2.1.2换元微分法

合集下载

微积分中的换元积分法

微积分中的换元积分法

微积分中的换元积分法在微积分中,换元积分法是一种非常重要的积分方法,它主要用于解决一些较难的积分问题。

换元积分法是一种基本的数学思想,它可以将一个复杂的积分转化为一个简单的积分,从而更加方便地求解。

本文将详细地介绍换元积分法的基本思想和应用方法,并结合一些典型的例子进行讲解。

一、基本思想换元积分法的基本思想是通过变量替换的方式,将一个积分式中的变量替换成另一个变量,从而把一个较难的积分问题转化成一个较简单的积分问题。

具体来说,设有一个积分式:∫f(x)dx如果能够将x用t表示出来,并且求出dt/dx,那么就可以把积分式中的x全部用t来表示,将原来的积分式变成:∫f(t)(dt/dx)dx然后再将t看作自变量,x看作因变量,对f(t)(dt/dx)进行积分,最终得到原来的积分值。

二、应用方法换元积分法的应用方法比较灵活,下面将分别介绍三种典型的应用方法。

1.代换法代换法是换元积分法中最常用的方法,其具体思路是将积分式中的变量用一个新的变量表示出来,然后对新的变量进行求导,最终得到积分式中的原变量的微元。

代换法的一般步骤如下:(1)根据积分式中的特点选取代换变量(2)用代换变量表示出积分式中的自变量,并求出代换变量的微分(3)将代换变量看作自变量,其它变量看作常数,将原积分式变为代换后的积分式(4)对代换后的积分式进行求解,得到最终答案代换法的应用可以通过一个例子来具体说明。

例1:求积分∫x√(1+x^2)dx。

解:积分式中含有根号,所以很难直接求解,这时就可以采用代换法来解决。

选取代换变量t=1+x^2,此时x^2=t-1。

对t求导,得到dt/dx=2x,即dx=(1/2√t)dt。

将x√(1+x^2)dx用代换变量表示为(t-1)√tdt/2,完成了变量替换。

此时将代换变量看作自变量,其它变量看作常数,积分式变为:∫(t-1)√tdt/2对上式进行积分,最终得到积分值为:(2/3)(1+x^2)√(1+x^2)-2/3arcsin(x)+C其中C是积分常数。

常用积分换元公式

常用积分换元公式

第一类换元积分法
部分常用的凑微分公式:
(1)
1
()
dx d ax b
a
=+(2)1
1
()
1
n n
x dx d x
n
+
=
+
(3
d
=(4)
2
11
()
dx d
x x
=-
(5)1
(ln)
dx d x
x
=(6)()
x x
e dx d e
=
(7)cos(sin)
xdx d x
=(8)sin(cos)
xdx d x
=-
常用的凑微分公式
第二类换元积分法
1.当被积函数中含有
1)sin
x a t
=或cos
x a t
=;
2)tan
x a t
=;
3)sec
x a t
=.
通过三角代换化掉根式。

但是,去掉被积函数根号并不一定要采用三角代换,
22
ch sh1
t t
-=,采用双曲代换sh
x a t
=或ch
x a t
=消去根式,所得结果一致。

所以应根据被积函数的具体情况尽量选取简单的方法对根式进行有理化代换。

2.当有理分式函数中分母的阶数较高时,可采用倒代换
1
x
t
=.
3.类型f dx
⎰:可令t=;类型f dx
⎰:可令t=(第四节内容)
4.类型()x
f a dx
⎰:可令x
t a
=.
适合用分部积分法求解的被积函数。

不定积分计算的各种方法

不定积分计算的各种方法

本人签名: 导师签名:
日期: 日期:
巢湖学院 2015 届本科毕业论文(设计)
不定积分计算的各种方法
摘 要
不定积分的求解问题对求解各种积分具有重要作用, 其求解方法 新颖且多样.本论文将要介绍一些不定积分的各种计算方法以及某些 特殊不定积分的求解方法,例如:直接积分法、换元积分法(第一换 元积分法和第二换元积分法)、分布积分法以及一些特殊类型函数的 积分;其中一些特殊类型函数的积分有:有理函数的不定积分、三角 函数有理式的不定积分、某些无理根式的不定积分,这类积分方法技 巧做了介绍;除此之外介绍了一些求解不定积分的新方法,这些方法 在不定积分的计算中使用的次数较高而且较为简单, 并且这些方法在 运算和运用过程中既简单又实用.本论文是通过结合例题探讨各种快 捷方便的不定积分的解题方法.
Key words: indefinite integral, immediate integration, integration by substitution, integration by parts, special type function integral
II



引言.......................................................................................................................................... 1 1.不定积分的概念.................................................................................................................. 1 2.不定积分的计算方法............................................................................ 错误!未定义书签。 2.1 直接积分法........................................................................................ 错误!未定义书签。 2.2 换元积分法...................................................................................................................... 3 2.2.1 第一换元积分法.......................................................................................................... 4 2.2.2 第二换元积分法.......................................................................................................... 6 2.3 分部积分法...................................................................................................................... 8 2.3.1 公式法.......................................................................................................................... 8 2.3.2 列表法.......................................................................................................................... 9 3.一些特殊类型函数的积分................................................................................................ 10 3.1 有利函数的不定积分.................................................................................................... 10 3.2 三角函数有理式的不定积分........................................................................................ 12 3.3 某些无理根式的不定积分............................................................................................ 12 4.求两类不定积分 .............................................................................................................. 14 5.结束语................................................................................................................................ 15 参考文献................................................................................................................................ 16

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。

(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。

(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nx x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用. 使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限 基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 7.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。

高等数学-换元积分法

高等数学-换元积分法


න = න


1
= −න
( )′

1
= −න


= − | | + .
同理可得 ‫ | | = ׬‬+ .
8
01 第一类换元积分法
例3

1
求不定积分‫׬‬

2
令 2 = ,则 = , = .
2
+1−1



=න
= න
1+
1+
1 + 2

1
= න(1 −
) = − | 1 + | +
1+
= 2 − | 1 + 2| + .
14
02 第二类换元积分法
通过变量代换去掉根号的主要形式有:


= 5,考虑将被积函数恒等变形,得

1
1
1
1
1
= ⋅
⋅5= ⋅
⋅ (5 − 2)′
5 − 2 5 5 − 2
5 5 − 2
此时令 = 5 − 2, 得到
4
01 第一类换元积分法
1
1
1

= න
(5 − 2)′
5 − 2
5 5 − 2
1
1
= න
( 5 − 2)
0,又设[()] ′ ()的一个原函数为(),则
න()
= ()
න[()] ′ () = [() + ]=−1()
该公式称为第二换元公式. 其中 = −1 ()为函数
= ()的反函数.

[微积分常用公式]学好微积分的技巧换元公式如何运用

[微积分常用公式]学好微积分的技巧换元公式如何运用

[微积分常用公式]学好微积分的技巧换元公式如何运用导读:就爱阅读网友为大家分享了多篇关于“[微积分常用公式]学好微积分的技巧换元公式如何运用”资料,内容精辟独到,非常感谢网友的分享,希望从中能找到对您有所帮助的内容。

相关资料一: 学好微积分的技巧换元公式如何运用学好微积分的技巧换元公式如何运用第一类换元法,也称为凑微分法,顾名思义,就是把f[g(x)]g’(x)dx转化为f[g(x)d(g(x))的形式,所以用好这一方法的关键就是把给定的积分里的被积分式写成f[g(x)]g’(x)dx。

要求对基本初等函数的导数,基本初等函数与其导数的关系很清楚(比如有些函数求导后,函数的形式不变,像露幂函数,指数函数)。

除此,多项式的因式分解,三角函数恒等式等等都会用到。

学习的方法就是多做题,多看典型的例题,并做好总结。

第二类换元法,模式是把f(x)dx经过代换x=g(t)转化为f[g(t)]g’(t)dt,求出原函数后再回代x=g(t)的反函数t=h(x)。

常用的代换是根式代换,三角代换,倒代换。

适用于含有简单的根式,根式下是一次函数,如1/(√x+1)的积分,就可以考虑把√x代换;或被积函数里有√(a±x),√(x-a);还有些题目可以适用到代换,把1/x代换一下,如1/(x√(1+x))的积分。

熟能生巧!!相关资料二: 微积分常用公式及运算法则(下册)同济二版微积分(下)微积分公式等价无穷小:当x→0时,x~sinx~tanx~arcsinx~arctanx ~ln(1+x)~ex1;21?cosx~x2;(1+x)a?1~ax(a≠0);ax?1~xlna(a>0,a≠1).基本积分表∫kdx=kx+C(k=1时,∫dx=x+C)∫xμdx=xμ+1μ+1+C∫1xdx=ln|x|+C∫11+x2dx=arctanx+Cx=arcsinx+C∫cosxdx=sinx+C∫sinxdx=?cosx+C∫1sec2cos2xdx=∫xdx=tanx+C∫1sin2xdx=∫csc2xdx=?cotx+C∫secxtanxdx=secx+C∫cscxcotxdx=?cscx+C ∫exdx=ex+C∫xdx=axalna+C(a>0,a≠1)∫sinhxdx=coshx+C∫coshxdx=sinhx+C不定积分线性运算法则∫[αu(x)+βv(x)]dx=α∫u(x)dx+β∫v(x)dx不定积分的换元法∫f[?(x)]?′(x)dx=??∫f(u)du?u=(x)∫f(x)dx=[f[υ(t)]υ′(t)dt]t=υ?1(x)积分公式∫dx1xa2+x2=aarctana+C=arcsinxa+C=1barcsinbxa+C(a>0,b>0)∫dxx2?a2=12alnx?ax+a+C∫secxdx=ln|secx+tanx|+C∫cscxdx=ln|cscx?cotx|+C=ln(x++C(a>0)=ln|x+C不定积分的分部积分法∫uv′dx=uv?∫u′vdx或∫udv=uv?∫vdu定积分的换元法设函数f∈C[a,b].如果函数x=?(x)满足:(1)?(α)=a,?(β)=b,且?([α,β])?[a,b]或?([β,α])?[a,b];(2)?′∈C[α,β](或?′∈C[β,α])那么:∫baαf[?(t)]?′(t)dt1微积分常用公式微积分常用公式及运算法则(下册) 同济二版微积分(下)若f∈C[?a,a],并且为偶函数,则∫aaf(x)dx=2∫af(x)dx;若f∈C[?a,a],并且为奇函数,则∫a?af(x)dx=0∫ππ20f(sinx)dx=∫20f(cosx)dx∫ππxf(sinx)dx=π∫20∫ππ2nsi nxdx=∫20cosnxdx定积分的分部积分法∫buv′dx=[uv]bbaa?∫avu′dx∫baudv=[uv]bba∫avdum=1,2,3,?第五章向量代数与空间解析几何向量的运算1??.向量的加法a??+??b(a+??=b+b)+??ac=??a+(b??+??c)2.向量与数的乘法(数乘)λ(μ??a)=(λμ)??a(λ+μ)??a=λ??a+μ??a λ(??a+??b)=λ??a+λ??b3.不等式||??a|?|??b||≤|??a±b??|≤|??a|+|??b|4.单位向量eaa=|a|空间两点间的距离公式|PP12|=向量的坐标表示以点M1(x1,y1,z1)为起点,M2(x2,y2,z2)为终点的坐标M??1M??ab=|??a||??b|cosθ a0=??0???a=0 ab=|??a|Prj??=|b??|Prj??abba即:Prja???ab=??|a|=ea?bab=(ax,ay,az)?(bx,by,bz)=axa??bx+ayby+azbz a=|??2a? b??a|??a?(??=b???a(λ??b+c)a)?(μ??=a?b+a?cb)=λμ(??ab)向量??a与??b的夹角满足公式cosθ=a?|b(其中0≤θ≤π)若??a||b|a=(a?? x,ay,az),b=(bx,by,bz),则cosθ=ab+ab+ab2微积分常用公式微积分常用公式及运算法则(下册)同济二版微积分(下)若??a=(ax,ay,az),b=(bx,by,bz),则a⊥b??的充要条件是a+a xbxyby+azbz=0向量的向量积设??a和b??是两个向量,规定??a 与???a??b??的充要条件是??a×??b=??0=(a?aybz?azby)i+(azbxxbz)j+(axby?aybx)k=ayaz??ax??bbi+azj+axay??b??y??zbxbxbkyijzk=axayazbxbybz两向量的向量积的几何意义(i)??a×b??由于|??的模a×??:b|=|??a||b??|sinθ=|所以|??a|h(h=|b|sinθ),a×??b|表示以??a和b??为邻边的平行四边形的面积.(??ii)??a×??b的方向:a×b??与一切既平行于??a又平行于?? b的平面垂直.向量的混合积(a×b)?c=ayazbcazaxx+cxayy+aybzbzbxbxbczyaxayaz=bxbybzcxcycz[abc]=[bca]=[cab三向量??a,b??,?? ]c共面的充要条件是axayazbxbybz=0cxcycz平面的方程1.点法式方程过点My??0(x0,0,z0)且以n=(A,B,C)为法向量的平面Π的方程为A(x?x0)+B(y?y0)+C(z?z0)=02.一般方程三元一次方程Ax+By+Cz+D=0(A,B,C不同时为零)的图形是平面,其中x,y,z的系数A,B,C 是平面的法向量的坐标即n??,=(A,B,C)是平面的法向量.特殊的平面:A=0,平行于x轴的平面;B=0,平行于y轴的平面;C=0,平行于z轴的平面;D=0,过原点的平面;A=B=0,垂直于z轴的平面;B=C=0,垂直于x轴的平面;C=A=0,垂直于y轴的平面.平面的夹角cosθ=n??1?n2|nn=1||2|3微积分常用公式微积分常用公式及运算法则(下册)同济二版微积分(下)平面Π1和Π2相互垂直的充要条件是:A1A2+B1B2+C1C2=0 相互平行的充要条件是:A1B1CA=B=122C2点到平面的距离点P0(x0,y0,z0)到平面Ax+By+Cz+D=0的距离为:d=直线的方程1.参数方程过M,y??0(x00,z0)且以s=(m,n,p)为方向向量的直线L的方程为x=x0+tm?y=y0+tn.??z=z0+tp2.对称式方程(点向式方程)过M(x,z??00,y00)且以s=(m,n,p)为方向向量的直线L的方程为x?x0y?y0z?z0m=n=p.3.一般方程直线L可以看作两个平面Π1:A1x+B1y+C1z+D1=0与Π2:A2x+B2y+C2z+D2=0的交线.空间一点M(x,y,z)在直线L上,当且仅当它的坐标x,y,z同时满足Π1与Π2的方程,的下面的直线方程:??A1x+B1y+C1z+D1=0,?A2x+B2y+C2z+D2=0.其中A1=B1=C1AB不成立.22C2两直线的夹角直线??L1与L2的方向向量分别是s??1=(m1,n1,p1),s2=(m2,n2,p2),则夹角公式为:cos?=s1?s2|s=1||s2|直线L1和L2相互垂直的充要条件是:m1m2+n1n2+p1p2=0相互平行的充要条件是:m1n1p1m==2n2p2直线与平面的夹角直线??L与平面Π法线的方向向量分别是s=(m,n,p),n?? =(A,B,Csin?=|n??),则夹角公式为:s||n||s|=直线L和平面Π相互垂直的充要条件是:ABCm=n=p;相互平行的充要条件是:Am+Bn+Cp=0.旋转曲面若在曲线C的方程f(y,z)=0中z保持不变而将y改写成±就得到曲线C绕z轴旋转而成的曲面的方程f(z)=0;若在f(y,z)=0中y保持不变而将z改写成就得到曲线C绕y轴旋转而成的曲面的方程f(y,=0.二次曲面图形及方程1.椭球面4微积分常用公式微积分常用公式及运算法则(下册)同济二版微积分(下)x2y2z2a2+b2+c2=1??x=asinθcos??y=bsinθsinz=ccosθ其中θ∈[0,π],?∈[0,2π]2.抛物面(1)椭圆抛物面x2y2a2+b2=±z??x=avcosu?y=bvsinuz=v2其中u∈[0,2π],v∈[0,+∞)(2)双曲抛物面x2y2a2?b2=±z??x=a(u+v)?y=b(u?v)??z=4uvx=或?auy=bvz=u2v2u,v∈R3.双曲面(1)单叶双曲面x2y2z2a2+b2?c2=1??x=acoshucosv?y=bcoshusinv ??z=csinhuu∈R,v∈[0,2π](2)双叶双曲面x2a2+y2b2?z2c2=?1??x=v??y=vz=cuu∈(?∞,?1]∪[1,+∞),v∈[0,2π] 4.椭圆锥面x2y2z2a2+b2=c2??x=avcosu?y=bvsinuz=cvu∈[0,2π],v∈R第六章多元函数微分学偏导数的几何意义偏导数fx(x0,y0)在几何上表示曲线??z=f(x,y),?y=y在点M(x0,y0,f(x0,y))处的0,切线对x轴的斜率;偏导数fy(x0,y0)在几何上表示曲线??z=f(x,y),?y=y在点M(x0,y0,f(x0,y))处的0,切线对y轴的斜率.全微分若函数z=f(x,y)在区域D内每一点(x,y)处都可微,则f(x,y)在每点处连续且可偏导,其全微分为:dz=fx(x,y)dx+fy(x,y)dy,或dz=zxdx+zydy复合函数的求导法则1.复合函数的中间变量均为一元函数5微积分常用公式微积分常用公式及运算法则(下册)同济二版微积分(下)如果函数u=?(t),v=υ(t)都在点t可导,函数z=f(u,v)在对应点(u,v)具有连续偏导数,则复合函数z=f[?(t),υ(t)]在点t可导,且有:dz?zdu?zdv=?+?dt?udt?vdt设三元函数F(x,y,z)在区域?内是C(1)类函数,点(x0,y0,z0)∈?且满足F(x0,y0,z0)=0,Fz(x0,y0,z0)≠0,则方程F(x,y,z)=0,在点(x0,y0,z0)的某领域内唯一确定了一个C(1)类的二元函数z=z(x,y),它满足条件z0=z(x0,y0),FyFx?z?z且有=?,=?.xFzyFz3.2.复合函数的中间变量均为多元函数如果函数u=?(x,y),v=υ(x,y)都在点(x,y)可微,函数z=f(u,v)在对应点(u,v)具有连续偏导数,则复合函数z=f[?(x,y),υ(x,y)]在点(x,y)可微,且有:?z?z?u?z?v=?+?,?x?u?x?v?x?z?z?u?z?v=?+??y?u?y?v?y 3.复合函数的中间变量既有一元函数,又有多元函数。

