实验一 控制系统的数学模型

合集下载

控制工程基础第一章控制系统的数学模型

控制工程基础第一章控制系统的数学模型

(t)
m dt
m
1a
2ቤተ መጻሕፍቲ ባይዱ
c
式中,
Tm
Ra
Ra J m f m CmCe
为电动机机电时间常数,s;
K1
Ra
f
Cm
C C
m
me
K2
Ra
f
Ra
C C
m
me
为电动机传递系数。
如果电枢电阻Ra和电动机的转动惯量Jm都很小而忽略不计,式(1-9)
还可进一步简化为
C u (t) (t)
em
a
这时,电动机的转速ωm(t)与电枢电压ua(t)成正比,于是电动机可作为
(1)运算放大器Ⅰ。输入量(即给定电压)ug与速度反馈电压uf在此 合成产生偏差电压并经放大,即
u1 K1(ug u f )
式中,
K1
R2 R3
为运算放大器Ⅰ的比例系数。
(2)运算放大器Ⅱ。考虑RC校正网络,u2与u1之间的微分方程为
u2
K(2
d u1
dt
u1)
式中,K 2
R5 R4
为运算放大器Ⅱ的比例系数;τ=R4C为微分时间常数。
m
(t) (t) (t)
m dt
mm
m
c
式中,fm为电动机和负载折合到电动机轴上的黏性摩擦系数;Jm为电
动机和负载折合到电动机轴上的转动惯量。
由式(1-5)、式(1-6)和式(1-7)中消去中间变量ia(t)、Ea及
Mm(t),便可得到以ωm(t)为输出量,以ua(t)为输入量的直流电动机微
分方程,即
按照其建立的条件,数学模型可分为两种。一是静态数学模型: 静态条件(变量各阶导数为零)下描述变量之间关系的代数方程。 它反映了系统处于稳态时,系统状态有关属性变量之间的关系。二 是动态数学模型:动态条件(变量各阶导数不为零)下描述变量各 阶导数之间关系的微分方程;也可定义为描述实际系统各物理量随 时间演化的数学表达式。它反映了动态系统瞬态与过渡态的特性。 本章以动态数学模型的研究为主。

第二章控制系统的数学模型.

第二章控制系统的数学模型.

2.2.1传递函数的定义和性质
⑴ 定义 线性定常系统的传递函数,定义为初始条件为零时,输出 量的拉氏变换与输入量的拉氏变换之比,记为G(S),即:
C ( s) G( s) R( s)
(2-4)
注:所有初始条件为零,指的是原系统处于静止状态. 设线性定常系统的n阶线性常微分方程为
dn d n 1 d a0 n c(t ) a1 n 1 c(t ) an 1 c(t ) an c(t ) dt dt dt dm d m1 d b0 m r (t ) b1 m 1 r (t ) bm1 r (t ) bm r (t ) dt dt dt
F(t)
K
F(t) F2(t)
m
f
m
x(t)
F1(t) b)
x(t)
根据牛顿第二运动定律有:
d 2 x (t ) F (t ) F1 (t ) F2 (t ) m dt2
a)
图2-2 机械位移系统
(2-2) 7
式中:
F1 (t ) ——阻尼器阻力。其大小与运动速度成正比,方向 与运动方向相反,阻尼系数为f,即: dx (t ) F1 (t ) f dt F2 (t ) ——弹簧力。设为线性弹簧,根据虎克定律有:
F2 (t ) Kx(t )
K——弹簧刚度 联立以上三式并整理得:
d 2 x (t ) dx(t ) m f Kx (t ) F (t ) 2 dt dt
(2-3) 8
综上所述,列写元件微分方程的步骤可归纳如下: ① 根据元件的工作原理及其在控制系统中的作用,确定其 输入量和输出量; ② 分析元件工作中所遵循的物理规律或化学规律,列写相 应的微分方程; ③ 消去中间变量,得到输出量与输入量之间关系的微分方 程,便是元件时域的数学模型. 9

