潮流计算实验

合集下载

实验一电力系统潮流计算

实验一电力系统潮流计算

实验一电力系统潮流计算
一、实验背景
潮流计算是电力系统的基础,也是电力系统优化设计的前提。

它是一种求解受非线性条件制约的线性方程组的数值方法,能够求解电力系统的稳态潮流,即电力系统在其中一种操作或运行状态下的电压、电流大小和方向。

潮流计算可以为电力系统的综合分析、可靠性分析、功率调度、故障分析、电压控制、电源接入分析、调节器诊断、可调装置分析等提供重要的输入参数。

二、实验步骤
(1)系统参数设置:确定潮流计算模型中的系统参数,包括拓扑结构、主变参数以及节点馈电和负荷数据。

(2)特性参数选择:确定潮流计算模型中特性参数,包括电抗器、变压器的损耗参数、电容器的补偿方式以及可调节装置参数等。

(3)潮流程序的编制:根据模型结构,以及确定的参数,编制潮流计算程序。

(4)潮流计算的运行:运行潮流计算程序,得到电力系统中的线路电流、电压、有功、无功等参数。

(5)潮流计算结果分析:分析潮流计算结果,验证潮流计算模型和输入参数的准确性,对电力系统的可靠性进行评价和优化设计。

三、实验过程
此次实验采用PSCAD/EMTDC软件。

仿真潮流实验报告

仿真潮流实验报告

一、实验目的1. 理解电力系统潮流计算的基本原理和方法。

2. 掌握MATLAB/Simulink在电力系统仿真中的应用。

3. 通过仿真实验,验证潮流计算的正确性和实用性。

二、实验原理与内容1. 潮流计算的基本原理潮流计算是电力系统分析的重要手段,用于计算电力系统各节点的电压、相角、功率等参数。

其基本原理如下:(1)根据电力系统的网络结构和参数,建立节点方程和支路方程。

(2)利用节点方程和支路方程,求解节点电压和相角。

(3)根据节点电压和相角,计算各节点的有功功率和无功功率。

2. 仿真实验内容本次仿真实验采用MATLAB/Simulink搭建一个简单的2机5节点电力系统模型,并利用PowerGUI进行潮流计算。

(1)建立电力系统模型首先,在MATLAB/Simulink中搭建电力系统模型,包括发电机、负荷、线路等元件。

根据实验要求,设置发电机参数、负荷参数和线路参数。

(2)潮流计算利用PowerGUI进行潮流计算,设置求解器参数,如迭代次数、收敛精度等。

运行潮流计算,得到各节点的电压、相角、有功功率和无功功率等参数。

(3)结果分析对潮流计算结果进行分析,验证潮流计算的正确性和实用性。

比较不同运行方式下的潮流计算结果,分析系统稳定性。

三、实验方法1. 利用MATLAB/Simulink搭建电力系统模型。

2. 利用PowerGUI进行潮流计算。

3. 对潮流计算结果进行分析。

四、实验步骤1. 启动MATLAB/Simulink,新建一个仿真模型。

2. 在仿真模型中,添加发电机、负荷、线路等元件,设置相应参数。

3. 将搭建好的电力系统模型连接起来,形成一个完整的系统。

4. 打开PowerGUI,选择潮流计算模块。

5. 在潮流计算模块中,设置求解器参数,如迭代次数、收敛精度等。

6. 运行潮流计算,得到各节点的电压、相角、有功功率和无功功率等参数。

7. 对潮流计算结果进行分析,验证潮流计算的正确性和实用性。

五、实验结果与分析1. 潮流计算结果本次仿真实验中,潮流计算结果如下:(1)节点电压:U1=1.02p.u., U2=1.05p.u., U3=1.03p.u., U4=1.00p.u., U5=1.01p.u.(2)节点相角:δ1=0.5°, δ2=1.0°, δ3=0.7°, δ4=0.0°, δ5=0.6°(3)有功功率:P1=100MW, P2=100MW, P3=100MW, P4=100MW, P5=100MW(4)无功功率:Q1=20Mvar, Q2=20Mvar, Q3=20Mvar, Q4=20Mvar, Q5=20Mvar2. 结果分析(1)节点电压和相角在合理范围内,说明潮流计算正确。

基于PSASP的电力系统潮流计算创新实验设计

基于PSASP的电力系统潮流计算创新实验设计

基于PSASP的电力系统潮流计算创新实验设计随着电力系统的发展和现代化建设,对电力系统的安全性、可靠性以及潮流计算的精确度要求越来越高。

基于PSASP的电力系统潮流计算成为了目前电力系统研究的热点之一。

本文将结合实际情况,设计一项基于PSASP的电力系统潮流计算创新实验。

1.实验目的本实验旨在通过设计基于PSASP的电力系统潮流计算创新实验,提高学生对电力系统潮流计算方法的理解,培养学生对电力系统实际工程问题的解决能力,同时激发学生的创新意识和实践能力。

2.实验内容(1)潮流计算的基本原理实验课程将通过讲解和资料介绍的方式,向学生介绍潮流计算的基本原理,包括功率平衡方程、节点电压方程、支路功率方程等,使学生对潮流计算的理论知识有所了解。

(2)PSASP软件介绍随后,学生将学习PSASP软件的基本操作方法,包括建立电网模型、输入数据、设置参数、运行仿真等,使学生熟悉PSASP软件的使用方法,并了解PSASP软件在电力系统潮流计算中的重要作用。

(3)基于PSASP的电力系统潮流计算实验设计接下来,实验将设计一个基于PSASP的电力系统潮流计算实验。

该实验将选取一个具体的电力系统案例,设定不同的工况参数,如负荷增减、风电并网、输变电设备故障等,通过PSASP软件进行潮流计算,分析系统节点电压、支路功率以及其他重要参数的变化规律,并对比不同条件下系统的稳定性和安全性。

(4)实验结果分析与讨论学生将根据实验结果,进行分析与讨论。

结合所学的潮流计算理论知识和PSASP软件的运用,学生将说明不同工况下系统的潮流分布情况,分析系统存在的潜在问题,并提出改进建议,同时讨论潮流计算在实际工程中的应用价值和局限性。

3.实验要求和方法(1)实验要求学生需要具备电力系统分析的基本知识,了解潮流计算的基本原理,熟悉PSASP软件的基本操作方法。

学生需要在实验过程中积极思考、动手操作,主动探索潮流计算的创新方法,提出自己的见解和思考。

BPA潮流计算实验指导书

BPA潮流计算实验指导书

PSD-BPA电力系统分析程序实验1——潮流计算一、实验目的1.了解并掌握电力系统计算机算法的相关原理。

2.了解和掌握PSD-BPA电力系统分析程序稳态分析方法(即潮流计算)。

3.了解并掌握PSD-BPA电力系统分析程序单线图和地理接线图的使用。

二、实验背景随着科学技术的飞速发展,电力系统也在不断地发展,电网通过互联变得越来越复杂,同时也使系统稳定问题越来越突出。

无论是电力系统规划、设计还是运行,对其安全稳定进行分析都是极其重要的。

PSD-BPA软件包主要由潮流和暂稳程序构成,具有计算规模大、计算速度快、数值稳定性好、功能强等特点,已在我国电力系统规划、调度、生产运行及科研部门得到了广泛应用。

本实验课程基于PSD-BPA平台,结合《电力系统分析计算机算法》课程,旨在引导学生将理论知识和实际工程相结合,掌握电力系统稳态、暂态分析的原理、分析步骤以及结论分析。

清晰认知电力系统分析的意义。

三、原理和说明1. 程序算法PSD-BPA电力系统分析程序稳态分析主要是潮流计算,软件中潮流程序的计算方法有P_Q分解法,牛顿_拉夫逊法,改进的牛顿-拉夫逊算法。

采用什么算法以及迭代的最大步数可以由用户指定。

注:采用P-Q分解法和牛顿-拉夫逊法相结合,以提高潮流计算的收敛性能,程序通常先采用P-Q分解法进行初始迭代,然后再转入牛顿-拉夫逊法求解潮流。

2. 程序主要功能可进行交流系统潮流计算,也可进行包括双端和多端直流系统的交直流混合潮流计算。

除了潮流计算功能外,该软件还具有自动电压控制、联络线功率控制、系统事故分析(N-1开断模拟)、网络等值、灵敏度分析、节点P -V、Q-V和P-Q曲线、确定系统极限输送水平、负荷静特性模型、灵活多样的分析报告、详细的检错功能等功能。

3. 输入、输出相关文件*.dat 潮流计算数据文件*.bse 潮流计算二进制结果文件(可用于潮流计算的输入或稳定计算)*.pfo 潮流计算结果文件*.map 供单线图格式潮流图及地理接线图格式潮流图程序使用的二进制结果文件*.pff,*.pfd 中间文件(正常计算结束后将自动删除。

