焊接热裂纹与冷裂纹

合集下载

几种焊缝热影响区裂纹的成因及对策研究

几种焊缝热影响区裂纹的成因及对策研究

几种焊缝热影响区裂纹的成因及对策研究焊接是一种常见的连接方法,但焊接过程中会产生热影响区裂纹,这对焊接质量和安全性都有很大影响。

本文将从几种常见的焊缝热影响区裂纹成因入手,探讨对策研究。

一、晶间腐蚀裂纹
晶间腐蚀裂纹是由于焊接过程中,焊缝热影响区内的晶粒边界处发生了腐蚀而引起的。

这种裂纹的成因主要是焊接材料的化学成分和焊接工艺的选择不当。

对策研究应该从以下几个方面入手:选择合适的焊接材料,控制焊接工艺参数,采用适当的焊接方法。

二、热裂纹
热裂纹是由于焊接过程中,焊缝热影响区内的应力超过了材料的承受能力而引起的。

这种裂纹的成因主要是焊接过程中的温度变化和应力集中。

对策研究应该从以下几个方面入手:控制焊接过程中的温度变化,采用适当的焊接顺序,减少应力集中。

三、冷裂纹
冷裂纹是由于焊接后,焊缝热影响区内的残余应力和冷却过程中的收缩应力引起的。

这种裂纹的成因主要是焊接后的残余应力和冷却过程中的收缩应力。

对策研究应该从以下几个方面入手:控制焊接后的残
余应力,采用适当的焊接顺序,控制冷却速度。

综上所述,焊缝热影响区裂纹的成因主要有晶间腐蚀裂纹、热裂纹和
冷裂纹。

对策研究应该从选择合适的焊接材料、控制焊接工艺参数、
采用适当的焊接方法、控制焊接后的残余应力、采用适当的焊接顺序、控制冷却速度等方面入手。

只有这样,才能有效地预防焊缝热影响区
裂纹的产生,提高焊接质量和安全性。

焊接裂纹的相关基础知识

焊接裂纹的相关基础知识

焊接裂纹的相关基础知识一、焊接裂纹概述焊接裂纹是焊接过程中一种常见的缺陷,它是指在焊接接头中出现的裂隙。

这种裂纹的产生通常是由于焊接过程中的热循环和应力作用导致的。

焊接裂纹对焊接接头的强度和可靠性产生严重影响,因此防止焊接裂纹的产生是焊接工作中一项重要的任务。

二、焊接裂纹类型1.热裂纹:热裂纹是指在焊接过程中,由于熔池中的杂质和凝固过程中的收缩应力作用,导致在焊缝中心出现的裂纹。

热裂纹通常发生在焊缝冷却过程中,由于凝固收缩而受到拉应力的作用,从而产生裂纹。

2.冷裂纹:冷裂纹是指在焊接完成后,由于材料淬火、应力集中等因素导致的裂纹。

冷裂纹通常发生在高强度钢、铝合金等材料中,由于这些材料具有较大的淬硬倾向,因此在焊接过程中容易产生冷裂纹。

3.再热裂纹:再热裂纹是指焊接完成后,在一定温度范围内再次加热时出现的裂纹。

再热裂纹通常发生在某些合金材料中,如不锈钢、镍基合金等,与材料的成分、微观结构和残余应力等因素有关。

三、焊接裂纹产生原因1.材料因素:材料的选择对于防止焊接裂纹的产生至关重要。

一些材料具有较大的淬硬倾向,容易产生冷裂纹;而一些材料在高温下容易产生脆化现象,导致热裂纹的产生。

因此,在选择焊接材料时,应根据材料的特性选择合适的焊接材料和工艺参数。

2.焊接工艺因素:焊接工艺的选择不当也是导致焊接裂纹的重要原因之一。

例如,焊接电流过大或过小、电弧电压过高或过低、焊接速度过快或过慢等都会影响焊缝的质量;此外,预热、层间温度控制不当也会导致冷裂纹的产生。

3.结构因素:结构的设计和控制对于防止焊接裂纹的产生也非常重要。

例如,接头形式设计不合理、焊缝过度集中、结构设计不合理等都会导致应力集中和变形,从而产生裂纹。

四、焊接裂纹的防止措施1.选择合适的焊接材料和工艺:根据材料的特性和要求选择合适的焊接材料和工艺参数,以减少焊接裂纹的产生。

例如,对于高强度钢、铝合金等材料,应选择低氢型焊条、预热和后热等措施来减少冷裂纹的产生;对于不锈钢、镍基合金等材料,应选择合适的填充材料和工艺参数来减少再热裂纹的产生。

在焊接中什么是冷裂纹和热裂纹

在焊接中什么是冷裂纹和热裂纹

在焊接中什么是冷裂纹和热裂纹低碳钢焊接性分析:(一)冷裂纹碳当量:钢材和熔敷金属的碳含量增加大桥焊条,焊接性变差;硅锰含量增加,焊接性变差;CE值增加,产生冷裂纹倾向增大,焊接性变差淬硬倾向:淬硬组织或马氏体组织越多,其硬度越高,焊缝和热影响区硬度越高,焊接性差。