第2章 控制系统的数学模型

第2章 控制系统的数学模型

第2章控制系统的数学模型§1 系统数学模型的基本概念一. 系统模型系统的模型包括实物模型、物理模型、和数学模型等等。

物理本质不同的系统,可以有相同的数学模型,从而可以抛开系统的物理属性,用同一方法进行具有普遍意义的分析研究(信息方法)。

从动态性能看,在相同形式的输入作用下,数学模型相同而物理本质不同的系统其输出响应相似。

相似系统是控制理论中进行实验模拟的基础。

二. 系统数学模型1. 系统数学模型系统的数学模型是系统动态特性的数学描述。

数学模型是描述系统输入、输出量以及内部各变量之间关系的数学表达式,它揭示了系统结构及其参数与其性能之间的内在关系。

2. 系统数学模型的分类数学模型又包括静态模型和动态模型。

(1) 静态数学模型静态条件(变量各阶导数为零)下描述变量之间关系的代数方程。

反映系统处于稳态时,系统状态有关属性变量之间关系的数学模型。

(2) 动态数学模型描述变量各阶导数之间关系的微分方程。

描述动态系统瞬态与过渡态特性的模型。

也可定义为描述实际系统各物理量随时间演化的数学表达式。

动态系统的输出信号不仅取决于同时刻的激励信号,而且与它过去的工作状态有关。

微分方程或差分方程常用作动态数学模型。

动态模型在一定的条件下可以转换成静态模型。

在控制理论或控制工程中,一般关心的是系统的动态特性,因此,往往需要采用动态数学模型。

即,一般所指的系统的数学模型是描述系统动态特性的数学表达式。

三. 系统数学模型的形式对于给定的同一动态系统,数学模型的表达不唯一。

如微分方程、传递函数、状态方程、单位脉冲响应函数及频率特性等等。

对于线性系统,它们之间是等价的。

但系统是否线性这一特性,不会随模型形式的不同而改变。

线性与非线性是系统的固有特性,完全由系统的结构与参数确定。

经典控制理论采用的数学模型主要以传递函数为基础。

而现代控制理论采用的数学模型主要以状态空间方程状态空间方程为基础。

而以物理定律及实验规律为依据的微分方程微分方程又是最基本的数学模型,是列写传递函数和状态空间方程的基础。

控制系统的数学模型

控制系统的数学模型

控制系统的数学模型在控制系统的分析和设计中,首先要建立系统的数学模型。

自动控制系统的组成可以是电气的、机械的、液压的或气动的,然而描述这些系统的数学模型却可以是相同的。

因此,通过数学模型来研究自动控制系统,可以摆脱各种不同类型的外部特征,研究其内在的共性运动规律。

通过本章的学习,我们要掌握三种数学模型:微分方程、传递函数、动态结构图的建立方法。

熟练掌握自动控制系统传递函数的求取方法。

§2—1 列写微分方程的一般方法微分方程是描述控制系统动态性能的一种数学模型。

建立系统或元件微分方程的一般步骤如下:(1) 根据实际工作情况,确定系统和各元件的输入量和输出量; (2) 根据物理或化学定律,列写系统各组成元件的原始方程;(3) 在可能条件下,对各元件的原始方程进行适当简化,略去一些次要因素或进行线性化处理;(4) 消去中间变量,得出描述输出量和输入量(包括干扰)关系的微分方程,即元件的微分方程;(5) 对求出的系统微分方程标准化。

即将与输出有关的各项放在等号左侧;而将与输入有关的各项置于等号右侧,等号左右侧各项均按降幂形式排列。

例:列写下图所示RC 网络的微分方程。

解:1、明确输入、输出量输入量:RC 网络的电压u r ;输出量:u c2、建立输入、输出量的动态联系根据电路理论的基尔霍夫电压定律,任意时刻,网络的输入电压等于各支路的电压降和,即u u c r Ri += (1)dtd Ci u c= ………(2)(i 为网络电流,是一个中间变量) 3、消除中间变量-+-R L将(2)式代入(1)式得u u u c cr dtd RC+= 4、系统的微分方程的标准化u u u r c cdtd RC =+ 例2:列写下图所示RLC 网络的微分方程。

(零初始条件) 解:1、明确输入、输出量输入量:u i ; 输出量:u c 2、列写个组件的原始方程⎪⎪⎪⎩⎪⎪⎪⎨⎧==++=)3()2()1( dt d C i dt di L iR u u u u u c Lc L i (i 为网络电流,是一个中间变量) 3、消除中间变量将(3)分别代入(1)、(2)则得⎪⎪⎩⎪⎪⎨⎧=++=)5()4(22 t u d u u u u u d LC dt d RC cL c L c i将(5)代入(4)则得u t u d u u cc c id LC dt d RC++=224、系统的微分方程的标准化u u u tu d i c c cdt d RC d LC =+++22即为所求的微分方程 例3:列写下图所示RL 网络的微分方程。

自动控制原理-第二章 控制系统的数学模型

自动控制原理-第二章 控制系统的数学模型
dn dtn f ( t )
t
f (t)dt 0
t
f ( )d
n
ki .L[ f (t )]
i 1
sF (s) f (0 )
s2F (s) sf (0 ) f (0 )
snF (s) sn1 f (0 ) sn2 f (0 ) f (n1) (0 )
电枢回路方程为
La
dia (t) dt

Raia (t)

Ea (t)

ua (t)
电磁转矩方程 M m Cmia (t)
电动机轴上转矩平衡方程
Jm
dm (t)
dt

fmm (t)