潮流计算实训报告

潮流计算实训报告

一、实训目的本次实训旨在通过实际操作,加深对电力系统潮流计算理论和方法的理解,掌握电力系统潮流计算的基本步骤和常用算法,提高解决实际电力系统运行问题的能力。

二、实训内容1. 实训背景实训选取我国某地区典型电力系统进行潮流计算,该系统包含若干发电厂、变电站、输电线路和负荷,采用双绕组变压器和单相交流系统。

2. 实训步骤(1)建立电力系统模型根据实训提供的系统参数,建立电力系统节点、支路和设备模型,包括节点电压、支路阻抗、变压器变比、负荷等。

(2)选择潮流计算方法本实训采用牛顿-拉夫逊法进行潮流计算,该方法适用于大型电力系统计算,收敛速度快,精度高。

(3)编写潮流计算程序利用编程语言(如MATLAB、Python等)编写潮流计算程序,实现牛顿-拉夫逊法的基本步骤,包括计算雅可比矩阵、求解修正方程等。

(4)进行潮流计算运行潮流计算程序,对电力系统进行潮流计算,得到各节点电压、支路电流、功率损耗等数据。

(5)分析计算结果对计算结果进行分析,包括节点电压是否满足要求、支路电流是否越限、功率损耗是否合理等。

3. 实训结果(1)节点电压通过潮流计算,得到各节点电压值,并与设计要求进行比较。

结果显示,大部分节点电压满足要求,但部分节点电压略低于设计值,需进一步分析原因。

(2)支路电流计算各支路电流,并与额定电流进行比较。

结果显示,大部分支路电流未超过额定电流,但部分支路电流接近额定值,需注意运行安全。

(3)功率损耗计算系统总功率损耗,并与设计值进行比较。

结果显示,系统功率损耗略高于设计值,需优化运行方式,降低损耗。

三、实训总结1. 实训收获通过本次实训,我对电力系统潮流计算有了更深入的理解,掌握了牛顿-拉夫逊法的基本原理和编程实现方法。

同时,提高了分析电力系统运行问题的能力。

2. 实训体会(1)电力系统潮流计算是电力系统运行、规划、设计等方面的重要基础,掌握潮流计算方法对电力系统工作人员具有重要意义。

(2)编程能力在电力系统潮流计算中发挥着重要作用,熟练掌握编程语言有助于提高工作效率。

psasp潮流计算实验说明-2014

psasp潮流计算实验说明-2014

PSASP 潮流计算实验一、实验目的理解电力系统分析中潮流计算的相关概念,掌握用PSASP 软件对系统潮流进行计算的过程。

学会在文本方式下和图形方式下的对潮流计算结果进行分析。

二、预习要求复习《电力系统分析》中有关潮流计算的内容,了解有关潮流计算的功能,理解常用潮流计算方法,了解PQ 、PV 和V θ(平衡节点,在PSASP 中称为Slack 节点)的设置。

三、实验内容(一) PSASP 潮流计算概述潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。

通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。

待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。

PSASP 潮流计算的流程和结构如下图所示:潮流计算各种计算公共部分图形方式文本方式以一个图所示9节点系统为例,计算其在常规、规划两种运行方式下的潮流。

规划运行方式即在常规运行方式下,其中接于一条母线(STNB-230)处的负荷增加,对原有电网进行改造后的运行方式,具体方法为:在母线GEN3-230和STNB-230之间增加一回输电线,增加发电机3的出力及其出口变压器的容量,新增或改造的元件如下图虚线所示。

(二)数据准备1. 指定数据目录及基准容量双击PSASP图标,弹出PSASP封面后,按任意键,即进入PSASP主画面:在该画面中,要完成的工作如下:(1)指定数据目录第一次可通过“创建数据目录”按钮,建立新目录,如:F:\CLJS。

以后可通过“选择数据目录”按钮,选择该目录。

(2)给定系统基准容量系统基准容量项中,键入该系统基准容量,如100MVA。

建立了数据之后,该数不要轻易改动。

2. 录入系统潮流计算数据基础数据(系统参数)如下:母线名基准电压(kV) 所属区域电压上限电压下限发电1 16.500 2 18.150 14.850 发电2 18.000 1 19.800 16.200 发电3 13.800 1 15.180 12.420 GEN1-230 230.000 2 253 207 GEN2-230 230.000 1(5)负荷数据母线名所属数据组母线类型单位P Q电压幅值电压相角STNA-230 常规PQ p.u. 1.250 0.050 0.00 0.00 STNB-230 常规PQ p.u. 0.900 0.300 0.00 0.00 STNC-230 常规PQ p.u. 1.000 0.350 0.00 0.00 STNB-230 新建PQ p.u. 1.500 0.300 0.00 0.00 (6)区域数据区域名区域号区域-1 1区域-2 2在PSASP主画面中,点击“图形支持环境”按钮,进入图形支持环境,再点击“编辑模式”按钮,即进入系统单线图编辑窗口,分别录入系统母线、交流线、变压器、发电机和负荷的数据,以下以变压器为例:注意:变压器是发I侧为标准侧, I、J侧互换后,变压器的等效π型等值电路不同,故其I、J侧不能互换。

psasp潮流计算实验

psasp潮流计算实验

PSASP 潮流计算实验一、实验目的理解电力系统分析中潮流计算的相关概念,掌握用PSASP 软件对系统潮流进行计算的过程。

学会在文本方式下和图形方式下的对潮流计算结果进行分析。

二、预习要求复习《电力系统分析》中有关潮流计算的内容,了解有关潮流计算的功能,理解常用潮流计算方法,了解PQ 、PV 和V θ(平衡节点,在PSASP 中称为Slack 节点)的设置。

三、实验内容(一) PSASP 潮流计算概述潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。

通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。

待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。

PSASP 潮流计算的流程和结构如下图所示:潮流计算各种计算公共部分图形方式文本方式以一个图所示9节点系统为例,计算其在常规、规划两种运行方式下的潮流。

规划运行方式即在常规运行方式下,其中接于一条母线(STNB-230)处的负荷增加,对原有电网进行改造后的运行方式,具体方法为:在母线GEN3-230和STNB-230之间增加一回输电线,增加发电机3的出力及其出口变压器的容量,新增或改造的元件如下图虚线所示。

(二)数据准备1. 指定数据目录及基准容量双击PSASP图标,弹出PSASP封面后,按任意键,即进入PSASP主画面:在该画面中,要完成的工作如下:(1)指定数据目录第一次可通过“创建数据目录”按钮,建立新目录,如:F:\CLJS。

以后可通过“选择数据目录”按钮,选择该目录。

(2)给定系统基准容量系统基准容量项中,键入该系统基准容量,如100MVA。

建立了数据之后,该数不要轻易改动。

2. 录入系统潮流计算数据基础数据(系统参数)如下:母线名基准电压(kV) 所属区域电压上限电压下限发电1 16.500 2 18.150 14.850 发电2 18.000 1 19.800 16.200 发电3 13.800 1 15.180 12.420 GEN1-230 230.000 2 253 207 GEN2-230 230.000 1母线名所属数据组母线类型单位P Q电压幅值电压相角STNA-230 常规PQ p.u. 1.250 0.050 0.00 0.00 STNB-230 常规PQ p.u. 0.900 0.300 0.00 0.00 STNC-230 常规PQ p.u. 1.000 0.350 0.00 0.00 STNB-230 新建PQ p.u. 1.500 0.300 0.00 0.00 (6)区域数据区域名区域号区域-1 1区域-2 2在PSASP主画面中,点击“图形支持环境”按钮,进入图形支持环境,再点击“编辑模式”按钮,即进入系统单线图编辑窗口,分别录入系统母线、交流线、变压器、发电机和负荷的数据,以下以变压器为例:注意:变压器是发I侧为标准侧, I、J侧互换后,变压器的等效π型等值电路不同,故其I、J侧不能互换。

潮流计算实验

潮流计算实验

PSASP 潮流计算一、实验目的理解电力系统分析中潮流计算的相关概念,掌握用PSASP 软件对系统潮流进行计算的过程。

学会在文本方式下和图形方式下的对潮流计算结果进行分析。

二、预习要求复习《电力系统分析》中有关潮流计算的内容,了解有关潮流计算的功能,理解常用潮流计算方法,了解PQ、PV和Vθ(平衡节点,在PSASP中称为Slack节点)的设置。

三、实验内容(一) PSASP 潮流计算概述潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。

通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。

待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。

PSASP 潮流计算的流程和结构如下图所示:潮流计算各种计算公共部分文本方式图形方式结果的编辑和输出计算结果库执行计算图形方式文本方式计算作业的定义(运行方式和计算控制)方案定义(电网结构)文本方式图形方式用户自定义模型库电网基础数据库图形方式文本方式数据录入和编辑以一个图所示9节点系统为例,计算其在常规、规划两种运行方式下的潮流。

规划运行方式即在常规运行方式下,其中接于一条母线(STNB-230)处的负荷增加,对原有电网进行改造后的运行方式,具体方法为:在母线GEN3-230和STNB-230之间增加一回输电线,增加发电机3的出力及其出口变压器的容量,新增或改造的元件如下图虚线所示。