冷却速度影响因素:(1)钢材厚度和接头几何形状,(2)焊接时母材的实际起始温度(3)焊接线能量大小。

拘束度和氢。

板厚增加,拘束度增加;焊接区被刚性固定,拘束度增加,提高氢致裂纹敏感性钢材成分一定,淬硬组织比例越高,冷裂所需临界氢含量越低,所需拘束应力也就越低,冷裂倾向越大。

组织氢含量一定时,拘束度越大,冷裂纹敏感性越大。

(二)热裂纹在焊接SP过高的碳钢时,一方面:在焊接热影响区的晶界上聚集的低熔点SP化物,引起热影响区熔合线附近的液化裂纹;若板厚较大,沿不同偏析带分布的碳化物等,在T形等接头中引起层状撕裂。

另一方面:当母材稀释率较高时,进入焊缝的SP也偏多,容易引起焊缝中热裂纹。

中碳钢焊接大多需要预热和控制层间温度,以降低焊缝金属和热影响区冷却速度,抑制马氏体形成,提高接头塑性,减小残余应力。

合金结构钢种类:低合金钢,中合金钢,高合金钢。

1强度用钢:热轧及正火钢,低碳调质钢,中碳调质钢。

2专用钢:珠光体耐热钢,低温钢,低合金耐蚀钢热轧钢:把钢锭加热到1300度左右,经热轧成板材,然后空冷。

正火钢:钢板轧制和冷却后,再加热到900度附近,然后在空气中冷却。

调质钢:900度附近加热后放入淬火设备中水淬,后在600度左右回火处理。

控轧:采用控制钢板温度和轧制工艺得到高强度,高韧性钢的方法。

热轧钢通常是铝镇静的细晶粒铁素体+珠光体组织。

正火钢是在固溶强化基础上,加入合金元素在正火条件下通过沉淀强化和细化晶粒来提高强度和保证韧性的。

热轧及正火钢焊接性分析:Q345(16Mn)裂纹脆化1冷裂纹淬硬组织是引起冷裂纹的决定性因素。

冷裂敏感性一般随强度提高而增加2热裂纹降低焊缝中碳含量和提高锰含量,解决了热裂纹问题。

常见焊接裂纹的解析

常见焊接裂纹的解析

常见焊接裂纹的解析焊接裂纹,焊接件中最常见的一种严重缺陷。

在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界而所产生的缝隙。

它具有尖锐的缺口和大的长宽比的特征,按照形成的条件可分为热裂纹、冷裂纹、再热裂纹和层状撕裂等四帧一、冷裂纹冷裂纹是在焊接过程中或焊后,在较低的温度下,大约在钢的马氏体转变温度(即Ms 点)附近,或300〜200C以下(或TV0.5Tm, Tm为以绝对温度表示的熔点温度)的温度区间产生的,故称冷裂纹。

冷裂又可分为延迟裂纹、淬火裂纹和低塑性脆化裂纹。

(一)产生条件1.焊接接头形成淬硬组织。

由于钢的淬硬倾向较大,冷却过程中产生大量的脆、硬,而且体积很大的马氏体,形成很大的内应力。

接头的硬化倾向:碳的影响是关键,含碳和貉虽:越多、板越厚、截积越大、热输入量越小,硬化越严重。

2.钢材及焊缝中含扩散氢较多,氢原子在缺陷处(空穴、错位)聚积(浓集)形成氢分子,氢分子体积较氢原子大,不能继续扩散,不断聚积,产生巨大的氢分子压力,甚至会达到几万个大气压,使焊接接头开裂。

