大学物理 12-4 自感和互感

合集下载

互感和自感 课件

互感和自感  课件

3.自感系数 (1)大小:线圈的长度越长,线圈的横截面积越大,单 位长度上的匝数越多,线圈的自感系数就越大,线圈有铁芯 时比无铁芯时自感系数大得多。 (2)单位:亨利(符号 H),1 H=103 mH=106 μH。 (3)物理意义:表征线圈产生自感电动势本领大小的物 理量,数值上等于通过线圈的电流在 1 s 内改变 1 A 时产生 的自感电动势的大小。
例 3 如图所示的电路中 A1 和 A2 是两个相同的小灯 泡,L 是一个自感系数相当大的线圈,其阻值与 R 相同。在 开关 S 接通和断开时,灯泡 A1 和 A2 亮暗的顺序是( )
A.接通时 A1 先达最亮,断开时 A1 后灭 B.接通时 A2 先达最亮,断开时 A1 后灭 C.接通时 A1 先达最亮,断开时 A1 先灭 D.接通时 A2 先达最亮,断开时 A2 先灭
L1、L2 同规格,R= L 很大(有铁芯),
RL,L 较大
RL≪RLA
在 S 闭合瞬间,L2 在开关 S 断开瞬间,
灯立即亮起来,L1 灯逐渐变亮,最终一
LA 灯突然闪亮一下
后再渐渐熄灭
样亮
原因
断开开关 S 前,由于 RL≪
Hale Waihona Puke 由于开关闭合时,流 过电感线圈的电流迅 速增大,使线圈产生 自感电动势,阻碍电 流的增大,使流过 L1 灯的电流比流过 L2 灯的电流增加得慢
自感现象的“三种状态”“一个特点” (1)三种状态 ①线圈通电瞬间可把线圈看成断路; ②断电瞬间自感线圈相当于电源; ③电流稳定时,自感线圈相当于导体电阻,理想线圈电 阻为零,相当于导线。 (2)一个特点 在发生自感现象时,电流不发生“突变”。
考点 对通电自感和断电自感的理解
在处理通断电自感灯泡亮度变化问题时,不能一味套用 结论,如通电时逐渐变亮,断电时逐渐变暗,或闪亮一下逐 渐变暗,要具体问题具体分析,关键要搞清楚电路连接情况。

12_4自感和互感

12_4自感和互感

dI dI R L IR dt dt I L I I dI t R I0 dt I0 I 0 L R t L I I 0e , I 0 R
t
12 - 4 自感和互感
二 互感电动势 互感 1、互感现象 当线圈1中的电流变化时, 所激发的磁场会在它邻近 的另一个线圈2中产生感应 电动势。
I
写成等式:
LI
穿过闭合电流回路的磁通量
Φ LI
—自感系数为线圈中磁链 与线圈中的电流之比。
称 L为自感系数,简称自感或电感。
2、自感系数
LΦ I
自感系数
若线圈有 N 匝,磁通链数
NΦ L I
要求 : L与I 符合右手螺旋关系
12 - 4 自感和互感
第十二章 电磁感应 电磁场
R

t
0
(ln
R ln ) t L
R t L
I R dI dt 0 L I R
I0
I
I e R R
t
R t L
I (1 e R
R t L
) I 0 (1 e
)
12 - 4 自感和互感 L
第十二章 电磁感应 电磁场
B
A k
衰减过程:k与B接触, 形成RL回路。I减少, L产生与原电流方向相 同的自感电动势。
N1 B1 0 I1 0 n1 I1 l

dL 0 时, dt
dI L L dt
12 - 4 自感和互感
第十二章 电磁感应 电磁场
d d ( N ) dI L 若线圈有N匝 L dt dt dt
自感(动态)
L L

第四节自感与互感

第四节自感与互感

Ψ N2 L= =µ S = µn 2 Sl = µn 2V I l
《大学物理》
教师:
胡炳全
二、互感现象 互感系数 1、互感现象 一个线圈的电流变化所引 起的另一线圈中的电磁感 应现象。叫互感。 2、互感系数 I1 B
1 可以证明
2
Φ m 2 = M 21 I1 Φ m1 = M 12 I 2
M 12 = M 21 = M
《大学物理》
教师:
胡炳全
例题1、有一长直密绕螺线管,长度为l,横截面积为S,线 圈的总匝数为N,管中介质的磁导率为µ。试求其自感系数。 解:设螺线管载流为I,则有
∫ H ⋅ d l = H ⋅ ab = I f =
l
N abI l

N H= I l B H= 可得
µ
N B=µ I l
每匝线圈的磁通量为: Φ m = BS = µ N SI l N2 总磁通量(或磁链)为: Ψ=µ SI l 则自感系数为:
证明:设有电流I Φ m = L1 I + L2 I ± 2 MI ∴ L = L1 + L2 ± 2 M 在这里,M还可以写成 M = k L1 L2 k叫耦合系数
全耦合 : k = 1 L = L1 + L2 ± 2 L1 L2 4 L0 → 0
L1 = L2 = L0
µ 0 I1 B1 = 2πr
l r I dr h a b
三角形线圈中的磁通量为
Φ
m 2
=

S
B ⋅d S = =

s
B cos θ ds

b a
µ 0 I1 hdr 2π r
由相似三角形关系,可得 h b−r = l b−a

大学物理 12-4 自感和互感解读

大学物理 12-4 自感和互感解读

自感
2、 L的计算:可用上两式之一计算,一般由 L I 计算。 3、 L 的大小反映阻碍电流变化的能力,L 是电磁 惯性的一种表现。 4、利弊 1) 应用:镇流器,扼(抑)流圈,谐振电路,··· 2) 害处:上电迟延,断电影响,分布参数,···

自感
求自感电动势的关键,在于知道线圈的自感系数大小, 一般通过实验测得;规则线圈也可以计算得出。
Ψ NΦ LI
Ψ
磁通链数
自感
2、自感电动势: d ( NΦ ) dΦ dΨ L N dt dt dt dI dL d ( LI ) L I dt dt dt
若回路几何形状、尺寸不变,周围无铁磁性物质,则:
dL 0 dt
dI L L dt
或 12
dΨ 12 dI 2 M dt dt
互感
【讨论】
1、 M 的定义:可用下两式之一定义 (1) (2)
Φ21
Ψ 2 M I1
dI 2 1 M dt
M
2
I1
I1
1
1
I2
2
M
dI 2
dt
互感系数:在数值上等于当第二个回路电流变
化率为每秒一安培时,在第一个回路所产生的互感电 动势的大小。 2、 M 的计算:可用上两式之一计算,一般用(1)式。
E
+
1 1 2 W QU CU 2 2
Q 1 1 2 电容器贮存的电能 We QU CU 2C 2 2
2
静电场的能量密度与能量计算公式
1 S 1 2 1 2 2 ( Ed ) E Sd We CU 2 d 2 2
1 1 2 ED 电场能量密度 we E 2 2

