高等数学重要常用符号读法指南
各种数学符号及读法大全
各种数学符号及读法大全数学是一门充满符号的科学,这些符号就像一种特殊的语言,帮助我们更简洁、准确地表达数学概念和进行运算。
下面就为大家介绍一些常见的数学符号及其读法。
一、基本运算符号1、加号(+):读作“加”,例如“2 +3”读作“二加三”。
2、减号(-):读作“减”,比如“5 2”读作“五减二”。
3、乘号(×):读作“乘”,像“4 × 5”读作“四乘五”。
在数学中,有时也会用“·”表示乘号,例如“3·2”,同样读作“三乘二”。
4、除号(÷):读作“除以”,例如“6 ÷ 3”读作“六除以三”。
二、比较符号1、等于号(=):读作“等于”,比如“2 + 3 =5”读作“二加三等于五”。
2、大于号(>):读作“大于”,例如“5 >3”读作“五大于三”。
3、小于号(<):读作“小于”,像“2 <4”读作“二小于四”。
4、大于等于号(≥):读作“大于等于”,比如“x ≥ 5”读作“x 大于等于五”。
5、小于等于号(≤):读作“小于等于”,例如“y ≤ 8”读作“y 小于等于八”。
三、括号1、小括号():通常读作“括号”,例如“(2 + 3)× 4”读作“括号二加三括号乘四”。
2、中括号:读作“中括号”,像“ 5 (3 1)÷ 2”读作“中括号五减去括号三减一括号除以二”。
3、大括号{}:读作“大括号”,比如“{ 2, 4, 6, 8 }”读作“大括号二,四,六,八”。
四、分数符号1、分数线(—):例如“3/5”,读作“五分之三”。
分子在前,分母在后。
2、带分数:由整数部分和分数部分组成,例如“2 又1/3”,读作“二又三分之一”。
五、指数符号1、平方(²):例如“5²”,读作“五的平方”。
2、立方(³):像“2³”,读作“二的立方”。
3、多次方:比如“4 的 5 次方”写作“4^5”,读作“四的五次方”。
数学符号读法大全高等数学中所有符号的读法
数学符号读法大全高等数学中所有符号的读法
1 Α α alpha a:lf 阿尔法角度;系数
2 Β β beta bet 贝塔磁通系数;角度;系数
3 Γ γ gamma ga:m 伽马电导系数(小写)
4 Δ δ delta delt 德尔塔变动;密度;屈光度
5 Ε ε epsilon ep`silon 伊普西龙对数之基数
6 Ζ ζ zeta zat截塔系数;方位角;阻抗;相对粘度;原子序数
7 Η η eta eit 艾塔磁滞系数;效率(小写)
8 Θ θ thet θit 西塔温度;相位角
9 Ι ι iot aiot 约塔微小,一点儿
10 Κ κ kappa kap 卡帕介质常数
11 ∧ λ lambda lambd 兰布达波长(小写);体积
12 Μ μ mu mju 缪磁导系数;微(千分之一);放大因数(小写)
13 Ν ν nu nju 纽磁阻系数
14 Ξ ξ xi ksi 克西
15 Ο ο omicron omik`ron 奥密克戎
16 ∏ π pi pai 派圆周率=圆周÷直径=3.1416
17 Ρ ρ rho rou 肉电阻系数(小写)
18 ∑ σ sigma `sigma 西格马总和(大写),表面密度;跨导(小写)
19 Τ τ tau tau 套时间常数
20 Υ υ upsilon jup`silon 宇普西龙位移
21 Φ φ phi fai 佛爱磁通;角
22 Χ χ chi phai 西
23 Ψ ψ psi psai 普西角速;介质电通量(静电力线);角
24 Ω ω omega o`miga 欧米伽欧姆(大写);角速(小写);角。
高等数学中符号的读法及功能(挺全的)
大写小写英文注音国际音标注音中文注音A a alpha alfa 阿耳法B3beta beta 贝塔r Y gamma gamma 伽马r5deta delta 德耳塔△£epsilon epsilon 艾普西隆E zeta zeta 截塔Z£eta eta 艾塔©z theta z ita 西塔H n iota iota 约塔K9kappa kappa 卡帕A i lambda lambda 兰姆达M K mu miu 缪N入nu niu 纽g xi ksi 可塞0V omicron omikron 奥密可戎n n pi pai 派p E rho rou 柔刀z sigma sigma 西格马T n tau tau 套Y u upsilon jupsilon 衣普西隆①9phi fai 斐①X chi khai 喜X I psi psai 普西omegaomiga欧米伽符号表符号含义i f(x)-1 的平方根函数f 在自变量x 处的值sin(x)在自变量x 处的正弦函数值exp(x)在自变量x 处的指数函数值,常被写作exa A x a 的x 次方;有理数x 由反函数定义ln x exp x 的反函数ax 同aAxlogba 以b 为底a 的对数;blogba = acos x 在自变量x 处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos y atan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yZ 角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y ,当x、y、z 用于表示空间中的点时i, j, k分别表示x、y、z 方向上的单位向量(a, b, c) 以 a 、 b 、 c 为元素的向量(a, b) 以a、b 为元素的向量(a, b) a、b 向量的点积a?b a、b 向量的点积(a?b) a、b 向量的点积|v| 向量v 的模|x| 数x 的绝对值表示求和,通常是某项指数。
高等数学中特殊符号的读法及功能