高数增长速度口诀

高数增长速度口诀

高数增长速度口诀一天晚上,我碰到一个学生在散步,感觉时间过得真快。

学生们说,如果舒高有一个公式,他们应该已经去了研究生院,并成为成功的学徒。

互笑两声。

经过一些时间的整理,赶在开学前夕,助力挺过疫情的千万学子,莫挂在那棵数(树)上。

1.1 函数有理稠密且有序,全体实数连续性,邻域概念用的多,各种表示需谨记,函数概念已扩充,三种表示均等价,若有界、不唯一,单调性、分区间,奇偶注意定义域,函数周期不唯一。

1.2 初等函数反解莫忘定义域,单调区间方可反,基本初等有五类,幂指对和两三角,一层一层又一层,复合注意定义域,定义了双曲函数,三角函数也差不多。

1.3 数列的极限大学数列无穷项,任意存在来定义,结论倒推反解 n,中间插入以放缩,收敛数列必有界,反之不一定成立,极限存在则唯一,同时具有保号性,原收敛、子列同,子列散、原发散。

1.4 函数的极限无穷极限分正负,倒推反解再梳理,左右等、极限有,唯一有界且保号,子序列,收敛,往往被证明没有极限。

1.5 无穷大与无穷小动态理解无穷小,条件状语莫忽视,相乘相加需有限,有界乘之等于零,无穷大、则无界,无界未必无穷大,两个量相互纠缠,相互转化有神奇的效果。

1.6 极限运算法则若有意义直接代,加减乘除有定理,遇到分式最麻烦,上下同除巧转化,分子有理经常用,高中公式常看看。

1.7 极限存在准则,两个重要极限夹逼准则靠放缩,具体尺度需拿捏,单调有界有极限,转化方程求极限,重要极限凑结构,一步一步慢慢来。

1.8 无穷小的比较高低阶数各不同,只因速度有差异,齐头并进等价量,代换计算效率高,若要两者来相减,十有八九两泪流。

1.9 函数的连续与间断定义连续用极限,左右连续与连续,左右均连第一类,不等跳跃等可去,至少一侧不存在,无穷震荡第二类。

1.10 连续函数的运算与性质加减乘除仍连续,反函数、需单调,复合注意定义域,作用仍是求极限,函数闭区间连续,有最值、且有界,端点异号有零点,天地之间皆可取,一致连续必连续,反之不一定成立。

两类“换元积分法”的联系与区别

两类“换元积分法”的联系与区别

(下转第49页)摘要不定积分是高等数学中的教学重点与难点,不定积分计算方法一般被分为换元积分法、直接积分法与分部积分法几种方式,其中,换元积分法又可以分为第一类换元法与第二类换元法两种,帮助学生掌握好第一类积分法与第二类积分法在归类上的联系与区别,能够有效提高学生应用积分法求解积分问题的能力,第一类积分法与第二类积分法最大的区别就是,第一类积分法不需要设置变量,可以通过凑微法和转化法进行计算,而在使用第二类积分法时,就必须要选择好变量进行替换。

关键词两类“换元积分法”联系区别On the Relationship and Distinction between Two Types of "Integration by Substitution"//Yang YanhuaAbstract Indefinite integral is a key and difficult point of higher mathematics,and the computing methods of indefinite integral are generally classified into integration by substitution,immediate integration and integration by parts,among which integration by substitution can be classified into the first type of substitution and the second type of substitution.To help students master the rela-tionship and distinction between the two types of substitution caneffectively improve students'ability of using integration methodsto solve integration problems.The biggest distinction between the two types of substitution is that variables are not needed in the former but improvising differentiation and conversion method can be used in the computing,while a certain variable must be se-lected to be substituted in the latter.Key words two types of "integration by substitution";relation-ship;distinction不定积分是高等数学中的教学重点与难点,此类知识也是学生学习重积分、定积分与微分方程等知识的学习技术。

定积分第一类换元法和第二类换元法

定积分第一类换元法和第二类换元法

定积分是微积分中的重要概念,通过定积分我们可以求解曲线与坐标轴之间的面积、体积以及质心等问题。

在求解定积分时,换元法是一种常用且有效的方法。

换元法分为第一类换元法和第二类换元法,它们在不同类型的积分计算中发挥着重要作用。

下面我们将分别介绍这两种换元法的原理和应用。

一、第一类换元法1.1 换元法简介第一类换元法,又称代换法或变量代换法,是对定积分中被积函数中的变量进行替换,将原来的积分变为更容易求解的积分。

其基本思想是通过引入适当的新变量,将被积函数中的复杂部分转化为简单的形式,从而便于积分计算。

1.2 换元法的步骤(1)寻找合适的变量替换:根据被积函数的形式和特点,选择适当的新变量代替原来的变量。

(2)计算新变量的微分:对新变量进行微分,求出新变量的微分表达式。

(3)将被积函数用新变量表示:将原来的积分中的被积函数用新变量表示出来,得到新的积分形式。

(4)进行积分计算:对新的积分形式进行计算,得出最终结果。

1.3 换元法的应用第一类换元法常用于代换型积分,如含有根式、三角函数等形式的积分。

通过合适的变量替换,可以将原积分化为简单的形式,从而便于求解。

二、第二类换元法2.1 换元法简介第二类换元法,又称参数代换法或极坐标代换法,是通过引入参数来替换被积函数中的自变量,从而实现对原积分的简化。

这种换元法常用于解决平面曲线和曲面的面积、弧长以及质心等问题。

2.2 换元法的步骤(1)引入参数:选择适当的参数替换自变量,通常选择直角坐标系下的参数形式或极坐标系下的参数形式。

(2)表达被积函数:将原来的被积函数用参数表示出来,并求出新的被积函数。

(3)进行积分计算:对新的被积函数进行积分计算,得出最终结果。

2.3 换元法的应用第二类换元法常用于参数型积分,如平面曲线、曲面以及柱面体的面积、弧长和质心的计算。

通过引入参数替换自变量,可以将原积分化为简单的形式,从而便于求解。

三、第一类换元法和第二类换元法的比较3.1 适用范围(1)第一类换元法适用于一般的代换型积分,如含有根式、三角函数等形式的积分;(2)第二类换元法适用于参数型积分,如平面曲线、曲面以及柱面体的面积、弧长和质心的计算。

第一类换元积分法与第二类换元积分法

第一类换元积分法与第二类换元积分法

第一类换元积分法与第二类换元积分法
第一类换元积分法和第二类换元积分法都是求解不定积分的方法,但它们在应用和具体操作上有所不同。

第一类换元积分法也叫凑微分法,它适用于两个式子相乘的形式,是复合函数求导的逆运算。

其核心思想是通过寻找新的变量,将复杂的积分转化为容易计算的积分,从而得到原函数的表达式。

这种方法主要依赖于对复合函数的求导和微分的理解。

第二类换元积分法则是通过变量代换,将积分化为积分。

这种方法主要用于处理包含根式的积分,或者需要消去根式的积分。

它的核心思想是选择适当的变换公式,将原函数中的积分变量替换为新的函数,同时将dx也替换为新的函数的导数乘以dx。

这种方法需要一定的技巧和经验,因为选择正确的变换公式和反函数代回去都需要一定的数学素养。

总的来说,第一类换元积分法和第二类换元积分法都是通过不同的方式将不定积分问题转化为容易解决的问题,从而得到原函数的表达式。

这两种方法都有其特定的应用场景和优势,需要根据具体问题选择合适的方法。

数学定积分换元积分法

数学定积分换元积分法


2
例13
sin 3 x dx = ∫ sin 2 x sin x dx ∫
1 3 = −∫ (1 − cos x) dcosx = − cosx + cos x + C . 3
2
例14
sin x ⋅ cos x dx = ∫ sin2 x ⋅ (1 − sin2 x )2 d(sin x ) ∫
2 5
1 x−2 1 1 1 +C . = ∫( − ) dx = ln 3 x +1 3 x − 2 x +1
17
x(1 − x ) dx = ∫ ( x − 1 + 1) (1 − x )6 dx 例22 ∫
6
= ∫ [(1 − x )6 − (1 − x )7 ] dx 1 1 7 8 = − (1 − x ) + (1 − x ) + C . 7 8 1 3 2 x 4 − x d x = ∫ x 2 4 − x 2 dx 2 例23 ∫ 2
= G(u) + C = G[ϕ( x)] + C .
3
常用凑微分公式: 常用凑微分公式:
1 dx = d(kx + b) k
1 dx = 2 d x x
( k ≠ 0)
1 1 dx = − d 2 x x
1 2 x dx = dx 2
1 dx = d ln | x | x
sin x dx = −d cos x
= ∫ (sin2 x − 2 sin4 x + sin6 x) d(sin x)
1 3 2 5 1 7 = sin x − sin x + sin x + C . 3 5 7

换元积分法

换元积分法

1 1 1 3 2 xdx 2 3 2 x ( 3 2 x )dx
令u 3 2 x

1 1 1 1 du ln u C ln 3 2 x C . 2 2 u 2
一般地

1 f (ax b)dx [ f ( u)du]u ax b a
x 1 x
e udu e u C
dx
e
x
1 x
1 x 1 d( x ) e x C. x
12
dx 1. cos 2 x(1 tan x )

f (tan x ) sec2 xdx f (tan x )d tan x
d(1 tan x ) ln 1 tan x C 1 tan x
x x
x
1 du ( u 1) u du 1 1 du u(1 u) u(1 u) u u1
1 1 du d( u 1) u u1
ex ln u ln u 1 C ln x C. e 1
21
解 原式
1 4 1 8 1 12
23
1 1 例 求 dx sec2 x d x 1 cos x dx 2 cos 2 x 2 2 x

1 1 cos x dx 1 cos x 1 cos x 1 cos x
1 1 x a 2 x 2 dx a arctan a C 1 x 同理 dx arcsin C .(a 0) a a2 x2
14
1 dx . 例 求 2 x 8 x 25
1 1 x a 2 x 2 dx a arctan a C