许多情况下,氢是诱发冷裂最活跃的因素。

3.焊接拉应力及拘朿应力较大(或应力集中)超过接头的强度极限时产生开裂。

(二)产生原因:可分为选材和焊接工艺两个方面。

1.选材方而(1)母材与焊材选择匹配不当,造成悬殊的强度差异;(2)材料中含碳、、铝、锐、硼等元素过髙,钢的淬硬敏感性增加。

2.焊接工艺方面(1)焊条没有充分烘干,药皮中存在着水分(游离水和结晶水):焊材及母材坡口上有油、锈、水、漆等:环境湿度过大(>90%);有雨、雪污染坡口。

以上的水分及有机物,在焊接电弧的作用下分解产生H,使焊缝中溶入过饱和的氢。

(2)环境温度太低:焊接速度太快;焊接线能量太少。

会使接头区域冷却过快,造成很大的内应力。

(3)焊接结构不当,产生很大的拘束应力。

(4)点焊处已产生裂纹,焊接时没有铲除掉;咬边等应力集中处引起焊趾裂纹:未焊透等应力集中处引起焊根裂纹;夹渣等应力集中处引起焊缝中裂纹。

焊接冷热裂纹知识

焊接冷热裂纹知识

焊接热裂纹和冷裂纹知识
(1)产生的温度和时间不同
热裂纹:产生在焊缝结晶过程中,即由结晶开始一直到723度以前。

冷裂纹:产生在焊件冷却到200-300度以下,焊后数小时。

(2)产生的部位和方向不同
热裂纹:多数产生在焊缝金属中,少数延伸到基本金属中去,有纵向也有横向。

冷裂纹:多数产生在熔合线基本金属侧,大多数为纵向,少数为横向。

(3)外观特征不同
热裂纹:断面有明显的氧化色彩(发蓝黑)。

冷裂纹:断口发亮,为脆性断口,无氧化色彩。

(4)金相结构不同
热裂纹:沿晶界开裂。

冷裂纹:贯穿晶粒内部,即穿晶开裂。

(5)产生的原因不同
热裂纹:①焊缝金属中的低熔点共晶成分和杂质造成晶间偏析,形成液态间层。

②金属冷却过程中引起的拉应力使液态间层拉开而形成裂纹。

冷裂纹:①淬硬组织,热影响区产生马氏体组织,塑性下降,脆性增加。

②氢的作用,氢在结晶过程中向热影响区扩散,在空穴处氢原子结合成氢分子,造成很大压力。

③焊接应力作用。

焊接裂纹的种类及特征

焊接裂纹的种类及特征

焊接裂纹的种类及特征焊接裂纹是指在焊接过程中产生的裂纹,会对焊接接头的强度和密封性能产生严重影响。

根据裂纹的形态和特征,可以将焊接裂纹分为多种类型。

本文将介绍常见的焊接裂纹种类及其特征。

1. 纵向裂纹:纵向裂纹是指与焊缝平行的裂纹,常见于焊接接头的中心位置。

其特征是裂纹呈直线状,与焊缝平行,并且延伸到母材中。

纵向裂纹的产生原因主要是焊接过程中焊接应力和热应力的作用,导致母材塑性降低,从而产生裂纹。

2. 横向裂纹:横向裂纹是指与焊缝垂直的裂纹,常见于焊接接头的边缘位置。

其特征是裂纹呈横向走向,并且延伸到母材中。

横向裂纹的产生原因主要是焊接过程中的残余应力和热应力,以及焊接区域的变形不均匀,从而导致母材的塑性变形和裂纹的产生。

3. 热裂纹:热裂纹是指由于焊接过程中的热应力引起的裂纹。

其特征是裂纹呈细长的线状,常发生在高温区域。

热裂纹的产生原因主要是焊接过程中的温度梯度和残余应力的作用,导致焊接区域的塑性降低,从而产生裂纹。

4. 冷裂纹:冷裂纹是指焊接接头在冷却过程中由于残余应力引起的裂纹。

其特征是裂纹呈细小的细沟状,常发生在焊接接头的边缘位置。

冷裂纹的产生原因主要是焊接过程中的冷却速度不均匀,导致焊接区域的应力集中,从而产生裂纹。

5. 疲劳裂纹:疲劳裂纹是指焊接接头在长期受到循环荷载作用下逐渐扩展形成的裂纹。

其特征是裂纹呈细小的细沟状,常发生在焊接接头的高应力区域。

疲劳裂纹的产生原因主要是焊接接头的设计不合理,焊接质量差,以及循环荷载的作用,导致焊接区域的应力集中和疲劳破坏。

6. 熔合裂纹:熔合裂纹是指焊接接头在焊接过程中由于熔合不完全或熔融金属的不均匀冷却而引起的裂纹。

其特征是裂纹呈细小的细沟状,常发生在焊缝内部。

熔合裂纹的产生原因主要是焊接过程中的焊接参数不合理,焊接材料质量差,以及焊接区域的变形不均匀,导致焊接区域的应力集中和熔合不完全。

焊接裂纹的种类及其特征各不相同。

了解不同类型的焊接裂纹及其产生原因,有助于我们在焊接过程中采取相应的措施,预防和修复焊接裂纹,提高焊接接头的质量和可靠性。

焊接裂纹形成的原因及防止措施

焊接裂纹形成的原因及防止措施

焊接裂纹形成的原因及防止措施焊接裂纹是在焊接应力及其它致脆因素共同作用下,材料的原子结合遭到破坏,形成新界面而产生的缝隙。

它具有尖锐的缺口和长宽比大的特征,易引起较高的应力集中,而且有延伸和扩展的趋势,所以,也是最危险的焊接缺陷。

裂纹常有热裂纹、冷裂纹以及再热裂纹(消除应力处理裂纹)。

一、热裂纹形成及防止常见的热裂纹有两种:结晶裂纹、液化裂纹。

结晶裂纹是焊接熔池初次结晶过程中形成的裂纹,是焊缝金属沿初次结晶晶界的开裂。

而液化裂纹是紧靠熔合线的母材晶界被局部重熔,在收缩力的作用下而产生的裂纹。