常用高等数学符号的读法及含义表一、常用符号读法大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔Γγgamma gamma 伽马Γδdeta delta 德耳塔Δεepsilon epsilon 艾普西隆Εδzeta zeta 截塔Ζεeta eta 艾塔Θζtheta ζita西塔Ηηiota iota 约塔Κθkappa kappa 卡帕∧ιlambda lambda 兰姆达Μκmu miu 缪Νλnu niu 纽Ξμxi ksi 可塞Ονomicron omikron 奥密可戎∏πpi pai 派Ρξrho rou 柔∑ζsigma sigma 西格马Τηtau tau 套Υυupsilon jupsilon 衣普西隆Φθphi fai 斐Φχchi khai 喜Χψpsi psai 普西Ψωomega omiga 欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同a^xlogba 以b为底a的对数;blogba = acos x 在自变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos y atan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yζ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模符号含义|x| 数x的绝对值Σ表示求和,通常是某项指数。
高数中的符号及读法
高数中的符号及读法 ̄hyphen 连字符' apostrophe 省略号;所有格符号—dash 破折号‘’single quotation marks 单引号“”double quotation marks 双引号( ) parentheses 圆括号[ ] square brackets 方括号Angle bracket{} Brace《》French quotes 法文引号;书名号... ellipsis 省略号¨tandem colon 双点号" ditto 同上‖parallel 双线号/virgule 斜线号&ampersand = and~swung dash 代字号§section; division 分节号→arrow 箭号;参见号+plus 加号;正号-minus 减号;负号±plus or minus 正负号×is multiplied by 乘号÷is divided by 除号=is equal to 等于号≠is not equal to 不等于号≡is equivalent to 全等于号≌is equal to or approximately equal to 等于或约等于号≈is approximately equal to 约等于号<is less than 小于号>is more than 大于号≮is not less than 不小于号≯is not more than 不大于号≤is less than or equal to 小于或等于号≥is more than or equal to 大于或等于号%per cent 百分之…‰per mill 千分之…∞infinity 无限大号∝varies as 与…成比例√(square) root 平方根∵since; because 因为∴hence 所以∷equals, as (proportion) 等于,成比例∠angle 角⌒semicircle 半圆⊙circle 圆○circumference 圆周πpi 圆周率△triangle 三角形⊥perpendicular to 垂直于∪union of 并,合集∩intersection of 交,通集∫the integral of …的积分∑(sigma) summation of 总和°degree 度′minute 分〃second 秒#number …号℃Celsius system 摄氏度@at 单价x'是x prime(比如转置矩阵)x"是x double-prime。
高数中的符号及读法
高数中的符号及读法
高数是数学的一个重要分支,它主要研究关于函数、空间等概念的数学原理,也是数学学习所必不可少的课程。
高数涉及到很多符号,如果不掌握它们的正确读法,就很难理解其蕴含的含义。
因此,了解高数中的符号及其读法对学习高数是至关重要的。
高数中的符号大致可分为两类:普通符号和特殊符号。
普通符号包括加减乘除等,它们的读法很容易记住,例如加号一般读作“加”,减号一般读作“减”,乘号一般读作“乘”,除号一般读作“除”。
特殊符号包括方程符号、函数符号、分数符号、数字符号、绝对值符号等。
方程符号一般读作“等于”,例如“2x+3=7”,一般读作“两个x再加上三等于七”;函数符号一般读作“对”,例如“y=f(x)”,一般读作“y对x的函数为f”;分数符号一般读作“分之”,例如“3/4”,一般读作“三分之四”;数字符号一般读作“的”,例如“x2”,一般读作“x的平方”;绝对值符号一般读作“绝对值”,例如“|x|”,一般读作“绝对值为x”。
另外,在高数中还有许多其他符号,包括∞、Σ、∫、γ、ω等。
其中,∞一般读作“无穷”,Σ一般读作“和”,∫一般读作“积分”,γ一般读作“伽玛”,ω一般读作“欧拉”。
为了更好地记忆高数中的符号及其读法,可以结合课本及其他书籍中的例题来多练习,以加深记忆。
此外,还可以跟随数学老师的讲解,对符号的读法进行探究,从而更好地理解高数中的符号及其读法。
总之,高数中的符号及其读法是高数学习中必不可少的一部分,
为了更好地学习高数,可以结合课本及其他书籍中的例题多练习,以加深记忆,还可以跟随数学老师的讲解,对符号的读法进行探究,从而更好地理解高数中的符号及其读法。
高等数学重要常用符号读法指南
大写小写英文注音国际音标注音中文注音Ααalpha alfa阿耳法Ββbeta beta贝塔Γγgamma gamma 伽马Δδdeta delt a 德耳塔Εεepsilon epsilon 艾普西隆Ζζzeta ze ta 截塔Ηηeta e ta 艾塔Θθtheta θita西塔Ιιiotaiota 约塔Κκkappa kappa卡帕∧λlambda lambda 兰姆达Μμ mumiu 缪Νν nuniu 纽Ξξ xiksi 可塞Οοomicron omikron 奥密可戎∏π pipai 派Ρρrhorou 柔∑σsigma sigma西格马Ττtautau 套Υυupsilon jupsilo n 衣普西隆Φφphifai 斐Χχchikhai 喜Ψψpsi p sai 普西Ωωomega omiga 欧米伽符号表符号含义i-1的平方根f(x)函数f在自变量x处的值sin(x)在自变量x处的正弦函数值exp(x)在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax同 a^xlogba以b为底a的对数; blogba = acos x在自变量x处余弦函数的值tan x其值等于 sin