大学物理自感和互感(二)2024

大学物理自感和互感(二)2024

大学物理自感和互感(二)引言概述:在大学物理中,自感和互感作为电磁学的重要概念,是理解电路和电磁现象的关键。

本文将介绍自感和互感的概念、特性以及在电路中的应用。

通过对这两个概念的深入理解,我们可以更好地理解电磁学原理,并在实践中应用于电路设计和电磁设备。

正文:1. 自感的概念与特性1.1 自感的定义1.2 自感系数的计算方法1.3 自感的单位与量纲1.4 自感的特性及其影响因素1.5 自感在电路中的作用2. 互感的概念与特性2.1 互感的定义2.2 互感系数的计算方法2.3 互感的单位与量纲2.4 互感的特性及其影响因素2.5 互感在电路中的作用3. 自感与互感的数学关系3.1 自感与互感的数学定义3.2 自感与互感的表达式3.3 自感与互感的对立性及作用机制3.4 引入自感与互感的电路方程组3.5 自感与互感的联合应用实例4. 自感和互感在电路分析中的应用4.1 自感与互感对电流、电压的影响4.2 自感与互感对电路能量的转移与储存的影响4.3 自感与互感对电路振荡特性的影响4.4 自感与互感在变压器设计中的应用4.5 自感与互感在电磁传感器中的应用5. 自感和互感的实验验证及工程应用5.1 自感和互感的实验测量方法5.2 自感与互感的实验数据处理与分析5.3 自感和互感在电子工程中的应用案例5.4 自感和互感在电力工程中的应用案例5.5 自感和互感的未来发展方向总结:通过本文的阐述,我们对自感和互感的概念、特性以及在电路中的应用有了较为全面的了解。

自感和互感是电磁学的重要概念,掌握它们的原理和应用,对于电子工程和电力工程领域的学习和实践具有重要意义。

通过进一步的研究和实验,我们可以深入探索自感和互感的机理,并将其应用于更广泛的电磁设备和系统中。

大学物理,电磁感应12.4自感和互感

大学物理,电磁感应12.4自感和互感
要求自感电动势,应先求出自感系数。
9
12.3 自感和互感
自感应用:
第12章 电磁感应
日光灯镇流器;高频扼流圈;自感线圈与电 容器组合构成振荡电路或滤波电路。 通电后,启辉器辉光放电,金属片受热形变 互相接触,形成闭合回路,电流流过,日光灯灯 丝加热释放电子。 同时,启辉器接通辉光熄灭, 金属片冷却断开,电路切断,镇流器线圈中产生 比电源电压高得多的自感电动势,使灯管内气体 电离发光。 自感危害:电路断开时,产生自感电弧。
dI 1 dI 1 dΨ21 M 21 M ε 21 dt dt dt
当线圈 2 中的电流变化时,在线圈 1 中产生的 互感电动势为:
dΨ12 dI 2 dI 2 ε12 M 12 M dt dt dt
20
12.3 自感和互感
第12章 电磁感应
ε12
dI 2 = -M dt
4
12.3 自感和互感
2、自感系数 L
根据毕奥—萨尔定律: μ0 Idl r dB 4π r 3
第12章 电磁感应
I
B
线圈中的电流在空间任意一点激发的磁感应 强度的大小与线圈中的电流强度成正比,即: 穿过线圈自身总的磁通量与电流 I 成正比,
写成:
Φ LI
L 为自感系数。
解:设长直导线中电流 I ,
矩形线圈平面上的磁链数为: dr I
N B dS


M I
0 I N ldr a 2r 0 NIl a b ln 2 a 0 Nl a b ln 2 a
s ab
r
l
a
b
24
12.3 自感和互感
思考? 若已知矩形线圈中有电流:

大学物理自感和互感(一)

大学物理自感和互感(一)

大学物理自感和互感(一)引言概述:在大学物理学中,自感和互感是电磁现象中非常重要的概念。

自感和互感不仅在电路中起着关键作用,还在电磁场理论中有着广泛的应用。

本文将详细探讨自感和互感的基本概念、定义、计算方法以及它们在电路和电磁场中的应用。

正文:一、自感的概念和基本特性1. 自感的定义和原理2. 自感的单位和表示方式3. 自感的计算方法4. 自感的影响因素5. 自感与能量的关系二、自感的应用1. 自感对直流电路中的影响2. 自感对交流电路中的影响3. 自感在电磁铁和电磁感应中的应用4. 自感在变压器和电感储能中的作用5. 自感在电磁波传输中的应用三、互感的概念和基本特性1. 互感的定义和原理2. 互感的单位和表示方式3. 互感的计算方法4. 互感的影响因素5. 互感与电路传输特性的关系四、互感的应用1. 互感在变压器中的作用2. 互感在电感耦合放大器中的应用3. 互感在电波传输线中的影响4. 互感在共振电路中的应用5. 互感在电磁波传输和通信中的应用五、自感和互感的比较与总结1. 自感和互感的相同点和区别2. 自感和互感的物理意义和实际应用3. 自感和互感对电路和电磁场的影响4. 自感和互感的计算和测量方法5. 自感和互感的研究方向和未来发展趋势总结:通过本文的介绍,我们了解到了自感和互感在大学物理中的重要性及其在电路和电磁场中的应用。

自感和互感的概念、特性、计算方法以及实际应用都被深入探讨。

希望读者通过本文的阐述,对自感和互感有更加全面的理解,并能将其应用于相关领域的研究和实践中。

大学物理——12.3自感和互感

大学物理——12.3自感和互感

互感的应用
互感现象在电工技术中应用非常广泛, 如变压器、互感器以及用来测量电流 的钳形表,都是根据磁耦合原理制成的。
1. 互感现象
因两个载流线圈中电流变 化而在对方线圈中激起感应电 动势的现象称为互感应现象。
12
I1
I2
21
2. 互感系数(M)
21 M 21 I1
12 M12 I 2
理想条件下:若两回路几何形状、尺寸及相对 位置不变,周围无铁磁性物质。
实验和理论都可以证明:
M12 M 21 M 常数
说明:
1、理想自感元件的特点:
dI 越大, εL也越大, 对电流的阻碍作用也越大(阻交流); dt dI 0时,εL 0, 对电流的阻碍作用为零(通直流)。 dt
2、自感、互感现象可同时存在:
εL1 ↓

ε21
12
dI1 0 I 2 dt
21
3、 自感、互感的应用:
自感的应用:电焊、电弧切割技术
M 0 n1n2V
L1 μ n V
2 0 1
L2 μ n V
2 0 2
12
ψ11
I1
I2
21
22M Βιβλιοθήκη L1 L2 M K L1L2
在此例中线圈1的磁通全部通过线圈2,称为全耦合。 在一般情况下:
称K 为耦合系数 M Ψ 21 Ψ12 2 k L1 L 2 Ψ11 Ψ 22
↓ ε21
dI1 0 I 2 dt
21
dI1 若 0 则 : ε21 0, ε21与I1产生的B成右手螺旋 dt dI1 若 0 则 : ε21 0, ε21与I1产生的B不成右手螺旋 dt

互感和自感 课件

互感和自感 课件
有铁芯时大得多。
(2)自感系数的单位: 亨利
简称 亨 符号是 H 常用单位:
毫亨(m H) 微亨(μH)
四、磁场的能量
问题:在断电自感的实验中,为什么开关断开 后,灯泡的发光会持续一段时间?甚至会比 原来更亮?试从能量的角度加以讨论。
开关闭合时线圈中有电流,电流产生磁场, 能量储存在磁场中.
开关断开时,线圈作用相当于电源,把磁场 中的能量转化成电能。
五、自感现象的应用与防止: 1、安全开关问题
电弧放电,烧坏开关,危及人身安全
2、精密电阻
磁通量 恒=0
{ 3.镇流器 点燃时产生瞬时高压 工作时降压限流
日光灯启动时需要一个瞬
时高压,正常发光时又需
要一个低于220V的
自感系数较大的线圈(镇流 器)在断开时能产生瞬时高 压,可谁来充当自动开关?
二、自感现象
1、由于导体本身的电流发生变化而产 生的电磁感应现象,叫自感现象。
2、自感现象中产生的电动势 -----叫自感电动势。
自感电动势的作用: 阻碍导体中原来的电流变化。
注意: “阻碍”不是“阻止”,电流 原来怎么变化还是怎么变,只是变化变 慢了,即对电流的变化起延迟作用。
① A1、A2 使用规格完全一样的灯泡。 ② 闭合电键S,调节变阻器 R 和 R1 ,使A1、
(2)自感电动势大小: E L I 4、自感系数L:与线圈的大小、形t 状、
圈数及有无铁心有关
5、磁场具有能量
间。
接通电路,待灯泡A正常
发光。然后断开电路,观察 到什么现象?
现象 S断开时,A 灯突然闪亮一下才熄灭。
正比关系
自感电动势 正比关系 磁通量变化率 电流变化率
对同一线圈:
电流变化快,穿过线圈的磁通量变化快