(二) 数据准备1. 指定数据目录及基准容量双击PSASP图标,弹出PSASP封面后,按任意键,即进入PSASP主画面:在该画面中,要完成的工作如下:(1) 指定数据目录第一次可通过“创建数据目录” 按钮,建立新目录,如:C:\CLJS。

以后可通过“选择数据目录”按钮,选择该目录。

(2) 给定系统基准容量系统基准容量项中,键入该系统基准容量,如100MVA。

电力系统分析综合实验一:潮流计算实验

电力系统分析综合实验一:潮流计算实验

电力系统分析综合实验一:潮流计算实验课程名称:电力系统分综合实验指导老师:成绩:实验名称:潮流分析实验实验类型:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求通过本实验熟悉PSCAD仿真软件,了解电力系统有功、无功的概念,掌握简单的潮流计算二、原理与说明(1)PSCAD/EMTDC是加拿大马尼托巴高压直流研究中心(ManitobaHVDCResearchCenter)推出的一款电力系统电磁暂态仿真软件。

EMTDC (ElectroMagneticTransientinDCSystem)是一种电力系统仿真分析软件,既可以研究交直流电力系统问题,又能完成电力电子仿真及其非线性控制的多功能工具。

PSCAD(PowerSystemComputerAidedDesign)是EMTDC的用户图形界面,也是EMTDC的图形用户接口,它的存在是为了更方便用户使用EMTDC。

PSCAD的开发成功,使得用户能更方便地使用EMTDC进行电力系统分析,使电力系统复杂部分可视化成为可能,而且软件可以作为实时数字仿真器的前置端。

用PSCAD进行潮流计算的时候要注意:①选取元件的时候,须辨别元件的属性,例如电源是三相还是单相;②设置元件参数时,要注意参数的物理意义③注意测量信号的方向④将多个曲线绘制在一张图表上时,须选取合适的范围,将单位标注清楚。

(2)三节点单相实验系统介绍在PSCAD界面搭建一个系统为50Hz的单相系统,如下图所示参数如下:G1:理想电压电源,100kVRMS,相角为0,频率为50HzG2:理想电压电源,100kVRMS,相角为60,频率为50HzG3:理想电压电源,100kVRMS,相角为30,频率为50HzX1:频率为50Hz的条件下,感抗为2X2:频率为50Hz的条件下,感抗为2X3:频率为50Hz的条件下,感抗为3X4:频率为50Hz的条件下,感抗为3X5:频率为50Hz的条件下,感抗为4X6:频率为50Hz的条件下,感抗为4Xline1:频率为50Hz的条件下,感抗为40Xline2:频率为50Hz的条件下,感抗为20Xline3:频率为50Hz的条件下,感抗为20仿真设置:电源:电压源输出坡至1.0p.u.的时间:0.05s仿真过程总时长:1s (确保仿真过程达到稳态)仿真步长:=50s(3)并联电容器并联电容器又称为移相电容器,是电力系统中一种重要的无功功率补偿设备,广泛地应用于改善负荷的功率因数。

潮流计算实验报告分析

潮流计算实验报告分析

一、实验背景与目的电力系统潮流计算是电力系统分析中的一个重要环节,它通过对电力系统网络中功率和电压的分布进行计算,以评估系统的运行状态。

本实验旨在通过实际操作,加深对电力系统潮流计算原理和方法的理解,并掌握使用PSASP、ETAP等软件进行潮流计算的基本技能。

二、实验原理与方法1. 基本原理潮流计算主要基于基尔霍夫电流定律和基尔霍夫电压定律,通过求解电力系统网络中的功率和电压分布,得到各节点电压、线路电流和设备功率等参数。

2. 计算方法常用的潮流计算方法包括牛顿-拉夫逊法、快速分解法、迭代法等。

本实验采用牛顿-拉夫逊法进行潮流计算。

3. 实验步骤(1)建立电力系统网络模型,包括节点、线路、变压器等元件;(2)设置各节点电压初始值和负荷功率;(3)计算网络中各支路功率和节点电压,判断是否满足功率平衡和电压平衡;(4)根据功率平衡和电压平衡条件,修正节点电压,重复步骤(3)直至满足收敛条件。

三、实验过程与结果分析1. 实验数据本实验采用某实际电力系统网络进行计算,网络包括10个节点、15条线路和3个变压器。

2. 实验步骤(1)根据实验数据,建立电力系统网络模型;(2)设置各节点电压初始值和负荷功率;(3)使用PSASP软件进行潮流计算;(4)分析计算结果,包括节点电压、线路电流和设备功率等。

3. 结果分析(1)节点电压分布合理,各节点电压满足运行要求;(2)线路电流分布均匀,线路负载率在合理范围内;(3)设备功率分配合理,满足电力系统运行需求。

四、实验总结与讨论1. 实验总结本实验通过实际操作,加深了对电力系统潮流计算原理和方法的理解,掌握了使用PSASP软件进行潮流计算的基本技能。

2. 讨论(1)实验中,节点电压初始值设置对计算结果有较大影响,需要根据实际情况进行设置;(2)潮流计算结果受网络拓扑结构、元件参数和负荷分布等因素的影响,需要综合考虑;(3)在实际工程应用中,应根据具体情况选择合适的潮流计算方法,以保证计算结果的准确性和可靠性。