结晶裂纹产生的原因:焊接时,熔池在电弧热的作用下,被加热到相当高的温度,而受热膨胀,而母材却不能自由收缩,于是高温的熔池受到一定的压力。

当熔池开始冷却时,就以半融化的母材为晶核开始处结晶。

最先结晶的是纯度较高的的合金。

最后凝固的是低熔点共晶体。

低熔点共晶物的多少取决于焊缝金属中C、S、L等元素的含量。

当含量较少时,不足以在初生晶粒间形成连续的液态膜。

焊接熔池的冷却速度极快,低熔点共晶物几乎与初析相同时完成结晶。

因此连续冷却的金属熔池虽然受到收缩应力的作用也不至于产生晶间裂纹。

当低熔点共晶体量较多时,情况就不同了,初次结晶的偏析程度较大,并在初次结晶的晶体之间形成晶间液膜,当熔池冷却收缩时,被液膜分割的晶体边界就会被拉开就形成了裂纹。

这是主要原因,另有两个其它原因:一是焊缝金属所经受的应变增加速度大于低熔点共晶物凝固的速度;另外,初生晶体的张大方向和残留低熔共晶体的相对位置的影响。

可见,关键的措施就是:1、应严格控制焊缝金属中C、S、P和其它易形成低熔点共晶体的合金成分的含量,这些元素和杂质的含量越低,焊缝金属的抗裂纹能力越大。

当焊缝中C>0.15%,S>0.04%就可能有裂纹出现,如果母材中含碳量很高,就要控制焊接材料的成分,以使混合后的碳含量降下来。

2、改变焊缝横截面的形状也就改变了焊接熔池的结晶方向,使之有利于将低熔点共晶体推向不易产生裂纹的位置。

焊接裂纹的分类

焊接裂纹的分类

焊接裂纹的分类焊接裂纹是指在焊接过程中或焊接后,由于内部应力、冷却速度等因素的影响,导致焊接接头内部或表面产生的裂纹。

根据裂纹的产生原因和裂纹形态不同,可以将焊接裂纹分为不同的类型。

下面就几种常见的焊接裂纹进行分类和介绍。

1. 热裂纹热裂纹是由于焊缝热影响区的结构组织和化学成分发生变化而引起的。

热裂纹通常在焊接过程中或焊接后的短时间内出现。

根据裂纹出现的位置和形态,热裂纹可以分为几种不同的类型:(1) 固相转变裂纹:当金属处于固相转变的温度范围内,由于组织的变化和内部应力的影响,容易产生热裂纹。

这种裂纹通常直接出现在焊缝和热影响区的边缘。

(2) 晶粒边界裂纹:在焊接过程中,由于焊接区和热影响区的组织结构发生变化,晶粒边界处的脆性增大,容易形成裂纹。

这种裂纹通常呈线状,沿着晶粒边界方向延伸。

(3) 退火裂纹:由于焊接过程中产生的应力或变形,在焊接后的退火过程中,容易引起焊接接头的内部产生裂纹。

这种裂纹通常在焊缝和热影响区内部产生,对焊接接头的强度和韧性产生负面影响。

2. 冷裂纹冷裂纹是由于焊接后在室温条件下产生的裂纹。

冷裂纹通常是由于焊接接头内部的残余应力和变形引起的。

根据裂纹形态和位置的不同,冷裂纹可以分为以下几种类型:(1) 焊接残余应力裂纹:由于焊接接头的热变形以及冷却过程中产生的残余应力,容易导致焊接接头内部产生裂纹。

这种裂纹通常沿着焊缝或热影响区的方向延伸,严重影响焊接接头的力学性能。

(2) 氢致裂纹:在焊接过程中,如果焊接材料和焊接环境中存在水、油、脂肪等含氢物质,容易引起焊接接头内部产生氢致裂纹。

这种裂纹通常呈细小的网状分布,对焊接接头的韧性和可靠性产生严重影响。

3.应力腐蚀裂纹应力腐蚀裂纹是由于金属在受到应力和腐蚀介质的共同作用下产生的裂纹。

这种裂纹通常在金属制品长期使用过程中出现,对金属制品的可靠性和使用寿命产生严重影响。

根据裂纹产生的条件和形态不同,应力腐蚀裂纹可以分为以下几种类型:(1) 晶间腐蚀裂纹:当金属在受到腐蚀介质和应力的作用下,容易发生晶间腐蚀和产生裂纹。

热裂纹和冷裂纹产生的原因

热裂纹和冷裂纹产生的原因

热裂纹和冷裂纹产生的原因一、热裂纹的特征热裂纹常发生在焊缝区,在焊缝结晶过程中产生的叫结晶裂纹,也有发生在热影响区中,在加热到过热温度时,晶间低熔点杂质发生熔化,产生裂纹,叫液化裂纹。

特征:沿晶界开裂(故又称晶间裂纹),断口表面有氧化色。

(2)热裂纹产生原因:①晶间存在液态间层焊缝:存在低熔点杂质偏析 } 形成液态间层热影响区:过热区晶界存在低熔点杂质②存在焊接拉应力(3)热裂纹的防止措施:①限制钢材和焊材的低熔点杂质,如S、P含量。

②控制焊接规范,适当提高焊缝成形系数(即焊道的宽度与计算厚度之比)枣焊缝成形系数太小,易形成中心线偏析,易产生热裂纹。

③调整焊缝化学成分,避免低熔点共晶物;缩小结晶温度范围,改善焊缝组织,细化焊缝晶粒,提高塑性,减少偏析。

④减少焊接拉应力⑤操作上填满弧坑1 / 2二、冷裂纹的形态和特征焊缝区和热影响区都可能产生冷裂纹,常见冷裂纹形态有三种冷裂纹形态 { 焊道下裂纹:在焊道下的热影响区内形成的焊接冷裂纹,常平行于熔合线发展焊指裂纹:沿应力集中的焊址处形成的冷裂纹,在热影响内扩展焊根裂纹:沿应力集中的焊缝根部所形成的冷裂纹,向焊缝或热影响发展a-焊道下裂纹; b-焊趾裂纹;c-焊根裂纹特征:无分支、穿晶开裂、断口表面无氧化色。

