潮流计算和安全状态分析;四、电网调度自动化系统的基本组成电网调度自动化系统由调度主站调度中心、厂站端、通信三大部分组成,但按其功能可分为:1、数据与信息的采集系统:前置机、远动终端、调制解调器、变送器;2、数据与信息的处理系统:主控计算机、外存储器、输入输出设备、计算机信道接口;3、数据与信息的传输系统:主站与厂站通信:有线、载波、光纤、短波、微波及卫星地面站;主站与主站通信:有线、光纤、微波及卫星地面站;4、人机联系系统:彩色屏幕显示器、打印机、拷贝机、记录仪表、绘图机、调度模拟屏、调度台;5、监控对象的相关系统:发电机组的成组自动操作与功率自动调节装置、机炉协调控制器、带负荷调压变压器分接头、电压与电流互感器、断路器的控制与信号回路、继电保护与按全自动装置的出口信号回路;6、不停电电源系统:交—直流整流器、直—交流逆变器、配套的直流蓄电池组;7、安全环保系统:防雷与接地、防火与灭火、防电磁干扰与防静电干扰、防噪声与防震、空调与净化、防盗与防鼠;五、调度自动化系统结构及组成:1. 主/备前置通讯机通讯前置机负责数据采集、规约解释、数据处理以及接收并处理系统的控制命令;2. 主/备服务器服务器存放整个系统的实时数据、历史数据及应用数据,为主/备前置通讯机、调度员工作站、后台工作站提供数据库服务,充当应用服务器;服务器另外对各工作站的工作状态进行监控,管理计算机网络设备和SCADA系统终端设备如打印机、显示器、投影仪等,监控系统的任务进程,提供事件/事故报警,监视网络通讯等;3. WEB浏览服务器本系统中配置WEB服务器提供WEB主页实时画面公布;这种方式使得网上的工作站无需任何专用程序支持,使用Windows内置的IE浏览器即可浏览实时数据;4. 系统时钟同步GPS接收全球定位系统GPS的时间作为系统的标准时间和系统频率,完成系统的时钟统一;网络系统内时钟同步:GPS时钟通过主备数采机接入SCADA系统;系统以数采机时钟为标准时钟,采用系统提供的校时功能完成网络各节点间的时钟同步;数采机支持识别GPS 时钟故障,防止误接收,并能产生报警;与RTU时钟同步:通过数采机与RTU通讯的方式校时,完成主站系统与RTU时钟同步;5. Nport通讯服务器Nport Server又称多串口网络通讯服务器,支持TCP/IP协议,可直接挂接在网络上,相当于网络组中的一员,便于主/备前置机的切换;它完全替代了以往的通道控制板和串行通道板;并且,该设备支持多种编程语言,操作及其简便;基本框架(1)网络形式多种多样,如EtherNet、FDDI 或ATM 等都可使用; 2单网、双网、低速网、高速网可以任意方式进行组合;系统支持灵活的网络配置,可以是单低速网、单高速网,可以是低速和高速双网混用,也可以是双高速网; 3采取网络冗余热备份;系统正常运行时,两个网络上都传输有用数据,并且两个网络上的数据流量保持动态平衡;当一个网络工作不正常时,系统将自动地通过另一网络传输所有数据;当故障网络恢复正常时,双网络将自动恢复到流量的动态平衡状态;从严格意义上来说,此系统的网络切换实际上是网络传输功能的弹性伸缩,网络本身对系统是透明的,双网络并无主、备之分; 4支持标准的网络接口,可以方便地与其它系统如MIS 等进行互联; 5易于与上级或下级调度组成广域网,进行网络数据交换,支持远程调试;在数据库连接技术方面,SCADA 系统也采取相关措施,主要体现在如下四个方面: 1支持组态地将系统实时数据库按用户指定的周期或事件产生触发刷新用户指定的外部实时数据库; 2支持直接读写指定数据库记录的字段数据,并具备将该数据与该系统组态定义的变量对应连接的能力,这使得该系统可以通过数据库与其它任何支持数据访问的应用程序实时交换信息; 3通过标准SQL 语句完成外部数据库的一般维护操作,如建表、删除表、插入、修改和删除记录; 4通过后台 API 的方式,将电力自动化系统中的常用的数据库查询工作打包,用户无需编写有关SQL 语句,只要简单地提供符合常规应用习惯的参数即可完成复杂的历史数据库查询和浏览工作;4. 系统性能指标提升措施 1系统采取冗余容错结构:双网络、双服务器、双前置机及双通道的冗余容错模型系统实现双网络容错是真正的热备用,双网络正常运行时,主、备网络同时都传送有用系统数据,双网络上的数据流量保持动态的平衡; 系统采取双服务器方式,当系统配置了主备服务器后,每个客户端同时与两个服务器连接,并向两个服务器发送信息,服务器控制程序自动检测客户端与服务器的连接模式,以确保唯一的数据转发,或将有关信息转发到感兴趣的客户端;同时客户端也自动检测服务器的状态; 系统采取双前置机方式:①基于485 总线方式的双机切换;②基于NportServer 的双机切换;③用户自定义方式的双机切换; 系统采取双通道方式:①系统采取以通道的方式与RTU 等采集设备进行连接;②系统支持自动主备通道切换,不支持手动切换,并且是采用冷备用原理;当主通道在传输数据时,备用通道不采集数据;当系统检测到主通道连接出现故障或者误码率过高,则自动启动备用通道采集数据,并将停止主通道的采集,此时主通道的地位转变为备用通道,原备用通道变为主通道不能重新接管数据的采集工作,除非当前的主通道出现故障; 2系统采取的网络通讯结构①采用点对点通讯模型主动传输系统改变的实时数据;网络环境下,实时数据库数据项的改变有以下三种可能:从通道采集数据改变实时数据库;运行后台语言实时数据库;从网络其它节点传递来改变实时数据库; ②采用客户/服务器查询方式,在网络中传递历史数据和进行实时数据库状态恢复; 系统对历史数据采用客户/服务器方式,在实际应用中,如对SOE 的查询、对历史曲线的查询等操作中,一般是用户提交查询条件,由系统将有关查询条件变为连接的历史数据库能够接受的标准或非标准SQL 语句,提交给数据库服务器,从历史数据库中查询得到满足有关条件的查询结果集,数据库服务器将该结果集通过网络传递给查询的计算机,计算机运行系统根据接收到的查询结果,将它转变为用户容易理解的方式,如曲线、报表等显示出来; 系统利用网络协议实现方便的容错系统模型,在该模型中,运行系统采用总线方式或通过专门的切换装置与连接的RTU 或其它智能数据采集设备连接,当主系统出现故障或通道出现故障时,备用系统将自动或手动获得控制权,保证系统正常运行;如下图所示: 3实现网络构架的有效扩充①架设远程工作站正常情况下所有计算机都是通过各自所配置的10—100M 网卡连至集线器上,传输媒质选择的是8 芯双绞线,这样的组网如果在两座比较分散的建筑物之间线距 1.5km 以上,则信号的抗干扰能力、准确度、保密能力都会大为下降,对准确度、实时性要求较高的工作站来讲,也就是说必须架设能满足的远程工作站,以解决距离服务器较远部门和系统的连网问题; ②架设移动工作站移动工作站的性质和远程工作有相似之处,而且有可移动性,其架设更有必要性;系统的原始数据、通道及远端接口都进行定期测试,传统的测试方法是部分人员在现场测量数据、计算结果,后台人员电话核对显示值和测试值,这样在准确性、及时性方面会受到很大影响,如果携带移动工作站至现场,在测试时由移动站向后台服务器请求数据与所测数据核对,准确度可得到较好的保障,其灵活性、实时性也非人眼可比;从移动站直接观测后台数据的同时,可以通过RTU 的RS—232 接口观察输出数据,并能直接进行遥控、遥测实验; 管理人员外出时,如果携带移动工作站,只要拨号和中心站连接,就可以方便的查看电网信息,了解系统情况; ③实现远程维护在传统情况下,当客户的软硬件系统出现故障时,通常需要厂家技术人员到现场维护,这种维护方式实时性差、效率低,还会造成用户停机过长,可能造成很大损失;计算机远程维护系统通过传输媒质和中心站连接,技术人员从自己的维护工作站对自动化系统的故障点进行分析判断,实现异地在线调试、修改和升级;同时还能进行目录查看、文件图像传输、实时语言对话;电力系统调度自动化大作业电子信息学院电气01班马芳芳。