互感和自感 课件

互感和自感  课件

1.对互感现象的理解 (1)互感现象是一种常见的电磁感应现象,它不仅 发生于绕在同一铁芯上的两个线圈之间,而且可以发生 于任何相互靠近的电路之间。 (2)互感现象可以把能量由一个电路传到另一个电路。 变压器就是利用互感现象制成的。 (3)在电力工程和电子电路中,互感现象有时会影响 电路的正常工作,这时要求设法减小电路间的互感。
2.对自感现象的理解 (1)对自感现象的理解: 自感现象是一种电磁感应现象,遵守法拉第电磁感应 定律和楞次定律。 (2)对自感电动势的理解: ①产生原因: 通过线圈的电流发生变化,导致穿过线圈的磁通量发 生变化,因而在原线圈上产生感应电动势。
②自感电动势的方向: 当原电流增大时,自感电动势的方向与原电流方向相 反;当原电流减小时,自感电动势方向与原电流方向相同 (即:增反减同)。 ③自感电动势的作用: 阻碍原电流的变化,而不是阻止,原电流仍在变化, 只是使原电流的变化时间变长,即总是起着推迟电流变化 的作用。
体开始放电,于是日光灯管成为电流的通路开始发光。启 动器相当于一个自动开关。日光灯正常工作后处于断开状 态,启动器损坏的情况下可将连接启动器的两个线头作一 个短暂接触也可把日光灯启动。启动时电流流经途径是镇 流器、启动器、灯丝,启动后电流流经途径是镇流器、灯 丝、日光灯管。
4.日光灯正常工作时镇流器的作用 由于日光灯使用的是交流电源,电流的大小和方向做 周期性变化。当交流电的大小增大时,镇流器上的自感电 动势阻碍原电流增大,自感电动势与原电压反向;当交流 电的大小减小时,镇流器上的自感电动势阻碍原电流减小, 自感电动势与原电压同向。可见镇流器的自感电动势总是 阻碍电流的变化,正常工作时镇流器就起着降压、限流的 作用。
2.自感现象的分析思路 (1)明确通过自感线圈的电流的变化情况(增大还是减小)。 (2)根据楞次定律,判断自感电动势方向。 (3)分析线圈中电流变化情况,电流增强时(如通电时), 由于自感电动势方向与原电流方向相反,阻碍电流增加,因此 电流逐渐增大;电流减小时(如断电时),线圈中电流逐渐减小。

大学物理自感和互感教案

大学物理自感和互感教案

教学目标:1. 理解自感和互感的概念,掌握其产生的原理。

2. 掌握自感系数和互感系数的计算方法。

3. 了解自感和互感在实际生活中的应用。

教学重点:1. 自感和互感的概念及其产生原理。

2. 自感系数和互感系数的计算方法。

教学难点:1. 自感和互感系数的计算。

教学过程:一、导入1. 引导学生回顾电磁感应现象,提出问题:当电流通过线圈时,为什么会在相邻的线圈中产生感应电动势?2. 引导学生思考自感和互感的区别。

二、自感和互感概念及原理1. 自感现象:当一个线圈中的电流发生变化时,它产生的变化磁场不仅在相邻的电路中激发出感应电动势,在其本身也会激发出感应电动势,这种现象叫做自感现象。

2. 互感现象:当一个线圈中电流变化时,在另一个线圈中产生感应电动势的现象,称为互感现象。

3. 自感和互感的原理:根据法拉第电磁感应定律,感应电动势的大小与磁通量的变化率成正比。

三、自感系数和互感系数的计算1. 自感系数(L):自感系数表示线圈本身特征,与线圈的形状、尺寸、匝数等因素有关。

自感系数的计算公式为:L = μ₀μrN²l/A,其中μ₀为真空磁导率,μr为相对磁导率,N为匝数,l为线圈长度,A为线圈截面积。

2. 互感系数(M):互感系数表示两个线圈之间的相互影响程度,与两个线圈的形状、尺寸、匝数等因素有关。

互感系数的计算公式为:M = μ₀μrN₁N₂l₁l₂/4πr²,其中N₁、N₂分别为两个线圈的匝数,l₁、l₂分别为两个线圈的长度,r为两个线圈中心距离。

四、自感和互感在实际生活中的应用1. 变压器:利用互感原理,实现电压的升高或降低。

2. 镇流器:利用自感原理,稳定电流,防止电流过大损坏电器。

3. 电磁感应传感器:利用自感和互感原理,实现非电量电量的转换。

五、课堂小结1. 总结自感和互感的概念、原理及计算方法。

2. 强调自感和互感在实际生活中的应用。

六、课后作业1. 求解一个线圈的自感系数和互感系数。

互感和自感 课件

互感和自感 课件
(4)电路断开瞬间,回路中电流从L中原来的电流开始减小.
题型二 自感现象的图象问题 如图所示的电路中,电源的电动势为E,内阻为r,电感L
的电阻不计,电阻R的阻值大于灯泡D的阻值.在t=0时刻闭 合开关S,经过一段时间后,在t=t1时刻断开S.下列表示A、B 两点间电压UAB随时间t变化的图象中,正确的是( B )
内的磁场能转化为电能用以维持这个闭合回路中保持一定时间 的电流,电流逐渐减小,线圈中的磁场减弱,磁场能减少,当 电流为零时,线圈中原储存的磁场能全部转化为电能并通过灯 泡(或电阻)转化为内能.所以,在自感现象中是电能转化为线 圈内的磁场能或线圈内的磁场能转化为电能的过程,因此自感 现象遵循能量转化和守恒定律.
知识点二 自感现象 1.定义:由于导体本身的电流发生变化而产生的电磁感应
现象. 2.本质分析:由法拉第电磁感应定律知道,穿过线路的磁
通量发生变化时,线路中就产生感应电动势.在自感现象中, 由于流过线圈的电流发生变化,导致穿过线圈的磁通量发生 变化而产生自感电动势.
3.从能量角度分析:在断电自感实验中,S断开前,线圈L
零.故选B. 点评:本题考查了综合运用楞次定律和欧姆定律分析自感现 象的能力,要注意电势差的正负.
线圈中电流开始减小,即从IA减小,故LA慢慢熄灭,LB闪亮后
才慢慢熄灭,C错误、D正确.
点评:(1)本题是通电自感和断电自感问题,根据是明确线圈中 自感电动势的方向是阻碍电流的变化,体现电流的“惯性”.
(2)分析自感电流的大小时,应注意“L的自感系数足够大,其
直流电阻忽略不计”这一关键语句. (3)电路接通瞬间,自感线圈相当于断路.
(3)自感电动势E感与哪些因素有关. 自感电动势E感可以写成E感=n ,由于磁通量的变化是电