x/cos xcot x余切函数的值或 cos x/sin x符号含义sec x正割含数的值,其值等于 1/cos x符号含义csc x余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin y acos x y,余弦函数反函数在x处的值,即 x = cos y atan x y,正切函数反函数在x处的值,即 x = tan y acot x y,余切函数反函数在x处的值,即 x = cot y asec x y,正割函数反函数在x处的值,即 x = sec y acsc x y,余割函数反函数在x处的值,即 x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k分别表示x、y、z方向上的单位向量(a, b, c)以a、b、c为元素的向量(a, b)以a、b为元素的向量(a, b)a、b向量的点积符号含义a?b a、b向量的点积(a?b)a、b向量的点积|v|向量v的模|x|数x的绝对值Σ表示求和,通常是某项指数。
高等数学重要常用符号读法指南
大写小写英文注音国际音标注音中文注音Ααalpha alf a 阿耳法Ββbetabeta 贝塔Γγgamma gamma伽马Δδdetadelta 德耳塔Εεepsilon epsil on 艾普西隆Ζζzetazeta 截塔Ηηetaeta 艾塔Θθtheta θi ta 西塔Ιιiotaiota 约塔Κκkappa kappa卡帕∧λlambda lambda兰姆达Μμmumiu 缪Ννnuniu 纽Ξξxiksi 可塞Οοomicron omikron 奥密可戎∏πpipai 派Ρρrhorou 柔∑σsigma sigma西格马Ττtautau 套Υυupsilon jup silon 衣普西隆Φφphifai 斐Χχchikhai 喜Ψψpsipsai 普西Ωωomega omiga 欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值符号含义sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义lnx expx的反函数ax 同a^xlogba 以b为底a的对数;blogba=acosx 在自变量x处余弦函数的值tanx 其值等于sinx/cosxcotx 余切函数的值或cosx/sinxsecx 正割含数的值,其值等于1/cosxcscx 余割函数的值,其值等于1/sinxasinx y,正弦函数反函数在x处的值,即x=sinyacosx y,余弦函数反函数在x处的值,即x=cosyatanx y,正切函数反函数在x处的值,即x=tanyacotx y,余切函数反函数在x处的值,即x=cotyasecx y,正割函数反函数在x处的值,即x=secyacscx y,余割函数反函数在x处的值,即x=cscyθ角度的一个标准符号,不注明均指弧度,尤其用于表示atanx/y,当x、y、z用于表示空间中的点时i,j,k 分别表示x、y、z方向上的单位向量(a,b,c) 以a、b、c为元素的向量(a,b) 以a、b为元素的向量(a,b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。
高等数学重要常用符号读法指南
大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔Γγgamma gamma 伽马Δδdeta delta 德耳塔Εεepsilon epsilon 艾普西隆Ζζzeta zeta 截塔Ηηeta eta 艾塔Θθtheta θita西塔Ιιiota iota 约塔Κκkappa kappa 卡帕∧λlambda lambda 兰姆达Μμmu miu 缪Ννnu niu 纽Ξξxi ksi 可塞Οοomicron omikron 奥密可戎∏πpi pai 派Ρρrho rou 柔∑σsigma sigma 西格马Ττtau tau 套Υυupsilon jupsilon 衣普西隆Φφphi fai 斐Χχchi khai 喜Ψψpsi psai 普西Ωωomega omiga 欧米伽i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作ex a^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同a^xlogba 以b为底a的对数;blogba = acos x 在自变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin yacos x y,余弦函数反函数在x处的值,即x = cos yatan x y,正切函数反函数在x处的值,即x = tan yacot x y,余切函数反函数在x处的值,即x = cot yasec x y,正割函数反函数在x处的值,即x = sec yacsc x y,余割函数反函数在x处的值,即x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。
各种数学符号及读法大全
各种数学符号及读法大全数学是一门充满魅力和奥秘的学科,而数学符号则是这门学科中不可或缺的重要元素。
它们简洁明了地表达着复杂的数学概念和运算,是数学交流和表达的有力工具。
接下来,让我们一起走进数学符号的世界,了解它们的读法和含义。
一、基本运算符号1、加号(+):读作“加”,表示两个或多个数量的总和。
例如,“2 +3”读作“二加三”。
2、减号():读作“减”,表示两个数量之间的差值。
比如,“5 2”读作“五减二”。
3、乘号(×):读作“乘”,表示两个或多个数量的乘积。
“3 × 4”读作“三乘四”。
4、除号(÷):读作“除以”,表示一个数量被另一个数量平均分。
“10 ÷ 2”读作“十除以二”。
二、比较符号1、等于号(=):读作“等于”,表示两个数量或表达式的值相等。
“5 =5”读作“五等于五”。
2、大于号(>):读作“大于”,表示左边的数量大于右边的数量。
“7 >5”读作“七大于五”。
3、小于号(<):读作“小于”,表示左边的数量小于右边的数量。
“3 <8”读作“三小于八”。
4、大于等于号(≥):读作“大于等于”,表示左边的数量大于或等于右边的数量。
“6≥ 5”读作“六大于等于五”。