最主要、最常见的冷裂纹为延迟裂纹(即在焊后延迟一段时间才发生的裂纹-------因为氢是最活跃的诱发因素,而氢在金属中扩散、聚集和诱发裂纹需要一定的时间)。

(2)延迟裂纹的产生原因①焊接接头存在淬硬组织,性能脆化。

②扩散氢含量较高,使接头性能脆化,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力。

(氢是诱发延迟裂纹的最活跃因素,故有人将延迟裂纹又称氢致裂纹)③存在较大的焊接拉应力(3)防止延迟裂纹的措施①选用碱性焊条,减少焊缝金属中氢含量、提高焊缝金属塑性②减少氢来源枣焊材要烘干,接头要清洁(无油、无锈、无水)③避免产生淬硬组织枣焊前预热、焊后缓冷(可以降低焊后冷却速度)④降低焊接应力枣采用合理的工艺规范,焊后热处理等⑤焊后立即进行消氢处理(即加热到250℃,保温2~6左右,使焊缝金属中的扩散氢逸出金属表面)。

冷、热、再热裂纹

冷、热、再热裂纹

1.热裂纹(结晶裂纹、凝固裂纹)(1)定义焊接过程中在300℃以上高温(Ac3附近)下产生的裂纹为热裂纹。

一般沿晶开裂,产生于焊缝、热影响区。

倾向材料:杂质较多的低碳钢、奥氏体不锈钢、铝合金。

当温度在脆性温度区间时,焊缝金属产生裂纹的可能性较大(2)分类结晶裂纹(凝固过程)、高温液化裂纹(奥氏体)、多边化裂纹(纯金属或单相奥氏体合金)。

(3)产生原因热裂纹的产生原因是焊接拉应力作用到晶界上的低熔共晶体(S)所造成的。

(4)影响结晶裂纹因素a.合金元素和杂质元素含量,尤其是S、P含量。

(S、P增加结晶温度区间和产生低温共晶)b.冷却速度大,偏析严重,结晶温度区间增大c.结晶应力和拘束应力使部分金属受拉(5)防止结晶裂纹措施○1降低含碳量,减小硫、磷等杂质元素的含量;○2加入一定的合金元素,减小柱状晶的偏析,如加入钼、钒、钛、铌等细化晶粒;○3采用熔深较浅的焊缝,使低熔点物质上浮;○4合理使用焊接规范,采用预热和后热,减小冷却速度;○5采用合理的装配次序,减小焊接应力。

在压力容器焊接中,降低线能量或采用多层焊是防止热裂纹的一种有效方法。

2.冷裂纹(延迟裂纹)(1)定义指焊缝冷却到200~300℃以下产生的裂纹。

一般穿晶开裂,产生于热影响区、焊缝。

倾向材料:高碳钢、中碳钢、低合金、中合金高强钢的热影响区;合金元素含量多的超高强钢、钛合金发生在焊缝上;Rm≥450MPa材料;如耐热钢、马氏体不锈钢、焊接含Ni的低合金钢、异种钢的焊接接头、特殊结构钢和堆焊层等。

16MnR、15MnVR、15MnNbR、18MnMoNbR、13MnNiMoNbR(仿制日本的BHW35,是单层厚壁用钢,焊接性能好但价格高)、07MnCrMoVR (仿CF-62)、07MnNiMoVDR和日本的CF-62系列钢。

(2)分类延迟裂纹、淬火裂纹(淬硬倾向大的组织)、低塑性脆化裂纹(较低的温度)(3)特征a.产生于较低温度,且是焊接后一段时间,又称延迟裂纹;b.主要发生在热影响区,少量在焊缝区;c.冷裂纹可能是沿晶、穿晶或混合开裂;d.引起的破坏是典型的脆断。

热裂纹、再热裂纹、冷裂纹、层状撕裂,这些你都了解吗?

热裂纹、再热裂纹、冷裂纹、层状撕裂,这些你都了解吗?

癖接裂纹就其本质来分,可分为热裂纹、再热裂纹'冷裂纹、层状撕裂等.下面就各杵裂奴的成因、特点和防治办法进行具体的阐述。

Ol热裂纹在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。

根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同.目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类.(1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si黑高)和单相奥氏体钢、银基合金以及某些话合金焊逢中.这种裂纹是在焊逢结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂.防治措施为:在冶金因素方面,适当调整焊逢金属成分,缩短照性温度区的范围控制焊逢中硫、磷、碳等有害杂质的含量;细化焊逢金属一次晶粒,即适当加入M。

、V、Ti.Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。

(2)近缱区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。

它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。

这一种裂纹的防治措施与结晶裂纹基本上是一致的.特别是在冶金方面,尽可能降低硫、磷、畦、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度.(3)多边化裂纹是在形成多边化的过程中,由于高温时的芨性很低造成的.这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等,02再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高混合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。