电力系统中的配电自动化与调度

电力系统中的配电自动化与调度

电力系统中的配电自动化与调度随着电力系统的不断发展和完善,配电自动化与调度也成为了电力系统中必不可少的一个重要环节。

配电自动化是指以计算机控制、数字化装置及相关设备为基础,对配电系统进行自动化的运行管理和监控。

而调度是指在电力系统中对电力资源进行有效配置和优化,使之达到最优化利用的过程。

本文将从配电自动化、调度技术的概念和应用,以及未来发展方向等方面进行探讨。

一、配电自动化1.1 概念配电自动化是指在配电网中采用先进的数字化设备、控制器和通信技术,实现对配电系统中线路、开关等设备的自动监控、自动控制、自动化管理和信息服务的一种智能化配电系统。

这种智能化变化极大地提高了配电系统的管理和运行效率,同时也为用户的用电提供了更高效、更安全和更可靠的服务保障。

1.2 应用配电自动化主要应用于变电站、配电站、输配电线路以及用户侧的配电室等。

在这些场合中,配电自动化系统将运用数字化信息处理技术、先进的电源自控技术、传感器技术、通讯技术等手段,实现对配电网的自动监测、自动控制、自动化管理和信息服务。

这些技术的应用使得配电自动化系统能够更好地处理配电网所面临的问题,如可靠性问题、泄漏电流、负载波动等。

1.3 优势配电自动化不仅提高了电力系统的可靠性,还通过减少人工操作的干预,提高了运行效率,同时还能够更好地掌握系统运行状况。

此外,配电自动化还能全面提高电力系统的安全性、抗灾性、环境友好性和经济性。

二、调度技术2.1 概念电力系统中的调度技术是指以电力调度自动化系统为基础,通过对电力系统中各种负荷,包括发电机、输电线路、变电站设备和各类用户设备等进行计算、分析和预测,来有效优化电力资源的利用,使之达到最优化利用的过程。