换元积分法与分部积分法

换元积分法与分部积分法

§2 换元积分法与分部积分法教学目的:掌握第一、二换元积分法与分部积分法. 教学内容:第一、二换元积分法;分部积分法.基本要求:熟练掌握第一、二换元积分法与分部积分法.教学建议:(1) 布置足量的有关换元积分法与分部积分法的计算题.(2) 总结分部积分法的几种形式:升幂法,降幂法和循环法.教学程序:一. 第一类换元法 ——凑微法:有一些不定积分,将积分变量进行适当的变换后,就可利用基本积分表求出积分.例如,求不定积分cos 2xdx ⎰,如果凑上一个常数因子2,使成为()11cos 2cos 2cos 2222xdx x xdx xd x =∙=⎰⎰⎰令2x u =则上述右端积分()111cos 22cos sin 222xd x udu u C ==+⎰⎰ 然后再代回原来的积分变量x ,就求得原不定积分1cos 2sin 22xdx x C =+⎰ 更一般的,若函数()F x 是函数()f x 的一个原函数,()x μϕ=是可微函数, 并且复合运算()F x ϕ⎡⎤⎣⎦有意义,根据复合函数求导法则(){}()()()()F x F x x f x x ϕϕϕϕϕ''''==⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 及不定积分的定义,有()()()f x x dx F x C ϕϕϕ'=+⎡⎤⎡⎤⎣⎦⎣⎦⎰ 由于()()f u du F u C =+⎰ 从而()()()()()u x f x x dx f u du ϕϕϕ='=⎡⎤⎣⎦⎰⎰ (1)综上所述,可得如下结论【定理8.4】 (第一换元积分法) 设()f u 是连续函数,()F u 是()f u 的一个原函数.又若()u x ϕ=连续可微,并且复合运算()f x ϕ⎡⎤⎣⎦有意义,则()()()()()()u x f x x dx f u du F x C ϕϕϕϕ='==+⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰ (2)第一换元积分公式(2)说明如果一个不定积分()g x dx ⎰的被积表达式()g x dx 能够写成()()f x x dx ϕϕ'⎡⎤⎣⎦的形式,可通过变量代换()u x ϕ=把被积表达式等同于()f u du ,若不定积分()()f ud uFu C=+⎰ 容易求得,那么再将()u x ϕ=代入()F u ,便求出原不定积分()()g x dx F x C ϕ=+⎡⎤⎣⎦⎰ 由于第一换元积分法的基本手段就是将被积表达式()g x dx 变为()()()()f x x dx f x d x ϕϕϕϕ'=⎡⎤⎡⎤⎣⎦⎣⎦的形式.也就是把被积函数()g x 分解成两个因子的乘积,其中一个因子与dx 凑成某一函数()x ϕ的微分,而另一因子是()x ϕ的函数()f x ϕ⎡⎤⎣⎦,且经过这样的微分变形后被积表达式()()f x d x ϕϕ⎡⎤⎣⎦变为容易积分的形式,所以人们也经常称第一换元积分法为“凑微分法”.凑微分法技巧性强,无一般规律可循,因而不易掌握,初学者只有多做练习,不断总结经验,才能运用自如. 凑法1.)(1)()(1)(du u f ab ax d b ax f a dx b ax f =++=+ 【例1】 利用()()1,,0dx d ax b a b R a a=+∈≠,求下列积分()()()131134343x d x =++⎰,令34u x =+有14433311313344u du u C u C==⋅+=+⎰再将34u x=+代入,有()431344d x x C=++()()2()0xaa==>令xua=,有arcsin u C==+再将xxa=代入,有arcsinxCa=+()22222()13[(1())]1()xddx dx ax xa x aaa a==+++⎰⎰⎰令xua=22211arctan1dx duu Ca x a u a==+++⎰⎰再将xua=代入,有221arctandxx Ca x a=++⎰如果运算比较熟练,为了简化解题步骤,变量代换()u xϕ=可以不写出来,只需默记在头脑中就可以了.凑法2 du u f kx d x f k dx x f x k k k k )(1)()(1)(1==- . 特别地, 有 . du u f x d x f xdx x f )(21)()(21)(222==和 ()x dx f dx xx f 2)(=.【例2】利用()()()11,,,0,11x dx d ax b a b R a a μμμμμ+=+∈≠≠-+,求下列积分()()()()2221157575752x xdx x d x +=++=⋅⎰⎰()()()222211157575710102x d x x C ++=⋅++⎰=()2215720X C ++()()11121121()x x x e dx e d e C x x=-=-+⎰⎰()()232211C x ===++⎰⎰()()40x >【解】11x x ⎛⎫=-=-= ⎪⎝⎭2112x ⎡⎤⎛⎫-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦1222111112d x x -⎡⎤⎡⎤⎛⎫⎛⎫-++⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎰12211212C C x ⎡⎤⎛⎫=-⋅++=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【例3】若被积函数()()(),x f x x ϕϕ'=±利用()()()()()x d x f x dx dx x x ϕϕϕϕ'=±=±,有如下公式()()()()()()ln x d x f x dx dx x C x x ϕϕϕϕϕ'=±=±=±+⎰⎰⎰求下列积分 ()ln 1ln ln ln ln dx d xx C x x x==+⎰⎰()sin cos 2tan ln cos cos cos x d xxdx dx x C x x ==-=-+⎰⎰⎰()cos sin 3cot ln sin sin sin x d xxdx dx x C x x===+⎰⎰⎰ 以上3例都是直接利用“凑微分法”求不定积分.如果进一步把“凑微分法”与不定积分的运算性质结合起来,就可以利用基本积分表来处理非常广泛的初等函数的积分.【例4】 将下列被积函数先作代数恒等变形再求其不定积分()2211112dx dx a x a a x a x ⎛⎫=+= ⎪--+⎝⎭⎰⎰()()11ln 22d x a d x a x a C a x a x a a x a +-⎡⎤+-=+⎢⎥+--⎣⎦⎰⎰⎰ ()()()()()2221121111x x xx x x x d e dxe e dx dx e e e e ++-==-=++++⎰⎰⎰⎰()11111111xx x x x xxd e e e dx dx e e e e++-+=-+=++++⎰⎰⎰ ()21l n 11x x e C e-++++()22222sin 111311sin 1sin sin 1sin x dx dx dx dx x x x x⎛⎫=-=- ⎪++⎝⎭+⎰⎰⎰⎰=2cot 2cot 1d x x x x +=+++⎰x C ++凑法3 ;)(sin )(sin cos )(sin du u f x d x f xdx x f == ;)(cos )(cos sin )(cos du u f x d x f xdx x f -=-= .)()(sec )(2du u f dtgx tgx f xdx tgx f ==【例5】对于sin n xdx ⎰与cos nxdx ⎰()n N ∈形式的积分,当n 是偶数时,可利用三角恒等式()()2211sin 1cos 2cos 1cos 222x x x x =-=+ 来降低三角函数的幂,当n 是奇数时,变正(余)弦函数的积分为余(正)弦函数的积分.()()()242111sin 1cos 212cos 2cos 224xdx x dx x x dx ⎡⎤=-=-+⎢⎥⎣⎦⎰⎰⎰= ()112cos 21cos 442dx xdx x dx ⎡⎤-++=⎢⎥⎣⎦⎰⎰⎰ 11sin 2sin 4428x x x x C ⎛⎫-+++ ⎪⎝⎭=131s i n 2s i n 4428x x x C ⎛⎫-++ ⎪⎝⎭()()322cos 1sin cos xdx x xdx =-=⎰⎰231cos sin sin sin sin 3xdx xd x x x C -=-+⎰⎰ 【例6】 对于sin sin ,cos sin cos cos x xdx x xdxx xdx αβαβαβ⎰⎰⎰和形式的积分,可利用三角函数的积化和差公式 ()(()11cos cos 1cos 12x x dx ⎡⎤=++-⎣⎦⎰⎰s i n 21212x x C ⎡⎤+=+()()()12cos 2sin 3sin 23sin 322x xdx x x dx =+--⎡⎤⎣⎦⎰⎰= ()111sin 5sin cos cos5255xdx xdx x x C ⎛⎫-=-+ ⎪⎝⎭⎰⎰ 【例7】 根据 2s i n 2s i n c o s 2t a n c o s2222x x xxx ==1c o s t a n c s c c o t2s i nx x x x x -==- ()2111csc tan 22tan cos tan 222x xdx dx d x x x ⎛⎫===⎪⎝⎭⎰⎰⎰ l n t a n l n c s c c o t2xC x x C +=-+ ()22sec ln csc cot 22sin 2d x xdx x x C x ππππ⎛⎫+ ⎪⎛⎫⎛⎫⎝⎭==+-++ ⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭⎰⎰=ln sec tan x x C ++ 【例8】22===(22C =+⎰凑法4 .)()()(du u f de e f dx e e f x x x x ==.【例9】 ⎰--.2tedt凑法5 .)(ln )(ln )(ln du u f x d x f xdxx f == 【例10】 ⎰+.)ln 21(x x dx凑法6 ;)(arcsin )(arcsin 1)(arcsin 2du u f x d x f dx xx f ==-du u f darctgx arctgx f dx xarctgx f )()(1)(2==+. 【例11】 ⎰⎰⎰=++=+=dt t arctgtx d x x arctg dx x x xarctg x t 21212)1( ⎰+=+==c x arctg c arctgt tgt arctgtdarc 22)()(2. 其他凑法举例:【例12】 c e e ee e e d dx e e e e x x x x x x x xx x ++=++=+------⎰⎰)ln()(. 【例13】 ⎰⎰==+ 22)ln ()ln ()ln (1ln x x x x d dx x x x 【例14】 ⎰⎰⎰=++=++=dx tgx x xtgxx dx tgx x tgx x x xdx sec sec sec sec )(sec sec sec 2⎰++=++=c tgx x tgxx tgx x d |sec |ln sec )(sec .【例15】 ⎰-+dx xx x x 5cos sin sin cos .【例16】 ⎰++dx xx xx cos sin sin 5cos .【例17】 ⎰⎰⎰=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=++=++ 21111111222242x x x x d dx x x x dx x x 【例18】 ⎰++-dx x x x 2252.Ex [1]P188—189 1⑴—(24);以上例子大都采用了初等数学(代数或三角函数)中的运算技巧将被积函数进行适当的变形,然后再进行变量带换.因此在作积分运算时,应该重视有关初等数学知识的灵活运用.二. 第二类换元法 —— 拆微法:从积分⎰tdt 2cos 出发,从两个方向用凑微法计算,即 ⎰⎰-====-=t d t dx x tx sin sin 112sin 2= tdt ⎰2cos = =⎰++=+,2sin 4121)2cos 1(21c t t dt t 引出拆微原理.在式(1)中,如果()()()2.1x x ϕϕ'连续可微且定号,式中左端的不定积分()()()f x x dx F x C ϕϕ'=+⎡⎤⎣⎦⎰ 容易求得,并且()()1x u u x ϕϕ-==是的反函数,则式(2)右端的不定积分()()1f ud u F xC ϕ-⎡⎤=+⎣⎦⎰.利用这个过程求不定积分的方法,称为第二换元积分法.第二换元积分法可以确切的叙述如下.【定理8.5】 (第二换元积分法)设()f x 是连续函数,()x ϕ是连续可微函数,且()x ϕ'定号,复合运算()f t ϕ⎡⎤⎣⎦有意义.设()F t 是()()f t t ϕϕ'⎡⎤⎣⎦的一个原函数,即 ()()()f t t dt F t C ϕϕ'=+⎡⎤⎣⎦⎰ 则 ()()()()()1t x f x dx f t t dt ϕϕϕ-='=⎡⎤⎣⎦⎰⎰=()1F x C ϕ-⎡⎤+⎣⎦(3)其中()()1x t ϕϕ-是的反函数.【证明】有定理假设()x ϕ'定号,,故函数()t ϕ存在反函数()1u ϕ-,又()()()dF t f t t dtϕϕ'=⎡⎤⎣⎦ 于是()()()()()()111t x dF t d dt F x f t t dx dt dx t ϕϕϕϕϕ--=⎛⎫⎛⎫'⎡⎤==⎡⎤ ⎪ ⎪⎣⎦⎣⎦ ⎪'⎝⎭⎝⎭()1t x ϕ-==()()()()1t x f t f x ϕϕ-==⎡⎤⎣⎦可见()1F x ϕ-⎡⎤⎣⎦是式(3)左端不定积分的被积函数的一个原函数,所以式(3)成立.第二换元积分法指出,求式(3)左端不定积分,作变量代换()x t ϕ=,从而()()(),f x f t dx t dt ϕϕ==⎡⎤⎣⎦,于是()()()f x dx f t t dt ϕϕ'=⎡⎤⎣⎦⎰⎰ 若上式右端的不定积分()()()f t t dt F t C ϕϕ'=+⎡⎤⎣⎦⎰(4) 容易求出,那么再代回原来的变量()1t x ϕ-=,便求出原不定积分()()1f x dx F x C ϕ-⎡⎤=+⎣⎦⎰由于第二换元积分法的关键在于选择满足定理8.5条件的变换()x t ϕ=,从而使式(4)的不定积分容易求出.那么如何选择变换()x t ϕ=呢?这往往与被积函数的形式有关.例如,若被积函数中有根式,一般选择适当的变换()x t ϕ=来去掉根式,从而使被积函数得到简化,不定积分容易求出.常用代换有所谓无理代换, 三角代换, 双曲代换, 倒代换, 万能代换, Euler 代换等.我们着重介绍三角代换和无理代换. 1. 三角代换:⑴ 正弦代换: 正弦代换简称为“弦换”. 是针对型如22x a -)0(>a 的根式施行的, 目的是去掉根号. 方法是: 令)0( ,sin >=a t a x , 则 ,cos 22t a x a =- ,cos tdt a dx = .arcsinax t =【例19】计算()0a >【解】令sin ,,arcsin ,22xx a t t t a x a aππ=-≤≤=-≤≤则,且cos cos ,cos ,a t a t dx a tdt ===从而=()222cos .cos cos 1cos 22a a t a tdt a tdt t dt ==+⎰⎰⎰=2221sin 2sin cos 2222a a a t t C t t t C ⎛⎫++=++ ⎪⎝⎭由图2.1知sin cos xt t a==所以=22arcsin 22a x a C a ++= 2arcsin 2a x C a (2)正割代换: 正割代换简称为“割换”. 是针对型如 22a x - )0(>a 的根式施 行的, 目的是去掉根号. 方法是: 利用三角公式,1sec 22t tg t =- 令,sec t a x = 有,22atgt a x =- .sec tgtdt t x dx ⋅= 变量还愿时, 常用辅助三角形法.【例20】计算()0a >【解】令s e c ,0s e c 22x a t t t x a t πππ=<<<<=当或时,存在反函数arcsinxt a=.这里仅讨论02t π<<的情况,同法可讨论2t ππ<<的情况.由于02t π<<0<t<2πtan tan ,tan sec a t a t dx a t tdt ===,从而1tan sec tan a t tdt a t=⋅=⎰sec ln sec tan tdt t t C =++⎰由图2.2知,sec tan x t t a==ln x C a '=+ln x C =这里ln C C a '=-(3)正切代换: 正切代换简称为“切换”. 是针对型如22x a +)0(>a 的根式施行 的, 目的是去掉根号. 方法是: 利用三角公式,1sec 22=-t tg t 即,sec 122t t tg =+ 令 ,atgt x = tdt a dx 2sec =. 此时有 ,sec 22t a x a =+ .axarctg t = 变量还原时, 常用所谓辅助三角形法.【例21】计算(0a >sec sec ,a t a t ==【解】令tan ,,22x a t t ππ=-<<则tan x a t =存在反函数.且sec sec ,a t a t ==2sec dx a tdt =,从而=21sec sec ln sec tan sec a t dt tdt t t C a t'⋅==++⎰⎰ 由图2.3知tan xt a =所以=ln xC x C a'+=++ 这里ln C C a '=-.总结例2.19~2.21,有如下规律:(1sin x a t =或cos x a t =(2sec csc x a t x a t ==或(3tan cot x a t x a t ==或••2. 无理代换:若被积函数是k nn n x x x , , , 21 的有理式时, 设n 为)1(k i n i ≤≤的最小公倍数, 作代换n x t =, 有dt nt dx t x n n 1 ,-==. 可化被积函数为 t 的有理函数.【例22】计算⎰【解】为了去掉被积函数的根式,令t =()211,02x t t =-≥ 则dx tdt =,从而⎰=()()24211122t t tdt t dt t dt -⋅=-⎰⎰⎰=531253t t C ⎛⎫-+ ⎪⎝⎭ =()()5322111212106x x C +-++ 【例23】 ⎰⎰⎰⎰==-++-=-=====-= t dtdt t t dt t x x dxxt 16)1(6162326 c x x x +⎪⎭⎫⎝⎛-++-=6361ln 216.若被积函数中只有一种根式n b ax +或,necx bax ++可试作代换n b ax t +=或 .n ecx bax t ++=. 从中解出x 来. 【例24】 ⎰⎰⎰=⋅+======-=--=tdt t t x d x x dx x xx t 2)1(21)( 121121222232⎰+-+-=++=+=c x x c t t dt t t 2322523524)1(31)1(5135)(.本题还可用割换计算, 但较繁.3. 双曲代换: 利用双曲函数恒等式 122=-x sh x ch , 令 asht x =, 可去掉 型如 22x a +的根式. achtdt dx =. 化简时常用到双曲函数的一些恒等式, 如:.22 ),12(21),12(2122shtcht t sh t ch t sh t ch t ch =-=+=).1ln(21++=-x x x sh :参阅复旦大学 (陈传璋等)编, 数学分析, 上册P24.【例25】 ⎰⎰⎰==⋅=====+=tdt ch a achtdt acht dx x a ashtx 2222='++=-=⎰c t a t sh a dt t ch a 224)12(2222 c x a x a x a x +++++=)ln(2222222. 本题可用切换计算,但归结为积分⎰tdt 3sec , 该积分计算较繁. 参阅后面习题课例3. 【例26】 ⎰+.22xdx (可用切换计算过该题. 现用曲换计算 ).解 ⎰⎰⎪⎪⎭⎫ ⎝⎛++='+===122ln 2222x xc t dt dt cht chtI shtx c '+ 2ln .)2ln( 2-'=+++=c c c x x . 【例27】 ⎰-22ax dx . (曾用割换计算过该题. 现用曲换计算 ).解 ='+-+='+======⎰⎰=c ax a x c t dt dt asht asht I achtx 1 ln 22.||ln .|| ln 22a c c c a x x -'=+-+=4. 倒代换: 当分母次数高于分子次数, 且分子分母均为“因式”时, 可试用 倒代换.1,12dt tdx t x -==【例28】 ⎰⎰⎰>=======+====+=+01224222421)(212tu x u uu u du x x x x d x x x dx⎰⎰++-=+⎪⎭⎫ ⎝⎛+-=++-=+-=+-c x x c x c t t dt tt t dt t ||111)1(12111112122122122. 5. 万能代换: 万能代换常用于三角函数有理式的积分(参[1]P261). 令2x tgt =, 就有 22122sec222cos 2sin 2sin t t x xtgx x x +===,,11cos 22tt x +-= 212t t tgx -= , ,122t dtdx +=.2arctgt x = 【例29】 ⎰+xdxcos 1.解法一 ( 用万能代换 ) ⎰⎰+=+==+-++======c x tg c t dt dt t t t I x tgt 2111122222. 解法二 ( 用初等化简 ) c xtg x d x x dx I +===⎰⎰2)2(2sec 2cos 2122. 解法三 ( 用初等化简, 并凑微 )⎰⎰⎰=-=--=x x d xdx dx x x I 222sin sin csc cos 1cos 1 .2csc sin 1c xtg c ctgx x c x ctgx +=+-=++-= 【例30】 .cos sin 1⎰++θθθd 解 ⎰⎰++=+=+⋅+-+++======c t t dtdt t t t t t I x tgt |1|ln 11211121122222= c xtg ++=|12|ln .代换法是一种很灵活的方法.Ex [1]P189 1(25)(27)(28)—(30);三.分部积分法设()u x 与()v x 均为x 的连续可微函数.于是,由函数乘积的求导公式,有[()()]()()()()u x v x u x v x u x v x '''=+或 ()()[()()]()()u x v x u x v x u x v x '''=-再由不定积分的定义及线性性质,有()(){[()()]()()}u x v x dx u x v x u x v x dx '''=-=⎰⎰[()()]()()u x v x dx u x v x dx ''-=⎰⎰()()()()u x v x u x v x dx '-⎰即()()()()()()u x v x dx u x v x u x v x dx ''=-⎰⎰ (5) 或()()()()()()u x dv x u x v x v x du x =-⎰⎰ (6)公式(5)或公式(6)称为不定积分的分部积分公式.一般地说,利用分部积分公式求不定积分就是追求被积函数形式的转变,把比较难求甚至无法求出的不定积分()()u x v x dx '⎰转变成容易求的不定积分()()u x v x dx '⎰,起到化繁为简的作用.对于给定的不定积分()f x dx ⎰作分部积分运算,通常要把被积函数()f x 分解为两个因子的乘积,这会有多种选择,对两个因子中哪一个选作()u x 也会有多种选择.选择不同,效果不一样的.例如,在积分sin x xdx ⎰中,若选择()sin u x x =,()v x x '=,则222sin sin sin cos 222x x x x xdx xd x xdx ⎛⎫==- ⎪⎝⎭⎰⎰⎰ 并没有达到简化积分计算的目的.若选择()u x x =,()sin v x x '=,则()()()sin cos cos cos x xdx xd x x x x dx =-=---=⎰⎰⎰cos cos cos sin x x xdx x x x C -+=-++⎰由此可见,()u x 与()v x 的选择对于初学者来讲,只有认真总结规律,才能熟练地运用分部积分技巧.一般来说,在使用分部积分法求不定积分时,若被积函数是幂函数n x 与指数函数或三角函数的乘积时,应选择()n u x x =;若被积函数是幂函数n x 与对数函数或反三角函数的乘积时,应选择()n v x x '=.1. 幂 ⨯ X 型函数的积分: 分部积分追求的目标之一是: 对被积函数两因子之一争取求导, 以使该因子有较大简化, 特别是能降幂或变成代数函数. 代价是另一因子用其原函数代替( 一般会变繁 ), 但总体上应使积分简化或能直接积出. 对“幂X ⋅”型的积分, 使用分部积分法可使“幂”降次, 或对“X ”求导以使其成为代数函数.【例31】 计算下列不定积分⑴ 2222x x x x x e dx x de x e e xdx ==-⋅=⎰⎰⎰ 2222()x x x xx e xdx x e xe e dx -=--=⎰⎰2(22)x e x x C -++⑵ ()2111sin 1cos 2cos 2222x xdx xx dx xdx x xdx =-=-=⎰⎰⎰⎰ 221111111sin 2sin 2sin 24224422x xd x x x x xdx ⎛⎫-=-+= ⎪⎝⎭⎰⎰ 211sin 2cos 2448x x x x C --+ ⑶ 2ln 111ln ln ln x dx xd x d x x x x x ⎛⎫=-=-+= ⎪⎝⎭⎰⎰⎰ 211ln (ln 1)dx x x C x x x-+=-++⎰ ⑷ arcsin arcsin arcsin xdx x x xd x =-=⎰⎰211arcsin arcsin 2d x x x x x --=+=⎰1221arcsin 2(1)arcsin 2x x x C x x C +⋅-+=+⑸ 23(16)arctan arctan (2)x xdx xd x x +=+=⎰⎰()33222arctan 1x x x x x dx x ++-=+⎰()322arctan 21x x x x x dx x ⎛⎫+--=⎪+⎝⎭⎰ ()()32212arctan ln 12x x x xx C +-+++ 2 建立所求积分的方程求积分: 分部积分追求的另一个目标是: 对被积函数两 因子之一求导, 进行分部积分若干次后, 使原积分重新出现, 且积分前的符号不为 1. 于 是得到关于原积分的一个方程. 从该方程中解出原积分来.【例32】 ⎰.sin xdx e x【例33】 求⎰=bxdx e I ax cos 1 和). 0 (,sin 2≠=⎰a bxdx e I ax 解 ⎪⎪⎩⎪⎪⎨⎧-=+=.sin 1,cos 11221I a b bx e a I I ab bx e a I ax ax 解得 .cos sin ,cos sin 222221c e b a bx b bx a I c e b a bx a bx b I ax ax ++-=+++=【例34】 ⎰>+). 0 ( ,22a dx x a 解 ⎰+⋅-+=dx xa x x x a x I 2222==⎰⎰++++-+dx xa a dx xa x a x a x 222222222=,)ln(122222c x a x a I x a x ++++-+= (参阅例41)解得 .)ln(2222222c x a x a x a x I +++++= 【例35】 ⎰⎰⎰+==xdx x x x xd xdx 22sin sin cos sin cos cos = ⎰-+=xdx x x x 2cos sin cos ,解得 ⎰++=c x x xdx 2sin 412cos 2. 【例36】⎰⎰⎰⎰-==⋅=xtgxdx tgx xtgx xdtgx xdx x xdx sec sec sec sec sec sec 23=⎰⎰⎰=+-=--xdx xdx xtgx xdx x xtgx sec sec sec sec )1(sec sec 32 =⎰-++xdx tgx x xtgx 3sec |sec |ln sec , 解得 ⎰=xdx 3sec c tgx x xtgx +++|sec |ln 21sec 21.分部积分法也常用来产生循环现象,然后经过代数运算求出不定积分. 【例37】计算下列不定积分⑴.设I=,则I===⎰=⎰2dx⎫⎰2I a=+再由例21,有=ln x C'+故原积分2ln2aI x C=+这里2CC'=()2计算sinxe xdxαβ⎰和cosxe xdxαβ⎰【解】sinxe xdxαβ⎰=1sin xxd eαβα⎛⎫⎪⎝⎭⎰=()1sin cosx xe x e xdxααβββα-⋅⎰11sin cosx xe x xd eααβββααα⎛⎫=- ⎪⎝⎭⎰()21sin cos sinx x xe x e x e x dxαααβββββαα⎡⎤=--⋅-⎣⎦⎰=1sinxe xαβα-222cos sinx xe x e xdxααββββαα-⎰移项,整理,有sin xe xdx αβ⎰=()22sin cos xe x x C ααβββαβ-++同理可得cos xe xdx αβ⎰=()22sin cos xe x x C αββαβαβ-++ 在含有自然数n 的不定积分中,常用分部积分法来建立求不定积分的递推公式. 【例38】()()1ln (nn I x dxn =∈⎰N )【解】()()()ln ln ln nnnn I x dx x x xd x ==-=⎰⎰()()()()111ln ln ln ln n n nnx x x n x dx x x n x dx x---⋅=-⎰⎰ =()1ln nn x x nI -- 即()1ln nn n I x x nI -=-这就是递推公式.例如3n =时有()()()()333221ln ln 3ln 3ln 2x dx x x I x x x x I ⎡⎤=-=--⎣⎦⎰=()()321ln 3ln 6ln x x x x x x x dx x ⎛⎫-+-⋅= ⎪⎝⎭⎰()()32ln 3ln 6ln 6x x x x x x x C -+-+()2()22ndxx a +⎰(n ∈N ,0a >)【解】设 n I =()22ndxx a +⎰,则()()22221n n n xI xd x a x a ⎛⎫⎪=- ⎪++⎝⎭⎰=()()122222n n x xx n dxx a x a +⎡⎤⎢⎥--⎢⎥++⎣⎦⎰ =()()()2122222212n n n x a n dx x a x a x a +⎡⎤⎢⎥+-=⎢⎥+++⎣⎦⎰()212222n n n xnI na I x a ++-+ 从而()()12221212n n n x I n I na x a +⎡⎤⎢⎥=+-⎢⎥+⎣⎦(7)特别当1n =时,有1221arctan dxxI C x a a a ==++⎰于是利用递推公式(2.7),有21222222111arctan 22x xxI I C a x a a x a a a ⎛⎫⎛⎫=+=++ ⎪ ⎪++⎝⎭⎝⎭=212a 22x x a ++312a arctan x a +C '这里C '=32Ca分部积分法与换元积分法有时在同一题中配合使用效果更佳.【例39】计算2⎰【解】2⎰=2arcsin x dx x +⎰=()()2arcsin arcsin cos sin sin cos uxd x udu x u u u +=⎰⎰作变量代换=()()2211arcsin cot arcsin cot cot 22x ud u x u u udu -=-+⎰⎰= ()21arcsin 2x -cot ln sin u u u C ++ 由图8.2.4知cot u x=所以2⎰()21arcsin 2x =ln x x C ++ 通过本节的讨论,我们还应在基本积分表中再补充如下公式:基本积分表(补充)()()()()()2215sec ln sec tan 16csc ln csc cot 17tan ln cos 18cot ln sin 1119arctan xdx x x Cxdx x x Cxdx x Cxdx x Cx dx C a x a a =++=-+=-+=+=++⎰⎰⎰⎰⎰()()()()2220arcsin 21arcsin 22223ln 2x C a a x C a x C a x C =+=+++++ 综上所述,我们已经对求不定积分的基本方法进行了全面的讨论.由不定积分的定义知,求不定积分的运算是微分法的逆运算.而第一、第二换元积分法对应与复合函数求导的链式法则,分部积分法则是基于乘积函数的求导法则推导出来的.求不定积分的基本思想是:采用各种方法将被积函数化为基本积分表中的被积函数的形式或它们的线性组合.然后利用基本积分表和线性性质求出不定积分.显然,掌握较多的不定积分公式会给求不定积分带来方便,为此人们把一些常用的不定积分公式汇集起来,做成基本积分表.同学们可以利用这个表进行运算.但是无论容量多么大的积分表也不能把所有的不定积分都罗列出来.所以,上面介绍的求不定积分的各种方法都是最基本的,作为初学者必须掌握.另外,把不定积分法与微分法相比较,求积分要比求微分困难的多,复杂的多,甚至于有些被积函数很简单,但他们的不定积分却无法积出.例如:2x e dx -⎰ ()2sin sin ln x dx dx x dx x x ⎰⎰⎰,等等 这说明在初等函数类中,不定积分的运算是不封闭的,即初等函数的原函数不一定是初等函数.今后把被积函数的原函数能用初等函数表示的积分称为积得出的,否则,称为积不出的.结论:当n 是正整数时,如⎰dx e x x n ,⎰xdx x n sin ,⎰xdxx n cos ,这种类型的积分,都可用分部积法解决,这时,设n x u =,dv 分别为dx e x ,xdx sin ,xdx cos ;同样⎰xdx x n ln ,⎰xdx x n arctan ,⎰xdx x n arcsin ,这种类型的积分,也可用分部积分法解决,这时,设dx x dv n =,u 分别为x ln ,x arctan ,x arcsin . ⎰+dx b ax e kx )sin(,dx b ax e kx )cos(+⎰(a ,b ,k 为常数)这种类型的积分如例15那样,也可以用分部积分法来解决.Ex [1]P189 2⑴―⑼;。