5、小于等于号(≤):读作“小于等于”,表示左边的数量小于或等于右边的数量。
“4 ≤ 7”读作“四小于等于七”。
三、括号1、小括号(()):读作“括号”,用于改变运算的顺序。
例如,“(2 +3) × 4”先计算括号内的加法,再进行乘法运算。
2、中括号():读作“中括号”,在复杂的表达式中用于进一步明确运算顺序。
3、大括号({}):读作“大括号”,常用于集合的表示等。
四、分数符号1、分数线(—):上面的数字称为分子,下面的数字称为分母。
例如,“3/5”读作“五分之三”。
2、带分数:由整数部分和分数部分组成,例如“2 又1/3”读作“二又三分之一”。
五、指数符号1、上标数字:表示指数,例如“2³”读作“二的三次方”,表示 2 × 2× 2。
数学各种符号的读法
数学符号的读法有很多种,以下是一些常见的数学符号及其常见的读法:
加号(+):读作“加”或“正号”。
减号(-):读作“减”或“负号”。
乘号(×):读作“乘”或“乘以”。
除号(÷):读作“除”或“除以”。
根号(√):读作“算术平方根”或“平方根”。
指数(^):读作“的次方”或“乘方”。
括号(()):读作“括号内的内容”或“小括号”。
大括号({}):读作“大括号内的内容”。
绝对值(|x|):读作“x的绝对值”。
三角函数(sin、cos、tan等):读作“正弦”、“余弦”、“正切”等。
π:读作“派”或“圆周率”。
e:读作“自然对数的底数”。
lgx:读作“以10为底的对数”。
alnx:读作“自然对数”。
ln(x):读作“以e为底的对数”。
约等于(≈):读作“约等于”或“近似于”。
不等于(≠):读作“不等于”。
等于(=):读作“等于”。
大于(>):读作“大于”。
小于(<):读作“小于”。
大于等于(≥):读作“大于等于”或“不小于”。
小于等于(≤):读作“小于等于”或“不大于”。
无穷大(∞):读作“无穷大”或“无穷小”。
交集(∩):读作“交集”。
并集(∪):读作“并集”。
属于(∈):读作“属于”。
高数中数学符号的读法
高数中数学符号的读法# in North America, "pound key"In some countries with British tradition, "hash key" "number sign" is also used by some*: asterisk, multiply, star, pointer星号,乘号,星,指针其它一些符号的读法:+ plus加号;正号- minus减号;负号± plus or minus正负号× is mu ltiplied by乘号÷ is divided by除号= is equal to等于号≠ is not equal to不等于号≡ is equivalent to全等于号≌ is equal to or approximately equal to等于或约等于号≈ is approximately equal to约等于号< is less than小于号> is more than大于号≮ is not less than不小于号≯ is not more than不大于号≤ is less than or equal to小于或等于号≥ is more than or equal to大于或等于号% per cent百分之…‰ per mill千分之…∞ infinity无限大号∝ varies as与…成比例√ (square) root平方根∵ since; because因为∴ hence所以∷ equals, as (proportion)等于,成比例∠ angle角⌒ semicircle半圆⊙ circle圆○ circumference圆周π pi圆周率△ triangle三角形⊥ perpendicular to垂直于∪ union of并,合集∩ intersection of交,通集∫ the integral of …的积分∑ (sigma) summation of总和° degree度′ minute分〃 second秒℃ Celsius system摄氏度{ open brace, open curly左花括号} close brace, close curly右花括号( open parenthesis, open paren左圆括号) close parenthesis, close paren右圆括号() brakets/ parentheses括号[ open bracket左方括号] close bracket右方括号[] square brackets方括号. period, dot句号,点| vertical bar, vertical virgule竖线& ampersand, and, reference, ref和,引用/ slash, divide, oblique斜线,斜杠,除号// slash-slash, comment双斜线,注释符# pound井号\ backslash, sometimes escape反斜线转义符,有时表示转义符或续行符~ tilde波浪符. full stop句号, comma逗号: colon冒号; semicolon分号? question mark问号! exclamation mark (英式英语) exclamation point (美式英语)' apostrophe撇号- hyphen连字号-- dash破折号... dots/ ellipsis省略号" single quotation marks单引号"" double quotation marks双引号‖ parallel双线号& ampersand = and~ swung dash代字号§ section; division分节号→ arrow箭号;参见号_ underscore下划线大写小写英文注音国际音标注音中文注音Αα alpha alfa阿耳法Ββ beta beta贝塔Γγ gamma gamma伽马Δδ deta delta德耳塔Εε epsilon epsilon艾普西隆Ζζ zeta zeta截塔Ηη eta eta艾塔Θθ theta θita西塔Ιι iota iota约塔Κκ kappa kappa卡帕∧ λ lambda lambda兰姆达Μμ mu miu缪Νν nu niu纽Ξξ xi ksi可塞Οο omicron omikron奥密可戎∏ π pi pai派Ρρ rho rou柔∑ σ sigma sigma西格马Ττ tau tau套Υυ upsilon jupsilon衣普西隆Φφ phi fai斐空集Χχ chi khai喜Ψψ psi psai普西Ωω omega omiga欧米伽----------------------------------------------------------------------- 大写小写英文注音国际音标注音中文注音Α α alpha alfa 阿耳法& ampersand = andΒ β beta beta 贝塔Γ γ gamma gamma 伽马& ampersand, and, reference, ref 和,引用Δ δ deta delta 德耳塔Ε ε epsilon epsilon 艾普西隆§ section; division 分节号Ζ ζ zeta zeta 截塔Η η eta eta 艾塔Θ θ theta θita 西塔Ι ι iota iota 约塔Κ κ kappa kappa 卡帕∧ λ lambda lambda 兰姆达Μ μ mu miu 缪Ν ν nu niu 纽Ξ ξ xi ksi 可塞Ο ο omicron omikron 奥密可戎∏ π pi pai 派Ρ ρ rho rou 柔∑ σ sigma sigma 西格马Τ τ tau tau 套Υ υ upsilon jupsilon 衣普西隆Φ φ phi fai 斐Χ χ chi khai 喜Ψ ψ psi psai 普西Ω ω omega omiga 欧米伽----------------------------------------------------------------= is equal to 等于号≠ is not equal to 不等于号≡ is equivalent to 全等于号≌ is equal to or approximately equal to 等于或约等于号≈ is approximately equal to 约等于号。
高等数学重要常用符号读法指南
大写小写英文注音国际音标注音中文注音Ααalpha alfa阿耳法Ββbeta beta贝塔Γγgamma gamma 伽马Δδdeta delt a 德耳塔Εεepsilon epsilon 艾普西隆Ζζzeta ze ta 截塔Ηηeta e ta 艾塔Θθtheta θita西塔Ιιiotaiota 约塔Κκkappa kappa卡帕∧λlambda lambda 兰姆达Μμ mumiu 缪Νν nuniu 纽Ξξ xiksi 可塞Οοomicron omikron 奥密可戎∏π pipai 派Ρρrhorou 柔∑σsigma sigma西格马Ττtautau 套Υυupsilon jupsilo n 衣普西隆Φφphifai 斐Χχchikhai 喜Ψψpsi p sai 普西Ωωomega omiga 欧米伽符号表符号含义i-1的平方根f(x)函数f在自变量x处的值sin(x)在自变量x处的正弦函数值exp(x)在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax同 a^xlogba以b为底a的对数; blogba = acos x在自变量x处余弦函数的值tan x其值等于 sin x/cos xcot x余切函数的值或 cos x/sin x符号含义sec x正割含数的值,其值等于 1/cos x符号含义csc x余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin y acos x y,余弦函数反函数在x处的值,即 x = cos y atan x y,正切函数反函数在x处的值,即 x = tan y acot x y,余切函数反函数在x处的值,即 x = cot y asec x y,正割函数反函数在x处的值,即 x = sec y acsc x y,余割函数反函数在x处的值,即 x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k分别表示x、y、z方向上的单位向量(a, b, c)以a、b、c为元素的向量(a, b)以a、b为元素的向量(a, b)a、b向量的点积符号含义a?b a、b向量的点积(a?b)a、b向量的点积|v|向量v的模|x|数x的绝对值Σ表示求和,通常是某项指数。
高等数学中符号的读法及功能 (挺全的)
大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔Γγgamma gamma 伽马Δδdeta delta 德耳塔Εεepsilon epsilon 艾普西隆Ζζzeta zeta 截塔Ηηeta eta 艾塔Θθtheta θita西塔Ιιiota iota 约塔Κκkappa kappa 卡帕∧λlambda lambda 兰姆达Μμmu miu 缪Ννnu niu 纽Ξξxi ksi 可塞Οοomicron omikron 奥密可戎∏πpi pai 派Ρρrho rou 柔∑σsigma sigma 西格马Ττtau tau 套Υυupsilon jupsilon 衣普西隆Φφphi fai 斐Χχchi khai 喜Ψψpsi psai 普西Ωωomega omiga 欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同a^xlogba 以b为底a的对数;blogba = acos x 在自变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos y atan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。
高等数学中符号的读法及功能挺全的