调度技术主要包括需求侧管理、分布式能源的接入管理和电网运行管理等。

2.2 应用电力系统中的调度技术主要应用于电力负荷预测、发电计划优化和电力市场调度等方面。

通过计算、分析和预测,调度系统能够有效地掌握系统运行中的状况和趋势,从而对供应方案进行相应的优化和调整。

调度自动化系统基础知识课件

调度自动化系统基础知识课件

调度自动化系统的安全与可
04
靠性
调度自动化系统的安全防护
01
02
03
物理安全防护
确保调度自动化系统的硬 件设备和网络设施免受未 经授权的访问和破坏。
网络安全防护
通过防火墙、入侵检测系 统等手段,防止恶意攻击 和网络入侵。
数据安全防护
采用加密技术、数据备份 和恢复机制,保护数据的 安全性和完整性。
02
网络技术
现代调度自动化系统通常基于计算机网络技术, 实现数据的共享和远程访问。
实时数据处理技术
数据采集
调度自动化系统需要具备实时数据采集能力,从 各种传感器和设备中获取数据。
数据处理
对采集到的实时数据进行处理,包括数据清洗、 转换和聚合等操作,以满足调度决策的需求。
人工智能与机器学习在调度自动化中的应用
时性和可靠性。
效果评估
03
升级后系统运行稳定,提高了电网公司的调度效率和供电质量

国际先进的调度自动化系统介绍
01
典型案例
介绍国际上先进的调度自动化系 统,如美国的PJM和欧洲的 ENTSO-E。
技术特点
02
03
发展趋势
分析这些系统的数据采集与处理 、自动控制和决策支持等技术特 点。
探讨调度自动化系统未来的发展 趋势,如云计算、大数据和人工 智能技术的应用。
预测模型
利用人工智能和机器学习技术,构建 预测模型,对未来的能源需求、设备 运行状态等进行预测。
优Hale Waihona Puke 算法通过人工智能和机器学习算法,优化 调度决策,提高能源利用效率和系统 运行稳定性。
大数据处理与分析技术
数据存储
调度自动化系统需要处理大量数据,因此需要具备高效 的数据存储和管理技术。

调度自动化概述

调度自动化概述

调度自动化概述调度自动化是电力系统管理的重要组成部分,是保证电力系统安全、经济、稳定运行的关键。

随着电力系统的不断发展,调度自动化技术也在不断进步,从最初的简单控制和监视,到现在的全面监测和控制,使得电力系统的调度越来越精细和可靠。

调度自动化的基本原理是将电力系统的实际运行情况通过各种传感器、执行器等设备转化为可以识别的数据信号,再通过通信网络将这些数据信号传输到调度中心,由调度中心对接收到的数据进行分析、处理和判断,根据判断结果对电力系统进行相应的调整和控制。

调度自动化的主要功能包括:监测和控制电力系统的运行状态;对电力系统的各种设备和机组进行调度和控制;对电力系统的安全性和稳定性进行监测和预警;对电力系统的经济运行进行优化和控制等。

随着技术的发展,调度自动化系统已经越来越智能化、大数据、云计算等技术的应用,使得调度自动化系统能够更好地对电力系统进行监测和控制,提高了电力系统的安全性和稳定性。