钢结构焊接中的6种缺陷

钢结构焊接中的6种缺陷

钢结构焊接中的6种缺陷钢结构焊接中常见的热裂纹、冷裂纹、层状撕裂、未熔合及未焊透、气孔、夹渣6种缺陷种类。

第一,热裂纹。

其基本特征是在焊缝的冷却过程中产生。

其产生的主要原因是钢材或焊材中的硫、磷杂质与钢形成多种脆、硬的低熔点共晶物,在焊缝的冷却过程中,最后凝固的低熔点共晶物处于受拉状态,极易开裂。

第二,冷裂纹。

由焊接而产生的冷裂纹又称延迟裂纹,其所具有的主要特征为通常在200℃至室温范围内产生,有延迟特征,焊后几分钟至几天出现。

其产生的主要原因与钢材的选择、结构的设计、焊接材料的储存与应用及焊接工艺有密切的关系。

第三,层状撕裂。

其主要特征表现为当焊接温度冷却到400℃以下时,在一些板材厚度比较大,杂质含量较高,特别是硫含量较高,且具有较强沿板材轧制平行方向偏析的低合金高强钢,当其在焊接过程中受到垂直于厚度方向的作用力时,会产生沿轧制方向呈阶梯状的裂纹。

第四,未熔合及未焊透。

两者产生原因基本相同,主要是工艺参数、措施及坡口尺寸不当,坡口及焊道表面不够清洁或有氧化皮及焊渣等杂物,焊工技术较差等。

第五,气孔。

按其产生形式可分为两类,既析出型气孔和反应型气孔。

析出型气孔主要为氢气孔和氮气孔,反应型气孔在钢材即非有色金属的焊接中则以CO 气孔为主。

析出型气孔的主要特征是多为表面气孔,而氢气孔与氮气孔的主要区别在于氢气孔以单一气孔为主,而氮气孔则多为密集型气孔。

焊缝中气孔产生的主要原因与焊材的选择,保存与使用,焊接工艺参数的选择,坡口母材的清洁程度及熔池的保护程度等有关系。

第六,夹渣。

非金属夹杂物的种类、形态和分布主要与焊接方法、焊条和焊剂及焊缝金属的化学成分有关。

焊接冷裂纹与热裂纹的形成及防治措施

焊接冷裂纹与热裂纹的形成及防治措施

焊接冷裂纹与热裂纹的形成及防治措施下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 引言焊接是金属加工中常用的连接方法之一,但在焊接过程中常常会出现冷裂纹和热裂纹,给焊接质量带来不利影响。