Mm

MC
(t)
若以角速度 m 为输出量、电枢电压 ua 为输入量,
消去中间变量,直流电动机的微分方程为
(s2+s+1)Uc(s)= Ur(s)+0.1(s+2)
即 U S 1 U S 0.1S 2
C
S2 S 1 r
S2 S 1
通电瞬间, ur(t)=1 或 Ur(s)=L[ur(t)]=1/S
故 U S 1 1 0.1S 2
C
S2 S 1 S S2 S 1
再对上式两边求反拉氏变换:
u c
t

L1 U C
S


L1
S
2
1 S
1
1 S

S
2
1 S
1
=1+1.15e-0.5tSin(0.866t-120°)+ 0.2e-0.5tSin(0.866t+30°)

控制工程基础 第二章 控制系统的数学模型

控制工程基础 第二章 控制系统的数学模型

R1 ui C1 K
R2 C2 uc
U c ( s) K U i ( s ) ( R1C1s 1)( R2C2 s 1)

有源网络:
Ur R0
R1
C1 +12V
+
-12V
Uc
U c ( s) R1C1s 1 U r ( s) R0C1s
2-3 典型环节及其传递函数


环节:具有某种确定信息传递关系的元 件、元件组或元件的一部分称为一个环 节。 系统传递函数可写为:

例2 电学系统: 其中:电阻为R,电感为L,电容为C。
+ ur(t) - i
+ uc(t) -
解:系统的微分方程如下
d U c (t ) dUc (t ) LC RC U c (t ) U r (t ) 2 dt dt
2
拉氏变换后(零初始条件下)
U c ( s) 1 2 U r ( s ) LCs RCs 1
2 2
1 1 1 , 2 2 s Ts 1, T s 2Ts 1
各典型环节名称:


比例环节:K 一阶微分环节:s 1 2 2 s 二阶微分环节: 2 s 1 1 积分环节: s 1 惯性环节: 1 Ts 1 二阶振荡环节:2 s 2 2Ts 1 T

传递函数的性质: (1)传递函数只取决于系统或元件的结构和 参数,与输入输出无关; (2)传递函数概念仅适用于线性定常系统, 具有复变函数的所有性质; (3)传递函数是复变量s 的有理真分式, 即n≥m; (4)传递函数是系统冲激响应的拉氏变换;
传递函数的性质: (5)传递函数与真正的物理系统不存在一 一对应关系; (6)由于传递函数的分子多项式和分母多 项式的系数均为实数,故零点和极点可以是 实数,也可以是成对的共轭复数。

第二章 控制系统的数学模型

第二章 控制系统的数学模型


QQQr00(((sss)))−−=QQH0c1(((sss)))R=−=1Hcc122s(sHsH)12(s()s)
qc (t)
=
h2 (t) R2
Qc
(s)
=
H2 (s) R2
G(s)
=
Qc (s) Qr (s)
=
R1R 2C1C 2s 2
1 + (R1C1 + R2C2
机理分析法:
依据描述系统运动规律的定律并通过理论推导 来得到数学模型的方法 。
实验辨识法:
通过整理基于系统输入-输出的实验数据来 得到系统的数学模型。本章着重讨论机理分析 法。
建模特点:相似性、简化性、准确性。
数学模型类型: 经典控制理论: 微分方程(连续系统)、
差分方程(离散系统) 、传递函数、系 统方框图和信号流图; 现代控制理论:状态方程
注:如果在第(3)步结束时已经得到符合第(4)步要求的微分方程,则 无须第(4)步。
线性定常系统微分方程的一般形式
an
d nc(t) dt n
+
an−1
d n−1c(t ) dt n−1
+
...
+
a1
dc(t ) dt
+
a0c(t )
=
bm
d mr(t) dt m
+
bm −1
d m−1r(t ) dt m−1
d x(t ) + dt
Kx(t ) = f (t )
当f(t)=f1(t)时,上述方程的解为x1(t); 当f(t)=f2(t)时,上述方程的解为x2(t); 如果f(t)=f1(t)+ f2(t) ,方程的解为x(t)= x1(t)+x2(t),这就是叠加性

自动控制原理控制系统的数学模型

自动控制原理控制系统的数学模型

自动控制原理控制系统的数学模型自动控制原理是现代控制工程学的基础,在控制系统的设计中起着至关重要的作用。

控制系统的数学模型是指通过数学方法对控制系统进行建模和描述,以便分析和设计控制系统的性能和稳定性。

控制系统的数学模型可以分为时域模型和频域模型两种形式。

一、时域模型时域模型是描述控制系统在时间域上动态行为的数学表达式。

时域模型是基于系统的差分方程或微分方程的。

1.线性时不变系统的时域模型对于线性时不变系统,可以通过系统的微分方程或差分方程来建立时域模型。

常见的时域模型包括:-一阶系统的时域模型:y(t)=K*(1-e^(-t/T))*u(t)-二阶系统的时域模型:y(t)=K*(1-e^(-t/T))*(1+t/Td)*u(t)2.非线性系统的时域模型对于非线性系统,时域模型可以通过系统的状态空间方程来建立。