这些技术的应用也使得调度自动化系统能够更好地对电力系统的经济运行进行优化和控制,提高了电力系统的经济性。

调度自动化是电力系统管理的重要组成部分,是保证电力系统安全、经济、稳定运行的关键。

随着技术的发展,调度自动化系统也将越来越智能化,为电力系统的管理带来更多的便利和效益。

随着科技的发展和工业自动化的不断进步,自动化生产线已经成为现代制造业的重要组成部分。

自动化生产线是指通过自动化设备、机器人等手段,实现生产流程的自动化,提高生产效率,降低生产成本,提升产品质量。

本文将对自动化生产线进行概述,介绍其特点、组成、应用和发展趋势。

自动化生产线具有高效、稳定、安全、可靠等特点。

与传统的生产线相比,自动化生产线采用先进的自动化设备和技术,能够实现生产流程的自动化和智能化,提高生产效率,降低生产成本,减少人力成本。

同时,自动化生产线还能够提高产品质量,减少产品不良率,提高产品的一致性和稳定性。

自动化设备:自动化设备是自动化生产线的重要组成部分,包括机器人、自动化机床、传送带等。

电力系统调度自动化

电力系统调度自动化

电力系统调度自动化一、概述电力系统调度自动化是指利用计算机技术和自动化控制技术,对电力系统进行实时监测、运行控制、故障处理和数据分析等操作的过程。

通过自动化技术的应用,可以提高电力系统的运行效率、可靠性和安全性,实现对电力系统的智能化管理。

二、系统架构1. 数据采集电力系统调度自动化系统通过各种传感器和监测设备,对电力系统的各项指标进行实时采集。

这些指标包括电压、电流、功率、频率等参数,以及设备状态、故障信息等。

采集到的数据通过通信网络传输到调度中心。

2. 数据传输数据传输是电力系统调度自动化系统的核心环节。

采集到的数据通过通信网络传输到调度中心。

常见的通信方式包括有线通信(如光纤、电缆)、无线通信(如微波、卫星)等。

为了保证数据的安全性和可靠性,通信网络需要具备高速、低时延、抗干扰等特点。

3. 数据处理与分析调度中心接收到传输过来的数据后,对数据进行处理和分析。

通过数据处理算法和模型,对电力系统的运行状态进行评估和预测。

同时,还可以通过数据分析,提取出电力系统的潜在问题和优化方案,为运行决策提供参考。

4. 运行控制根据数据处理和分析的结果,调度中心可以下发控制指令,对电力系统进行运行控制。

例如,调整发电机的输出功率、调节变压器的变比、切换线路的供电方案等。

这些控制指令可以通过自动化装置实现,也可以通过人工干预实现。

5. 故障处理电力系统调度自动化系统还具备故障处理的功能。

当电力系统出现故障时,系统能够及时检测到故障信号,并进行故障定位和隔离。

同时,还能够根据故障类型和位置,自动调整电力系统的运行状态,保证电力系统的安全运行。

三、功能特点1. 实时监测:电力系统调度自动化系统能够实时监测电力系统的各项指标和设备状态,及时发现异常情况。

2. 运行控制:通过数据分析和运行评估,系统可以下发运行控制指令,对电力系统进行智能化运行控制。

3. 故障处理:系统能够及时检测到电力系统的故障信号,并进行故障定位和隔离,保证电力系统的可靠性和安全性。

电力调度自动化系统基础知识

电力调度自动化系统基础知识

电力调度自动化系统基础知识
准确、翔实
一、电力调度自动化系统是什么?
二、电力调度自动化系统的功能
1、电力系统管理:通过实时和历史记录数据对电力系统进行参数监控、报警及及时处理;
2、电网调度控制:实现电网调度系统的智能控制,根据用户要求,对电网进行有效的调度控制;
3、电力设备运行状况监控:实时监控电力设备的运行状况,精确把控电力系统的运行状况,提高电力调度效率;
4、联锁技术:实现设备联锁,确保安全可靠运行,减少机组停运的情况;
5、故障处理:及时诊断电力系统的故障情况,便于及时处理故障,保证电力系统的完好运行;
6、记录分析:实时记录电力系统的运行参数,实现运行状况的准确分析和及时处理。

三、电力调度自动化系统的优点
1、大大提高了电力系统的及时响应性,减少突发状况发生;
2、实现数据安全,减轻现场人员的负担;。

电力系统调度自动化

电力系统调度自动化

电力系统调度自动化概述:电力系统调度自动化是指通过计算机技术和自动化控制技术,对电力系统运行状态进行实时监测、分析和控制的一种技术手段。

它能够提高电力系统的安全性、可靠性和经济性,实现电力系统的自动化运行和优化调度。

一、电力系统调度自动化的基本原理和架构电力系统调度自动化的基本原理是通过数据采集、传输、处理和控制等环节实现对电力系统运行状态的实时监测和控制。

其基本架构包括以下几个部分:1. 数据采集系统:通过安装在电力系统各个关键节点的传感器、监测设备等,实时采集电力系统的运行数据,包括电压、电流、频率、功率等参数。

2. 数据传输系统:将采集到的数据通过通信网络传输到调度中心,确保数据的及时性和准确性。

3. 数据处理系统:调度中心通过数据处理系统对采集到的数据进行分析和处理,生成电力系统的运行状态图、负荷曲线、功率流分布图等。

4. 控制系统:根据数据处理系统的分析结果,调度中心可以通过控制系统对电力系统进行远程控制,包括调整发电机出力、调整负荷分配、切换电源等。

二、电力系统调度自动化的主要功能和作用电力系统调度自动化具有以下主要功能和作用:1. 实时监测和预警:通过对电力系统运行数据的实时采集和处理,调度中心可以及时监测电力系统的运行状态,并对异常情况进行预警,以便及时采取措施避免事故的发生。

2. 运行优化:通过对电力系统运行数据的分析和处理,调度中心可以实现电力系统的优化调度,包括合理调整发电机出力、负荷分配、电网结构等,以提高电力系统的经济性和可靠性。