常见求积分方法总结

常见求积分方法总结

Yi b i n U n i v e r s i t y毕业论文(设计)题目常见求积分方法总结系别数学学院专业数学与应用数学学生姓名罗大宏学号********* 年级12级4班指导教师刘信东职称xxx2016 年 3 月10 日常见求积分方法总结作者:罗大宏单位:宜宾学院数学学院12级4班指导教师:刘兴东摘要: 微积分是数学分析中的一个重要基础学科,并且微积分中的积分运算是求导的逆运算,它是连接微分学和积分学的枢纽。

因此怎样求积分就显得非常重要,本文讲解了常见求积分的几种方法:直接积分法、分部积分法、换元积分法和有理函数积分的待定系数法,掌握了这些方法,将对我们迅速求解积分来说非常重要。

关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法引言数学分析是大学数学与应用数学专业必修专业课,而微积分是数学分析的重点,又不定积分是积分学的基础,会影响到后面学习其它的积分,特别是定积分的求解。

它的目的是形成一定的思维方法和解决问题的能力。

并且不定积分的求解要比导数的求解复杂很多,运用积分的基本公式只能解决一些容易的积分,更多的不定积分要因函数的差别而采用相应的方法。

另外,如果我们掌握了求不定积分的方法,那么求解定积分就变得容易。

本文我们就对常见求积分方法进行总结,以便帮助我们解决一些实际问题。

1.积分的概念1.1、不定积分若()x F 是函数()x f 在区间I 上的一个原函数,则()x f 在I 的所有原函数()C x F +(C 为任意常数)称为()x f 在区间I 上的不定积分。

记作()()C x F dx x f +=⎰。

其中⎰称为积分号,函数()x f 称为被积函数,x 称为积分变量,()d x x f 称为被积表达式,C 称为积分常数。

另外,求已知函数不定积分的过程就称作对这个函数进行积分。

1.2、定积分设函数()x f 在区间[]b a ,上有定义,在[]b a ,内任意插入1-n 个分点: ,,...,,,1321x x x x n -,,a 令0x b x n == ,...1210b x x x x x a n n =<<<<<=- 把区间[]b a ,分为n 个小区间[x x 10,],[x x 21,],... ,[x x k k ,1-],... ,[x xn n ,1-],各个小区间的长度依次为x x x 011-=∆, x x x 122-=∆,...,,1x x x n n n--=∆在每个小区间[x x i i ,1-]上任取一点ζi[]()x x ii i,1-∈∀ζ,作乘积()x f i i ∆•ζ()n i , (2)1=,并作和式 ().1x f S i n i i n∆∑==ζ记{},,...,,max 21x x x n ∆∆∆=λ当0→λ时,即n 无限增大时,S n 的极限如果存在并趋于I ,且I 与[]b a ,的分法及ζi 的取法无关,则称此极限I 为函数()x f 在区间[]b a ,上的定积分,记作()()I x f dx x f i ni i ba =∆∑=⎰=→10lim ζλ. 其中符号⎰叫做积分号,()x f 叫做被积函数,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,[]b a ,叫做积分区间. 1.3 定积分与不定积分的联系定积分的本质是将函数的图象在平面直角坐标系上用与y 轴平行的的直线和x 轴将它分割成很多个矩形。