常见的非线性系统时域模型包括:- Van der Pol方程: d^2x/dt^2 - μ(1 - x^2) * dx/dt + x = 0 - Lorenz方程:dx/dt = σ * (y - x), dy/dt = rx - y - xz, dz/dt = xy - βz二、频域模型频域模型是描述控制系统在频域上动态行为的数学表达式。

频域模型是基于系统的传递函数或频率响应函数的。

1.传递函数模型传递函数是系统的输入和输出之间的关系,是频域模型的核心。

传递函数可以通过系统的拉普拉斯变换或Z变换得到。

常见的传递函数模型包括:-一阶系统的传递函数模型:G(s)=K/(T*s+1)-二阶系统的传递函数模型:G(s)=K/(T^2*s^2+2ξ*T*s+1)2.频率响应模型频率响应函数是系统在不同频率下的输出和输入之间的关系。

频率响应函数可以通过系统的传递函数模型进行计算。

常见的频率响应模型包括:-幅频特性:描述系统在不同频率下的增益变化-相频特性:描述系统在不同频率下的相位变化控制系统的数学模型是对系统动态行为的数学描述,通过对控制系统进行数学建模和分析,可以有效地设计和优化控制系统,提高系统的性能和稳定性。

自动控制理论 2-1 控制系统的数学模型

自动控制理论 2-1 控制系统的数学模型

i (t ) =
uc (t ) R
运动方程: 运动方程: 传递函数: 传递函数:
u r (t) =
G(s) =
1 RC
∫u
c
(t)dt + u c (t)
U c (s) Tc s = U r (s) Tc s + 1
(Tc=RC)
G(s) = U c (s) = Tc s U r (s)
当Tc<<1时,又可表示成:
传递函数
36
例:直流电机
输入量: ud ——电枢电压 输出量: id ——电枢电流 动态方程如下:
第二章 控制系统的数学模型
第二次课 1
1.引言
系统的数学模型:描述系统输入、输出变量以及内部其他变 量之间关系的数学表达式。 控制系统中常见的二种数学模型形式: 1、外部描述:把系统的输出量与输入量之间的关系用数 外部描述:把系统的输出量与输入量之间的关系用数 学方式表达出来,称之为输入— 学方式表达出来,称之为输入—输出描述,或外部描述, 例如微分方程、传递函数、框图和差分方程。适用于单输 例如微分方程、传递函数、框图和差分方程。适用于单输 入、单输出系统。
L C
u r(t)
2
uc(t)
d uc du c LC + RC + uc = ur 2 dt dt
二阶微分方程
9
例2-3 阻尼器系统 (P15)
d 2 y (t ) dy (t ) m + f + ky (t ) = F (t ) 二阶微分方程 2 dt dt
10
本节重点:
控制系统微分方程的建立的方法 两种典型控制系统微分方程的建立。 两种典型控制系统微分方程的建立

自动控制理论-第二章

自动控制理论-第二章

2-1 控制系统的时域数学模型
1、控制系统微分方程的建立 (1)举例 例1:电路无源网络 试列写以 u (t ) 为输入量,以 u (t )为 输出量的网络微分方程
i
o
解:设回路电流为 i(t ) ,由基尔霍夫 定律可写出回路方程为
di ( t ) 1 + i ( t ) dt + Ri ( t ) = u i ( t ) dt C ∫ 1 u o (t ) = i ( t ) dt C ∫ L
f 2 (t )
c(t ) = c1 (t )
作用时, c(t ) = c2 (t ) 叠加性:当 f (t ) 、 f (t ) 同时作用时,c(t ) = c1 (t ) + c2 (t ) 均匀性:当 f (t ) = A ⋅ f1 (t ) 时, c(t ) = A ⋅ c1 (t ) 线性系统的叠加原理表明:两个外作用同时加于系统所产生的 总输出,为各个外作用单独作用时分别产生的输出之和。
[
]
1 1 1 F ( s ) + n f ( −1) (0) + L + f ( − n ) (0) n s s s
式中
f
( −1)
f ( −1) (0)、f ( −2) (0) L f ( − n ) (0)
(−n)

f (t )
的各重积分在 t = 0 时的值。如果
(0) = f ( −2 ) (0) = L = f
(0) = 0 ,则有
L ∫ L ∫ f (t )(dt ) n =
[
]
1 F (s) sn
(4)初值定理 若函数 f (t ) 及其一阶导数都是可拉氏变换的,则
f (0 + ) = lim f (t ) = lim sF ( s)