3. 故障诊断和恢复:电力系统调度自动化可以对电力系统的故障进行快速诊断,并通过控制系统进行故障恢复,以减少故障对电力系统的影响。

4. 负荷管理:调度中心可以通过电力系统调度自动化对负荷进行管理,包括负荷预测、负荷分配、负荷调整等,以保证电力系统的稳定供电。

5. 能源管理:电力系统调度自动化可以对电力系统的能源进行管理,包括能源调度、能源优化利用等,以提高能源利用效率。

调度自动化系统结构及功能

调度自动化系统结构及功能

1.2信息传输子系统
信息传输子系统按信道的制式不同,可分为模拟
传输系统和数字传输系统两类。 对于模拟传输系统(其信道采用电力线载波机、模 拟微波机等),远动终端输出的数字信号必须经过 调制后才能传输。模拟传输系统的质量指标可用 其衰耗一频率特性,相移一频率特性、信噪比等 来反映,它们都将影响到远动数据的误码率。 对于数字传输系统(其信道采用数字微波、数字光 纤等),低速的远动数据必须经过数字复接设备, 才能接到高速的数字信道。随着通信技术的发展, 数字传输系统所占的比重将不断增加,信号传输 的质量也将不断的提高。
前置采集系统
前置机处理数据的过程:前置系统此时 前置收到数据(报文)是生数据,也就是 scada还不能使用的数据,此时前置机会根 据前置遥测定义表与前置遥信定义表中用户 所填的点号与报文上送中的点号匹配,来确 定接收的数据与状态究竟与哪一条记录对应, 并且根据本记录中所填的基值、系数、遥测 极性、极性等内容去处理生数据,因而由前 置送给scada的数据都是处理后的熟数据。 然后以网络的方式传送给scada。
通信工作站
终端服务器 路由器
PAS服务器 物理隔离装置 Web服务器
远动装置
远动装置 网络RTU信号 信息网 防火墙
1、 硬件构成
系统硬件一般包括: 历史服务器 SCADA服务器 前置服务器 PAS服务器 WEB服务器 DTS服务器 模型拼接服务器 横向通讯服务器
2、系统中应用模块
电力系统状态估计SE
根据有冗余的测量值对实际网络的状态进行估计,


得出电力系统状态的准确信息,并产生“可靠的数 据集”。 (1) 网络接线分析(又称网络拓扑 NetworkTopology)。 (2) 潮流计算(包括三相潮流)。 (3)状态估计(包括三相状态估计)。 (4)负荷预报(包括系统负荷预报和母线负荷预报)。 (5)短路电流计算。 (6)电压/无功优化等。

电力系统调度自动化

电力系统调度自动化

电力系统调度自动化概述:电力系统调度自动化是指利用先进的信息技术手段和自动化控制技术,对电力系统进行实时监测、运行控制、故障处理和调度决策的过程。

其目的是提高电力系统的可靠性、经济性和安全性,实现电力系统的高效运行。

一、电力系统调度自动化的基本原理和架构1. 基本原理:电力系统调度自动化基于实时数据采集、通信传输、数据处理和决策支持等技术,通过对电力系统各个环节的监测和控制,实现对电力系统运行状态的全面把握,并根据实时数据进行决策分析,提供最优的运行策略。