4 互感和自感

4 互感和自感
4
互感和自感
郭雪鹏 临泉一中
一、互感现象
A
B
开关闭合(或断开)的瞬间,线圈B中产生感 生电动势,闭合回路中产生感应电流
2
问题:导体杆PQ向右如何运动,使得 线圈L1中产生电流?
PQ做变速运动,L2中 产生变化的电流,激发变 化的磁场,穿过线圈L1的 磁通量发生变化,产生感 生电动势,产生电流.
3
电阻几乎为零。A和B是两个相同的小灯泡.
(1)当开关S由断开变为闭 合时,A、B两个灯泡的亮
L A
度将如何变化?请作出解
释.
(2)当开关S由闭合变为断 开时, A、B两个灯泡的
B S
亮度又将如何变化?
21
(1)S由断开到闭合,由于线圈自感作用,通 过线圈的电流由0逐渐增大,A、B同时发光. 电流趋于稳定不变,B灯被短路,所以B灯 逐渐变暗,直至不亮.线圈阻碍作用减小,A 灯电流增大,故A灯由亮变得更为明亮. (2)S由闭合变为断开,A灯不亮,B灯突然变 亮再逐渐变暗,直至不亮.
问题3:感应电动势一直存在吗?为什么? 问题4:定性画出线圈L中电流随时间变化的图
像.
9
L B感
B原
i i2 i1
A1 O
t
分析:闭合开关,线圈中电流从零增大,磁
通量增大,感应电动势产生的电流流向与原
电流流向相反,即感应电动势阻碍电流增加,
线圈中电流缓慢增加,灯泡A1发亮较慢.
10
演示实验
A L
14Leabharlann IL I 渐变IA iL (t) t
O iA (t)
突变
A L
15
当变化的电流流过线圈,产生变化 的磁场,通过线圈的磁通量发生变化, 线圈便出现感生电动势。这种由自身电 流变化引起的电磁感应现象叫做自感现 象,自感现象中的感生电动势叫做自感 电动势。

自感与互感的概念及计算

自感与互感的概念及计算

自感与互感的概念及计算自感(Self-inductance)和互感(Mutual inductance)是电磁学中重要的概念,它们描述了电流和磁场之间的相互作用关系。

本文将对自感和互感的概念进行详细解析,并讨论其计算方法。

1. 自感的概念自感是指通过一根导线中的电流激发出的磁场引起的自身感应电动势。

当电流通过导线时,其周围会形成一个磁场,而这个磁场又会影响导线中的电流。

自感的大小取决于导线的几何形状和电流的变化速率。

自感可以用以下公式来表示:L = (μ0 * N^2 * A) / l其中,L代表自感的系数,单位为亨利(H);μ0是真空中的磁导率,约等于4π×10^(-7) H/m;N表示导线的匝数;A是导线截面积;l是导线的长度。

2. 互感的概念互感是指两根导线之间的电流激发出的磁场引起的互相感应电动势。

当两根导线靠近并且电流变化时,它们之间会产生互感现象。

互感的大小取决于导线之间的几何关系、电流的变化速率以及它们之间的距离。

互感可以用以下公式来表示:M = k * sqrt(L1 * L2)其中,M代表互感的系数,单位为亨利(H);k是一个比例常数,0 < k ≤ 1,表示两根导线之间的耦合系数;L1和L2分别代表两根导线的自感系数。

3. 计算示例假设有两根平行的长直导线,它们之间的距离为d,导线1的电流为I1,导线2的电流为I2。

现在我们来计算它们之间的互感系数M。

首先,我们需要计算导线1和导线2的自感系数L1和L2:L1 = (μ0 * N1^2 * A1) / l1L2 = (μ0 * N2^2 * A2) / l2其中,N1和N2分别代表两根导线的匝数,A1和A2分别代表导线1和导线2的截面积,l1和l2分别代表导线1和导线2的长度。

然后,根据互感的计算公式:M = k * sqrt(L1 * L2)通过以上计算,我们可以得到两根导线之间的互感系数M。

互感系数的大小反映了导线之间的电磁相互作用的强度。

《自感和互感》课件

《自感和互感》课件

互感系数:描述互感现象的强 弱,与线圈之间的距离、形状、 材料等因素有关
互感现象:两个或多个线圈之 间通过电磁感应产生的相互影 响
应用:变压器、电感器、电 磁感应加热等
互感现象的影响:可能导致电 路参数变化,影响电路性能和
稳定性
线圈绕组结构:线圈绕组的形状、大小、位置等 线圈材料:线圈的材质、电阻率、磁导率等 线圈电流:线圈中的电流大小、方向、频率等 线圈间距:线圈之间的距离、角度等 线圈环境:温度、湿度、磁场等外部环境因素
线圈形状:线圈的形状和尺寸对自感系数有重要影响 线圈材料:线圈的材料和导电性能对自感系数有影响 线圈匝数:线圈的匝数越多,自感系数越大 线圈放置方式:线圈放置方式对自感系数有影响,如垂直放置、水平放置等 线圈周围环境:线圈周围环境的磁场、温度等对自感系数有影响
自感系数与线圈的匝数、形 状、尺寸、材料等因素有关
互感系数是描述两个线圈之间电磁感应关系的物理量
互感系数的大小与线圈的几何形状、尺寸、材料和位置有关
互感系数的正负号表示两个线圈之间的磁通方向是否相同
互感系数的物理意义在于描述两个线圈之间的电磁感应关系,对于电磁感应现象的研究和应 用具有重要意义。
自感和互感的应用
电流测量:通过自感 现象测量电流大小
感谢您的观看
汇报人:
自感和互感
汇报人:
目录
自感
Байду номын сангаас
互感
自感和互感的应用
自感和互感的区别 与联系
自感
自感是指线圈自身电流变化引起的电磁感应现象
自感现象产生的原因是线圈中的电流变化导致磁场变化,从而产生感应电动势
自感现象在电路中表现为线圈两端的电压变化 自感现象在电磁学中具有重要的应用价值,如电感器、变压器等设备

4 自感和互感

4 自感和互感
美国物理学家, 美国物理学家,1832年受聘为新泽西学院物理 年受聘为新泽西学院物理 学教授, 学教授,1846年任华盛顿史密森研究院首任院 年任华盛顿史密森研究院首任院 年被选为美国国家科学院院长。 长,1867年被选为美国国家科学院院长。他在 年被选为美国国家科学院院长 1830年观察到自感现象,直到 年观察到自感现象, 年观察到自感现象 直到1932年7月才将题 年 月才将题 长螺线管中的电自感》的论文, 为《长螺线管中的电自感》的论文,发表在 美国科学杂志》 《美国科学杂志》上。亨利与法拉第是各自独 立地发现电磁感应的,但发表稍晚些。 立地发现电磁感应的,但发表稍晚些。强力实 用的电磁铁继电器是亨利发明的, 用的电磁铁继电器是亨利发明的,他还指导莫 尔斯发明了第一架实用电报机。 尔斯发明了第一架实用电报机。 亨利的贡献很大,只是有的没有立即发表, 亨利的贡献很大,只是有的没有立即发表,因而失去了许多发 明的专利权和发现的优先权。但人们没有忘记这些杰出的贡献, 明的专利权和发现的优先权。但人们没有忘记这些杰出的贡献, 为了纪念亨利,用他的名字命名了自感系数和互感系数的单位, 为了纪念亨利,用他的名字命名了自感系数和互感系数的单位, 简称“ 简称“亨”。
第五版
8-3
自感和互感
ψ 假定螺线管通入电流 I, , L= I 2 N ψ = NΦ = NBS = N ( ? ) S = N (µ 0 nI ) S = µ 0 IS l 真空中 N ψ N2 L = = µ0 S S l I I 2 = µ 0 n V体 可见“L”是常数 可见“ 是常数 l
电压互感器
电流互感器
第八章 电磁感应 电磁场
感应圈
10
物理学
第五版
8-3
自感和互感