psasp潮流计算实验心得体会

psasp潮流计算实验心得体会

psasp潮流计算实验心得体会
开始实验的前几天,我每一个下午都要来到电脑室里做潮流计算实验。

开始只不过随便乱填一些数字进去,也没什么多大关系,就那样糊弄着过了十几分钟。

可当我第二次拿起纸笔认真地计算出来之后,却发现原本杂乱无章、毫无规律的算式有了很清晰明朗的脉络。

经过反复思考和比较,终于得出结论:这其中主要归功于潮流计算软件所提供的各种辅助线图标。

当时觉得,自己掌握了计算机语言的某种奥秘。

接下来又上网查阅了很多相关资料,才知道它叫“潮流计算”。

潮流计算通俗易懂,简单而方便,对于初学者来说,既容易操作又快捷,还能够帮助我们理解如何正确使用计算机语言。

所以,在我眼里,潮流计算俨然成为我的“良师益友”!刚开始的几天内,我先熟悉了
潮流计算软件的界面及功能键设置。

经过研究和练习,我渐渐找到了窍门儿——一切尽在手指间,让计算变得轻松愉悦!虽然这些天来我花费了很长的时间去琢磨怎样输入数据,但是并未感觉枯燥乏味。

因为这项工程量浩繁庞大的任务,总会被潮流计算轻巧灵活的编排所征服。

- 1 -。

电力网潮流计算实训报告

电力网潮流计算实训报告

一、实训目的本次电力网潮流计算实训旨在使学生掌握电力系统潮流计算的基本原理和方法,提高学生对电力系统运行状态的分析能力,培养学生运用所学知识解决实际问题的能力。

通过实训,使学生能够熟练运用MATLAB等工具进行电力系统潮流计算,并能够根据计算结果对电力系统运行状态进行分析和评价。

二、实训内容1. 电力系统潮流计算的基本原理电力系统潮流计算是一种分析电力系统稳态运行状态的方法,其主要任务是确定电力系统中各节点的电压、电流和功率分布。

电力系统潮流计算的基本原理如下:(1)节点电压方程:根据节点电压和注入功率之间的关系,建立节点电压方程。

(2)支路功率方程:根据支路两端电压和电流之间的关系,建立支路功率方程。

(3)潮流计算方法:采用迭代方法求解节点电压方程和支路功率方程,得到电力系统中各节点的电压、电流和功率分布。

2. 电力系统潮流计算实训本次实训以MATLAB为工具,进行电力系统潮流计算。

实训步骤如下:(1)建立电力系统模型:根据实训要求,建立电力系统模型,包括节点、支路、变压器等。

(2)设置电力系统参数:根据电力系统模型,设置各节点的注入功率、支路参数、变压器参数等。

(3)进行潮流计算:运用MATLAB中的电力系统分析工具箱(Power System Toolbox)进行潮流计算。

(4)分析计算结果:对潮流计算结果进行分析,包括节点电压、电流、功率分布、网络损耗等。

三、实训结果与分析1. 潮流计算结果通过潮流计算,得到以下结果:(1)节点电压:各节点电压的幅值和相角。

(2)电流:各支路电流的幅值和相角。

(3)功率分布:各支路的有功功率和无功功率。

(4)网络损耗:电力系统中的网络损耗。

2. 结果分析(1)节点电压分析:分析各节点电压是否满足要求,是否存在过电压或欠电压现象。

(2)电流分析:分析各支路电流是否满足要求,是否存在过载现象。

(3)功率分布分析:分析电力系统中功率分布是否合理,是否存在不平衡现象。

潮流计算实验报告

潮流计算实验报告

潮流计算实验报告潮流计算实验报告潮流计算是电力系统运行中的重要工具,用于分析电力系统中各节点的电压、功率等参数,以确保电力系统的稳定运行。

本次实验旨在通过潮流计算方法,对一个简化的电力系统进行分析,探讨电力系统的稳定性和可靠性。

1. 实验背景电力系统是一个复杂的网络,由发电厂、输电线路、变电站和用户组成。

在电力系统中,电流和电压的分布是非常重要的,因为它们直接影响到电力系统的稳定性和可靠性。

潮流计算是一种基于电力系统的拓扑结构和电气参数,通过求解节点电压和功率的方程组,来分析电力系统中各节点的电压、功率等参数的方法。

2. 实验目的本次实验的目的是通过潮流计算方法,对一个简化的电力系统进行分析,了解电力系统的稳定性和可靠性。

具体目标包括:- 分析电力系统中各节点的电压、功率等参数;- 研究电力系统中负荷变化对电压和功率的影响;- 探讨电力系统中的潮流分布情况。

3. 实验过程本次实验采用Matlab软件进行潮流计算。

首先,根据给定的电力系统拓扑结构和电气参数,建立电力系统的节点电压和功率方程组。

然后,通过求解该方程组,得到电力系统中各节点的电压和功率等参数。

最后,根据求解结果,分析电力系统中的潮流分布情况。

4. 实验结果通过潮流计算,得到了电力系统中各节点的电压和功率等参数。

根据实验结果,可以得出以下结论:- 在电力系统中,电压和功率的分布是不均匀的,不同节点的电压和功率存在差异;- 负荷变化会对电力系统中的电压和功率产生影响,负荷增加会导致电压下降,功率增加;- 电力系统中存在潮流集中的现象,即部分节点的潮流较大,而其他节点的潮流较小。

5. 实验分析通过对实验结果的分析,可以得出以下结论:- 电力系统中的电压和功率分布不均匀,这是由于电力系统中各节点的拓扑结构和电气参数的差异所导致的;- 负荷变化对电力系统的稳定性和可靠性具有重要影响,负荷增加会导致电力系统中的电压下降,功率增加,从而可能引发电力系统的故障;- 电力系统中的潮流集中现象可能会导致部分节点的负荷过载,从而影响电力系统的稳定运行。

实验一,二PSSE潮流计算

实验一,二PSSE潮流计算
Newton-Raphson 的所有优点,并且每 一次迭代的计算量比牛顿法大大减 少。
1. 收敛速度快,若选择到一个较好
1. 只 具 有 一 次 收 敛 性 , 因 此 要 求 的 迭 代 次 数 比 Fixed slope decoupled 牛顿法多。
2.只适用于高压网的潮流计算, 对中、低压网进行计算时可能不
进入潮流仿真界面后,在文件菜单中选择 Open,选择文件类型 Power Flow Raw Data File(*.raw), 然后在打开步骤 3 中的数据文件。
5.选择潮流计算方法,进行潮流计算,计算结果见实验数据。 6.绘制系统仿真接线图。 四.实验数据 利用软件进行计算的方法选择界面如下图 2 所示:
1.启动 PSS/E,输入实验参数 输入的试验参数如下图所示:
图 1.1 bus 原始数据
Hale Waihona Puke 图 1.2 load 原始数据
图 1.3 machine 原始数据
图 1.4 plant 原始数据 图 1 原始实验参数
3.保存原始数据到指定目录,并关闭 PSS/E 软解界面。 4.再次打开 PSS/E 软件,导入步骤 3 中保存的数据文件.。
系。
六.实验总结 通过本次试验,我进一步重温了电力系统的潮流计算方法,学会了下载,安装和简单使用 PSS/E
软件进行潮流计算的方法和步骤。并通过实验结果和查阅资料对各种潮流计算方法有了更进一步的 认识。
实验一,二 利用 PSS/E 软件进行电力系统潮流计算及仿真
一.实验目的 对电力系统正常运行状态的分析和计算,及电力系统中的电压、电流、功率的计算,即潮流计
算: 1.掌握电网的潮流计算。 2.学会利用 PSS/E 软件进行电力系统潮流计算。 3.学会分析潮流计算结果

PQ分解法潮流计算实验

PQ分解法潮流计算实验

xxxx实验报告学生姓名:学号:专业班级:实验类型:□验证□综合■设计□创新实验日期: 2010.10.16 实验成绩:一、实验项目名称P-Q分解法潮流计算实验二、实验目的与要求:目的:电力系统分析的潮流计算是电力系统分析的一个重要的部分。

通过对电力系统潮流分布的分析和计算,可进一步对系统运行的安全性,经济性进行分析、评估,提出改进措施。

电力系统潮流的计算和分析是电力系统运行和规划工作的基础。

潮流计算是指对电力系统正常运行状况的分析和计算。

通常需要已知系统参数和条件,给定一些初始条件,从而计算出系统运行的电压和功率等;潮流计算方法很多:高斯-塞德尔法、牛顿-拉夫逊法、P-Q分解法、直流潮流法,以及由高斯-塞德尔法、牛顿-拉夫逊法演变的各种潮流计算方法。

本实验采用P-Q分解法进行电力系统分析的潮流计算程序的编制与调试,获得电力系统中各节点电压,为进一步进行电力系统分析作准备。

通过实验教学加深学生对电力系统潮流计算原理的理解和计算,初步学会运用计算机知识解决电力系统的问题,掌握潮流计算的过程及其特点。

熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。

要求:编制调试电力系统潮流计算的计算机程序。

程序要求根据已知的电力网的数学模型(节点导纳矩阵)及各节点参数,完成该电力系统的潮流计算,要求计算出节点电压、功率等参数。

三、主要仪器设备及耗材每组计算机1台、相关计算软件1套四、实验内容:1.理论分析:P-Q分解法是从改进和简化牛顿法潮流程序的基础上提出来的,它的基本思想是:把节点功率表示为电压向量的极坐标方程式,抓住主要矛盾,以有功功率误差作为修正电压向量角度的依据,以无功功率误差作为修正电压幅值的依据,把有功功率和无功功率迭代分开来进行。

牛顿法潮流程序的核心是求解修正方程式,当节点功率方程式采取极坐标系统时,修正方程式为:⎥⎦⎤⎢⎣⎡∆∆⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∆∆V V L N J H Q P /δ 或展开为:VV L J Q VV N H P //∆⋅+∆⋅=∆∆⋅+∆⋅=∆δδ (4)以上方程式是从数学上推倒出来的,并没有考虑电力系统这个具体对象的特点。

电力系统潮流计算实验报告

电力系统潮流计算实验报告

11. 手算过程已知:节点1:PQ 节点, s(1)= -0.5000-j0.3500 节点2:PV 节点, p(2)=0.4000 v(2)=1.0500 节点3:平衡节点,U(3)=1.0000∠0.0000 网络的连接图:0.0500+j0.2000 1 0.0500+j0.2000231)计算节点导纳矩阵由2000.00500.012j Z 71.418.112j y ;2000.00500.013j Z71.418.113j y ;导纳矩阵中的各元素:42.936.271.418.171.418.1131211j j j y y Y ;71.418.11212j y Y ; 71.418.11313j y Y; 21Y 71.418.11212j y Y ; 71.418.12122j y Y;002323j y Y;31Y 71.418.11313j y Y; 32Y 002323j y Y;71.418.13133j y Y;形成导纳矩阵BY :71.418.10071.418.10071.418.171.418.171.418.171.418.142.936.2j j j j j j j j j Y B2)计算各PQ、PV 节点功率的不平衡量,及PV 节点电压的不平衡量:取:000.0000.1)0(1)0(1)0(1j jf e U000.0000.1)0(2)0(2)0(2j jf e U节点3是平衡节点,保持000.0000.1333j jf e U为定值。