2. 架构:电力系统调度自动化普通包括以下几个主要组成部份:- 数据采集系统:负责采集电力系统各个环节的实时数据,包括发机电组、变电站、输电路线等。

- 通信传输系统:负责将采集到的实时数据传输到调度中心,通信方式包括有线通信和无线通信。

- 数据处理系统:负责对采集到的实时数据进行处理和分析,生成电力系统的运行状态和趋势分析报告。

- 调度决策支持系统:基于数据处理系统的分析结果,提供决策支持和运行策略优化,匡助调度员做出准确的决策。

二、电力系统调度自动化的主要功能和特点1. 主要功能:- 实时监测:对电力系统各个环节的实时数据进行监测,包括电压、电流、功率等参数。

- 运行控制:根据实时监测数据,对电力系统进行运行控制,如发机电组的启停、变压器的调节等。

- 故障处理:对电力系统的故障进行快速定位和处理,减少对系统的影响。

- 调度决策:根据实时数据和分析结果,做出最优的调度决策,提高电力系统的经济性和可靠性。

2. 特点:- 实时性:能够实时采集和处理电力系统的数据,及时反馈系统的运行状态。

- 自动化:通过自动化控制技术,实现对电力系统的自动监测和控制,减少人为干预。

- 高可靠性:通过故障处理和决策支持系统,提高电力系统的可靠性和安全性。

- 高效性:通过优化调度决策,提高电力系统的经济性和运行效率。

三、电力系统调度自动化的应用案例1. 案例一:某省电力系统调度自动化项目该项目采用先进的调度自动化系统,实现对该省电力系统的全面监测和控制。

电力系统调度自动化

电力系统调度自动化

电力系统调度自动化一、概述电力系统调度自动化是指利用先进的信息技术和自动化技术,对电力系统进行实时监控、运行管理和调度控制的过程。

通过自动化系统的应用,可以提高电力系统的安全性、可靠性和经济性,实现对电力系统运行状态的全面监测和控制。

本文将详细介绍电力系统调度自动化的标准格式。

二、系统架构电力系统调度自动化普通由以下几个模块组成:1. 数据采集模块:负责采集电力系统各个节点的实时数据,包括电压、电流、功率等参数。

2. 数据处理模块:负责对采集到的数据进行处理和分析,生成电力系统的状态信息和运行指标。

3. 运行监控模块:负责监控电力系统的运行状态,及时发现异常情况并报警。

4. 调度控制模块:负责制定电力系统的调度策略,并通过控制指令实现对电力系统的调度控制。

5. 人机界面模块:提供给操作人员进行系统监控和控制的界面,包括图形显示、报表查询等功能。

三、功能需求1. 实时监测电力系统的运行状态,包括电压、电流、功率等参数。

2. 分析电力系统的运行数据,生成运行指标和报表。

3. 监控电力系统的异常情况,及时发出报警信息。

4. 制定电力系统的调度策略,包括负荷调度、电网优化等。

5. 实现对电力系统的远程控制,包括开关操作、调节设备参数等。

6. 提供友好的人机界面,方便操作人员进行系统监控和控制。

四、技术要求1. 数据采集模块应具备高精度、高稳定性的数据采集能力,能够实时采集各个节点的数据。

2. 数据处理模块应具备强大的数据处理和分析能力,能够快速生成运行指标和报表。

3. 运行监控模块应具备实时监测和报警能力,能够及时发现异常情况并及时报警。

4. 调度控制模块应具备灵便的调度策略制定和控制指令生成能力,能够实现对电力系统的精确控制。

5. 人机界面模块应具备友好的界面设计和操作方式,方便操作人员进行系统监控和控制。

五、安全要求1. 系统应具备数据加密和传输安全的能力,保证数据的机密性和完整性。

2. 系统应具备权限管理和访问控制的能力,确保惟独授权人员才干进行系统操作。

调度自动化系统(EMS)

调度自动化系统(EMS)
(4)其他设备 包括卫星时钟同步装置、远程拨号Modem、语音告警模块、音箱、UPS以及精密空调等。
3.1 调度自动化系统主站系统 3.1.3 主站系统硬件设备
服务器 路由器
工作站 交换机
第一部分:调度自动化系统基础介绍
UPS
Modem池
防火墙 加密认证装置
精密空调
3.2 数据传输通道
第一部分:调度自动化系统基础介绍
调度自动化系统
系统介绍与使用
通过本课程的学习,可以使调度值班岗位的人员,懂得和掌握以下知识和技能
1. 调度自动化系统的基本概念 2.调度自动化系统的组成
调度自动化系统的使用方法
基础介绍
课程简介 介绍了调度自动化系统的概念、作用。对调度自动化系统的使用进行说明, 能够指导调度值班员更好的了解调度自动化系统,方便调度值班员更好的 监视电网。
CC-2000A OPEN-3000 DF8003/E
引进应用系统 VAX/VMS 通用机、专用OS 西屋、ESCA
引进智应能用化系统 H80-E 日立
专用机、专用OS ASEA
国产应用系统 国产机、无OS
SD176
智能电网 调度技术 支持系统
1970
1980
1990
2000
调度自动化系统发展历程
2010
(3)对电网运行实现安全分析和事故处理
主要特点 (1)系统的开发性 (2)系统的可扩展性 (3)先进的系统平台 (4)强大的WEB浏览功能
第一部分:调度自动化系统基础介绍
国产应用系统、数据库 安全OS
D500 E8000
国产应用系统 通用机、开放OS
引进应用系统 RISC/UNIX 通用机、开放OS 西门子、ABB

调度自动化系统基础知识

调度自动化系统基础知识

DTS 交换机
DTS服务器 打印机 报表工作站
观察室背投
DTS子系统
维护工作站 开发工作站
MMI交换机
用户接口子系统
WAMS工作站 GPS ×2
大屏幕控制器
工程师工作站 防火墙
核心 交换机
100/1000M 数据通信 服务器 数据采集 服务器
磁盘阵列
前置 交换机
系统数据管理服务器
EMS服务器
WAMS服务器 容灾 交换机
调度员培训系统(DTS)
利用电路理论来仿真、培训调度员
调度自动化系统基础知识
GYZD00101001
2、调度自动化的概念
调度自动化系统是什么?
调度自动化系统基础知识
GYZD00101001
调度自动化系统是什么?
收集 传输 监控
基于计算机、通信、控制技术的自动化系统的总称,是在 线为各级电力调度机构生产运行人员提供电力系统运行信 息(包括频率、发电机功率、线路功率、母线电压等), 分
析决策工具和控制手段的数据处理系统。
调度自动化系统基础知识
GYZD00101001
小结
调度自动化系统的概念
调度自动化系统基础知识
GYZD00101001
调度自动化系统的作用
• 1. 对电网安全运行状态实现监控
• 2. 对电网运行实现经济调度 • 3. 对电网运行实现安全分析和事故处理
调度自动化系统基础知识
(2)人机联系设备
分为通用和专用两种: 调度自动化主站系统中的人机联系设备就是为了实现人机对话而设立 的,是调度自动化中操作人员和计算机之间交换信息的输入和输出设备。
调度自动化系统基础知识
GYZD00101001
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力调度自动化系统简介第一部分 EMS简介第一章电力调度自动化系统的构成本章介绍调度自动化系统的构成。

通过基本结构形式介绍和基本功能介绍,熟悉调度自动化系统的结构及其设备,掌握电力调度自动化系统的基本功能。

一、电力调度自动化系统的结构以计算机为核心的电力调度自动化系统的框架结构如图1-1所示。

调度自动化主站系统图1-1 电力调度自动化系统的框架结构图1-1中可以看到,调度自动化系统采取的是闭环控制,由于电力系统本身的复杂性,还必须有人(调度人员)的参与,从而构成了完整、复杂、紧密耦合的人一机一环境系统。