12-4、自感、互感

12-4、自感、互感

dI ε − L = IR dt
L dI −I = R R dt
ε

ε
dI −I
−I
R = dt L
ε
R
ε
I dI R ∫0 L dt = ∫0 ε −I R t
− (ln R
R R − ln ) = t L
I0
I
ε
R I=
−I =
ε
R
e
R − t L
t
R − t L
ε
R
(1− e
R − t L
) = I0 (1− e
)
L B k A
衰减过程: 与 接触 接触, 衰减过程:k与B接触, 形成RL回路 减少 回路。 减少, 形成 回路。I减少, L产生与原电流方向相 产生与原电流方向相 同的自感电动势。 同的自感电动势。
dI R dI = − dt − L = IR I L dt I dI t R I = ∫ − dt I0 ∫I0 I 0 L
3、互感系数 、 “1” “2”
Ψ 12
N1 i1 N2
Ψ 21
“1” “2”
Ψ N1Φ12 ε12 12 M= = M=− di2 i2 i2 dt 单位:亨利( ) Ψ21 N2Φ21 ε 21 单位:亨利(h) M= = M=− di1 i1 i1
dt
N1
N2 i2
注意:除铁磁质外, 注意:除铁磁质外,互感量的大小只决定互感 线圈本身大小尺寸、形状、及介质。 线圈本身大小尺寸、形状、及介质。
N2
同理 L2 = µ
N2
2ιLeabharlann s∴ M = L1L2
2
dΦm dΨ dI ε L = −N =− = −L dt dt dt