第二章系统的数学模型

第二章系统的数学模型

2.2 控制系统的复数域数学模型(传递函数)
一.传递函数
1.线性定常系统的传递函数定义为:
零初始条件下,系统输出量的拉氏变换与输入 量的拉氏变换之比。
R(s) G(s) C(s)
传递函数
输出的拉氏变换 输入的拉氏变换
|零初始条件
C(s) R(s)
G(s)
零初始条件
➢ 零初始条件指的是输入、输出初始条件均为零,即
在给定工作点 ( x0,y0 )附近,将上式展开泰勒级数:
y
f (x)
df f ( x0 ) dx
1 d2 f x x0 ( x x0 ) 2! dx2
(x x0 )2
x x0
若在工作点 ( x0,y0 ) 附近增量 x x0 的变化很小,则可略去式中 ( x x0 )2 项及其后面所有的高阶项,这样,上式近似表示为:
l
s
1)
G(s)
i 1 d
l 1 e
sv (Tjs 1) (Tk2s2 2 kTk s 1)
j 1
k 1
纯微分环节
s
es
积分环节
惯性环节
振荡环节
延迟环节
典型环节
➢ 比例环节的传递函数为:
Proportional element (link)
C(s) G(s) K R(s)
齿轮传动
方框图为:
➢ 频域数学模型:
频率特性
2.1 线性系统的时域数学模型
本节主要研究描述 线性、定常、集总参量控制系统的微分方程的
建立和求解方法
线性元件的微分方程
一.微分方程:
给定量和扰动量作为系统输入量,被控制量作为系统输出 的一种系统描述方法

第第二章 控制系统的数学模型

第第二章 控制系统的数学模型

1
sa
1
(s a)n
18
拉普拉斯变换简表
f (t)
9
sin t
10
cost
11
1 (1 eat )
a
12
1 a
(a0
(a0
a)eat
)
13
1 a2
(at
1
e at
)
14
a0t a2
(
a0 a2
t)(eat
1)
F (s)
s2 2
s
s2 2
s s(s a)
s a0 s(s a)
1 s2 (s a)
(1)独立性(可加性):线性系统内各个 激励产生的响应互不影响
xi1(t) xi2(t)
xo1(t) xo2(t)
xi1(t)+xi2(t) xo1(t)+xo2(t)
(2)均匀性(齐次性)
8
线形系统的一般形式
an
dn dtn
y(t) an1
d n1 d t n 1
y(t) ... a1
d dt
dt
s

证:
f (0) lim sF (s)
s
由微分定理有:
L( df (t)) sF (s) f (0) dt
两边取极限
lim[ df (t) est dt] lim[sF (s) f (0)]
s 0 dt
s
27
lim[ df (t) est dt] lim[sF (s) f (0)]
0 dt s0
s0
lim est 1
s0
[ df (t) dt] lim[sF (s) f (0)]

控制系统的数学模型

控制系统的数学模型

第二章控制系统的数学模型2-1 什么是系统的数学模型?大致可以分为哪些类型?答定量地表达系统各变量之间关系的表达式,称工矿企业数学模型。

从不同的角度,可以对数学模型进行大致的分类,例如:用来描述各变量间动态关系的数学模型为动态模型,用来描述各变量间稳态关系有数学模型为静态模型;数学模型中各变量与几何位置无关的称为集中参数模型,反之与几何位置有关的称为分布参数模型;变量间关系表现为线性的称为线性模型,反之非线性模型;模型参数与时间有关的称为时变模型,与时间无关的称为时不变或定常模型;以系统的输入、输出变量这种外部特征来描述系统特性的数学模型称为输入输出模型,而以系统内部状态变量描述的数学模型称为状态空间模型;等等。