(一)子系统构成电力调度自动化系统按其功能可以分成如下四个子系统:1、信息采集命令执行子系统该子系统是指设置茬发电厂和变电站中的子站设备、遥控执行屏等。

子站设备可以实现“四遥”功能,包括:采集并传送电力系统运行的实时参数及事故追忆报告;采集并传送电力系统继电保护的动作信息、断路器的状态信息及事件顺序报告(SOE);接受并执行调度员从主站发送的命令,完成对断路器的分闸或合闸操作;接受并执行调度员或主站计算机发送的遥调命令,调整发电机功率。

除了完成上述“四遥”的有关基本功能外,还有一些其他功能,如系统统一对时、当地监控等。

2、信息传输子系统该子系统完成主站和子站设备之间的信息交换及各个调度中心之间的信息交换。

信息传输子系统是一个重要的子系统,信号传输质量往往直接影响整个调度自动化系统的质量。

3、信息的收集、处理与控制子系统该系统由两部分组成,即发电厂和变电站内的监控系统,收集分散的面向对象的RTU(RemoteTerminal Unit)的信息,完成管辖范围内的控制,同时将经过处理的信息发往调度中心,或接受控制命令并下发RTU执行。

调度中心收集分散在各个发电厂和变电站的实时信息,对这些信息进行分析和处理,结果显示给调度员或产生输出命令对对象进行控制。

4.人机联系子系统从电力系统收集到的信息,经过计算机加工处理后,通过各种显示装置反馈给运行人员。

运行人员根据这些信息,作出各类决策后,再通过键盘、鼠标等操作手段,对电力系统进行控制。

(二)电力调度自动化主站SCADA/EMS系统的子系统划分1.支撑平台子系统支撑平台是整个系统的最重要基础,有一个好的支撑平台,才能真正地实现全系统统一平台,数据共享。

支撑平台子系统包括数据库管理、网络管理、图形管理、报表管理、系统运行管理等。

2.SCADA子系统SCADA( Supervisory Control and Data Acquisition)子系统包括数据采集、数据传输及处理、计算与控制、人机界面及告警处理等。

3.AGC/EDC子系统自动发电控制和在线经济调度(Automatic Generation Control/Economic Dispatch Control,AGC/EDC)是对发电机出力的闭环自动控制系统,不仅能够保证系统频率合格,还能保证系统间联络线的功率符合合同规定范围,同时,还能使全系统发电成本最低。

4.高级应用软件PAS子系统PAS(PO-Ner system Application Software)子系统包括网络建模、网络拓扑、状态估计、调度员潮流、静态安全分析、无功优化及短期负荷预报等一系列高级应用软件。

5.调度员仿真培训系统DTS子系统DTS (Dispatcher Training Simulator)子系统包括电网仿真、SCADA/EMS系统仿真和教员控制机三部分。

调度员仿真培训(DTS)与实时SCAD/EMS系统共处于一个局域网上,DTS -般由服务器、工作站及一些外设组成。

6.调度管理信息子系统OMSOMS (Operater Management System)属于办公自动化的一种业务管理系统,不属于SCADA/EMS系统的范围。

它与具体电力公司的生产过程、工作方式、管理模式有非常密切的联系,因此总是与某一特定的电力公司合作开发,为其服务。

当然,其中的设计思路和实现手段应当是共同的。

二、调度自动化主站系统的设备调度自动化主站系统的设备包括主站系统和相关硬件。

(一)主站系统1.双机系统双机系统共有三种工作方式。

(1)主一备工作方式。

通常采用完全相同的两台主机及各自的内、外存储器及输入/输出设备。

承担在线运行功能的计算机,称值班机;处于热备用状态的计算机,称为备用机。

当值班机发生故障,监视设备立即自动把备用机在最短的时间内投入在线运行。

采用这种工作方式时,备用机必须保持与值班机相同的数据库,便于软件的维护和开发、运行人员的模拟培训及离线计算等。

(2)主一副工作方式。

通常采用一台计算机为主,担负在线运行的主要功能;另一台为副,担负较次要的在线运行功能和辅助的或离线的功能。

在主机发生故障时,自动使副计算机承担起主计算机的功能。

(3)完全平行工作方式。

通常采用两台计算机同时承担在线运行功能,这种方式不存在主一备机或主一副机切换问题。

为了保证可靠性,在双机系统中,前置机通常也采用双机方式。

2.分布式系统分布式系统是把系统的各项功能分散到多台计算机中去,各台计算机之间用局域网相连并通过局域网高速交换数据。

人机联系的处理机也以工作站方式接在局域网上.每台计算机承担特定的任务,如前置机、监控处理机、人机联系、历史文件处理机、电网分析处理机等。

对某些重要的实时功能,设置双重化的计算机,如双前置机、双后台机、双网络等。

分布式系统结构优点在于资源共享和并行计算,局域网( LAN)通信灵活、数据传输方便。

在系统扩充功能时,只需增加新的处理器,无须改造整个系统。

分布式系统采用标准的接口和介质,把整个系统按功能分解分布在网络节点上,形成异种机兼容,能相互连接和移植,数据实现冗余分布,组成开放式的分布式系统。

目前,调度自动化系统调度端计算机系统采用基于冗余的开放式分布应用环境,整个软硬件体系结构满足冗余性和模块化是当前电力系统对调度自动化系统技术发展的客观要求。

(二)人机联系设备调度自动化主站系统中的人机联系设备就是为了实现人机对话而设立的,是调度自动化中操作人员和计算机之间交换信息的输入和输出设备。

这类设备分为通用和专用两种。

通用的人机联系设备是指供计算机系统管理和维护人员、软件开发和计算机操作人员所使用的控制台、打印机、控制台终端、程序员终端等。

专用的人机联系设备是指专门供电力系统调度人员用以监视和控制电力系统运行的人机联系设备,其中有交互型的调度员控制台、远方操作台和调度员工作站,非交互型的调度模拟屏和计算机驱动的各类记录设备及其他设备等。