碳钢焊接裂纹产生的原因及预防措施

碳钢焊接裂纹产生的原因及预防措施

碳钢焊接裂纹产生的原因及预防措施碳钢焊接常出现裂纹,其产生的原因有很多,主要包括:冷裂纹、热裂纹、固化裂纹和应力裂纹等。

本文主要介绍这些裂纹产生的原因以及预防措施。

1. 冷裂纹碳钢焊接后如果在冷却过程中产生裂纹,这种情况就称为冷裂纹。

冷裂纹主要产生于低温条件下,通常发生在焊接过程中或者焊后的冷却过程中。

产生冷裂纹的原因主要有以下两方面:(1)组织条件。

低温下,钢材的组织会发生相变,易形成脆性组织。

(2)应力状态。

在焊接过程中,产生的内应力、残余应力和变形应力等可能导致焊缝区出现应力集中,从而引发裂纹。

为了预防冷裂纹的产生,需要注意以下几点:(1)焊接前需要对钢材进行预热处理,提高焊接温度。

(2)控制焊接过程中的加热速度和冷却速度,使之均匀。

(3)选择对于在低温环境中具有较好韧性的钢材进行焊接。

热裂纹是指在焊接加热过程中或者焊接结束后,钢材表面或焊缝处产生的裂纹。

热裂纹通常发生在焊接开始或者结束的瞬间,并具有一定的热时间。

(1)固溶体凝固温度范围内的液体区域中积累了高应力。

(2)合金成分使得焊缝区域易于析出特定化合物,从而引发热裂纹。

(2)选择焊接材料的化学成分符合所需的要求。

(1)焊接材料中含有的一些元素,如磷、硫和锰等等,会导致产生固化裂纹。

(2)焊接区域的硬度或脆性较高,若后续应力应变变化较大就容易出现固化裂纹。

(3)进行足够的热处理,同时注意减少后续的应力应变变化。

应力裂纹是指在加工过程中或者使用过程中产生的裂纹。

应力裂纹通常发生在焊接后或者机械加工、冷加工或者零部件在使用过程中受到过大的载荷和应力时。

(2)加工过程中出现应力集中,从而引发裂纹。

(3)在零部件使用过程中,负载过大,应力过大,从而引发裂纹。

(1)控制加工过程中应力的大小,注意减少应力的影响。

(2)对于连接件,应该选择适当的焊接方式,从而避免应力的集中。

(3)在零部件使用前进行充分测试,确保零部件能够承受相关的加载。

综上所述,针对碳钢焊接中出现的裂纹,需要针对不同的裂纹类型采取相应的措施,从而实现有效的预防和治疗。

不锈钢奥氏体焊接裂纹

不锈钢奥氏体焊接裂纹

不锈钢奥氏体焊接裂纹
不锈钢奥氏体焊接裂纹是一种常见的焊接缺陷,通常是由于焊接过程中热输入和冷却速度不当导致的。

以下是可能引起奥氏体不锈钢焊接裂纹的一些原因:
1. 热裂纹:由于奥氏体不锈钢的导热系数较低,焊接过程中容易在焊缝中产生较大的温度梯度,导致热裂纹的产生。

2. 冷裂纹:在焊接后冷却过程中,如果冷却速度过快,会导致焊缝中的氢不能充分扩散,从而在焊缝中形成裂纹。

3. 应力裂纹:由于焊接过程中产生的热应力和结构本身存在的残余应力叠加,可能导致应力裂纹的产生。

为了防止奥氏体不锈钢焊接裂纹的产生,可以采取以下措施:
1. 适当调整焊接参数,控制焊接过程中的热输入和冷却速度。

2. 选用合适的焊接材料,并确保焊缝金属的韧性、强度等力学性能与母材相匹配。

3. 在焊接前对母材进行预热,以降低焊接过程中的温度梯度。

4. 在焊接后进行消氢处理,以促进焊缝中氢的扩散。

5. 对焊缝进行适当的保温处理,以减少焊接残余应力的影响。

6. 对于存在较大结构拘束度的地方,可以采取加装约束的方法来减小结构拘束度的影响。

综上所述,为了防止奥氏体不锈钢焊接裂纹的产生,需要综合考虑焊接工艺、材料、结构等多种因素,采取合适的措施来降低裂纹产生的风险。

焊缝成形中的热裂纹与冷裂纹

焊缝成形中的热裂纹与冷裂纹

五、多边化裂纹和高温失延裂纹的形成
在热影响区(包括多层焊时前一焊道的热影响区)温度低于固 相线的部位,不存在液态薄膜,也会产生晶间断裂而形成高 温裂纹。这种裂纹大多属于多边化裂纹或高温失延裂纹。 在纯金属或单相奥氏体焊缝或近缝区中,刚凝固的金属存 在很多晶格缺陷,晶格缺陷在高温条件下的扩散聚集形成低 塑性的二次边界(多边化晶界),在收缩应力的作用下由多 边化晶界产生多边化裂纹。 在其它材料的焊接热影响区中,在高温条件下由晶内晶界 的不均匀变形加上晶界的缺陷聚集而失强、失塑导致的晶界 开裂属于高温失延裂纹。
第三节
焊接冷裂纹
一、 冷裂纹的分类
(一) 延迟裂纹
这种裂纹是冷裂纹中一种普遍形态,它的主要特点是不在焊后立即出现,而是 有一定孕育期,具有延迟现象 1. 焊趾裂纹 2. 焊道下裂纹 3. 根部裂纹
(二) 淬硬脆化裂纹(或称淬火裂纹)
它完全是由冷却时马氏体相变而产生的脆性造成的,这种裂纹基本上没有 延迟现象,焊后可以立即发现,有时出现在热影响区,有时出现在焊缝上
1. 焊缝中氢的溶解与扩散 来源:焊接时焊接材料、坡口表面的铁锈、油污、空气中水分 中的氢会熔入焊缝金属 溶解与扩散:氢在铁素体中的扩散速度要显著大于奥氏体中 氢在铁素体中的溶解度小,扩散速度大;相反,氢在奥氏 体中溶解度大,扩散速度小。
2. 氢在焊接接头中的扩散集聚
焊接低合金高强钢时,焊缝冷却时焊缝的相变点也总是高于母材 (因为,为了改善焊接性,焊缝的含碳量总是低于母材) 所以,焊缝中的H中冷却过程中要先从焊缝向母材HAZ区扩散,由于氢在 HAZ奥氏体中的扩散速度较小,不能很快把氢扩散到距熔合线较远的母材中 去,因而在熔合线附近就形成了富氢地带。 当滞后相变的HAZ由奥氏体向马氏体转变时(TAM),氢便以过饱和状态残留在 马氏体中,促使这个地区进一步脆化,为延迟裂纹的产生创造了条件。

铸铁焊补时产生裂纹的原因及预防措施

铸铁焊补时产生裂纹的原因及预防措施

铸铁焊补时产生裂纹的原因及预防措施铸铁焊补时可能产生冷裂纹和热裂纹两种类型的裂纹。

(1)冷裂纹。

冷裂纹可能出现在焊缝或热影响区上,并且发生在400℃以下。

当焊缝为铸铁型时,易于出现焊缝冷裂纹。

裂纹发生时常伴随着可听见的较响的脆性断裂声音,焊缝较长时或焊补刚性较大的缺陷时,常发生这种裂纹。

其产生的原因是:焊接过程当中由于焊件局部不均匀受热,焊缝在冷却过程当中受到特别大的拉应力,由于铸铁强度低,400℃以下基本无塑性,当拉应力超过此时铸铁的抗拉强度时,即发生焊缝冷裂纹。