2-2 系统数学模型的获取有哪几种方法?答获取系统数学模型的方法主要有机理分析法和实验测试法。

机理分析法是通过对系统内部机理的分析,根据一些基本的物理或化学变化的规律而导出支配系统运动规律的数学模型,这样得到的模型称为机理模型。

实验测试法是通过对实际系统的实验测试,然后根据测试数据,经过一定的数据处理而获得系统的数学模型,这样得到的模型可称为实测模型或经验模型。

如果将上述两种方法结合起来,即通过机理分析的方法预先得到数学模型的结构或函数形式,然后对其中的某些参数用实验辨识的方法来确定,这样得到的数学模型可称为混合模型。

这是介于上述两种方法之间的一种比较切合实际的应用较为普遍的方法。

2-3 通过机理分析法建立对象微分方程数学模型的主要步骤有哪些?答主要步骤有:⑴根据系统的控制方案和对象的特性,确定对象的输入变量和输出变量。

一般来说,对象的输出变量为系统的被控变量,输入变量为作用于对象的操纵变量或干扰变量。

⑵根据对象的工艺机理,进行合理的假设和简化,突出主要因素,忽略次要因素。

⑶根据对象的工艺机理,从基本的物理、化学等定律出了,列写描述对象运动规律的原始微分方程式(或方程式组)。

⑷消去中间变量,推导出描述对象输入变量与输出变量之间关系的方程式。

控制系统的数学模型

控制系统的数学模型

控制系统的数学模型
控制系统是一种能够自动实现某种规律性动态过程的机电设备,具有广泛的应用和重要的意义。

为了更好地理解和设计控制系统,我们需要学习控制系统的数学模型。

控制系统的数学模型是对系统动态行为的精确描述,通常用微分方程或差分方程来表示。

这个模型是由系统的结构和性质所决定的,因此在设计控制系统时需要考虑到不同方面的因素。

在实际应用中,通常采用系统的状态空间描述法来建立数学模型,其基本形式是:x(t+1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
其中,x(t)为系统的状态向量,表示系统各输出量之间的关系;u(t)为输入量向量,表示系统受控的变量;y(t)为输出量向量,表示系统运行时的响应状态;A、B、C、D是系统常数矩阵,分别表示状态转移矩阵、输入特性矩阵、输出矩阵和直流通道矩阵。

这个模型允许我们对控制系统的状态、输入、输出之间的关系进行全面的分析和掌握。

控制系统的数学模型建立好之后,我们需要对其进行仿真和实验验证。

通过模拟相应的输入和输出,可以检验数学模型的可靠性和精度,并找出有误差的地方进行调整和改进。

同时,也能够为控制系统的设计和优化提供有力的指导和参考。

综上所述,控制系统的数学模型是其设计和优化的基础和关键,
建立好数学模型能够更全面地分析和预测系统的运行状态,并为进一
步进行仿真和实验提供必要的基础。

因此,在学习和设计控制系统时,需要注重数学模型的学习和应用,以提高系统的可靠性和实用性。

《自动控制原理》Matlab求解控制系统数学模型实验

《自动控制原理》Matlab求解控制系统数学模型实验

《自动控制原理》Matlab求解控制系统数学模型实验一、实验目的(1)熟练运用matlab软件,求解控制系统数学模型(2)掌握传递函数在matlab中的表达方法(3)掌握matlab求解拉氏变换和反变换(4)掌握matlab求系统极值点和零点判断系统稳定性二、实验仪器装配Matlab7.0的计算机三、实验原理传递函数在matlab中的表达方法控制系统的传递函数模型为:在MATLAB中,分子/分母多项式通过其系数行向量表示,即:num = [b0 b1 … bm]den = [a0 a1 … an]此时,系统的传递函数模型用tf函数生成,句法为:sys=tf(num, den)其中,sys为系统传递函数。

如:num = [1 5 0 2]; den = [2 3 15 8];则:sys=tf(num, den)输出为:Transfer function:传递函数的转换[num,den]=zp2tf(z,p,k)[z,p,k]=tf2zp(num,den)实际系统往往由多个环节通过串联、并联及反馈方式互连构成。

MATLAB提供的三个用于计算串联、并联及反馈连接形成的新系统模型的函数。

四、实验内容及步骤2、用MATLAB展求拉氏变换和反变换在MATLAB中,多项式通过系数行向量表示,系数按降序排列如要输入多项式:x4-12x3+25x+126>> p=[1 -12 0 25 126]-p = 1 -12 0 25 1263、连续系统稳定性分析的MATLAB函数roots函数:求多项式的根句法: r=roots(p)其中,r为由多项式根组成的列向量。

➢pole函数:计算系统的极点句法: p=pole(sys)其中,p为由极点组成的列向量zero函数:计算系统的零点句法: r=zero(sys) 或 [z, k]=zero(sys)其中,r为由多项式根组成的列向量。

k为零极点增益模型之增益pzmap函数:绘制零极点分布图句法: pzmap(sys) 或 [p,z] = pzmap(sys)五、实验原始数据记录与数据处理在MATLAB中,多项式通过系数行向量表示,系数按降序排列如要输入多项式:x4-12x3+25x+126>> p=[1 -12 0 25 126]-p = 1 -12 0 25 126六、实验结果与分析讨论七、结论掌握 MATLAB命令窗口的基本操作;掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法;掌握了使用各种函数命令建立控制系统数学模型.八、实验心得体会(可略)通过该试验我们熟悉 MATLAB 实验环境,掌握 MATLAB命令窗口的基本操作;掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法;掌握了使用各种函数命令建立控制系统数学模型:完成实验的范例题和自我实践,并记录结果;编写M文件程序,完成简单连接的模型等效传递函数,并求出相应的零极点。