人机联系系统的主要功能如下:(1)监视电力系统。

1)在屏幕上以单线图的形式显示电力系统的运行状态。

2)以表格的方式显示电力系统的运行参数以及定时打印、记录。

3)显示趋势曲线、条形图、棒图、饼图等。

4)在某些指定画面上进行某些操作。

(2)监视控制系统。

1)监视计算机系统的运行状态。

2)监视子站设备、通道的运行状态。

3)监视操作系统运行状态。

(3)维护系统。

1)在线维护和生成画面。

2)维护和生成数据库。

3)执行和开发应用软件。

(三)前置机调度自动化主站系统的数据采集与处理子系统,常称为前置机系统。

前置机系统包括从调制解调器到前置机的软、硬件。

前置机系统是各厂站远动信息进入主站系统的关口。

前置机的主要功能是接收多个子站信息,其通信口能够绑定不同的规约。

前置机的主要功能如下:(1)接收数据的预处理。

遥测量的预处理工作主要包括遥测值的滤波处理、越限检查和遥测归零处理,状态量变位判别,变位次数统计等。

发生事故变位时,对相关遥测量进行事故追忆。

(2)向后台机传送信息。

前置机预处理后的数据要向后台机传送,由后台机作进一步处理。

可以采用有开关变位或遥测值的变化超过设定的死区时再向后台机送数的处理方法,以便减轻后台机的处理负担。

(3)下发命令。

接收后台机的遥控、遥调命令,并通过下行通道向子站发送。

向下发送电能量冻结命令。

接收标准时钟(如天文钟、卫星钟等)或主机时钟,并以此为标准向子站发送校时命令,实现系统时钟的统一。

(4)向调度模拟屏传送实时数据。

通过串行口向模拟屏的控制主机、智能控制箱传送数据。

(5)转发功能。

从实时数据库中,选择出上级调度主站需要的信息,按规定的转发规约对信息重新进行组帧,向上级调度主站发送。

(6),通道监视。

监视各个通道是否有信号正常传送,统计信道的误码率。

(四)计算机软件系统计算机软件系统包括系统软件、支持软件和应用软件。

系统软件包括操作系统、语言编译和其他服务程序,是计算机制造厂为便于用户使用计算机而提供的管理和服务性软件。

支持软件主要有数据库管理、网络通信、人机联系管理、备用计算机切换等各类服务性软件。

应用软件是实现调度自动化各种功能的软件,如SCADA软件、自动发电控制和经济运行、安全分析、状态估计和对策、优化潮流、网络建模、拓扑分析、负荷预报等一系列电力应用软件等。

调度自动化的计算机软件需满足开放式分布系统的应用环境,遵守开放式标准,支持多厂家硬件平台,为应用系统提供面向对象的开发环境,支持应用层的开放。

(五)图形系统图形是直观地显示电力系统运行状况的重要手段。

SCADA系统软件模块中的图形系统,能绘制出电力系统运行状况的各种图形。

(1)网络潮流图:用来表示电网的潮流分布。

(2)厂站主接线图:由代表各种电气设备的图形符号和连接线组成,实时、直观地反映出电网的接线方式。

(3)曲线图:历史曲线图或实时动态曲线图。

历史曲线图用曲线显示遥测量在某一历史时间内的变化情况。

实时动态曲线图是对某一遥测量按规定的时间间隔采样,显示从过去某一时间到当前时间的曲线。

(4)扇形图:以扇形图的大小显示出若干个相关的遥测量数据大小的比例关系,一般用百分比表示。

(5)棒图:将数据显示成棒的形式,并以棒的长短显示遥测值的大小。

(6)地理接线图:用来表示厂、站和线路的地理位置和走向。

(六)数据库系统调度自动化系统的数据库分为实时数据库和历史数据库。

实时数据库主要用于实时数据的储存,由于其对实时性要求较高,一般采用专用的数据库。

历史数据库主要用于对历史数据的储存,一般采用商用数据库,如Oracle、Sybase等。

三、电力调度自动化系统的基本功能电力系统调度自动化按功能划分为电力调度自动化和配电自动化两类。

(一)电力调度自动化1.数据采集和监视控制( SCADA)数据采集与监视控制是调度自动化系统最基本的功能,实现对电力系统实时数据的采集和运行状态的监控。

监视指对电力系统运行信息的采集、处理、显示、告警和打印,以及对电力系统异常或事故的自动识别;控制则是通过人机联系设备对断路器、隔离开关等设备进行远方操作的开环性控制。

SCADA系统的主要功能如下:(1)数据采集(遥测、遥信)。

相关文档
最新文档