第二章 4 互感和自感

第二章 4 互感和自感

4 互感和自感[学习目标] 1.了解互感现象及其应用.2.能够通过电磁感应的有关规律分析通电自感和断电自感现象.3.了解自感电动势的表达式E =L ΔI Δt ,知道自感系数的决定因素.4.了解自感现象中的能量转化. 一、互感现象 1.互感和互感电动势:两个相互靠近且没有导线相连的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象叫作互感,这种感应电动势叫作互感电动势. 2.应用:利用互感现象可以把能量由一个线圈传递到另一个线圈,如变压器就是利用互感现象制成的.3.危害:互感现象能发生在任何两个相互靠近的电路之间.在电力工程和电子电路中,互感现象有时会影响电路的正常工作.二、自感现象当一个线圈中的电流变化时,它所产生的变化的磁场在线圈本身激发出感应电动势,这种现象称为自感.由于自感而产生的感应电动势叫作自感电动势.三、自感系数1.自感电动势:E =L ΔI Δt ,其中ΔI Δt是电流的变化率;L 是自感系数,简称自感或电感.单位:亨利,符号:H.2.自感系数与线圈的大小、形状、匝数,以及是否有铁芯等因素有关.四、磁场的能量1.线圈中电流从无到有时,磁场从无到有,电源把能量输送给磁场,储存在磁场中.2.线圈中电流减小时,磁场中的能量释放出来转化为电能.3.自感电动势有阻碍线圈中电流变化的性质.1.判断下列说法的正误.(1)自感现象中,感应电动势一定与原电流方向相反.( × )(2)线圈中产生的自感电动势较大时,其自感系数一定较大.( × )(3)对于同一线圈,当电流变化较快时,线圈中的自感电动势也较大.(√)(4)没有发生自感现象时,即使有磁场也不会储存能量.(×)(5)线圈的自感系数与电流大小无关,与电流的变化率有关.(×)2.如图所示,电路中电源内阻不能忽略,L的自感系数很大,其直流电阻忽略不计,A、B 为两个完全相同的灯泡,当S闭合时,A灯________变亮,B灯________变亮.当S断开时,A灯________熄灭,B灯________熄灭.(均选填“立即”或“缓慢”)答案缓慢立即缓慢缓慢一、互感现象导学探究如图所示,在法拉第的实验中两个线圈并没有用导线连接,当一个线圈中的电流变化时,在另一个线圈中为什么会产生感应电动势呢?答案两个线圈之间并没有导线相连,当一个线圈中的电流变化时,它所产生的变化的磁场会使穿过另一个线圈的磁通量发生变化,从而产生感应电动势.知识深化1.当一个线圈中的电流变化时,它产生的磁场就发生变化,变化的磁场在周围空间产生感生电场,在感生电场的作用下,另一个线圈中的自由电荷定向运动,于是产生感应电动势.2.一个线圈中电流变化越快(电流的变化率越大),另一个线圈中产生的感应电动势越大.3.应用与危害(1)应用:变压器、收音机的磁性天线都是利用互感现象制成的.(2)危害:在电力工程和电子电路中,互感现象有时会影响电路的正常工作,这时要设法减小电路间的互感.例如在电路板刻制时就要设法减小电路间的互感现象.例1(多选)(2022·惠州市第一次调研)目前无线电力传输已经比较成熟,如图所示为一种非接触式电源供应系统.这种系统基于电磁感应原理可无线传输电力,两个感应线圈可以放置在左右相邻或上下相对的位置,原理示意图如图所示.利用这一原理,可以实现对手机进行无线充电.下列说法正确的是()A.只要A线圈中输入电流,B线圈中就会产生感应电动势B.只有A线圈中输入变化的电流,B线圈中才会产生感应电动势C.A中电流越大,B中感应电动势越大D.A中电流变化越快,B中感应电动势越大答案BD解析根据感应电流产生的条件,若A线圈中输入恒定的电流,则A产生恒定的磁场,B中的磁通量不发生变化,B线圈中不会产生感应电动势,故A错误;若A线圈中输入变化的电可知,B线圈中会产生感应电动势,A线圈中电流变化流,根据法拉第电磁感应定律E=nΔΦΔt越快,A线圈中电流产生的磁场变化越快,B线圈中感应电动势越大,故B、D正确,C错误.二、自感现象导学探究1.按照如图所示电路图连接电路.(1)开关S接通时,灯泡1和2的发光情况有什么不同?(2)根据楞次定律结合电路图分析该现象产生的原因.答案(1)灯泡2立即发光,而灯泡1是逐渐亮起来的.(2)接通电源的瞬间,电流增加,线圈L中产生感应电动势.根据楞次定律,感应电动势会阻碍电流的增加,所以灯泡1慢慢地亮起来.2.按照如图所示电路图连接电路.(1)若灯泡的电阻小于线圈L的直流电阻,先闭合开关使灯泡发光,稳定后断开开关.观察开关断开时灯泡的亮度变化,并解释原因.若灯泡电阻大于线圈L的直流电阻,灯泡的亮度如何变化?(2)开关断开前后,流过灯泡的电流方向相同吗?答案(1)灯泡逐渐熄灭.开关断开时,通过线圈L的电流减小,这时会出现感应电动势阻碍线圈L中的电流减小,线圈中产生与原方向相同的电流,与灯泡构成闭合回路,所以灯泡逐渐熄灭.若灯泡电阻大于线圈L的直流电阻,则灯泡先闪亮一下再逐渐熄灭.(2)开关闭合时,灯泡中的电流方向向左,开关断开瞬间,灯泡中的电流方向向右,所以开关断开前后,流过灯泡的电流方向相反.知识深化1.对自感现象的理解自感现象是一种电磁感应现象,遵守法拉第电磁感应定律和楞次定律.2.对自感电动势的理解(1)产生原因通过线圈的电流发生变化,导致穿过线圈的磁通量发生变化,因而在线圈上产生感应电动势.(2)自感电动势的方向当原电流增大时,自感电动势的方向与原电流方向相反;当原电流减小时,自感电动势的方向与原电流方向相同(即:增反减同).(3)自感电动势的作用阻碍原电流的变化,而不是阻止,原电流仍在变化,只是使原电流的变化时间变长,即总是起着推迟电流变化的作用.3.对电感线圈阻碍作用的理解(1)若电路中的电流正在改变,电感线圈会产生自感电动势阻碍电路中电流的变化,使通过电感线圈的电流不能突变.(2)若电路中的电流是稳定的,电感线圈相当于一段导线,其阻碍作用是由绕制线圈的导线的电阻引起的.(3)线圈通电和断电时线圈中电流的变化规律如图.考向1通电自感现象例2如图所示,电路中电源的内阻不能忽略,A、B为两个完全相同的灯泡,当S闭合时,下列说法正确的是(线圈L的自感系数很大,直流电阻较小)()A.A比B先亮,然后A逐渐熄灭B.B比A先亮,然后B逐渐变暗C.A、B一起亮,然后A逐渐熄灭D.A、B一起亮,然后B逐渐熄灭答案 B解析S闭合时,线圈上产生很大的自感电动势,阻碍电流的增大,所以B比A先亮,电路稳定后线圈L的直流电阻较小,故流过B灯支路的电流变小,所以B灯逐渐变暗,故B正确.考向2断电自感现象例3(2022·哈尔滨三中高二月考)如图是用于观察自感现象的电路图,设线圈L的自感系数较大,线圈的直流电阻R L与灯泡的电阻R满足R L>R,则在开关S由闭合到断开的瞬间,可以观察到()A.灯泡立即熄灭B.灯泡逐渐熄灭C.灯泡有闪亮现象D.只有在R L>R时,才会看到灯泡有明显的闪亮现象答案 B解析开关S闭合且电路稳定时,由于线圈直流电阻大于灯泡电阻,所以流过线圈的电流小于流过灯泡的电流,开关S断开瞬间,线圈上产生自感电动势,阻碍电流的减小,原来通过灯泡的电流随着开关断开而消失,而灯泡和线圈形成闭合回路,流过线圈的电流也流过灯泡,因此灯泡逐渐熄灭.若线圈直流电阻小于灯泡电阻,断开开关时,会出现灯泡闪亮现象.故选B.例4在如图所示的电路中,开关S闭合且稳定后流过自感线圈的电流是2 A,流过灯泡D 的电流是1 A,现将开关S突然断开,能正确反映流过灯泡的电流i在开关S断开前后随时间t 变化关系的图像是( )答案 D解析 开关S 断开前,通过灯泡D 的电流是稳定的,其值为1 A .开关S 断开瞬间,自感线圈的支路由于自感现象会产生与线圈中原电流方向相同的自感电流,使线圈中的电流从2 A 逐渐减小,方向不变,且与灯泡D 构成闭合回路,通过灯泡D 的电流和线圈L 中的电流相同,也应该是从2 A 逐渐减小到零,但是方向与原来通过灯泡D 的电流方向相反,故D 对.三、自感系数和磁场的能量 导学探究(1)自感电动势与哪些因素有关?(2)在断电自感现象中,断开开关后,灯泡仍然亮一会,是否违背能量守恒定律?答案 (1)根据公式E =L ΔI Δt可知,自感电动势与自感系数和电流的变化率有关. (2)不违背.断电时,储存在线圈内的磁场能转化为电能,用以维持回路保持一定时间的电流,直到电流为零时,磁场能全部转化为电能并通过灯泡(或电阻)转化为内能,可见自感现象遵循能量守恒定律.知识深化1.自感电动势(1)表达式:E =L ΔI Δt. (2)理解:①公式中ΔI Δt为电流的变化率,电流变化越快,电流变化率越大,自感电动势也越大. ②公式中L 为线圈的自感系数.2.自感系数例5关于自感现象、自感系数、自感电动势,下列说法正确的是()A.当线圈中通恒定电流时,线圈中没有自感现象,线圈自感系数为零B.线圈中电流变化越快,线圈的自感系数越大C.自感电动势与原电流方向相反D.对于确定的线圈,其产生的自感电动势与其电流变化率成正比答案 D解析当线圈中通恒定电流时,线圈中没有自感现象,不产生自感电动势,但是线圈自感系数不为零,选项A错误;线圈中电流变化越快,产生的自感电动势越大,线圈的自感系数与电流变化快慢无关,选项B错误;根据楞次定律,当线圈中电流增大时,自感电动势阻碍电流增大,自感电动势方向与原电流方向相反;当线圈中电流减小时,自感电动势阻碍电流减小,自感电动势方向与原电流方向相同,选项C错误;对于确定的线圈,自感系数L一定,其产生的自感电动势与其电流变化率ΔI成正比,选项D正确.Δt考点一互感现象1.(多选)(2022·正定中学高二月考)下列关于互感现象的说法正确的是()A.一个线圈中的电流变化时,与之靠近的另一线圈中产生感应电动势的现象称为互感现象B.互感现象的实质是电磁感应,同样遵循楞次定律和法拉第电磁感应定律C.利用互感现象能够将能量由一个线圈传递到另一个线圈,人们制造了收音机的“磁性天线”D.在电力工程以及电子电路中,互感现象不会影响电路的正常工作答案ABC解析两个相互靠近的线圈,当一个线圈的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感现象,选项A正确;之所以会在另一个线圈中产生感应电动势,是因为变化的电流产生变化的磁场,引起另一个线圈中的磁通量发生变化,发生电磁感应现象,选项B正确;收音机的“磁性天线”是利用互感原理工作的,也就是利用互感现象将能量由一个线圈传递到另一个线圈,选项C正确;互感现象能发生在任何两个相互靠近的电路之间,会影响电路的正常工作,选项D错误.2.(多选)如图所示,线圈P、Q同轴放置,P与开关S、电源和滑动变阻器R组成回路,Q与电流计G相连,要使Q线圈产生图示方向的电流,可采用的方法有()A.闭合开关S后,把R的滑片右移B.闭合开关S后,把R的滑片左移C.闭合开关S后,把Q靠近PD.无需闭合开关S,只要把Q靠近P即可答案BC解析闭合开关S后,若把R的滑片右移,Q中的磁场方向从左向右,且在减小,根据楞次定律,Q线圈中电流方向与题图电流方向相反,故A错误;同理可知,B正确;闭合开关S 后,将Q靠近P,Q中的磁场方向从左向右,且在增强,根据楞次定律,Q线圈中的电流方向与题图电流方向相同,故C正确;若S不闭合,则Q线圈中无磁场,故Q中不会有电流产生,故D错误.考点二自感现象3.如图所示,L是电感足够大的线圈,其直流电阻可忽略不计,A和B是两个参数相同的灯泡,若将开关S闭合,等灯泡亮度稳定后,再断开开关S,则()A.开关S闭合时,灯泡A比B先亮B.开关S闭合时,灯泡A、B同时亮,最后一样亮C.开关S闭合后,灯泡A逐渐熄灭,灯泡B逐渐变亮,最后亮度保持不变D.开关S断开瞬间,A、B闪亮一下逐渐熄灭答案 C解析开关S闭合时,由于L的阻碍作用,电流从两灯中流过,故两灯同时亮,此后,有电流流过L,且流过L的电流逐渐增大,流过A的电流逐渐减小,电路稳定后,灯泡A被短路而熄灭,B灯比原来更亮且最后亮度保持不变,故C正确,A、B错误;开关S断开瞬间,B 中电流消失,故立即熄灭,由于电感线圈中产生自感电动势,且L和A构成回路,所以A 闪亮一下后逐渐熄灭,故D错误.4.(多选)如图所示,用电流传感器研究自感现象.电源内阻不可忽略,线圈L的自感系数较大,其直流电阻小于电阻R的阻值.t=0时刻闭合开关S,电路稳定后,t1时刻断开S,电流传感器连接计算机分别描绘了整个过程线圈中的电流I L和电阻中的电流I R随时间t变化的图像.下列图像中可能正确的是()答案AD5.图甲和图乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈.实验时,闭合开关S1,电路稳定后,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮.而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同.下列说法正确的是()A.图甲中,A1与L1的电阻值相同B.图甲中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图乙中,变阻器R与L2的电阻值相同D.图乙中,闭合S2瞬间,L2中电流与变阻器R中电流相等答案 C解析断开开关S1瞬间,线圈L1产生自感电动势,阻碍电流的减小,通过L1的电流反向通过A1,灯A1突然闪亮,随后逐渐变暗,说明I L1>I A1,即R L1<R A1,故A错;闭合S1,电路稳定后,因为R L1<R A1,所以A1中电流小于L1中电流,故B错;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同,说明变阻器R与L2的电阻值相同,故C对;闭合S2瞬间,通过L2的电流增大,由于电磁感应,线圈L2产生自感电动势,阻碍电流的增大,则L2中电流与变阻器R中电流不相等,故D错.6.(2021·合肥市高二期末)如图所示是演示自感现象的电路,A1与A2是完全相同的灯泡,电阻均为R;在开关S2断开、S1闭合并且电路稳定时两灯的亮度一样.现闭合开关S2,待电路稳定后,突然断开开关S1的瞬间,下列说法正确的是()A.A1立即熄灭B.A1先是变得更亮,再逐渐变暗直至熄灭C.有短暂电流流过A2,方向向右D.有短暂电流流过A1,方向向左答案 D解析开始S2断开、S1闭合,电路稳定时两灯的亮度相同,且已知A1、A2是完全相同的灯泡,电阻均为R,故线圈的直流电阻为R.S1、S2都闭合且电路稳定时,流过L、A1、A2、定值电阻的电流都相同.此时断开S1,线圈L和灯泡A1、开关S2组成回路,由于线圈L的自感作用,产生自感电动势,回路中的电流从原来电流大小逐渐减小,灯泡A1从原来亮度逐渐变暗,流过A1的电流从右向左,而灯泡A2立即熄灭.综上可知,选项A、B、C错误,选项D正确.7.(多选)在如图所示的电路中,L是一个自感系数很大、直流电阻不计的线圈,D1、D2和D3是三个完全相同的灯泡,E是内阻不计的电源.在t=0时刻,闭合开关S,电路稳定后在t1时刻断开开关S.规定以电路稳定时流过D1、D2的电流方向为正方向,分别用i1、i2表示流过D1、D2的电流,则下列图像中能定性描述电流随时间变化关系的是()答案BC解析闭合开关S后,通过D1、D2和D3的电流方向都是由上向下,D1中电流逐渐增大至稳定,且D1中稳定电流为D2、D3中稳定电流的2倍,断开开关S后,由于自感现象,通过D1的电流方向不变,电流逐渐减为0,故选项A错误,B正确;开关断开后,D2和D3中电流方向与原方向相反,大小由D1中的稳定电流值逐渐减为0,故选项C正确,D错误.8.(2021·驻马店市高二上期末)如图所示的电路中,L为电感线圈,其电阻与电阻R相等,C 为电容器,A、B为两灯泡,电源内阻r不可忽略,当开关S由闭合状态断开时()A.A灯立即熄灭B.A灯突然闪亮一下再熄灭,c点电势比d点高C.B灯无电流通过,不可能变亮D.电容器立即充电,有电流从a点到b点流过B灯答案 D解析当开关S由闭合变为断开时,线圈中产生自感电动势,与灯泡A和电阻R构成闭合回路放电,由于断开开关前流过线圈的电流大于流过灯泡A的电流,故灯泡A突然闪亮一下再缓慢熄灭,电流从d到c流过灯泡A,故d点电势比c点电势高,A、B错误;当开关S由闭合变为断开时,电容器两端的电压变大,故电容器充电,有充电电流,故灯泡B有电流通过,电流方向由a到b,C错误,D正确.9.(2021·恩施市高二下月考)如图,小明做自感现象实验时,连接电路如图所示,其中L是自感系数较大、直流电阻不计的线圈,L1、L2是规格相同的灯泡,D是理想二极管.则()A.闭合开关S,L2逐渐变亮,然后亮度不变B.闭合开关S,L1、L2都逐渐变亮,最后亮度相同C.断开开关S,L1逐渐变暗至熄灭,L2变亮后再与L1同时熄灭D.断开开关S,L1逐渐变暗至熄灭,L2一直不亮答案 C解析闭合开关S,由于二极管有单向导电性,L2中无电流,始终不亮,线圈L产生自感现象,L1逐渐变亮,A、B错误;断开开关S的瞬间,线圈L产生自感现象,与灯泡L1和L2串联,二极管正向导通,所以L1逐渐变暗至熄灭,L2变亮后再与L1同时熄灭,C正确,D 错误.。