同济大学(高等数学)-第四章-不定积分

同济大学(高等数学)-第四章-不定积分

第四章 不定积分前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及根本的积分方法.第1节 不定积分的概念与性质1.1 不定积分的概念在微分学中,我们讨论了求一个函数的导数〔或微分〕的问题,例如,变速直线运动中位移函数为()s s t =, 那么质点在时刻t 的瞬时速度表示为()v s t '=.实际上,在运动学中常常遇到相反的问题,即变速直线运动的质点在时刻t 的瞬时速度()v v t =,求出质点的位移函数()s s t =.即函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念.1.1.1原函数定义1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数.例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以sin x 是cos x 在(,)-∞+∞上的一个原函数.1(ln )'(0),x x x=>所以ln x 是1x在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢?这里我们给出一个充分条件.定理1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有()()'=F x f x .简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数.定理1的证明,将在后面章节给出. 关于原函数,不难得到下面的结论:假设()()'=F x f x ,那么对于任意常数C ,()+F x C 都是()f x 的原函数.也就是说,一个函数如果存在原函数,那么有无穷多个.假设()F x 和()φx 都是()f x 的原函数,那么[()()]0'-≡F x x φ,必有()()φ-F x x =C ,即一个函数的任意两个原函数之间相差一个常数.因此我们有如下的定理:定理2 假设()F x 和()φx 都是()f x 的原函数,那么()()-=F x x C φ〔C 为任意常数〕. 假设()()'=F x f x ,那么()+F x C 〔C 为任意常数〕表示()f x 的所有原函数.我们称集合{}()|F x C C +-∞<<+∞为()f x 的原函数族.由此,我们引入下面的定义.1.1.2不定积分定义2 在区间I 上,函数()f x 的所有原函数的全体,称为()f x 在I 上的不定积分, 记作()d ⎰f x x .其中⎰称为积分号,()f x 称为被积函数,()d f x x 称为被积表达式,x 称为积分变量. 由此定义,假设()F x 是()f x 的在区间I 上的一个原函数,那么()f x 的不定积分可表示为()d ()=+⎰f x x F x C .注 〔1〕不定积分和原函数是两个不同的概念,前者是个集合,后者是该集合中的一个元素.〔2〕求不定积分,只需求出它的某一个原函数作为其无限个原函数的代表,再加上一个任意常数C .例1 求23d x x ⎰.解 因为32()3,'=x x 所以233d x x x C =+⎰.例2 求sin cos d x x x ⎰.解 〔1〕因为2(sin )2sin cos ,'=x x x 所以21sin cos d sin 2x x x x C =+⎰.〔2〕因为2(cos )2cos sin ,'=-x x x 所以21sin cos d cos 2x x x x C =-+⎰. 〔3〕因为(cos 2)2sin 24sin cos ,'=-=-x x x x 所以1sin cos d cos 24=-+⎰x x x x C . 例3 求1d x x⎰. 解 由于0x >时,1(ln )'=x x ,所以ln x 是1x在(0,)+∞上的一个原函数,因此在(0,)+∞内,1d ln x x C x=+⎰.又当0x <时,[]1ln()x x '-=,所以ln()-x 是1x在(,0)-∞上的一个原函数,因此在(,0)-∞内,1d ln()=-+⎰x x C x .综上,1d ln x x C x=+⎰.例4 在自由落体运动中,物体下落的时间为t ,求t 时刻的下落速度和下落距离. 解 设t 时刻的下落速度为()=v v t ,那么加速度d ()d va t g t==〔其中g 为重力加速度〕. 因此()()d d v t a t t g t gt C ===+⎰⎰,又当0t =时,(0)0=v ,所以0C =.于是下落速度()=v t gt . 又设下落距离为()=s s t ,那么ds()dt=v t .所以 21()()d d 2===+⎰⎰s t v t t gt t gt C , 又当0t =时,(0)0=s ,所以0C =.于是下落距离21()2=s t gt . 1.1.3不定积分的几何意义设函数()f x 是连续的,假设()()F x f x '=,那么称曲线()y F x =是函数()f x 的一条积分曲线.因此不定积分()d ()f x x F x C =+⎰在几何上表示被积函数的一族积分曲线.积分曲线族具有如下特点〔如图4.1〕:〔1〕积分曲线族中任意一条曲线都可由其中某一条平移得到;〔2〕积分曲线上在横坐标相同的点处的切线的斜率是相同的,即在这些点处对应的切线都是平行的.图4-1例5 设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线方程.解 设曲线方程()=y f x ,曲线上任一点(,)x y 处切线的斜率d 2d yx x=,即()f x 是2x 的一个原函数.因为22d =+⎰x x x C ,又曲线过(1,2),所以21C =+,1C =.于是曲线方程为21y x =+.1.2 根本积分公式由定义可知,求原函数或不定积分与求导数或求微分互为逆运算, 我们把求不定积分的运算称为积分运算.既然积分运算与微分运算是互逆的,那么很自然地从导数公式可以得到相应的积分公式.例如,因11x μμ+'⎛⎫ ⎪+⎝⎭=x μ,所以11x x dx C μμμ+=++⎰〔1μ≠-〕. 类似可以得到其他积分公式,下面一些积分公式称为根本积分公式. ①d k x kx C =+⎰〔k 是常数〕; ②1d 1x x x C μμμ+=++⎰〔1μ≠-〕;③1d ln x x C x=+⎰; ④sin d cos x x x C =-+⎰; ⑤cos d sin x x x C =+⎰; ⑥221d sec d tan cos x x x x C x==+⎰⎰; ⑦221d csc d cot sin x x x x C x==-+⎰⎰; ⑧sec tan d sec x x x x C =+⎰; ⑨csc cot d csc x x x x C =-+⎰; ⑩21d arctan C 1x x x =++⎰,21d cot 1x arc x C x -=++⎰;⑪arcsin x x C =+,arccos x x C =+⎰;⑫e d e x x x C =+⎰;⑬d ln xxa a x C a=+⎰;以上13个根本积分公式,是求不定积分的根底,必须牢记.下面举例说明积分公式②的应用.例6求不定积分x x ⎰.解xx ⎰52d x x =⎰512512x C +=++7227x C =+. 以上例子中的被积函数化成了幂函数x μ的形式,然后直接应用幂函数的积分公式②求出不定积分.但对于某些形式复杂的被积函数,如果不能直接利用根本积分公式求解,那么可以结合不定积分的性质和根本积分公式求出一些较为复杂的不定积分.1.3 不定积分的性质根据不定积分的定义,可以推得它有如下两个性质.性质1 积分运算与微分运算互为逆运算〔1〕()d ()'⎡⎤=⎣⎦⎰f x x f x 或d ()d ()d ⎡⎤=⎣⎦⎰f x x f x x . 〔2〕()d ()'=+⎰F x x F x C 或d ()()=+⎰F x F x C 性质2 设函数()f x 和()g x 的原函数存在,那么[]()()d ()d ()d +=+⎰⎰⎰f x g x x f x x g x x .易得性质2对于有限个函数的都是成立的.性质3 设函数()f x 的原函数存在,k 为非零的常数,那么()d =⎰kf x x ()d ⎰k f x x .由以上两条性质,得出不定积分的线性运算性质如下:[]()()d ()d ()d +=+⎰⎰⎰kf x lg x x k f x x l g x x .例7 求23d 1⎛⎫+⎝⎰x x. 解23d 1⎛⎫+⎝x x213d 21x x x =-+⎰3arctan x =2arcsin x -C +.例8 求221d (1)+++⎰x x x x x .解 原式=22(1)d (1)+++⎰x x x x x 211d 1x x x ⎛⎫=+ ⎪+⎝⎭⎰3arctan 3x x x C =-++. 例9 求2e d x x x ⎰.解 原式(2e)d xx =⎰1(2e)ln 2exC =+2e 1ln 2x x C =++. 例10 求1d 1sin x x+⎰.解 1d 1sin x x+⎰()()1sin d 1sin 1sin xx x x -=+-⎰21-sin d cos x x x=⎰ 2(sec sec tan )d =-⎰x x x x tan sec x x C =-+.例11 求2tan d x x ⎰.解 2tan d x x ⎰=2(sec 1)d tan -=-+⎰x x x x C .注 本节例题中的被积函数在积分过程中,要么直接利用积分性质和根本积分公式,要么将函数恒等变形再利用积分性质和根本积分公式,这种方法称为根本积分法.此外,积分运算的结果是否正确,可以通过它的逆运算〔求导〕来检验,如果它的导函数等于被积函数,那么积分结果是正确的,否那么是错误的.下面再看一个抽象函数的例子:例12 设22(sin )cos '=f x x ,求()f x ?解 由222(sin )cos 1sin '==-f x x x ,可得()1'=-f x x , 从而21()2=-+f x x x C .习题4-11.求以下不定积分.〔1〕41d x x⎰; 〔2〕x ⎰; 〔3〕; 〔4〕()2d ax b x -⎰;〔5〕22d 1x x x +⎰; 〔6〕4223d 1x x x x +++⎰;〔7〕x ; 〔8〕22d 1x x⎛⎫+⎝⎰; 〔9〕32e d x x x⎛⎫- ⎪⎝⎭⎰; 〔10〕()22d 1x xx+⎰;〔11〕x ;〔12〕2tan d x x ⎰; 〔13〕2sin d 2xx ⎰;〔14〕cos 2d cos sin x xx x-⎰;〔15〕21cos d 1cos 2xx x++⎰; 〔16〕()sec sec tan d x x x x +⎰;〔17〕2352d 3x xxx ⋅-⋅⎰;〔18〕x .2.某产品产量的变化率是时间t 的函数,()=+f t at b 〔a ,b 为常数〕.设此产品的产量函数为()p t ,且(0)0=p ,求()p t .3.验证12arcsin(21)arccos(12)=-+=-+x C x C 3C =. 4.设33()d f x x x C '=+⎰,求()f x ?第2节 换元积分法和不定积分法2.1 换元积分法上一节介绍了利用根本积分公式与积分性质的直接积分法,这种方法所能计算的不定积分是非常有限的.因此,有必要进一步研究不定积分的求法.这一节,我们将介绍不定积分的最根本也是最重要的方法——换元积分法,简称换元法.其根本思想是:利用变量替换,使得被积表达式变形为根本积分公式中的形式,从而计算不定积分. 换元法通常分为两类,下面首先讨论第一类换元积分法.2.1.1第一类换元积分法定理1 设()f u 具有原函数,()=u x ϕ可导,那么有换元公式()[()]()d ()d =⎡⎤'=⎣⎦⎰⎰u x f x x x f u u ϕϕϕ. 〔4.2.1〕证明 不妨令()F u 为()f u 的一个原函数,那么[]()()d ()=⎡⎤=+⎣⎦⎰u x f u u F x C ϕϕ.由不定积分的定义只需证明([()])[()]()''=F x f x x ϕϕϕ,利用复合函数的求导法那么显然成立.注 由此定理可见,虽然不定积分[()]()d '⎰f x x x ϕϕ是一个整体的记号,但从形式上看,被积表达式中的d x 也可以当做自变量x 的微分来对待.从而微分等式()d d '=x x u ϕ可以方便地应用到被积表达式中.例1 求33e d x x ⎰.解 3333e d e (3)d e d(3)x x x x x x x '=⋅=⎰⎰⎰e d =⎰u u e =+u C , 最后,将变量3u x =代入,即得333ed e xx x C =+⎰.根据例1第一类换元公式求不定积分可分以下步骤:〔1〕将被积函数中的简单因子凑成复合函数中间变量的微分; 〔2〕引入中间变量作换元;〔3〕利用根本积分公式计算不定积分; 〔4〕变量复原.显然最重要的是第一步——凑微分,所以第一类换元积分法通常也称为凑微分法.例2 求()9945d x x +⎰.解 被积函数9945()+x 是复合函数,中间变量45=+u x ,45()=4'+x ,这里缺少了中间变量u 的导数4,可以通过改变系数凑出这个因子:99999911(45)d (45)(45)d (45)d(45)44'+=⋅+⋅+=++⎰⎰⎰x x x x x x x 991d 4=⎰u u 1001001(45)4100400+=⋅+=+u x C C .例3 求22d xx x a +⎰. 解221x a+为复合函数,22u x a =+是中间变量,且222x a x '+=(), 22222222221111d ()d d()22'=⋅+=++++⎰⎰⎰x x x a x x a xax a x a 221111d ln ln()222==+=++⎰u u C x a C u . 对第一类换元法熟悉后,可以整个过程简化为两步完成.例4 求x ⎰.解 322211)(1)23=--=--+⎰x x x C .注 如果被积表达式中出现()d +f ax b x ,-1()d ⋅m m f x x x ,通常作如下相应的凑微分:1()d ()d()+=++f ax b x f ax b ax b a , 111()d ()d()-+=⋅++n n n n f ax b x x f ax b ax b a n.例5 求1d (12ln )x x x +⎰.解 因为1d d ln x x x=,亦即11d d(1+2ln )2x x x=,所以1111d d ln d(1+2ln )(12ln )12ln 212ln x x x x x x x==+++⎰⎰⎰ 1ln 1+2ln 2x C =+. 例6 求arctan 22d 1xx x +⎰.解 因为21d d arctan 1x x x =+,所以 arctan arctan arctan 222d 2d arctan ln 21x x xx x C x ==++⎰⎰.例7 求x .解x =x C ==-⎰.在例4至例7中,没有引入中间变量,而是直接凑微分.下面是根据根本微分公式推导出的常用的凑微分公式.①x=②211d d x x x=-.③1d dln x x x=. ④e d de x x x =.⑤ cos d d sin x x x =. ⑥ sin d d cos x x x =-. ⑦221d sec d d tan cos ==x x x x x. ⑧ 221d csc d d cot sin =-=-x x x x x.d(arcsin )d(arccos )x x x ==-.⑩21d d(arctan )d(arccot )1x x x x ==-+. 在积分的运算中,被积函数有时还需要作适当的代数式或三角函数式的恒等变形后,再用凑微分法求不定积分.例8 求221d x a x +⎰. 解 将函数变形2222111.1a x a x a =+⎛⎫+ ⎪⎝⎭,由d d x x a a=,所以得到221d x a x +⎰2111darctan 1x xC aa a ax a ==+⎛⎫+ ⎪⎝⎭⎰. 例9求x . 解1x x x aa ⎛⎫==⎪⎝⎭ arcsinxC a=+. 例10 求tan d x x ⎰. 解 tan d x x ⎰=sin d d cos ln cos cos cos x x xx C x x-==-+⎰⎰. 同理,我们可以推得cot d ln sin x x x C =+⎰.例11 求3sin d x x ⎰.解 3222sin d sin sin d sin dcos (1-cos )dcos x x x x x x x x x ==-=-⎰⎰⎰⎰31cos cos 3x x C =-++.例12 求23sin cos d x x x ⎰.解 232222sin cos d sin cos cos d sin cos dsin x x x x x x x x x x ==⎰⎰⎰2224sin (1sin )dsin (sin sin )dsin x x x x x x =-=-⎰⎰3511sin sin 35x x C =-+. 例13 求2sin d x x ⎰. 解 21cos 211sin d d sin 2224x x x x x x C -==-+⎰⎰. 例14 求sec d x x ⎰. 解 12211sec d d cos d cos d sin d sin cos 1sin x x x x x x x x x x--====-⎰⎰⎰⎰⎰ 1sin 1ln ln sec tan 2sin 1x C x x C x +=+=++-. 同理,我们可以推得csc d ln csc cot x x x x C =--+⎰.注 对形如sin cos d m n x x x ⎰的积分,如果m ,n 中有奇数,取奇次幂的底数〔如n 是奇数,那么取cos x 〕与d x 凑微分,那么被积函数一定能够变形为关于另一个底数的多项式函数,从而可以顺利的计算出不定积分;如果m ,n 均为偶数,那么利用倍角〔半角〕公式降幂,直至将三角函数降为一次幂,再逐项积分.例15 求sin 2cos3d x x x ⎰. 解 sin 2cos3d x x x ⎰=11sin 5d sin d 22x x x x -⎰⎰=11cos5cos 102x x C -++ =11cos cos5210x x C -+. 一般的,对于形如以下形式sin cos d mx nx x ⎰, sin sin d mx nx x ⎰, cos cos d mx nx x ⎰,的积分〔m n ≠〕,先将被积函数用三角函数积化和差公式进行恒等变形后,再逐项积分.例16 求221d x x a -⎰. 解 因为 2211111()()2⎛⎫==- ⎪-+-+-⎝⎭x a x a a x a x a x a, 所以 221111111d d d d 22⎛⎫⎛⎫=-=- ⎪ ⎪-+-+-⎝⎭⎝⎭⎰⎰⎰⎰x x x x a x a x a a x a x a x a111d()d()2x a x a a x a x a ⎛⎫=--+ ⎪-+⎝⎭⎰⎰ ()11ln ln ln 22x a x a x a C C a a x a-=--++=++. 这是一个有理函数〔形如()()P x Q x 的函数称为有理函数,()P x ,()Q x 均为多项式〕的积分,将有理函数分解成更简单的局部分式的形式,然后逐项积分,是这种函数常用的变形方法.下面再举几个被积函数为有理函数的例子.例17 求23d 56x x x x +-+⎰.解 先将有理真分式的分母256x x -+因式分解,得256-+=x x (2)-x (3)-x .然后利用待定系数法将被积函数进行分拆.设232356x A B x x x x +=+---+=(3)(2)(2)(3)-+---A x B x x x , 从而 3(3)(2)+=-+-x A x B x , 分别将3,2x x ==代入3(3)(2)+=-+-x A x B x 中,易得56A B =-⎧⎨=⎩.故原式=56d 23x x x -⎛⎫+⎪--⎝⎭⎰=5ln 26ln 3x x C --+-+. 例18 求33d 1x x +⎰. 解 由321(1)(1)+=+-+x x x x , 令323111A Bx Cx x x x +=+++-+, 两边同乘以31x +,得23(1)()(1)=-++++A x x Bx C x .令1,x =-得1A =;令0,x =得2C =;令1x =,得1B =-. 所以32312111x x x x x -+=+++-+. 故3223121213d d ln 1d 12111-+--⎛⎫=+=+- ⎪++-+-+⎝⎭⎰⎰⎰x x x x x x x x x x x x =2221d 1d(1)32ln 12211324x x x x x x x ⎛⎫- ⎪-+⎝⎭+-+-+⎛⎫-+⎪⎝⎭⎰⎰.21=ln 1ln(1).2x x x C +--+++2.1.2 第二类换元积分方法定理2 设()=x t ψ是单调,可导的函数,并且()0'≠t ψ,又设[]()()'f t t ψψ具有原函数,那么有换元公式,[]1()()d ()()d -=⎡⎤'=⎣⎦⎰⎰t x f x x f t t t ψψψ,其中,1()-x ψ是()=x t ψ的反函数.证明 设[]()()'f t t ψψ的原函数为()t φ.记1()()-⎡⎤=⎣⎦x F x φψ,利用复合函数及反函数求导法那么得[][]d d 1()()()()()d d ()''=⋅=⋅=='t F x f t t f t f x t x t φψψψψ, 那么()F x 是()f x 的原函数.所以11()()d ()[()][()]()d --=⎡⎤'=+=+=⎣⎦⎰⎰t x f x x F x C x C f t x t ψφψψψ.利用第二类换元法进行积分,重要的是找到恰当的函数()=x t ψ代入到被积函数中,将被积函数化简成较容易的积分,并且在求出原函数后将1()t x ψ-=复原.常用的换元法主要有三角函数代换法、简单无理函数代换法和倒代换法.一、三角函数代换法例19 求22d a x x -⎰(0)>a .解 设ππsin ,,22x a t t ⎛⎫=∈- ⎪⎭⎝,22cos a x a t -=,d cos d x a t t =,于是22d a x x -⎰=2222cos cos d cos d sin cos 22a a a t a t t a t t t t t C ⋅==++⎰⎰.因为 ππsin ,,22x a t t ⎛⎫=∈- ⎪⎭⎝,所以arcsin ,xt a = 为求出cos t ,利用sin xt a=作辅助三角形〔图4-2〕,求得22cos a x t a-=, 所以 22222221d d arcsin 22a x a x x a x x x a x C a -=-=+-+⎰⎰.图4-2例20 求22d x x a+⎰(0)>a .解 令2ππtan ,,,d sec d 22x a t t x a t t ⎛⎫=∈-= ⎪⎭⎝,22d xx a +⎰=21cos sec d sec d ln sec tan t a t t t t t t C a ⋅==++⎰⎰. 利用tan xt a=作辅助三角形〔图4-3〕,求得 22ππsec ,,22x a t t a +⎛⎫=∈- ⎪⎭⎝ 所以 ()2222122d ln ln xx x a c x x a C a ax a ⎛⎫+ ⎪=++=+++ ⎪+⎝⎭⎰.图4-3例21 求22x a-(0)>a .解 当x a >时,令πsec ,0,,d sec tan d 2x a t t x a t t t ⎛⎫=∈=⋅ ⎪⎭⎝,22x a -=11cot sec tan d sec d ln sec tan t a t t t t t t t C a⋅⋅⋅==++⎰⎰.利用cos at x=作辅助三角形〔图4-4〕,求得22tan x a t -=所以 (2222122lnln x x a C x x a C aax a -=+=+-+-,1(ln )C C a =-. 