自动控制原理实验 控制系统模型的建立与转换

自动控制原理实验 控制系统模型的建立与转换

实验一 控制系统模型的建立与转换一、实验目的与要求1、掌握Matlab 中连续系统、离散系统各种数学模型的建立方法;2、掌握Matlab 中各种数学模型之间的转换;3、熟悉Matlab 中控制框图的化简;二、实验类型设计三、实验原理及说明1.控制系统的数学模型及其意义用来描述系统因果关系的数学表达式称为系统的数学模型。

控制系统数学模型有多种形式。

时域中常用的有微分方程、差分方程;频域中常用的有传递函数、方框图和频率特性。

2.建立控制系统数学模型的不同方法 (1)线性系统的传递函数模型:11211121...()()()...m m n m n n n n b s b s b s b C s G s R s a s a s a s a -+-+++++==++++传递函数建立的MA TLAB 相关函数(2)控制系统零极点函数模型:1212()()...()()()()...()m n s z s z s z G s Ks p sp s p ---=---零极点模型建立的MATLAB 相关函数3.控制系统的不同模型表示及其转换在线性系统理论中,一般常用的数学模型形式有传递函数模型和零极点增益模型。

这些模型之间都有着内在的联系,可以相互进行转换。

(1)把其它类型的模型转换为函数表示的模型(2)将本类型模型参数转换为其它类型模型参数4. 方框图模型的连接化简 (1)串联连接的化简(2)并联连接的化简(3)反馈连接的化简(a )正反馈连接(b )负反馈连接(4)方框图的其它变换化简(a )相加点后移等效变换(b )相加点前移等效变换(c )分支点后移等效变换(d )分支点前移等效变换(5)系统模型连接化简函数 四、实验仪器五、实验内容和步骤( k=N%3+1,N 为学号末位数)1、连续线性系统的数学模型建立及转换611623)(G 232+++++=s s s s s s① 请用合适的格式,将上面的传递函数模型输入MA TLAB 环境; ② 将模型转换成零极点形式、画出零极点位置;③ 采样周期为Ts=0.5ks 时,将上面的连续系统转换为离散系统; ④ 若上面模型中,时间延迟常数为0.78k ,如何建立该传函模型? 2、离散线性系统的数学模型建立及转换① 请用合适的格式,将下面的传递函数模型输入MA TLAB 环境;()s T z z z z z H k 1.0 ,)99.02.0)(k (568.022=+--+=② 将模型转换成零极点形式、画出零极点位置;3、已知系统的方框图如图所示,试推导出从输入信号r(t) 到输出信号y(t) 的总系统模型。

自动控制原理 实验一控制系统的数学模型

自动控制原理 实验一控制系统的数学模型

课程名称自动控制原理
实验序号实验一
实验项目控制系统的数学模型
实验地点
实验学时 2 实验类型操作性指导教师实验员
专业 __________ 班级
学号姓名
年月日
二、实验原理与内容
在MA TLAB 命令窗口上,以命令的方式建立系统的传递函数。

在MATLAB 下,系统的数学模型有三种描述方式,此实验为多项式模型。

三、实验软硬件环境
安装有maltable软件的电脑
四、实验过程(实验步骤、记录、数据、分析)
实验步骤与数据记录:
1.开机执行MA TLAB程序,进入MA TLAB命令窗口:“Command window”。

2.建立简单的数据模型:
编写指令在命令窗口中显示如下传递函数
输入的指令和运行的结果:
输入的指令和运行的结果:
输入的指令和运行的结果:
五、测试/调试及实验结果分析
1、在下面函数中,分子分母多项式需由conv()函数实验,且一次只能实现两个多项式的卷积。

同时有多个多项式时,使用嵌套模式,多次使用conv()函数
2、在反馈系统中,可以利用feekback()函数或者如下函数计算闭环传递函数。

六、实验结论与体会
通过实验,我掌握了MATLAB建立控制系统数学模型的命令和模型相互转换的方法,掌握了使用函数命令建立系统数学模型,完成了实验的要求,这次的学习为今后的深入学习打下基础。