大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔Γγgamma gamma 伽马Δδdeta delta 德耳塔Εεepsilon epsilon 艾普西隆Ζζzeta zeta 截塔Ηηeta eta 艾塔Θθtheta θita西塔Ιιiota iota 约塔Κκkappa kappa 卡帕∧λlambda lambda 兰姆达Μμmu miu 缪Ννnu niu 纽Ξξxi ksi 可塞Οοomicron omikron 奥密可戎∏πpi pai 派Ρρrho rou 柔∑σsigma sigma 西格马Ττtau tau 套Υυupsilon jupsilon 衣普西隆Φφphi fai 斐Χχchi khai 喜Ψψpsi psai 普西Ωωomega omiga 欧米伽符号表符号含义i -1的平方根fx 函数f在自变量x处的值sinx 在自变量x处的正弦函数值expx 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同a^xlogba 以b为底a的对数;blogba = acos x 在自变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin yacos x y,余弦函数反函数在x处的值,即x = cos yatan x y,正切函数反函数在x处的值,即x = tan yacot x y,余切函数反函数在x处的值,即x = cot yasec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量a, b, c 以a、b、c为元素的向量a, b 以a、b为元素的向量a, b a、b向量的点积a b a、b向量的点积a b a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数;下边界值写在其下部,上边界值写在其上部;如j从1到100的和可符号含义以表示成:;这表示 1 + 2 + … + nM 表示一个矩阵或数列或其它|v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量<v| 被写成行或可被看成从1×k阶矩阵的向量dx 变量x的一个无穷小变化,dy, dz, dr等类似ds 长度的微小变化ρ变量x2 + y2 + z21/2 或球面坐标系中到原点的距离r 变量x2 + y21/2 或三维空间或极坐标中到z轴的距离|M| 矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积||M|| 矩阵M的行列式的值,为一个面积、体积或超体积det M M的行列式M-1 矩阵M的逆矩阵v×w 向量v和w的向量积或叉积θvw向量v和w之间的夹角A B×C 标量三重积,以A、B、C为列的矩阵的行列式uw 在向量w方向上的单位向量,即w/|w|df 函数f的微小变化,足够小以至适合于所有相关函数的线性近似df/dx f关于x的导数,同时也是f的线性近似斜率f ' 函数f关于相应自变量的导数,自变量通常为xf/x y、z固定时f关于x的偏导数;通常f关于某变量q的偏导数为当其它几个变量固定时df与dq 的比值;任何可能导致变量混淆的地方都应明确地表述f/x|r,z保持r和z不变时,f关于x的偏导数grad f 元素分别为f关于x、y、z偏导数f/x, f/y, f/z 或f/xi + f/yj + f/zk; 的向量场,称为f的梯度向量算子/xi + /xj + /xk, 读作"del"f f的梯度;它和uw 的点积为f在w方向上的方向导数w 向量场w的散度,为向量算子同向量w的点积, 或wx /x + wy /y + wz /zcurl w 向量算子同向量w 的叉积×w w的旋度,其元素为fz /y - fy /z, fx /z - fz /x, fy /x - fx /y 拉普拉斯微分算子:2/x2 + /y2 + /z2f "x f关于x的二阶导数,f 'x的导数d2f/dx2 f关于x的二阶导数符号含义f2x 同样也是f关于x的二阶导数fkx f关于x的第k阶导数,fk-1 x的导数T 曲线切线方向上的单位向量,如果曲线可以描述成rt, 则T = dr/dt/|dr/dt|ds 沿曲线方向距离的导数κ曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds|N dT/ds投影方向单位向量,垂直于TB 平面T和N的单位法向量,即曲率的平面τ曲线的扭率:|dB/ds|g 重力常数F 力学中力的标准符号k 弹簧的弹簧常数pi 第i个物体的动量H 物理系统的哈密尔敦函数,即位置和动量表示的能量{Q, H} Q, H的泊松括号以一个关于x的函数的形式表达的fx的积分函数f 从a到b的定积分;当f是正的且 a < b 时表示由x轴和直线y = a, y = b 及在这些直线之间的函数曲线所围起来图形的面积Ld 相等子区间大小为d,每个子区间左端点的值为f的黎曼和Rd 相等子区间大小为d,每个子区间右端点的值为f的黎曼和Md 相等子区间大小为d,每个子区间上的最大值为f的黎曼和md 相等子区间大小为d,每个子区间上的最小值为f的黎曼和+:pluspositive正的-:minusnegative负的:multiplied by÷:divided by=:be equal to≈:be approximately equal to:round bracketsparenthess:square brackets{}:braces∵:because∴:therefore≤:less than or equal to≥:greater than or equal to∞:infinityLOGnX:logx to the base nxn:the nth power of xfx:the function of xdx:diffrencial of xx+y:x plus ya+b:bracket a plus b bracket closeda=b:a equals ba≠b:a isn't equal to ba>b:a is greater than ba>>b:a is much greater than ba≥b: a is greater than or equal to bx→∞:x approches infinityx2:x squarex3:x cube√ ̄x:the square root of x3√ ̄x:the cube root of x3‰:three peimilln∑i=1xi:the summation of x where x goes from 1to nn∏i=1xi:the product of x sub i where igoes from 1to n ∫ab:integral betweens a and b。