nj j jij jij ijij jij i ieB fG f fB eG e P1)0()0()0()0()0()0()0(;2nj j jij jij ijij jij i ie B fG e f B eG f Q 1)0()0()0()0()0()0()0(;);(2)0(2)0(2)0(iiif e U)0.142.90.036.2(0.0)0.042.90.136.2(0.1)0(1P)0.171.40.018.1(0.0)0.071.40.118.1(0.1 )0.171.40.018.1(0.0)0.071.40.118.1(0.1 0.0 ;)0.142.90.036.2(0.1)0.042.90.136.2(0.0)0(1Q)0.171.40.018.1(0.1)0.071.40.118.1(0.0 )0.171.40.018.1(0.1)0.071.40.118.1(0.0 0.0 ;)0.171.40.018.1(0.0)0.071.40.118.1(0.1)0(2P)0.171.40.018.1(0.0)0.071.40.118.1(0.1 )0.00.00.00.0(0.0)0.10.00.10.0(0.1 0.0 ;101)(222)0(22)0(22)0(2f e U;于是:;)0()0(iiiP P P ;)0()0(iiiQQ Q);(2)0(2)0(22)0(iiiif e UU5.00.05.0)0(11)0(1P P P ;35.00.035.0)0(11)0(1QQ Q;4.00.04.0)0(22)0(2P P P ;1025.0)01(05.1)(2222)0(22)0(2222)0(2f e UU3)计算雅可比矩阵中各元素雅可比矩阵的各个元素分别为:3ji ij ji ij j i ij j i ij ji ij j i ij e U S f U R e Q L f Q J e P N f P H 22;;; 又: nj j jij jij i jij jij i ieB fG f fB eG e P1)0()0()0()0()0()0()0(; nj j jij jij ijij jij iieB fG e fB eG f Q 1)0()0()0()0()0()0()0(;);(2)0(2)0(2)0(iiif e U)0(1P )0(111)0(111)0(1)0(111)0(111)0(1e Bf G f f B e G e)0(212)0(212)0(1)0(212)0(212)0(1e B fG f f B e G e313313)0(1313313)0(1e Bf G f f B e G e ;)()()0(111)0(111)0(1)0(111)0(111)0(1)0(1e Bf Ge f B e G f Q)()()0(212)0(212)0(1)0(212)0(212)0(1e Bf G e f B e G f)()(313313)0(1313313)0(1e Bf G e f B e G f;)0(2P )0(121)0(121)0(2)0(121)0(121)0(2e Bf G f f B e G e)0(222)0(222)0(2)0(222)0(222)0(2eB fG f fBeG e323323)0(2323323)0(2e Bf G f f B e G e ;)(2)0(22)0(22)0(2f e U42.90.171.40.171.4313)0(212)0(1)0(1)0(11e B e Bf P H ; 36.20.118.10.118.10.136.222313)0(212)0(111)0(1)0(1)0(11 e G e G e G e P N 36.20.118.10.118.1313)0(212)0(1)0(1)0(11 e G e G f Q J442.90.171.40.171.40.142.922313)0(212)0(111)0(1)0(1)0(11 e B e B e B e Q L 71.40.171.4)0(112)0(2)0(1)0(12 e B f P H ; 18.10.118.1)0(112)0(2)0(1)0(12 e G e P N ; 18.10.118.1)0(112)0(2)0(1)0(12 e G f Q J ;71.40.171.4)0(112)0(2)0(1)0(12 e B e Q L ; 71.40.171.4)0(221)0(1)0(2)0(21 e B f P H ; 11.40.111.4)0(221)0(1)0(2)0(21 e G e P N ; 0)0(12)0(2)0(21 f U R ; 0)0(12)0(2)0(21 e U S ; 71.40.10.00.171.4323)0(121)0(2)0(2)0(22 e B e B f P H ; 18.10.10.00.118.10.118.122323)0(121)0(222)0(2)0(2)0(22 e G e G e G e P N ;02)0(2)0(22)0(2)0(22 f f U R ; 0.20.122)0(2)0(22)0(2)0(22 e e U S ; 得到K=0时的雅可比矩阵:0.200018.171.418.171.471.418.142.936.218.171.436.242.9)0(J4)建立修正方程组:5)0(2)0(2)0(1)0(10.200011.4959.1011.4959.10959.1011.4918.2122.811.4959.1022.8918.210975.04.035.08.0e f e f 解得:04875.001828.00504.00176.0)0(2)0(2)0(1)0(1e f e f 因为 )0()0()1(iiie e e ; )0()0()1(iiif f f ;所以 9782.00218.00.1)0(1)0(1)1(1e e e ; 0158.00158.00)0(1)0(1)1(1f f f ;05125.105125.00.1)0(2)0(2)1(2e e e ;05085.005085.00)0(2)0(2)1(2f f f ;5)运用各节点电压的新值进行下一次迭代:即取: 0158.09782.0)1(1)1(1)1(1j jf e U05085.005125.1)1(2)1(2)1(2j jf e U节点3时平衡节点,保持000.0000.1333j jf e U为定值。

电力系统潮流运算实验1

电力系统潮流运算实验1

电气工程学院电力系统试验——电力系统运行方式及潮流计算分析姓名:陈怀鑫学号:09272001班级:电气0906实验一电力系统运行方式及潮流分析实验一、实验目的1、掌握电力系统主接线电路的建立方法2、掌握辐射形网络的潮流计算方法;3、比较计算机潮流计算与手算潮流的差异;4、掌握不同运行方式下潮流分布的特点。

二、实验内容1、辐射形网络的潮流计算;2、不同运行方式下潮流分布的比较分析三、实验方法和步骤1、辐射形网络主接线系统的建立G1:300+j180MVA(平衡节点);变压器B1:Sn=360MVA,变比=18/121,Uk%=14.3%,Pk=230KW,P0=150KW,I0/In=1%;变压器B2、B3:Sn=15MVA,变比=110/11 KV,Uk%=10.5%,Pk=128KW,P0=40.5KW,I0/In=3.5%;负荷F1:20+j15MVA;负荷F2:28+j10MVA;线路L1、L2:长度:80km,电阻:0.21Ω/km,电抗:0.416Ω/km,电纳:2.74×10-6S/km。

辐射形网络主接线图2、辐射形网络的潮流计算(1)调节发电机输出电压,使母线A的电压为117KV,运行DDRTS进行系统潮流计算,在监控图页上观察计算结果,并填入下表(单位MVar):(2)手算潮流:变压器B2(B3),线路L1(L2)的潮流计算:Slb B B lx lr L L L L L L 4621212110192.21074.28028.33416.080X X 8.1621.080R R --⨯=⨯⨯===Ω=⨯===Ω⨯=⨯===所以,S4L1L L1L L1L 10384.4B 2B 64.16X 5.0X 4.8R 5.0R -⨯==Ω==Ω==Ω=⨯⨯⨯⨯=⨯⨯⋅==Ω=⨯⨯⨯=⨯==7.84100010151001105.1010100%X X 88355.61000)1015(11012810R R 32322123232221N N K T T N N K T T S V V S V P所以,Ω==Ω==35.42X 5.0X 44177.3R 5.0R T1T T1T变压器并联支路的功率损耗为:MVA05.1081.010********10151005.3105.40(2)100%P 2S 233233000T )())((j j S I jN +=⨯⨯⨯⨯⨯+⨯⨯=⋅+⨯=∆- 线路并联支路的功率损耗为:MVarj j B jV L N 65232.2210384.4)10110(2Q 4232L -=⨯⨯⨯-=⋅-=∆- 所以,母线B 处的运算负荷为:MVA j j j j S Q T L )39768.8081.28(05.1081.065232.21028S S 0LD1'LD1+=++-+=∆+∆+=变压器功率损耗为:MVAj jX R V T T NLD LD )1875.21777.0()(QP S 22222T +=++=∆所以,MVA j S S S T LD )58518.2525877.48(S 2'1LD L +=∆++=末 线路功率损耗为:MVA j jQ R V L L N)102944.4071198.2()(Q P S 22L 2L L +=++=∆末末所以,MV A )688124.29329974.50S S S L L A j +=+∆=(末 所以,线路电压损耗为:kV V A972.7X Q R P V LA L A L =+=∆所以,变压器上的电压损耗为:kV V B3131.7X Q R P V TB T B T =+=∆所以,V k 1715.1011011V V V T B C =⨯∆-=)( (3)计算比较误差分析kV 028.109972.7117V V V L A B =-=∆-=经比较,手算结果与计算机仿真结果相差不大。

电力系统计算机辅助潮流计算--实验报告(DOC)

电力系统计算机辅助潮流计算--实验报告(DOC)

(电力系统计算机辅助潮流计算实验报告学 号: 2007学生姓名: 学 院:电力学院 系 别:电力系 专 业:电气工程及其自动化二〇一一年十二月(2011-2012学年第一学期)1、实验目的:了解计算机潮流分析的基本原理、主要步骤;掌握节点导纳矩阵形成和修改的方法,掌握数据处理的基本方法;熟悉Matlab运行环境,了解Matlab基本编程语句和语法;运用潮流分析程序对给定网络的运行方式做潮流分析,并初步分析计算结果2、实验要求:通过预习,对计算机潮流分析基本理论有深入了解;为程序准备必要的、准确的原始数据;熟悉Matlab运行环境,输入潮流程序,上机独立完成程序的调试,给出潮流分析的结果并按要求绘制潮流分布图3、实验内容:输入网络参数,包括节点号、节点导纳矩阵、节点功率等;输入潮流程序、调试并输出结果,绘制潮流分布图4、实验步骤:1、熟悉原始资料:根据计算要求,整理数据,包括:计算网络中线路、变压器的参数、形成节点导纳矩阵;表示各节点的注入功率。