大学物理自感和互感

大学物理自感和互感
大学物理自感和互感
汇报人: 202X-01-01
目 录
• 自感 • 互感 • 应用 • 实验研究 • 自感和互感的区别与联系
01
自感
自感现象
通电自感
当一个线圈的电流发生变化时, 线圈会产生一个阻止电流变化的 磁场,这就是自感现象。
断电自感
当线圈中的电流突然中断时,线 圈会产生一个与原电流方向相同 的电动势,以保持电流的继续流 动,这也是自感现象。
应用
变压器、感应电机等。
03
ห้องสมุดไป่ตู้应用
自感在电路中的应用
延迟电流
当一个线圈中的电流发生变化时,会 产生自感电动势,阻碍电流的变化。 这种自感现象在电子设备和电力系统 中广泛存在,如镇流器、继电器等。
滤波器
自感可以用于制作低通、高通或带通 滤波器,用于控制电路中的信号频率 ,实现信号的筛选和处理。
互感在变压器中的应用
实验步骤
调节电源和可调电阻,使线圈中电流逐渐增大或减小,观察并记录电 压表的变化情况;多次测量并记录数据;根据数据计算出自感系数。
互感系数的测量
01
测量原理
通过测量两个线圈在相互感应过程中产生的感应电动势,结合线圈的电
感量计算出互感系数。
02
实验器材
两个相互靠近的自感线圈、电源、电压表、电流表、可调电阻等。
自感和互感在电路中的影响与作用
自感
在电路中,自感可以起到滤波、延迟和保护电路的作用。例如,电感器可以滤除交流信 号中的直流成分,延迟电流的变化速度,以及在电路短路时限制电流的上升速度,保护
电路不受损坏。
互感
在电路中,互感可以引起电压和电流的相位偏移,导致电路中的能量传输和转换受到影 响。因此,在设计和分析电路时需要考虑互感的影响,特别是在高频和强磁场的电路中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l
μ0
S
l
互感系数计算举例
M Ψ12 I2