【7A文】高等数学重要常用符号读法指南
大写小写英文注音国际音标注音中文注音Ααalphaalfa阿耳法Ββbetabeta贝塔Γγgammagamma伽马Δδdetadelta德耳塔Εεepsilonepsilon艾普西隆Ζζzetazeta截塔Ηηetaeta艾塔Θθthetaθita西塔Ιιiotaiota约塔Κκkappakappa卡帕∧λlambdalambda兰姆达Μμmumiu缪Ννnuniu纽Ξξxiksi可塞Οοomicronomikron奥密可戎∏πpipai派Ρρrhorou柔∑σsigmasigma西格马Ττtautau套Υυupsilonjupsilon衣普西隆Φφphifai斐Χχchikhai喜Ψψpsipsai普西Ωωomegaomiga欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作ex a^x a的x次方;有理数x由反函数定义lnx expx的反函数ax 同a^xlogba 以b为底a的对数;blogba=acosx 在自变量x处余弦函数的值tanx 其值等于sinx/cosxcotx 余切函数的值或cosx/sinx符号含义secx 正割含数的值,其值等于1/cosxcscx 余割函数的值,其值等于1/sinxasinx y,正弦函数反函数在x处的值,即x=sinyacosx y,余弦函数反函数在x处的值,即x=cosyatanx y,正切函数反函数在x处的值,即x=tanyacotx y,余切函数反函数在x处的值,即x=cotyasecx y,正割函数反函数在x处的值,即x=secyacscx y,余割函数反函数在x处的值,即x=cscyθ角度的一个标准符号,不注明均指弧度,尤其用于表示atanx/y,当x、y、z用于表示空间中的点时i,j,k 分别表示x、y、z方向上的单位向量(a,b,c) 以a、b、c为元素的向量(a,b) 以a、b为元素的向量符号含义(a,b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。
高数数学符号的读法
高数数学符号的读法一、运算符号1. “+”加号,可读作“加上”。
2. “-”减号,可读作“减”。
3. “×”乘号,可读作“乘”或“乘以”。
4. “÷”除号,可读作“除以”。
5. “=”等于号,可读作“等于”,另外,较大量的等于可以用“囿于篇幅原因,此处省略XXX 个字”代替。
6. “>”大于号,可读作“大于”。
7. “<”小于号,可读作“小于”。
8. “≥”大于或等于号,可读作“大于或等于”。
9. “≤”小于或等于号,可读作“小于或等于”。
10. “≠”不等于号,可读作“不等于”。
二、代数符号1. “n”表示正整数集。
2. “N+”表示正整数集内的所有正数。
3. “N”表示所有自然数。
4. “Z”表示整数集。
5. “Q”表示有理数集。
6. “R”表示实数集。
7. “0”表示零或常数。
8. “+”右上角小数字,代表幂,比如“x2”可读作“x的平方”。
9. “i”表示虚数单位。
10. “∞”表示无穷大。
三、函数符号1. “f(x)”,表示函数名,读作“f 括号x”,其中x为自变量。
2. “sin(x)”,正弦函数,读作“正弦括号x”。
3. “cos(x)”,余弦函数,读作“余弦括号x”。
4. “tan(x)”,正切函数,读作“正切括号x”。
5. “ln(x)”,自然对数函数,读作“自然对数括号x”。
6. “log(x)”,对数函数,读作“对数括号x”。
7. “π”,圆周率,读作“派”。
8. “e”,自然对数的底数,读作“e”。
9. “ρ”,总体密度函数的泊松分布参数,读作“rho”。
10. “σ”,标准差或均方差的正态分布参数,读作“sigma”。
四、集合符号1. “A”,“B”,“C”等大写字母表示集合。
例如,“A={1,2,3}”可以读作集合A包含元素1,2,3。
2. “a”,“b”,“c”等小写字母表示元素。
例如,“a∈A”可以读作元素a属于集合A。
3. “∈”表示集合的并运算。
常用数学符号读法大全以及主要数学符号含义
高等数学常用数学符号读法大全以及主要数学符号含义-转载大写小写英文注音国际音标注音中文注音Α α alpha alfa阿耳法Β β beta beta贝塔Γ γ gamma gamma伽马Γ δ deta delta德耳塔Δ ε epsilon epsilon艾普西隆Ε δ zeta zeta截塔Ζ ε eta eta艾塔Θ ζ theta ζita西塔Η η iota iota约塔Κ θ kappa kappa卡帕∧ι lambda lambda兰姆达Μ κmu miu缪Ν λ nu niu纽Ξ μ xi ksi可塞Ο ν omicro n omikron奥密可戎∏ π pi pai派Ρ ξ rho rou柔∑ ζ sigma sigma西格马Τ η tau tau套Υ υ upsilon jupsilon衣普西隆Φ θ phi fai斐Φ χ chi khai喜Χ ψ psi psai普西Ψ ω omega omiga欧米伽数学符号:(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率π。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是反比例符号,“∈”是属于符号,“C”或“C下面加一横”是“包含”符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”(6)省略符号:如三角形(△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n),阶乘(!)