(以上数据均采用有名值计算)2、读通潮流程序:完成程序的解释和说明,必要时附加对应的公式和程序语言的说明3、上机调试:熟悉Matlab的运行环境,准确输入原始数据、节点编号、节点注入功率等信息4、整理计算结果:根据计算结果作电网潮流分布图原始网络:5、实验数据及处理:一、实验程序:clearG(1,1)=;B(1,1)=;G(1,2)=;B(1,2)=;G(1,3)=0;B(1,3)=0;G(1,4)=;B(1,4)=;G(1,5)=0;B(1,5)=0;G(2,1)=;B(2,1)=;G(2,2)=;B(2,2)=;G(2,3)=;B(2,3)=5;G(2,4)=;B(2,4)=5;G(2,5)=-5;B(2,5)=15;G(3,1)=0;B(3,1)=0;G(3,2)=;B(3,2)=5;G(3,3)=;B(3,3)=;G(3,4)=-10;B(3,4)=30;G(3,5)=;B(3,5)=;G(4,1)=;B(4,1)=;G(4,2)=;B(4,2)=5;G(4,3)=-10;B(4,3)=30;G(4,4)=;B(4,4)=;G(4,5)=0;B(4,5)=0;G(5,1)=0;B(5,1)=0;G(5,2)=-5;B(5,2)=15;G(5,3)=;B(5,3)=;G(5,4)=0;B(5,4)=0;G(5,5)=;B(5,5)=;Y=G+j*B %形成节点导纳矩阵delt(1)=0;delt(2)=0;delt(3)=0; delt(4)=0;u(1)=;u(2)=;u(3)=;u(4)=; ps(1)=;qs(1)=;ps(2)=;qs(2)=;ps(3)=;qs(3)=; ps(4)=;qs(4)=; %设迭代初值k=1;precision=1 %设迭代次数和精度N1=4; %PQ节点数while precision> %判断是否满足精度要求delt(5)=0;u(5)=; %给定平衡节点编号for m=1:N1for n=1:N1+1pt(n)=u(m)*u(n)*(G(m,n)*cos(delt(m)-delt(n))+B(m,n)*sin(delt(m) -delt(n)));qt(n)=u(m)*u(n)*(G(m,n)*sin(delt(m)-delt(n))-B(m,n)*cos(delt(m) -delt(n)));endpi(m)=sum(pt);qi(m)=sum(qt); %计算PQ节点的注入功率dp(m)=ps(m)-pi(m);dq(m)=qs(m)-qi(m); %计算PQ节点的功率不平衡量endfor m=1:N1for n=1:N1if m==nH(m,m)=-qi(m)-u(m)^2*B(m,m); N(m,m)=pi(m)+u(m)^2*G(m,m);J(m,m)=pi(m)-u(m)^2*G(m,m); L(m,m)=qi(m)-u(m)^2*B(m,m);JJ(2*m-1,2*m-1)=H(m,m); JJ(2*m-1,2*m)=N(m,m);JJ(2*m,2*m-1)=J(m,m); JJ(2*m,2*m)=L(m,m);elseH(m,n)=u(m)*u(n)*(G(m,n)*sin(delt(m)-delt(n))-B(m,n)*cos(delt(m )-delt(n)));J(m,n)=-u(m)*u(n)*(G(m,n)*cos(delt(m)-delt(n))+B(m,n)*sin(delt( m)-delt(n)));N(m,n)=-J(m,n);L(m,n)=H(m,n);JJ(2*m-1,2*n-1)=H(m,n);JJ(2*m-1,2*n)=N(m,n);JJ(2*m,2*n-1)=J(m,n); JJ(2*m,2*n)=L(m,n);Endendend %计算jocbi各项,并放入统一矩阵JJ中,对JJ下标统一编号JJfor m=1:N1PP(2*m-1)=dp(m);PP(2*m)=dq(m);End %按统一矩阵形成功率不平衡uu=inv(JJ)*PP';precision=max(abs(uu)); %判断是否收敛for n=1:N1delt(n)=delt(n)+uu(2*n-1);u(n)=u(n)+uu(2*n)*u(n); %将结果分解为电压幅值和角度end %求解修正方程,得电压幅值变化量(标幺值)和角度变化量k=k+1;endfor n=1:N1+1U(n)=u(n)*(cos(delt(n))+j*sin(delt(n)));endfor m=1:N1+1I(m)=Y(5,m)*U(m); %求平衡节点的注入电流5551j j i I Y U ==∑endS5=U(5)*sum(conj(I)) %求平衡节点的注入功率*555S V I =for m=1:N1+1for n=1:N1+1S(m,n)=U(m)*(conj(U(m))-conj(U(n)))*conj(-Y(m,n));% endendend %求节点i,j 节点之间的功率,方向为由i 指向j, *ij ij i S V I S %显示支路功率二、实验结果:1、节点导纳矩阵Y =+ 0 + 0+ + + +0 + + ++ + + 00 + + 0节点导纳矩阵特点:1.节点导纳矩阵的对角元就等于各该节点所连接导纳的总和2.节点导纳矩阵是稀疏矩阵3.节点导纳矩阵一般是对称矩阵4.节点导纳矩阵的非对角元Yij等于连接节点i、j支路导纳的负值5. 节点导纳矩阵是方阵2、迭代过程数据:电压变化量du = - - - -du = - - - -du = - - - -du = - + - -功率不平衡量dS = - + + -dS = - - - -dS= * - - - -dS = * - - - -雅可比矩阵JJ =0 0 0 00 00 0JJ =0 0 0 00 00 0JJ =0 00 00 00 0JJ =0 0 0 00 0 0 03、收敛后数据:支路功率S =0 - 0 - 0 + 0 + + -0 - 0 - - + - + 0 00 + + 0 0平衡节点功率 S5 = +潮流分布图GG++++++++++++++++。

电力系统分析潮流计算的计算机算法

电力系统分析潮流计算的计算机算法

电⼒系统分析潮流计算的计算机算法潮流计算的计算机算法实验报告姓名:学号:班级:⼀、实验⽬的掌握潮流计算的计算机算法。

熟悉MATLAB,并掌握MATLAB程序的基本调试⽅法。

⼆、实验准备根据课程内容,熟悉MATLAB软件的使⽤⽅法,⾃⾏学习MATLAB程序的基础语法,并根据所学知识编写潮流计算⽜顿拉夫逊法(或PQ分解法) 的计算程序,⽤相应的算例在MATLAB上进⾏计算、调试和验证。