当x a <-时,令x u =-那么u a >,由上面的结果,得((2222112222ln ln u u a C x x a C x a u a =-=-+=---+--=(221,(2ln )x x a C C C a --+=-. 综上,2222ln x x a C x a =-+-.图4-4注 22a x -22a x +22x a -换元:sin x a t =,tan x a t =,sec x a t =±将根号化去.但是具体解题时,要根据被积函数的具体情况,选取尽可能简捷的代换,不能只局限于以上三种代换.二、简单无理函数代换法 例22 求12x+.解 令22,,d d 2u u x x x u u ===,12x +=d 11d 11u u u u u ⎛⎫=- ⎪++⎝⎭⎰⎰(ln 12ln 12u u C x x C =-+++. 例23 求3(1+)x x.解 被积函数中出现了两个不同的根式,为了同时消去这两个根式,可以作如下代换: 令6t x =6x t =,5d 6d x t t =,从而522322361d 6d 61d (1)11(1+)t t t t t t t t t x x ⎛⎫===- ⎪+++⎝⎭⎰⎰⎰ 666(arctan )6()t t C x x C =-+=+.例24 求211d xx x x +. 解 为了去掉根式,作如下代换:1x t x +=,那么211x t =-,222d d (1)t x t t =--,从而222222112d (1)d 2d (1)x t x t t t t t x x t +-=-⋅=--⎰⎰ 32322133x t C C x +⎛⎫=-+=-+ ⎪⎝⎭. 一般的,如果积分具有如下形式〔1〕()d n R x ax b x +⎰,那么作变换n t ax b +〔2〕(,)d n m R x ax b ax b x ++⎰,那么作变换pt ax b +p 是m ,n 的最小公倍数;〔3〕(R x x ⎰,那么作变换t = 运用这些变换就可以将被积函数中的根数去掉,被积函数就化为有理函数. 三、倒代换法在被积函数中如果出现分式函数,而且分母的次数大于分子的次数,可以尝试利用倒代换,即令1x t=,利用此代换,常常可以消去被积函数中分母中的变量因子x .例25 求6d (1)+⎰xx x .解 令211,d d x x t tt ==-, 6d (1)+⎰x x x =52661d d 1111t t t t t t t -=-+⎛⎫⋅+ ⎪⎝⎭⎰⎰661d(1)61+=-+⎰t t 61ln 16t C =-++ 611ln 16C x ⎛⎫=-++ ⎪⎝⎭. 例26求x . 解 设211,d d ,x x t tt ==-则 于是1222241d (1)d ⎫=-=--⎪⎝⎭⎰x t a t t t t t , 当0x >时,有31222222222231()(1)d(1)23-=---=-+⎰a x x a t a t C a a x . 0x <时,结果相同.本例也可用三角代换法,请读者自行求解.四、指数代换 例27 求2d e (e 1)+⎰x x x.解 设1e ,d d ,x t x t t==则 于是222d 1d e (e 1)(1)=++⎰⎰x x x t t t22111d arctan 1t t C t t t ⎛⎫=-=--+ ⎪+⎝⎭⎰--e arctane x x C =--+. 注 本节例题中,有些积分会经常遇到,通常也被当作公式使用.承接上一节的根本积分公式,将常用的积分公式再添加几个〔0a >〕:①tan d ln cos x x x C =-+⎰; ②cot d ln sin x x x C =+⎰; ③cscd x ⎰=ln csc cot x x C -+; ④sec d ln sec tan x x x x C =++⎰; ⑤2211d arctan xx C a a a x=++⎰; ⑥221d xx a -⎰=1ln 2x a C a x a -++; ⑦arcsin xx C a =+>(a 0);⑧(ln x C =+;⑨ln x C =. 例28 求.解=2arcsin3-=+x C . 例29 求.解=11ln(222=+x C . 例30 求解ln 1=-x C .例31 求322d (22)x x x x -+⎰.解 被积函数为有理函数,且分母为二次质因式的平方,把二次质因式进行配方:2(1)1x -+,令ππ1tan ,,22⎛⎫-=∈- ⎪⎝⎭x t t ,那么2222sec x x t -+=,2d sec d x t t =.所以332224(1tan )d sec d (22)sec x t x t t x x t +=⋅-+⎰⎰23cos (1tan )d t t t =+⎰3(sin cos )d cos t t t t+=⎰ 3122(sin cos 3sin 3sin cos cos )d t t t t t t t -=+++⎰ 2ln cos cos 2sin cos t t t t t C =--+-+.图4-5按照变换ππ1tan ,22x t t ⎛⎫-=∈- ⎪⎝⎭作〔辅助三角形图4-5〕,那么有2cos 22t x x =-+,2sin 22t x x =-+,于是322221d ln(22)2arctan(1)2(22)22x x x x x x C x x x x =-++--+-+-+⎰.2.2 分部积分法前面我们得到了换元积分法.现在我们利用“两个函数乘积的求导法那么〞来推导求积分的另一种根本方法—分部积分法.定理1 设函数()=u u x ,()=v v x 具有连续的导数,那么d d =-⎰⎰u v uv v u .〔4.2.2〕证明 微分公式d()d d =-uv u v v u 两边积分得d d =-⎰⎰uv u v v u ,移项后得d d =-⎰⎰u v uv v u .我们把公式〔4.2.2〕称为分部积分公式.它可以将不易求解的不定积分d u v ⎰转化成另一个易于求解的不定积分d v u ⎰.例32 求cos d x x x ⎰.解 根据分部积分公式,首先要选择u 和d v ,显然有两种方式,我们不妨先设,cos d d ,u x x x v == 即sin v x =,那么cosd dsin sin sin d sin cos x x x x x x x x x x x C ==-=++⎰⎰⎰.采用这种选择方式,积分很顺利的被积出,但是如果作如下的选择: 设cos ,d d ,u x x x v == 即212v x =,那么222111cos d cos d cos sin d 222x x x x x x x x x x ==-⎰⎰⎰, 比拟原积分cos d x x x ⎰与新得到的积分21sin d 2x x x ⎰,显然后面的积分变得更加复杂难以解出.由此可见利用分部积分公式的关键是恰当的选择u 和d v .如果选择不当,就会使原来的积分变的更加复杂.在选取u 和d v 时一般考虑下面两点: 〔1〕v 要容易求得;〔2〕d v u ⎰要比d u v ⎰容易求出. 例33 求e d x x x ⎰.解 令,e d d ,e x x u x x v v ===,那么e d de e e d e e x x x x x x x x x x x x C ==-=-+⎰⎰⎰.例34 求2e d x x x ⎰.解 令2,e d d ,e x x u x x v v ===,那么利用分部积分公式得22222e d dee e d e 2e d xxx x x x x x x x x x x x ==-=-⎰⎰⎰⎰,这里运用了一次分部积分公式后,虽然没有直接将积分积出,但是x 的幂次比原来降了一次,e d xx x ⎰显然比2e d xx x ⎰容易积出,根据例4.3.2,我们可以继续运用分部积分公式,从而得到222e d e2e d e 2de xxx x x x x x x x x x =-=-⎰⎰⎰2e 2(e e )x x x x x C =--+ 2e (22)x x x C =-++.注 当被积函数是幂函数与正〔余〕弦或指数函数的乘积时,幂函数在d 的前面,正〔余〕弦或指数函数至于d 的后面.例35 求ln d x x x ⎰. 解 令ln ,u x =21d d 2x x x =,212v x =,那么 222111ln d ln d ln d 22x x x x x x x x x x ⎛⎫==-⋅ ⎪⎝⎭⎰⎰⎰2211ln 22x x x C ⎛⎫=-+ ⎪⎝⎭ 22ln 124x x x C =-+.在分部积分公式运用比拟熟练后,就不必具体写出u 和d v ,只要把被积表达式写成d ⎰u v的形式,直接套用分部积分公式即可. 例36 求arctan d x x x ⎰.解 222211arctan d arctan d arctan d 221x x x x x x x x x x ⎛⎫==- ⎪+⎝⎭⎰⎰⎰21(arctan arctan )2=-++x x x x C . 注 当被积函数是幂函数与对数函数或反三角函数的乘积时,对数函数或反三角函数在d 的前面,幂函数至于d 的后面.下面再来举几个比拟典型的分部积分的例子.例37 求e sin d x x x ⎰.解 〔法一〕e sin d sin de e sin e cos d x x x x x x x x x x ==-⎰⎰⎰e sin cos de x x x x =-⎰=e sin e cos e sin d x x x x x x x --⎰,∴ 1e sin d e (sin cos )2=-+⎰x xx x x x C . 〔法二〕x e sin d e d(cos )e (cos )cos d(e )=-=-+⎰⎰⎰x x x x x x x x =e cos cos e d e cos e dsin x x x x x x x x x -+=-+⎰⎰ =e cos e sin sin de x x x x x x -+-⎰ =e cos e sin e sin d x x x x x x x -+-⎰,∴ 1e sin d e (sin cos )2=-+⎰x x x x x x C .当被积函数是指数函数与正〔余〕弦函数的乘积时,任选一种函数凑微分,经过两次分部积分后,会复原到原来的积分形式,只是系数发生了变化,我们往往称它为“循环法〞,但要注意两次凑微分函数的选择要一致.例38 求3sec d x x ⎰.解 32sec d sec d tan sec tan sec tan d x x x x x x x x x ==⋅-⋅⎰⎰⎰3sec tan sec d sec d x x x x x x =⋅+-⎰⎰,利用 1sec d ln sec tan x x x x C =++⎰ 并解方程得3sec d x x ⎰=1(sec tan ln sec tan )2⋅++x x x x +C .在求不定积分的过程中,有时需要同时使用换元法和分部积分法.例39求x ⎰.解令2,d 2d t t x t t ===,e 2d 2de 2e 2e d 2e 2e t t t t t t x t t t t t t C C ===-=-+=-+⎰⎰⎰⎰.例40 求cos(ln )d x x ⎰. 解 令ln ,e ,d e d t t t x x x t ===,cos(ln )d x x ⎰=()()1cos e d e sin cos sin ln cos ln 22t t xt t t t C x x C ⋅=++=++⎰. 下面再看一个抽象函数的例子.例41 ()f x 的一个原函数是sin xx,求()d '⎰xf x x ? 解 因为()f x 的一个原函数是sin x x ,所以sin ()d =+⎰xf x x C x, 且 2sin cos sin ()'-⎛⎫==⎪⎝⎭x x x xf x x x .从而 原式()()d d[()]()d '===-⎰⎰⎰xf x x x f x xf x f x x cos 2sin x x xC x-=+.习题4-2一、求以下不定积分. 1.2014(23)d -⎰x x ; 2.23d (12)-⎰xx ;3.()d +⎰k a bx x 〔0b ≠〕; 4.sin3d x x ⎰; 5.()cos d x x αβ-⎰; 6.tan5d x x ⎰; 7.3e d x x -⎰; 8.210d x x ⎰; 9.121e d x x x⎰;10.2d 19xx +⎰; 11.2d πsin 24x x ⎛⎫+ ⎪⎝⎭⎰;12.x ⎰;13.2(23)d 38--+⎰x xx x ;14.;15.e sin e d x x x ⎰; 16.2e d x x x ⎰; 17.x ; 18.θ;19.;20.22(arctan )d 1+⎰x x x ;21.2d 3x x x+⎰;22.21d 413x x x x -++⎰;23.2cos d x x ⎰; 24.4sin d x x ⎰; 25.1tan d sin 2xx x+⎰; 26.22cos sin d x x x ⎰; 27.3cos d x x ⎰; 28.35sin cos d x x x ⎰; 29.4sec d x x ⎰;30.4tan d x x ⎰; 31.22d sin cos xx x⎰;32.4;33.;34.322d (1)-⎰x x ;35.3322d (1)+⎰x xx ;36.2x ;37.3222d ()+⎰xx a ;38.x ; 39. 40. 41.;42.;43.x ; 44.x ;45.42d xx x -⎰; 46.2d (1)+⎰xx x .二、求以下不定积分.1.sin 2d x x x ⎰; 2.-(e e )d 2-⎰x x x x ; 3.2cos d x x x ω⎰; 4.2d x x a x ⎰;5.ln d x x ⎰; 6.ln d n x x x ⎰〔1n ≠〕; 7.arctan d x x ⎰; 8.arccos d x x ⎰; 9.e cos d ax nx x ⎰;10.2ln(1)d +⎰x x x ;11.32ln d xx x⎰;12.2(arcsin )d ⎰x x ;13.2cos d x x x ⎰; 14.2tan d x x x ⎰;15.22cos d x x x ⎰; 16.2ln cos d cos xx x⎰;17.3ln d xx x ⎰; 18.x ⎰.三、()f x 的一个原函数是2-e x ,求()d '⎰xf x x .第3节 有理函数的积分3.1 有理函数的积分有理函数的形式:有理函数是指由两个多项式的商所表示的函数,即具有如下形式的函数: mm m m nn n n b x b x b x b a x a x a x a x Q x P ++⋅⋅⋅++++⋅⋅⋅++=----11101110)()(,其中m 和n 都是非负整数; a 0,a 1,a 2,⋅⋅⋅,a n 及b 0,b 1,b 2,⋅⋅⋅,b m 都是实数,并且a 0≠0,b 0≠0.当n <m 时,称这有理函数是真分式;而当n ≥m 时,称这有理函数是假分式. 假分式总可以化成一个多项式与一个真分式之和的形式.例如1111)1(1122223++=+++=+++x x x x x x x x . 真分式的不定积分:求真分式的不定积分时,如果分母可因式分解,那么先因式分解,然后化成局部分式再积分.例1 求⎰+-+dxx x x 6532.解⎰+-+dx x x x 6532⎰--+=dx x x x )3)(2(3⎰---=dx x x )2536(⎰⎰---=dx x dx x 2536=6ln|x -3|-5ln|x -2|+C . 提示:)3)(2()32()(23)3)(2(3----++=-+-=--+x x B A x B A x B x A x x x ,A +B =1,-3A -2B =3,A =6,B =-5. 分母是二次质因式的真分式的不定积分: 例2 求⎰++-dxx x x 3222.解⎰++-dx x x x 3222dx x x x x x )3213322221(22++-+++=⎰dx x x dx x x x ⎰⎰++-+++=321332222122 ⎰⎰+++-++++=2222)2()1()1(332)32(21x x d x x x x d C x x x ++-++=21arctan 23)32ln(212. 提示:321332221323)22(213222222++⋅-++-⋅=++-+=++-x x x x x x x x x x x .例3 求⎰-dx x x 2)1(1.解⎰⎰-+--=-dx x x x dx x x ])1(1111[)1(122⎰⎰⎰-+--=dx x dx x dx x 2)1(1111C x x x +----=11|1|ln ||ln .提示:222)1(1)1(1)1(1)1(1-+--=-+-=-x x x x x x x x x 22)1(1111)1(1)1(1-+--=-+-+--=x x x x x x x x .3.2 三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四那么运算所构成的函数,其特点是分子分母都包含三角函数的和差和乘积运算.由于各种三角函数都可以用sin x 及cos x 的有理式表示,故三角函数有理式也就是sin x 、cos x 的有理式. 用于三角函数有理式积分的变换:把sin x 、cos x 表成2tan x 的函数,然后作变换2tan xu =:222122tan 12tan 22sec 2tan 22cos 2sin 2sin u u x xx x x x x +=+===, 222222112sec 2tan 12sin 2cos cos u u x x x x x +-=-=-=.变换后原积分变成了有理函数的积分. 例4 求⎰++dx x x x )cos 1(sin sin 1. 解 令2tanx u =,那么212sin u u x +=,2211cos u u x +-=,x =2arctan u ,du u dx 212+=. 于是⎰++dx x x x )cos 1(sin sin 1⎰+-++++=)111(12)121(2222u u u u u u du u 212+⎰++=du u u )12(21 C u u u +++=|)|ln 22(212C x x x +++=|2tan |ln 212tan 2tan 412. 说明: 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分. 例如,⎰⎰++=++=+Cx x d xdx x x )sin 1ln()sin 1(sin 11sin 1cos .习题4-3求以下不定积分.1.x dx x +⎰33;2.x dx x x ++-⎰223310; 3.x dx x x +-+⎰2125; 4.()dx x x +⎰21 ;5.()()x dx x x ++-⎰22111;6.()()x dx x ++⎰22211;7.sin dx x +⎰23; 8.cos dxx +⎰3;9.sin dx x +⎰2 ; 10.sin cos dx x x++⎰1;11.sin cos dxx x -+⎰25; 12.⎰.第4节 MATLAB 软件的应用在高等数学中,经常利用函数图形研究函数的性质,在此,我们应用MA TLAB 命令来实现这一操作.MATLAB 符号运算工具箱提供了int 函数来求函数的不定积分,该函数的调用格式为:Int(fx,x) %求函数f(x)关于x 的不定积分参数说明:fx 是函数的符号表达式,x 是符号自变量,当fx 只含一个变量时,x 可省略. 例计算下面的不定积分.sin .cos x xI dx x+=+⎰1syms xI=int((x+sin(x)/(1+cosx))) I=X*tan(x/2)说明:由上述运行结果可知,int 函数求取的不定积分是不带常数项的,要得到一般形式的不定积分,可以编写以下语句:syms x c fx=f(x); int(fx,x)+c以sin cos x xI dx x +=+⎰1为例,编写如下语句可以得到其不定积分:syms x cfx=(x+sin(x))/(1+cos(x)); I=int(fx,x)+c I=C+x*tan(x/2)在上述语句的根底上再编写如下语句即可观察函数的积分曲线族: ezplot(fx,[-2,2]) hf=ezplot(fx,[-2,2]); xx=linspace(-2,2);plot(xx,subs(fx,xx),’k’,’LineWidth’,2) hold on for c=0:6Y=inline(subs(I,C,c));Plot(xx,y(xx),’LineStyle’,’- -’); Endlegend(‘函数曲线’,’积分曲线族’,4).总习题4 (A)一、填空题1.假设()f x 的一个原函数为cos x ,那么()d f x x ⎰=. 2.设()d sin f x x x C =+⎰,那么2(1)d xf x x -⎰=. 3.2e d x x x =⎰. 4.1d 1cos 2x x=+⎰.5.22(arctan )d 1x x x +⎰=.二、选择题1.曲线()y f x =在点(,())x f x 处的切线斜率为1x,且过点2(e ,3),那么该曲线方程为. (A) ln y x =(B) ln 1y x =+(C) 211y x =-+ (D) ln 3y x =+2.设()f x 的一个原函数是2e x -,那么()d xf x x '=⎰.(A) 222e x x C --+ (B) 222e x x -- (C) 22e (21)x x C ---+(D) ()()d xf x f x x +⎰3.设()F x 是()f x 的一个原函数,那么.(A) ()()d ()f x x F x '=⎰(B) ()()d ()f x x f x '=⎰(C)d ()()F x F x =⎰(D) ()()d ()F x x f x '=⎰4.设()f x 的原函数为1x,那么()f x '等于. (A) ln x(B)1x(C) 21x -(D)32x 5.2d x x x =⎰.(A) 22xxx C -+(B) 222ln 2(ln 2)x xx C -+(C) 22ln (ln 2)2x x x x C -+(D) 222x x C + 三、计算以下各题1.x ;2.1d e e x xx --⎰; 3.2ln(1+)d x x ⎰; 4.2d 23++⎰xx x ;5.sin ecosxd xx ⎰;6.742d (1)x xx +⎰;7.12e d x x -⎰; 8.;9.1d e 1xx -⎰; 10.3d (1)xx x -⎰;11.x x ;12.x ; 13.4d 1xx -⎰; 14.; 15.32ln d x x x ⎰; 16.17.x ⎰; 18.19.20.4sin d 2xx ⎰;21.24(tan tan )d x x x +⎰;22.2sec d 1tan ⎛⎫ ⎪+⎝⎭⎰x x x ;23.sin(lnx)d x ⎰; 24.5;25.x ;26.54tan sec d t t t ⎰;27.3sin x π⎰; 28.64tan cos d sin x x x x⎰;29.44d sin cos xx x⎰;30.1sin d 1sin +-⎰xx x;31.x x ;32.x ⎰;33.e (1)d +⎰x x x x ; 34.x ;35.2ln(1)d x x x +⎰;36.x . (B)1.〔1999、数学一〕设()f x 是连续函数()F x 是()f x 的原函数,那么( ). (A) 当()f x 是奇函数时,必是偶函数.(B) 当()f x 是偶函数时,()F x 必是奇函数.(C) 当()f x 是周期函数时,()F x 必是周期函数.(D) 当()f x 是单调增函数时,()F x 必是单调增函数.2.〔2006、数学二〕 求arctan xxe dx e ⎰. 3.〔2003、数学二〕 计算不定积分.)1(232arctan dx x xe x ⎰+.4.(2021、数学三)计算不定积分ln(1dx +⎰(0)x >.。