当焊缝中存在白口铸铁时,由于白口铸铁的收缩率(2.3%)比灰铸铁的收缩率(1.26%)大,故焊缝更易出现冷裂纹,尤其是当焊缝强大大于母材时,冷却过程当中母材牵制不住焊缝的收缩,结果在结合处母材被撕裂,这种现象称为“剥离”。

当焊接接头刚性大、焊补层数多,焊补金属体积大,使焊接接头处于高应力状态时,如焊缝金属的屈服点又较高,难于通过其塑性变形来松弛焊接接头的高应力,则焊接裂纹易于在热影响区的白口区或马氏体区产生,形成热影响区冷裂纹。

防止冷裂纹最有效的方法是对焊补件进行550~700℃的整体预热,其次是采用异质焊缝的焊接材料。

(2)热裂纹。

当采用镍基焊接材料(如Z308、Z408、Z508焊条)及一般常用的低碳钢焊条焊补铸铁时,焊缝金属对热裂纹较敏感。

产生的原因是:采用镍基材料焊补铸铁时,由于铸铁含S、P高,形成较多的低熔点共晶物,Ni-Ni3S2(熔点664℃)、Ni-Ni3P(熔点880℃);采用低碳钢焊条焊补铸铁时,第一、二层焊缝会从铸铁溶入较多的C、S 及P,因此使第一、二层焊缝的热裂程度增加。

防止产生热裂纹的方法是调整焊缝的化学成分,加入稀土元素,增强脱硫、脱磷的能力,减小熔合比,降低焊接应力等。

第2章2-4 焊接裂纹

第2章2-4  焊接裂纹

三、层状撕裂 (lamellar tearing)
1、层状撕裂的定义:
轧制的厚钢板角接接头,T形接 头和十字接头中,由于多层焊角焊 缝产生的过大的Z向应力及母材中存 在的层状夹杂,在焊接热影响区及 其附近的母材内引起的沿轧制方向 发展的具有阶梯状的裂纹。
2、层状撕裂的特征
产生部位:
产生温度: 形貌特征: 产生的接头形 式:


第三,选择合理的焊接次序,施工时焊接 次序是很重要的,同样的焊接方法和焊接材料, 只是因焊接次序不同,可能具有不同的结晶裂 纹倾向。总的原则是尽量使大多数焊缝能在较 小刚度的条件下焊接,使焊缝的受力最小。 以上简要地从冶金和工艺方面对防止热裂 纹的措施进行了讨论,实际生产中情况比较复 杂,防止热裂纹的方法也很多,这里无法一一 举例。但最主要的是根据施工具体条件,找出 存在的主要问题,采取相应的措施。同时应当 经济可靠,简便易行。
为什么钢淬硬之后易引发冷裂纹呢?
1) 淬硬会形成脆硬的马氏体组织 这种组织发生断裂时将消耗较低的能量。
2) 淬硬会形成更多的晶格缺陷 成为裂纹源。
(2)氢的作用
焊接接头的含氢量越高,裂纹的敏感性越大 。 氢的应力扩散理论认为,金属内部的缺陷(包括 微孔、微夹杂和晶格缺陷等)提供了潜在裂源,在应 力的作用下,这些微观缺陷的前沿形成了三向应力区, 诱使氢向该处扩散并聚集。当氢的浓度达到一定程度 时,一方面产生较大的应力,另一方面阻碍位错移动 而使该处变脆,当应力进一步加大时,促使缺陷扩展 而形成裂纹。其后氢又不断向新的三向应力区扩展, 达到临界浓度时,又发生新的裂纹扩展。这种过程可 周而复始断续进行,直至成为宏观裂纹。
产生结晶裂纹的条件:

1、冶金因素 ——由低熔共晶形成的液态薄膜
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焊接热裂纹与冷裂纹再热裂纹与层状撕裂
应力腐蚀及疲劳裂纹
焊接接头的断裂与断口分析焊接接头的断裂形式
焊接接头的断裂机理
焊接接头的断口分析
1.3.7 焊接过程的智能控制焊接过程控制基本知识闭环控制系统的基本概念
焊接过程控制参数焊接过程传感
超声波检测
X射线检测
电弧电压传感
声学传感
红外传感
视觉传感
焊接过程传感信息的处理数据预处理
数字图像处理
TIG焊接熔透智能控制
模糊控制
BP神经网络控制
模糊神经网络控制
实例
1.3.8焊接质量检测及控制
焊接质量及检验
焊接质量的概念
焊接检验的目的
焊接检验过程
焊接检验的特点及要求
焊接缺陷
焊接缺陷的概念及分类
焊接缺陷的特征及分布
产生焊接缺陷的主要原因
射线探伤
射线探伤的基本原理
射线探伤设备
射线照相法探伤
射线实时图像法探伤
射线计算机断层扫描技术
射线探伤中的安全保护
超声波探伤
超声波探伤基本原理
超声波探伤设备
直接接触法超声波探伤法
液浸法超声波探伤
计算机及数字技术在超声波探伤中的应用磁力探伤与涡流探伤。

相关文档
最新文档