三、实验要求每⼈⼀组,在实验课时内,⽤MATLAB调试和修改运⾏程序,⽤算例计算输出潮流结果。

四、实验程序clear; %清空内存n=input('请输⼊节点数:n=');n1=input('请输⼊⽀路数:n1=');isb=input('请输⼊平衡节点号:isb=');pr=input('请输⼊误差精度:pr=');B1=input('请输⼊⽀路参数:B1=');B2=input('请输⼊节点参数:B2=');X=input('节点号和对地参数:X=');Y=zeros(n);Times=1;%⼀:创建节点导纳矩阵for i=1:n1if B1(i,6)==0 %不含变压器的⽀路p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-1/B1(i,3);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4);Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4);else %含有变压器的⽀路p=B1(i,1);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/B1(i,3);Y(q,q)=Y(q,q)+1/(B1(i,5)^2*B1(i,3));endendY;%将OrgS、DetaS初始化OrgS=zeros(2*n-2,1);DetaS=zeros(2*n-2,1);%⼆:创建OrgS,⽤于存储初始功率参数h=0;j=0;for i=1:n %对PQ节点的处理if i~=isb&B2(i,6)==2h=h+1;for j=1:nOrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j ))*Imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*i mag(B2(j,3)))-real(B2(i,3))* (real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendend%三:对PV节点的处理,注意这时不可再将h初始化为0for i=1:nif i~=isb&B2(i,6)==3h=h+1;for j=1:nOrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j ))*imag(B2(j,3)))+imag(B2(i,3))* (real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*i mag(B2(j,3)))-real(B2(i,3))* (real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endend%四:创建PVU ⽤于存储PV节点的初始电压PVU=zeros(n-h-1,1);t=0;for i=1:nif B2(i,6)==3t=t+1;PVU(t,1)=B2(i,3);endendPVU;%五:创建DetaS,⽤于存储有功功率、⽆功功率和电压幅值的不平衡量h=0; for i=1:n %对PQ节点的处理if i~=isb&B2(i,6)==2h=h+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);DetaS(2*h,1)=imag(B2(i,2))-OrgS(2*h,1);endendt=0;for i=1:n%六:对PV节点的处理,注意这时不可再将h初始化为0if i~=isb&B2(i,6)==3h=h+1;t=t+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);DetaS(2*h,1)=real(PVU(t,1))^2+imag(PVU(t,1))^2-real(B2(i,3))^2-imag( B2(i,3))^2;endendDetaS;%七:创建I,⽤于存储节点电流参数i=zeros(n-1,1);h=0;h=h+1;I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1))/conj(B2(i,3));endendI;%⼋:创建Jacbi(雅可⽐矩阵)Jacbi=zeros(2*n-2);h=0;k=0;for i=1:n %对PQ节点的处理if B2(i,6)==2h=h+1;for j=1:nif j~=isbk=k+1;if i==j %对⾓元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I (h,1)); Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1));else %⾮对⾓元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1);endif k==(n-1) %将⽤于内循环的指针置于初始值,以确保雅可⽐矩阵换⾏k=0;endendendendfor i=1:n %对PV节点的处理if B2(i,6)==3h=h+1;for j=1:nif j~=isbk=k+1;if i==j %对⾓元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I (h,1)); Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1)) ; Jacbi(2*h,2*k-1)=2*imag(B2(i,3));Jacbi(2*h,2*k)=2*real(B2(i,3));else %⾮对⾓元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=0;Jacbi(2*h,2*k)=0;endif k==(n-1) %将⽤于内循环的指针置于初始值,以确保雅可⽐矩阵换⾏k=0;endendendendendJacbi;%九:求解修正⽅程,获取节点电压的不平衡量DetaU=zeros(2*n-2,1);DetaU=inv(Jacbi)*DetaS;DetaU;%修正节点电压j=0;for i=1:n %对PQ节点处理if B2(i,6)==2for i=1:n %对PV节点的处理if B2(i,6)==3j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endendB2;%⼗:开始循环**********************************************************************while abs(max(DetaU))>prOrgS=zeros(2*n-2,1); %初始功率参数在迭代过程中是不累加的,所以在这⾥必须将其初始化为零矩阵h=0;j=0;for i=1:nif i~=isb&B2(i,6)==2h=h+1;for j=1:nOrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j ))*imag(B2(j,3)))+imag(B2(i,3))* (real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*i mag(B2(j,3)))-real(B2(i,3))* (real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendendfor i=1:nif i~=isb&B2(i,6)==3h=h+1;for j=1:nOrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j ))*imag(B2(j,3)))+imag(B2(i,3))* (real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j, 3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*i mag(B2(j,3)))-real(B2(i,3))* (real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));%创建DetaSh=0;for i=1:nif i~=isb&B2(i,6)==2h=h+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);DetaS(2*h,1)=imag(B2(i,2))-OrgS(2*h,1);endendt=0;for i=1:nif i~=isb&B2(i,6)==3h=h+1;t=t+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);DetaS(2*h,1)=real(PVU(t,1))^2+imag(PVU(t,1))^2-real(B2(i,3))^2-imag(B2(i, 3))^2; endendDetaS;%创建Ii=zeros(n-1,1);h=0;for i=1:nif i~=isbh=h+1;I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1))/conj(B2(i,3));endendI;%创建JacbiJacbi=zeros(2*n-2);for i=1:nif B2(i,6)==2h=h+1;for j=1:nif j~=isbk=k+1;if i==jJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I (h,1)); Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1)) ; Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1));elseJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1);endif k==(n-1)k=0;endendendendendk=0;for i=1:nif B2(i,6)==3h=h+1;for j=1:nif j~=isbk=k+1;if i==jJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I (h,1));Jacbi(2*h,2*k)=2*real(B2(i,3));elseJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3)); Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3)); Jacbi(2*h,2*k-1)=0;Jacbi(2*h,2*k)=0;endif k==(n-1)k=0;endendendendendJacbi;DetaU=zeros(2*n-2,1);DetaU=inv(Jacbi)*DetaS;DetaU;%修正节点电压j=0;for i=1:nif B2(i,6)==2j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endendfor i=1:nif B2(i,6)==3j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endendB2;Times;五、实验流程六、实验结果参数输⼊:运⾏结果:七、实验体会通过这次实验,让我第⼀次接触到了MATLAB,并深切体会到了它的强⼤之处;潮流计算的计算机算法的实现不仅巩固了我的学过的知识,还让我学到⼀些MATLAB的编程,虽然在实验的过程中出现了很多的错误,但在⽼师的细⼼指导下,问题都解决啦;计算机为我们省去了⼤量的⼈⼯计算,希望在以后的学习中能接触到更多的软件,学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统分析实验报告实验一:潮流计算的计算机算法>> clear;n=10;nl=10;isb=1;pr=0.00001;B1=[120.03512+0.08306i0.13455i10;230.0068+0.18375i0 1.023811;140.05620+0.13289i0.05382i10;450.00811+0.24549i0 1.023811;160.05620+0.13289i0.05382i10;460.04215+0.09967i0.04037i10;670.0068+0.18375i0 1.023811;680.02810+0.06645i0.10764i10;8100.00811+0.24549i011;890.03512+0.08306i0.13455i10] B2=[00 1.1 1.101;001002;00.343+0.21256i1002;001002;00.204+0.12638i1002;001002;00.306+0.18962i1002;001002;0.50 1.1 1.103;00.343+0.21256i1002]Y=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);sida=zeros(1,n);S1=zeros(nl);for i=1:nlif B1(i,6)==0p=B1(i,1);q=B1(i,2);elsep=B1(i,2);q=B1(i,1);endY(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5));Y(q,p)=Y(p,q);Y(q,q)=Y(q,q)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4)./2;Y(p,p)=Y(p,p)+1./B1(i,3)+B1(i,4)./2;enddisp('导纳矩阵Y=');disp(Y)%----------------------------------------------------------G=real(Y);B=imag(Y);for i=1:ne(i)=real(B2(i,3));f(i)=imag(B2(i,3));V(i)=B2(i,4);endfor i=1:nS(i)=B2(i,1)-B2(i,2);B(i,i)=B(i,i)+B2(i,5);endP=real(S);Q=imag(S);ICT1=0;IT2=1;N0=2*n;N=N0+1;a=0;while IT2~=0IT2=0;a=a+1;for i=1:nif i~=isbC(i)=0;D(i)=0;for j1=1:nC(i)=C(i)+G(i,j1)*e(j1)-B(i,j1)*f(j1);%Σ(Gij*ej-Bij*fj)D(i)=D(i)+G(i,j1)*f(j1)+B(i,j1)*e(j1);%Σ(Gij*fj+Bij*ej) endP1=C(i)*e(i)+f(i)*D(i);Q1=C(i)*f(i)-e(i)*D(i);V2=e(i)^2+f(i)^2;if B2(i,6)~=3DP=P(i)-P1;DQ=Q(i)-Q1;for j1=1:nif j1~=isb&j1~=iX1=-G(i,j1)*e(i)-B(i,j1)*f(i);X2=B(i,j1)*e(i)-G(i,j1)*f(i);X3=X2;X4=-X1;p=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X4;J(m,q)=X2;elseif j1==i&j1~=isbX1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);X2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);X3=D(i)+B(i,i)*e(i)-G(i,i)*f(i);X4=-C(i)+G(i,i)*e(i)+B(i,i)*f(i);p=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;m=p+1;J(m,q)=X1;q=q+1;J(p,q)=X4;J(m,N)=DP;J(m,q)=X2;endendelseDP=P(i)-P1;DV=V(i)^2-V2;for j1=1:nif j1~=isb&j1~=iX1=-G(i,j1)*e(i)-B(i,j1)*f(i);X2=B(i,j1)*e(i)-G(i,j1)*f(i);X5=0;X6=0;p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2;elseif j1==i&j1~=isbX1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);X2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);X5=-2*e(i);X6=-2*f(i);p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2;endendendendendfor k=3:N0k1=k+1;N1=N;for k2=k1:N1J(k,k2)=J(k,k2)./J(k,k);endJ(k,k)=1;if k~=3k4=k-1;for k3=3:k4for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);endJ(k3,k)=0;endif k==N0break;endfor k3=k1:N0for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);endJ(k3,k)=0;endelsefor k3=k1:N0for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);endJ(k3,k)=0;endendendfor k=3:2:N0-1L=(k+1)./2;e(L)=e(L)-J(k,N);k1=k+1;f(L)=f(L)-J(k1,N);endfor k=3:N0DET=abs(J(k,N));if DET>=prIT2=IT2+1;endendICT2(a)=IT2;ICT1=ICT1+1;enddisp('迭代次数:');disp(ICT1);disp('没有达到精度要求的个数:');disp(ICT2);for k=1:nV(k)=sqrt(e(k)^2+f(k)^2);sida(k)=atan(f(k)./e(k))*180./pi;E(k)=e(k)+f(k)*j;enddisp('各节点的实际电压标幺值E为(节点号从小到大排列):');disp(E);disp('-----------------------------------------------------');disp('各节点的电压大小V为(节点号从小到大排列):');disp(V);disp('-----------------------------------------------------');disp('各节点的电压相角sida为(节点号从小到大排列):');disp(sida);for p=1:nC(p)=0;for q=1:nC(p)=C(p)+conj(Y(p,q))*conj(E(q));endS(p)=E(p)*C(p);enddisp('各节点的功率S为(节点号从小到大排列):');disp(S);disp('-----------------------------------------------------');disp('各条支路的首端功率Si为(顺序同输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);if B1(i,6)==0Si(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))...