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大写小写英文注音国际音标注音中文注音Ααalphaalfa阿耳法Ββbetabeta贝塔Γγgammagamma伽马Δδdetadelta德耳塔Εεepsilonepsilon艾普西隆Ζζzetazeta截塔Ηηetaeta艾塔Θθthetaθita西塔Ιιiotaiota约塔Κκkappakappa卡帕∧λlambdalambda兰姆达Μμmumiu缪Ννnuniu纽Ξξxiksi可塞Οοomicronomikron奥密可戎∏πpipai派Ρρrhorou柔∑σsigmasigma西格马Ττtautau套Υυupsilonjupsilon衣普西隆Φφphifai斐Χχchikhai喜Ψψpsipsai普西Ωωomegaomiga欧米伽i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作ex a^x a的x次方;有理数x由反函数定义lnx expx的反函数ax 同a^xlogba 以b为底a的对数;blogba=acosx 在自变量x处余弦函数的值tanx 其值等于sinx/cosxcotx 余切函数的值或cosx/sinxsecx 正割含数的值,其值等于1/cosxcscx 余割函数的值,其值等于1/sinxasinx y,正弦函数反函数在x处的值,即x=siny acosx y,余弦函数反函数在x处的值,即x=cosy atanx y,正切函数反函数在x处的值,即x=tany acotx y,余切函数反函数在x处的值,即x=coty asecx y,正割函数反函数在x处的值,即x=secy acscx y,余割函数反函数在x处的值,即x=cscyθ角度的一个标准符号,不注明均指弧度,尤其用于表示atanx/y,当x、y、z用于表示空间中的点时i,j,k 分别表示x、y、z方向上的单位向量(a,b,c) 以a、b、c为元素的向量(a,b) 以a、b为元素的向量(a,b) a、b向量的点积ab a、b向量的点积(ab) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。
下边界值写在其下部,上边界值写在其上部。
如j从1到100的和可以表示成:。
这表示1+2+…+nM 表示一个矩阵或数列或其它|v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量<v| 被写成行或可被看成从1×k阶矩阵的向量dx 变量x的一个无穷小变化,dy,dz,dr等类似ds 长度的微小变化ρ变量(x2+y2+z2)1/2或球面坐标系中到原点的距离r 变量(x2+y2)1/2或三维空间或极坐标中到z轴的距离|M| 矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积||M|| 矩阵M的行列式的值,为一个面积、体积或超体积detM M的行列式M-1 矩阵M的逆矩阵v×w向量v和w的向量积或叉积θvw向量v和w之间的夹角AB×C标量三重积,以A、B、C为列的矩阵的行列式uw 在向量w方向上的单位向量,即w/|w|df 函数f的微小变化,足够小以至适合于所有相关函数的线性近似df/dx f关于x的导数,同时也是f的线性近似斜率f' 函数f关于相应自变量的导数,自变量通常为xf/x y、z固定时f关于x的偏导数。
通常f关于某变量q的偏导数为当其它几个变量固定时df与dq的比值。
任何可能导致变量混淆的地方都应明确地表述(f/x)|r,z 保持r和z不变时,f关于x的偏导数gradf 元素分别为f关于x、y、z偏导数[(f/x),(f/y),(f/z)]或(f/x)i+(f/y)j+(f/z)k;的向量场,称为f的梯度向量算子(/x)i+(/x)j+(/x)k,读作"del"f f的梯度;它和uw的点积为f在w方向上的方向导数w 向量场w的散度,为向量算子同向量w的点积,或(wx/x)+(wy/y)+(wz/z)curlw 向量算子同向量w的叉积×w w的旋度,其元素为[(fz/y)-(fy/z),(fx/z)-(fz/x),(fy/x)-(fx/y)]拉普拉斯微分算子:(2/x2)+(/y2)+(/z2)f"(x) f关于x的二阶导数,f'(x)的导数d2f/dx2 f关于x的二阶导数f(2)(x) 同样也是f关于x的二阶导数f(k)(x) f关于x的第k阶导数,f(k-1)(x)的导数T 曲线切线方向上的单位向量,如果曲线可以描述成r(t),则T=(dr/dt)/|dr/dt|ds 沿曲线方向距离的导数κ曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds|N dT/ds投影方向单位向量,垂直于TB 平面T和N的单位法向量,即曲率的平面τ曲线的扭率:|dB/ds|g 重力常数F 力学中力的标准符号k 弹簧的弹簧常数pi 第i 个物体的动量H 物理系统的哈密尔敦函数,即位置和动量表示的能量{Q,H} Q,H 的泊松括号以一个关于x 的函数的形式表达的f(x)的积分函数f 从a 到b 的定积分。
当f 是正的且a<b 时表示由x 轴和直线y=a,y=b 及在这些直线之间的函数曲线所围起来图形的面积L(d) 相等子区间大小为d ,每个子区间左端点的值为f 的黎曼和R(d) 相等子区间大小为d ,每个子区间右端点的值为f 的黎曼和M(d) 相等子区间大小为d ,每个子区间上的最大值为f 的黎曼和m(d) 相等子区间大小为d ,每个子区间上的最小值为f 的黎曼和高等数学公式导数公式:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='基本积分表:三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式: ·诱导公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ·和差角公式:·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ·倍角公式:·半角公式: ·正弦定理:R Cc B b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x y x y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖϖωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式: ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n n ϖϖϖϖϖdiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为l2的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:。