微积分换元积分法

微积分换元积分法

解题技巧的总结与提炼
观察与分析
在解题过程中,学会观察和分析,识别题型和所使用 的换元方法。
灵活运用公式
熟练掌握各种换元公式的形式和特点,根据题目条件 灵活运用。
简化计算
在解题过程中,尽量简化计算,避免复杂的运算过程, 提高解题效率。
实际问题的应用与解决
物理问题
将换元积分法应用于解决物理问题,如力学、 热学等领域的问题。
详细描述
在选择换元变量时,应尽量选择容易处理的变量,如使积分区间变为常见的简单区间或 使被积函数形式简化。同时,需要确保换元转换的等价性,即新旧变量之间的转换关系
必须是可逆的。
换元后积分的计算与化简
总结词
换元后需要对新的积分进行计算和化简,这 一步涉及到对积分公式和技巧的掌握。
详细描述
在换元后,需要利用已知的积分公式和技巧 对新积分进行计算。有时可能需要利用代数 方法对积分表达式进行化简,如合并同类项、 提取公因式等。此外,还需注意消除积分的 上下限,并确保最终结果的正确性。
指数代换
对于形如$x^n$的被积函数,可 以使用指数代换将其转换为容易 积分的形式。
03
换元积分法的实践应用
三角函数换元法
总结词
通过引入三角函数变量替换,将复杂的 积分问题转化为更易于解决的积分问题 。
VS
详细描述
三角函数换元法通常用于处理包含平方根 或与三角函数相关的积分。通过选择适当 的三角函数和变量替换,可以将积分表达 式简化,从而更容易计算出结果。
微积分换元积分法