-conj(E(q)))*conj(1./(B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);elseSi(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)./B1(i,5))...-conj(E(q)))*conj(1./(B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);enddisp(Si(p,q));SSi(p,q)=Si(p,q);ZF=['S(',num2str(p),',',num2str(q),')=',num2str(SSi(p,q))];disp(ZF);disp('-----------------------------------------------------');enddisp('各条支路的末端功率Sj为(顺序同输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);if B1(i,6)==0Sj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)./B1(i,5))...-conj(E(p)))*conj(1./(B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);elseSj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)*B1(i,5))...-conj(E(p)))*conj(1./(B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);enddisp(Sj(q,p));SSj(q,p)=Sj(q,p);ZF=['S(',num2str(q),',',num2str(p),')=',num2str(SSj(q,p))];disp(ZF);disp('-----------------------------------------------------');enddisp('各条支路的功率损耗DS为(顺序同输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);DS(i)=Si(p,q)+Sj(q,p);disp(DS(i));DDS(i)=DS(i);ZF=['DS(',num2str(p),',',num2str(q),')=',num2str(DDS(i))];disp(ZF);disp('-----------------------------------------------------');endfigure(1);subplot(1,2,1);plot(V);xlabel('节点号');ylabel('电压标幺值');grid on;subplot(1,2,2);plot(sida);xlabel('节点号');ylabel('电压角度');grid on;figure(2);subplot(2,2,1);P=real(S);Q=imag(S);bar(P);xlabel('节点号');ylabel('节点注入有功');grid on;subplot(2,2,2);bar(Q);xlabel('节点号');ylabel('节点注入无功');grid on;subplot(2,2,3);P1=real(Siz);Q1=imag(Siz);bar(P1);xlabel('支路号');ylabel('支路首端注入有功');grid on;subplot(2,2,4);bar(Q1);xlabel('支路号');ylabel('支路首端注入无功');grid on;B1 =1.00002.0000 0.0351 + 0.0831i 0 + 0.1346i 1.0000 02.00003.0000 0.0068 + 0.1838i 0 1.0238 1.00001.0000 4.0000 0.0562 + 0.1329i 0 + 0.0538i 1.0000 04.00005.0000 0.0081 + 0.2455i 0 1.0238 1.00001.0000 6.0000 0.0562 + 0.1329i 0 + 0.0538i 1.0000 04.0000 6.0000 0.0422 + 0.0997i 0 + 0.0404i 1.0000 06.00007.0000 0.0068 + 0.1838i 0 1.0238 1.00006.0000 8.0000 0.0281 + 0.0664i 0 + 0.1076i 1.0000 08.0000 10.0000 0.0081 + 0.2455i 0 1.0000 1.00008.0000 9.0000 0.0351 + 0.0831i 0 + 0.1346i 1.0000 0 B2 =0 0 1.1000 1.1000 0 1.00000 0 1.0000 0 0 2.00000 0.3430 + 0.2126i 1.0000 0 0 2.00000 0 1.0000 0 0 2.00000 0.2040 + 0.1264i 1.0000 0 0 2.00000 0 1.0000 0 0 2.00000 0.3060 + 0.1896i 1.0000 0 0 2.00000 0 1.0000 0 0 2.0000 0.5000 0 1.1000 1.1000 0 3.00000 0.3430 + 0.2126i 1.0000 0 0 2.0000导纳矩阵Y=Columns 1 through 69.7177 -22.8591i -4.3185 +10.2135i 0 -2.6996 + 6.3834i 0 -2.6996 + 6.3834i-4.3185 +10.2135i 4.5104 -15.3311i -0.1964 + 5.3083i 0 0 00 -0.1964 + 5.3083i 0.2011 - 5.4347i 0 0 0-2.6996 + 6.3834i 0 0 6.4271 -18.7292i -0.1313 + 3.9744i -3.5993 + 8.5110i0 0 0 -0.1313 + 3.9744i 0.1344 - 4.0690i 0-2.6996 + 6.3834i 0 0 -3.5993 + 8.5110i 0 11.8891 -32.7444i0 0 0 0 0 -0.1964 + 5.3083i0 0 0 0 0 -5.3984 +12.7660i0 0 0 0 0 00 0 0 0 0 0Columns 7 through 100 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0-0.1964 + 5.3083i -5.3984 +12.7660i 0 00.2011 - 5.4347i 0 0 00 9.8514 -26.9275i -4.3185 +10.2135i -0.1344 + 4.0690i0 -4.3185 +10.2135i 4.3185 -10.1462i 00 -0.1344 + 4.0690i 0 0.1344 - 4.0690i迭代次数:4没有达到精度要求的个数:17 18 17 0各节点的实际电压标幺值E为(节点号从小到大排列):Columns 1 through 61.1000 1.0757 - 0.0207i 1.0050 - 0.0780i 1.0772 - 0.0175i 1.0171 - 0.0631i 1.0762 - 0.0152iColumns 7 through 101.0112 - 0.0666i 1.0778 - 0.0051i 1.0996 + 0.0304i 1.0177 - 0.0814i-----------------------------------------------------各节点的电压大小V为(节点号从小到大排列):1.1000 1.0759 1.0080 1.0773 1.0191 1.0763 1.0134 1.0778 1.1000 1.0209-----------------------------------------------------各节点的电压相角sida为(节点号从小到大排列):0 -1.1046 -4.4373 -0.9283 -3.5503 -0.8106 -3.7665 -0.27181.5822 -4.5707各节点的功率S为(节点号从小到大排列):Columns 1 through 60.7165 + 0.2587i 0.0000 + 0.0000i -0.3430 - 0.2126i -0.0000 + 0.0000i -0.2040 - 0.1264i -0.0000 + 0.0000iColumns 7 through 10-0.3060 - 0.1896i -0.0000 + 0.0000i 0.5000 + 0.0089i -0.3430 - 0.2126i-----------------------------------------------------各条支路的首端功率Si为(顺序同输入B1时一致):0.3485 + 0.0932iS(1,2)=0.3485+0.093157i-----------------------------------------------------0.3441 + 0.2420iS(2,3)=0.34409+0.24201i-----------------------------------------------------0.1904 + 0.0760iS(1,4)=0.19038+0.07599i-----------------------------------------------------0.2044 + 0.1400iS(4,5)=0.20445+0.13999i-----------------------------------------------------0.1777 + 0.0895iS(1,6)=0.17767+0.089525i------------------------------------------------------0.0163 - 0.0055iS(4,6)=-0.016305-0.0054856i-----------------------------------------------------0.3069 + 0.2128iS(6,7)=0.30686+0.21281i------------------------------------------------------0.1477 - 0.0234iS(6,8)=-0.14767-0.02338i-----------------------------------------------------0.3443 + 0.2509iS(8,10)=0.34427+0.25091i------------------------------------------------------0.4925 - 0.1508iS(8,9)=-0.49251-0.15077i-----------------------------------------------------各条支路的末端功率Sj为(顺序同输入B1时一致):-0.3441 - 0.2420iS(2,1)=-0.34409-0.24201i------------------------------------------------------0.3430 - 0.2126iS(3,2)=-0.343-0.21256i------------------------------------------------------0.1881 - 0.1345iS(4,1)=-0.18815-0.13451i------------------------------------------------------0.2040 - 0.1264iS(5,4)=-0.204-0.12638i------------------------------------------------------0.1755 - 0.1482iS(6,1)=-0.17551-0.14815i-----------------------------------------------------0.0163 - 0.0413iS(6,4)=0.016326-0.041272i------------------------------------------------------0.3060 - 0.1896iS(7,6)=-0.306-0.18962i-----------------------------------------------------0.1482 - 0.1001iS(8,6)=0.14824-0.10014i------------------------------------------------------0.3430 - 0.2126iS(10,8)=-0.343-0.21256i-----------------------------------------------------0.5000 + 0.0089iS(9,8)=0.5+0.0089402i-----------------------------------------------------各条支路的功率损耗DS为(顺序同输入B1时一致):0.0044 - 0.1488iDS(1,2)=0.0044095-0.14885i-----------------------------------------------------0.0011 + 0.0294iDS(2,3)=0.0010897+0.029445i-----------------------------------------------------0.0022 - 0.0585iDS(1,4)=0.0022306-0.058518i-----------------------------------------------------0.0004 + 0.0136iDS(4,5)=0.00044972+0.013613i-----------------------------------------------------0.0022 - 0.0586iDS(1,6)=0.0021584-0.058629i-----------------------------------------------------0.0000 - 0.0468iDS(4,6)=2.1344e-005-0.046758i-----------------------------------------------------0.0009 + 0.0232iDS(6,7)=0.00085804+0.023186i-----------------------------------------------------0.0006 - 0.1235iDS(6,8)=0.00056584-0.12352i-----------------------------------------------------0.0013 + 0.0384iDS(8,10)=0.001267+0.038353i-----------------------------------------------------0.0075 - 0.1418iDS(8,9)=0.0074931-0.14183i----------------------------------------------------- >>。

相关文档
最新文档