年月日。

自动控制原理(数学模型)精选全文完整版

自动控制原理(数学模型)精选全文完整版

t 0
s
证明:由微分定理 df (t) estdt s F (s) f (0)
0 dt
lim df (t) estdt lim s F (s) f (0)
s 0 dt
s
左 df (t) limestdt 0 0 dt s
lim
s
s F(s)
f (0 )
0
f
二、非线性系统微分方程的线性化
例5 已知某装置的输入输出特性如下,求小扰动线性化方程。
y( x ) E0 cos[x(t )]
解. 在工作点(x0, y0)处展开泰勒级数
y( x)
y(x0)
y( x0 )( x
x0 )
1 2!
y( x0 )( x
x0 )2
取一次近似,且令
y(x) y(x) y(x0) E 0 sin x0 ( x x0 )
1
s(s a)( s b)
f
lim
s0
s
ss
1
as
b
1 ab
例12
Fs
s2
ω ω2
f sinωt t
lim s
s0
s2
ω ω2
0
3 用拉氏变换方法解微分方程
系统微分方程
y(t) a1 y(t) a2 y(t) 1(t)
y(0) y(0) 0
L变换
(s2
a1s
a2 )Y (s)
0
1 1
1 1 2 j
2j
s
j
s
j
2j
s2
2
s2
2
2 拉氏变换的几个重要定理
(1)线性性质 La f1(t) b f2(t) a F1(s) b F2(s)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 控制系统的数学模型
一 实验目的
1、学习用MATLAB 创建各种控制系统模型。

2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。

二 相关理论
1传递函数描述
(1)连续系统的传递函数模型
连续系统的传递函数如下: • 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中
可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。

num=[b1,b2,…,bm,bm+1]
den=[a1,a2,…,an,an+1]
注意:它们都是按s 的降幂进行排列的。

tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2];
G=tf(num, den)
(2)零极点增益模型
• 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递
函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。

K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。

即:
z=[z1,z2,…,zm]
p=[p1,p2,...,pn]
K=[k]
zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k)
(3)部分分式展开
• 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控
制单元的和的形式。

• 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微
分单元的形式。

• 向量b 和a 是按s 的降幂排列的多项式系数。

部分分式展开后,余数返回到向量r ,
极点返回到列向量p ,常数项返回到k 。

• [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。

11
211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G
举例:
部分分式展开: 》num=[2,0,9,1];
》den=[1,1,4,4]; [r,p,k]=residue(num,den)
》r= 0.0000-0.2500i 0.0000+0.2500i -2.0000 p= 0.0000+2.0000i 0.0000-2.0000i -1.0000 k= 2
结果表达式 2模型的转换与连接
(1)模型的转换
• 在一些场合下需要用到某种模型,而在另外一些场合下可能需要另外的模型,这就
需要进行模型的转换。

• 模型转换的函数包括:
residue :传递函数模型与部分分式模型互换
tf2zp : 传递函数模型转换为零极点增益模型
zp2tf : 零极点增益模型转换为传递函数模型
连续系统转化为离散系统:
相当于在连续系统中加入采样开关,),,(2method
T sys d c dsys = 其中:dsys 表示离散系统;sys 表示连续系统;T 表示采样时间;method
表示逼近方式;
离散系统转化为连续系统:)(2dsys c d sys =
用法举例: 1)系统的零极点增益模型转换为传递函数: 》z=[-3];p=[-1,-2,-5];k=6;
》[num,den]=zp2tf(z,p,k)
》num= 0 0 6 18 den= 1 8 17 10
2)已知部分分式: 转换为传递函数
》r=[-0.25i,0.25i,-2];
》p=[2i,-2i,-1];k=2;
》[num,den]=residue(r,p,k)
》num=
2 0 9 1
》den= 1 1 4 4
4
4192)(233+++++=s s s s s s G 1
2225.0225.02)(+-+++--+=s i s i i s i s G )
5)(2)(1()3(6)(++++=s s s s s G 12225.0225.02)(+-+++--+=s i s i i s i s G
注意余式一定要与极点相对应。

(2)模型的连接
a并联:parallel
格式:
[num,den]=parallel(num1,den1,num2,den2)
•%将并联连接的传递函数进行相加。

b串联:series
格式:
[num,den]=series(num1,den1,num2,den2)
%将串联连接的传递函数进行相乘。

c反馈:feedback
格式:
[num,den]=feedback(num1,den1,num2,den2,sign)
•%将两个系统按反馈方式连接,一般而言,系统1为对象,系统2为反馈控制器。

sign缺省时,默认为负,即sign= -1,表示负反馈,sign= 1,表示正反馈。

d闭环:cloop(单位反馈)
格式:
[numc,denc]=cloop(num,den,sign)
•%表示由传递函数表示的开环系统构成闭环系统,sign意义与上述相同。

三实验内容
1.系统的传递函数为:()
() ()()()15
5
1
3
15
+
+
+
+
=
s
s
s
s
s
G
1) 写出零极点模型,并转换为多项式传递函数模型;
2) 写出多项式模型。

2.系统结构图如下所示,求其多项式传递函数模型
T=0.1秒,用Matlab
产生下列系统的传递函数.(注:延迟用ioDelay,如系统G的延迟为2,那么代码为:G.ioDelay=2;)
四实验报告要求
(1)完成上述各题
(2)记录与显示给定系统数学模型。

相关文档
最新文档