N1 N 2 l2
lS
n1n2V
③互感 M与自感L1 ,L2 的关系。
L1 n12V
L2 n22V
M L1L2
在此例中,线圈1的磁通全部通过线圈2,称为无 磁漏。
在一般情况下: M K L1L2
称K 为耦合系数 0 < K <1
自感
2、自感电动势:

L N dt
d (NΦ ) dΨ
dt
dt
d (LI ) L dI I dL
dt
dt dt
若回路几何形状、尺寸不变,周围无铁磁性物质,则:
dL 0 dt
L

L
dI dt
自感
【讨论】:1、 L 的定义:可用下两式之一定义
H 2r NI
I
H NI 2r
B NI 2r
dm

B dS
NI 2r
hdr
R2 R1
h
r dr
dm

B dS
NI 2r
hdr
m
dm

NIh பைடு நூலகம்
R2 dr R1 r

NIh ln(
R2
)
2
R1


Nm

N 2 Ih
Lo

L l

2
ln(
R2 R1
)
R1
R2
I
I
l
rdr
§12-4 自感和互感
二、互感
互感现象——两个独立回路,由于一回路电流发生变化,
在另一回路中产生感应电动势的现象。
1、 互感系数(M)
Φ21
设线圈1中通有电流 I1
若两回路几何形状、尺寸及相对 位置不变,周围无铁磁性物质,则第 二个线圈的磁通量为:
B 0 r R1 , r R2
R1
R2
I
I
l
dΦm

B dS
Il 2r
dr
rdr
自感系数计算举例
Φm
B
dS

Il
R2 dr
2 R1 r
Il ln( R2 ) 2 R1
L Φ l ln( R2 ) I 2 R1
单位长度的自感为:
电动势方向相反,所以
a
a' b b'
总感应电动势为:


L1
dI dt

L2
dI dt
2M
dI dt

(L1

L2

2M
)
dI dt
等效自感电动势为: L dI
dt
两式比较得,等效自感: L = L1 + L2 - 2M
§12-5 磁场的能量
一、磁能的产生和存储过程
当接通电路时,线圈中产生了磁场,也就有 了磁场能。线圈由无电到有电的过程,就是电能 转换为磁场能的过程。
N1Φ12 MI2 Ψ12
I1
N2Φ21 MI1 Ψ21
Φ 12
Φ 21
I2
2、互感电动势:
21


dΨ 21 dt

M
dI1 dt
或12

dΨ12 dt

M
dI 2 dt
互感
【讨论】
1、 M 的定义:可用下两式之一定义
Φ21
(1) Ψ2 M I1
(2)
1

M
(1) Ψ LI
(2) L dI
dt
L L IdI
dt
L 的意义:若I = 1A,则 L = Ψ
自感系数在数值上等于回路中通过单位电流 时,通过自身回路所包围面积的磁通链数。
★ 自感系数是一个与线圈大小、形状及匝数有
关的量,与线圈内通有的电流 I无关,一般由实 验确定。
自感
I1 I1 B1 Φ2 Ψ2 M
互感系数计算举例
例3. 如图所示,在磁导率为
的均匀无限大磁介质中,一无
限长直载流导线与矩形线圈
一边相距为a,线圈共N匝,
其尺寸见图示。
I
求它们的互感系数。
a
dr
l b
解: 设直导线中通有自下而上的电流I,它通过矩形 线圈的磁通链数为


Nm
N
B • dS
半径为R1 和R2 两同轴圆筒状导体组成, 内外圆筒上分别流有大小相等,方向相反
的电流I。
求:长为 l 的一段电缆内储存的磁能。
解:H I
2r
Wm

V wmdV

1 H 2dV
V2
R2 1 ( I )2 2rldr
2 R1 2r

I 2l 4
ln( R2
/
R1 )
R2 R1
I l
I
r dr
dV 2rldr
磁场的能量
磁场能量公式给出了计算自感的另一种方法:
因为
Wm

1 2
LI 2

I 2l 4
ln( R2
/
R1 )
所以
L

2Wm I2

l 2
ln( R2
/ R1)
三、电磁场的能量
w

we

wm

1 2
(E D
BH)
W We Wm
s
ab I
NIl a b
N a
ldr
ln
2r
2
a
dr
I
l
由互感系数定义可得互感为:
M



Nl ln a b
I 2
a
ab
★ 互感系数仅取决于两回路的形状,
相对位置,磁介质的磁导率.
互感系数计算举例
例4. 两共轴密绕长直螺线管,C1 和 C2 , C1 为原线圈, 匝数为N1 ,C2 为副线圈,匝数为N2 ,两者长均为l , 线圈面
dI 2 dt
M 2
I1
I1
M 1 1
dI 2
dt
I2
2
互感系数:在数值上等于当第二个回路电流变
化率为每秒一安培时,在第一个回路所产生的互感电 动势的大小。
2、 M 的计算:可用上两式之一计算,一般用(1)式。
互感
3、 互感系数和两回路的几何形状、尺寸,它们的 相对位置,以及周围介质的磁导率有关。
We

1 CU 2
2
1 S
2d
(Ed )2

1 E 2 Sd
2
电场能量密度 we

1 E 2
2

1 2
ED
物理意义 电场是一种物质,它具有能量.
电场空间所存储的能量
We
V wedV

1 E 2dV
V2


L1
dI dt

L2
dI dt
2M
dI dt

(L1

L2

2M
)
dI dt
等效自感电动势为: L dI
dt
两式比较得,等效自感: L = L1 + L2 + 2M
互感系数计算举例
(2) a' 与 b'相联
两线圈的磁场方向
相反,彼此减弱,两线
圈的自感电动势方向相
同,互感电动势与自感
I1
1
I2
2
Φ21 I1 Φ21 M21I1
互感
同理,若线圈2中通有电流 I2
若两回路几何形状、尺寸
及相对位置不变,周围无铁磁 性物质,则第一个线圈的磁通 量为:
I1 I2
Φ 12
Φ12 I2 Φ12 M12I2
互感
实验和理论都可以证明:M 12 = M 21
若两线圈的匝数分别为N1 ,N2则有:
2、 L的计算:可用上两式之一计算,一般由 L
计算。
I
3、 L 的大小反映阻碍电流变化的能力,L 是电磁 惯性的一种表现。
4、利弊 1) 应用:镇流器,扼(抑)流圈,谐振电路,···
2) 害处:上电迟延,断电影响,分布参数,···
自感
求自感电动势的关键,在于知道线圈的自感系数大小, 一般通过实验测得;规则线圈也可以计算得出。
积均为S。管内介质的磁导率为μ,求①两螺线管的自感L1 和
L2 ;② 互感 M;③互感 M与自感L1 ,L2 的关系。
解:②计算互感系数
N1
I2 B2 Φ12 Ψ12
B2
Φ12


n2 I 2
B dS

B2S
N l

2

I2
N l
2
N
I2S
2
Ψ12

N1Φ12

N1N2 I2S
L
R
BATTERY
ε 电池
磁场的能量
分析开关合上后的一
段时间内,电路中的电流
L
增长过程。
R
由欧姆定律得:
L dI IR
dt
BATTERY
ε 电池
I
解该微分方程得:
I


Rt
(1 e L )
R
Rt
I0 (1 e L )
I0
相关文档
最新文档