CONTENCT

• 换元积分法简介 • 换元积分法的基本原理 • 换元积分法的实践应用 • 换元积分法的注意事项与难点 • 换元积分法的练习与提高

利用换元法求解一阶微分方程的应用举例

利用换元法求解一阶微分方程的应用举例

利用换元法求解一阶微分方程的应用举例1.引言微分方程是研究变化规律的重要数学工具,广泛应用于物理学、经济学、生物学等领域。

在求解微分方程时,常常采用换元法来简化计算过程。

本文将通过举例,介绍一阶微分方程的换元法求解方法及其应用。

2.换元法基础2.1换元法概述换元法是求解微分方程的常用方法。

通过引入新的变量,将原微分方程化为更简单的形式,从而解决问题。

2.2常用换元法常用的换元法有以下几种:1.代入法2.变量分离法3.齐次化方法4.参数法5.恰当变换法2.3换元法的应用通过换元法,可以将微分方程化为简单的形式,从而求得通解或特解。

在实际问题中,也可以通过找到适当的换元公式,将问题转化为已知的常微分方程,然后再求解。

3.举例说明3.1例一:曲线的切线问题假设有一条曲线y=f(x),求证它在点(a,f(a))处的切线方程为y=f'(a)(x-a)+f(a)。

解法:任取曲线上的一点(x,y),则曲线的切线斜率k为:$$k=\lim_{\Delta x\to0}\frac{\Delta y}{\Deltax}=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$对上式进行特殊换元:$\Delta x=h,x+\Delta x=t$,则$\Delta x=t-x$,所以:$$k=\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim_{t\tox}\frac{f(t)-f(x)}{t-x}=f'(x)$$因此,在点(a,f(a))处的切线方程应为:$$y=f'(a)(x-a)+f(a)$$3.2例二:二阶线性微分方程考虑如下的二阶线性微分方程:$$y''+p(x)y'+q(x)y=f(x)$$其中,p(x),q(x),f(x)是已知函数。

解法:我们可以通过恰当的变换,将原方程化为已知形式的线性微分方程。

微积分换元法公式

微积分换元法公式

微积分换元法公式
微积分中的换元法是一种常用的求解定积分的方法,也被称为变量代换法。

它的基本思想是通过引入一个新的变量,使被积函数的形式更容易积分。

换元法有多种形式,下面我来介绍一些常见的换元法公式。

1.第一类换元法(代入法):
假设有一个定积分$\intf(g(x))g'(x)dx$,我们进行代换$u=g(x)$,则有$du=g'(x)dx$。

将$du$和$g'(x)dx$代入原积分中,可得到新的积分$\intf(u)du$。

这样就完成了变量代换,可以将原积分转化为更容易求解的形式。

2.第二类换元法(参数化法):
当被积函数的形式较为复杂时,我们可以通过采用参数化的方法来进行换元。

具体步骤如下:
假设有一个定积分$\intf(x,y)dx$,其中$y=g(x)$是一个函数关系。

我们将$x$用$t$表示,并假设存在一个函数$x=h(t)$,使得$x$和$y$之间存在函数关系。

将$x=h(t)$和$y=g(x)$代入原积分中,得到新的积分
$\intf(h(t),g(h(t))h'(t))dt$。

这样就完成了变量代换,可以将原积分转化为更容易求解的形式。

除了上述两种常见的换元法,还有一些特殊的换元法,如三角换元法、指数换元法等,这些方法都是根据具体的问题来选择合适的变量代换方式,以便将原积分转化为更简单的形式。

需要注意的是,在进行换元法时,需要注意对边界条件的处理,以及确定新的积分变量的取值范围,以保证换元后的积分的正确性。

5-2 第一、二换元积分法

5-2 第一、二换元积分法

观察重点不同,所得结论不同.
在熟练了以后,中间变量过程可不写出。
凑微分形式 :
例1
求 sin 2 xdx .
f (ax b)dx
1 f (ax b)d (ax b) a
观 解(一) sin 2 xdx 1 sin 2 x (2 x)dx 1 sin 2 xd (2 x) 2 2 察 1 重 cos 2 x C ; 凑微分形式 : f (sin x) cos xdx f (sin x)d (sin x) 点 2 不 解(二) sin 2 xdx 2 sin x cos xdx 同 , 2 2 sin xd (sin x ) sin x C ; 所 得 解(三) sin 2 xdx 2 sin x cos xdx 结 论 2 2 cos xd (cos x ) cos x C . 不 同 凑微分形式 :
一、第一类换元法
首先看复合函数的导数公式 :
设可微函数 y F (u ), u ( x) 可构成区间 I 上的
可微的复合函数 y F ( ( x)), 则
( F ( ( x))) F ( ( x)) ( x),
它的微分形式为 d( F ( ( x))) F ( ( x)) ( x) d x
de
x

1 f (ln x) dx x
dln x
例7. 求
dln x 1 d(1 2 ln x) 解: 原式 = 1 2 ln x 2 1 2 ln x
例8. 求

e3
x
x
dx .
3 x
x
解: 原式 = 2 e
2 3 e 3
2 3 x d x e d(3 x ) 3 C

常用积分换元公式

常用积分换元公式

第一类换元积分法部分常用的凑微分公式:( 1) dx 1d ( ax b)a (3)1dx d ( x )2 x(5) 1dx d (ln x)x( 7) cos xdx d(sin x) 常用的凑微分公式(2) x ndx1(4)dx2x(6) e x dx(8) sin xdx1d ( xn 1)n 11d ( )d(e x )d (cos x)积分类型1. f (ax b)dx1 f ( ax b)d ( ax b)a2. f ( x 2 a)xdx1 f ( x2 a)d (x 2 a)23. f ( x n )x n 1dx 1 f ( x n )dx nn4. f ( xn1 1 n)1n) dx f ( x x n dxx n5. f ( x) 1 dx 2 f (x )d xx换元公式uax bu x 2 au x nu x nux第 一6. f ( 1)12 dxxx1f ( 1)d ( 1)x xu1 x换 元 积 分 法7. f (ln x) dxx8. f (e x) e xdx f (ln x)d (ln x)f ( e x )de xu ln xu e x9.f (sin x) cosxdx f (sin x)d sin xf (cos x) sin xdxf (cosx)d cosx1f (tan x)cos 2 x dx f (tan x)d tan x10. sin mxcosnxdxsin mxsin nxdx cosmxcosnxdxu sin xu cos xu tan x利用积化和差公式进行变换11.sin m xdx用公式1sin 2 x cos2 x cos m xdx(m 为奇数)1cos2 x sin 2 x变换12.sin m xdx化为倍角的三角函m( m 为偶数)数降幂后再积分cos xdx13. f (tan x)sec2 xdx f (tan x)d tan x u tan x14.f (arctan x)12 dx f (arctan x)d (arctan x)u arctan x x1f (arcsin x)1f (arcsin x)d (arcsin x)dxu arcsin x 1 x2第二类换元积分法1.当被积函数中含有1)a2x2,可令 x a sin t 或 x a cost ;2)a2x2,可令 x a tant ;3)x2 a2,可令 x a sect .通过三角代换化掉根式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例12 arctan xdx.

u
arctan
x,v
1, u
1
1 x2
,v
x,
arctan
xdx
x
arctan
x
1
x x2
dx
x arctan x 1 ln(1 x2 ) C 2
注 分部积分法适用于两类函数乘积的积分,也适用
于单个反三角函数,单个对数函数的积分.
a
x2 a2
ln x a
x2 a2 a
C ln x
x2 a2 C1,
其中 sec t 和 tan t 可借助辅助直角三角形求出.
例9

dx ( x2 a2 )2
(a 0).

x a tan t,
|
t
|
π 2
,
dx ( x2 a2 )2
a sec2 t a4 sec4 t
容易求出。那么如何选择变换呢?这往往与被积函数 的形式有关。 常用代换有无理代换,三角代换等.
1 无理代换
若被积函数是 x n1 , n2 x , , nk x 的无理式时,设n为
ni (1 i k) 的最小公倍数, 令 t n x即x t n.
例6
du u3u
6x5 x3x
2
dx
d( x a) xa
1 2a
d( x a) xa
1 2a
ln
|
x
a
|
1 2a
ln
|
x
a
|
1 ln x a C. 2a x a
凑微分法7: 分子分母需同时乘以(除以)某个因子
xk ,ex ,sin x,cos x,1 sin x,1 cos x 等然后再凑微分.
例 求sec xdx.
解 (解法一)
sec
xdx
1 cos
x
dx
cos x cos2 x
dx
d(sin x 1 sin2
) x
1 ln 2
1 sin x 1 sin x
C.
(解法二) sec
xdx
sec x(sec x tan sec x tan x
x)
dx
d(sec x tan x) sec x tan x
6
( x2 x 1 1 )dx x 1
x3 x2
6
3
2
x ln x 1 C
2 u 3 3 u 6 6 u 6ln 6 u 1 C
2 三角代换 (1)若被积函数含有 a2 x2 ,一般令 x a sin t (2)若被积函数含有 x2 a2 ,一般令 x asect
xa

1
e
x
e
x
dx
1 1 exd
1 ex
ln 1 e x C.
x1
dx 2ln
x
.
有时,需要将被积函数作适当的恒等变形后,再用
凑微分法求不定积分.
凑微分法5: 有时需将
f
x
变形为 g
x
h
x,
g h
x x
然后观察 g x与h x的关系.例如
例1 tan xdx
sin cos
x x
sin 5 x
8 dx
1 5
sin5
x
8d
5x
8
1 5
cos
5x
8
C
1
x2
e
1 x
dx
1
e xd
1 x
1
e x
C.
凑微分法3:
f sin xcos xdx f sin xd sin x. f cos xsin xdx f cos xd cos x. f tan xsec2 xdx f tan xd tan x. f cot xcsc2 xdx f cot xd cot x.
§2 换元积分法与分部积分法
一、换元积分法
定理8.4 (i) (第一换元积分法)
设 f ( x) 在 区间I 上有定义,( x)在区间J上可导,
且(J) I。并且
f ( x)dx F ( x) C.
换元u ( x )

f (( x))( x)dx f (u)du
回代
F(u) C F (( x)) C. (1)
1
x a
2
1 arctan x C.
a
a
例3 求
dx (a 0).
a2 x2
dx 1 dx
a2 x2 a
1
x a
2
d
x a
arcsin x C
1
x a
2
a
例4 求
dx x2 a2
(a 0).

dx x2 a2
1 2a
1 xa
1 xa
dx
1 2a
简记为 udv uv vdu.
证 由 (u( x)v( x)) u( x)v( x) u( x)v( x) 或 u( x)v( x) (u( x)v( x)) u( x)v( x), 两边积分,得
u( x)v( x)dx u( x)v( x) u( x)v( x)dx.
注 分部积分的关键是把被积表达式 f ( x) 写成 u( x)v( x) 的形式,即如何选取 u,v.
1 2
sin
2t
C
a2 2
arcsin
x a
x a
1 2
a2
arcsin
x a
x
a2
x2
C.
1
x a
2
C
例8 求
dx (a 0). x2 a2
解 设 x a sect, 0 t π , 2
x
dx a sect tan t dt
x2 a2
a tan t
t
sectdt ln | sect tan t | C

cos2
x
sin
xdx
cos2
xd
cos
x
1 3
cos3
x
C
.
凑微分法4:
f ex exdx f ex d ex .
f aex b e xdx 1 f ae x b d ae x b . a f ln x 1 dx f ln xd ln x. x
f a ln x b 1 dx 1 f a ln x bd a ln x b.
(3)若被积函数含有 x2 a2 ,一般令 x a tan t.
例7 求 a2 x2dx (a 0).
解 设 x a sin t, | t | π , 2
a2 x2 dx a cos t d(a sin t)
a2
cos2t
dt
a2 2
(1 cos 2t)dt
a2 2
t
Байду номын сангаас
dt
1 a3
cos2 tdt
1
2a3 (1 cos 2t)dt
x2 a2
x
1 2a 3
(t
sin
t
cos
t)
C
t a
1 2a 3
arctan
x a
ax x2 a2
C.
二、分部积分法
定理8.5 (分部积分法)
若u(x)与v(x)可导, 不定积分 u( x)v( x)dx存在, 则 u( x)v( x)dx 也存在, 且 u( x)v( x)dx u( x)v( x) u( x)v( x)dx.
ln
|
sec
x
tan
x
|
C
.
这两种解法所得结果只是形式上的不同,可以将
它们恒等变形后统一起来.
第二换元积分法
f (u)du f (( x))( x)dx g( x)dx G( x) C
G( 1(u)) C.
(最终不要忘记变量还原).
注 由于第二换元积分法的关键在于选择满足定理
条件的变换 u ( x),从而使的不定积分 g(u)du
xsin x cos x C
类型2 x arctan xdx, x ln xdx, x arcsin xdx
选 v 为 x , u 分别取为 arctan x,ln x,arcsin x.
例13 x3 ln xdx.
解 u ln x,v x3,
u 1 ,v x4 , x4
x3 ln xdx 1 ( x4 ln x x3dx) 4 x4 (4ln x 1) C. 16
b)d (axk1
b).

1 x2
e
1 x
dx.

1
x2
e
1 x
dx
e
1
xd
1 x
令u 1 x
回代 1
eudu eu C e x C .
对换元积分法较熟练后,可以不写出换元变量
u x ,在计算时只需要把 x 视为一个整体
看作一个新的积分变量,可使书写简化. 例如上面几个例子可直接写成
口诀 :反对幂指三(谁在后先就选为 v ),
类型1 xn sin xdx, xn cos xdx, xne xdx
选 u xn,v 分别取为 sin x,cos x,e x
例11 求 x cos xdx.
解 u x,v cos x, u 1,v sin x
x cos xdx xsin x sin xdx
a
a
例 sin5x 8dx.

sin
5
x
8
dx
1 5
sin
5
x
8
d
5
相关文档
最新文档