初三中考数学复习天天练--必考题型-圆证明题
九年级中考数学《圆证明题》专题复习试卷及解析
九年级中考数学《圆证明题》专题复习试卷及分析九年级中考数学《圆证明题》专题复习试卷及分析1、如图,点 A,B 在⊙ O上,直线 AC是⊙ O的切线, OC⊥OB,连结 AB交 OC于点 D.求证: AC=CD.2、如图, AD是⊙ O的切线,切点为 A,AB是⊙ O的弦.过点 B 作 BC∥AD,交⊙ O于点 C,连结AC,过点 C作 CD∥AB,交 AD于点 D.连结 AO并延伸交 BC于点 M,交过点 C的直线于点P,且∠BCP=∠ ACD.(1)判断直线 PC与⊙ O的地点关系,并说明原因;(2)若 AB=9,BC=6.求 PC的长.3、如图,在△ ABC中,∠ ACB=90°,点 D 是 AB上一点,以 BD为直径的⊙ O和 AB相切于点 P.(1)求证: BP均分∠ ABC;(2)若 PC=1,AP=3,求 BC的长.14、已知:如图, AC是⊙ O的直径, BC是⊙ O的弦,点 P 是⊙ O外一点,∠ PBA=∠ C.(1)求证: PB是⊙ O的切线.(2)若 OP∥BC,且 OP=8,∠ C=60°,求⊙ O的半径.5、如图,在△ ABC中, AB=AC,以 AB为直径的⊙ O交 BC于点 M,MN⊥AC于点 N.求证: MN是⊙ O的切线.6、如图, AB是⊙ O的直径,点 C 在 AB的延伸线上, CD与⊙ O相切于点 D,CE⊥AD,交 AD的延伸线于点 E.(1)求证:∠ BDC=∠A;(2)若 CE=4,DE=2,求⊙ O的直径.7、已知: AB是⊙ O的直径, BD是⊙ O的弦,延伸 BD到点 C,使 AB=AC,连结 AC,过点 D 作DE⊥AC,垂足为 E.( 1)求证: DC=BD( 2)求证: DE为⊙ O的切线.8、如图, AB是⊙ O的直径, C为⊙ O上一点,经过点 C 的直线与 AB的延伸线交于点 D,连结AC,BC,∠BCD=∠CAB.E 是⊙ O上一点,弧 CB=弧 CE,连结 AE并延伸与 DC的延伸线交于点 F.( 1)求证: DC是⊙ O的切线;( 2)若⊙ O的半径为 3,sin D=,求线段AF的长.9、如图,已知 MN是⊙ O的直径,直线 PQ与⊙ O相切于 P 点, NP均分∠MNQ.( 1)求证: NQ⊥PQ;( 2)若⊙ O的半径 R=2,NP=,求NQ的长.10、已知: AB是⊙ O的直径, BD是⊙ O的弦,延伸 BD到点 C,使 AB=AC;连结 AC,过点 D作DE⊥AC,垂足为 E.(1)求证: DC=BD(2)求证: DE为⊙ O的切线11、如图,以 Rt△ABC的 AC边为直径作⊙ O交斜边 AB于点 E,连结 EO并延伸交 BC的延伸线于点 D,点 F 为 BC的中点,连结 EF和 AD.(1)求证: EF是⊙ O的切线;(2)若⊙ O的半径为 2,∠ EAC=60°,求 AD的长.12、如图, AB是⊙ O的直径,点 E 是上的一点,∠ DBC=∠ BED.⑴求证: BC是⊙ O的切线;⑵已知 AD=3, CD=2,求 BC的长.13、如图,已知 AB是⊙ O的直径,点 C、D在⊙ O上,点 E 在⊙ O外,∠ EAC=∠D=60°.(1)求∠ ABC的度数;(2)求证: AE是⊙ O的切线;(3)当 BC=4时,求劣弧 AC的长.14、已知△ ABC,以 AB为直径的⊙ O分别交 AC于 D, BC于 E,连结 ED,若 ED=EC.(1)求证: AB=AC;(2)若 AB=4,BC=2 ,求 CD的长.15、如图,以△ ABC的边 AB上一点 O为圆心的圆经过 B、C两点,且与边 AB订交于点 E,D是弧 BE的中点, CD交 AB于 F,AC=AF.( 1)求证: AC是⊙ O的切线;( 2)若 EF=5,DF= ,求⊙ O的半径.参照答案1、∵直线 AC与⊙ O相切,∴ OA⊥ AC,∴∠ OAC=90°,即∠ OAB+∠CAB=90°,∵OC⊥OB,∴∠BOC=90°,∴∠B+∠ODB=90°,而∠ODB=∠ADC,∴∠ADC+∠B=90°,∴OA=OB,∴∠ OAB=∠B,∴∠ ADC=∠CAB,∴ AC=CD.2、( 1)解: PC与圆 O相切,原因为:过C点作直径CE,连结EB,如图,∵CE为直径,∴∠ EBC=90°,即∠ E+∠BCE=90°,∵ AB∥DC,∴∠ ACD=∠BAC,∵∠ BAC=∠E,∠ BCP=∠ACD.∴∠ E=∠ BCP,∴∠ BCP+∠BCE=90°,即∠ PCE=90°,∴ CE⊥ PC,∴ PC与圆 O相切;( 2)解:∵ AD是⊙ O的切线,切点为 A,∴ OA⊥AD,∵BC∥AD,∴ AM⊥BC,∴ BM=CM= BC=3,∴ AC=AB=9,在 Rt△ AMC中,AM= =6,设⊙ O的半径为 r ,则 OC=r,OM=AM﹣r=6 ﹣r ,2 2 2 2 2 2在 Rt△ OCM中, OM+CM=OC,即 3 +(6 ﹣ r ) =r,解得 r= ,∴ CE=2r= ,OM=6 ﹣= ,∴ BE=2OM= ,∵∠ E=∠ MCP,∴ Rt △PCM∽Rt△ CEB,∴=,即=,∴ PC= 3、( 1)证明:连结 OP,∵OP=OB,∴∠ OPB=∠OBP,∴∠ PBC=∠ OBP,∴ BP均分∠ ABC(2)作 PH⊥AB于 H.∵ PB均分∠ ABC,PC⊥BC, PH⊥AB,∴ PC=PH=1,在 Rt△ APH中, AH==2,∵∠ A=∠A,∠ AHP=∠ C=90°,∴△ APH∽△ ABC,∴=,∴=,∴ AB=3,∴ BH=AB﹣AH=,在 Rt△ PBC和 Rt△PBH中,,∴ Rt△PBC≌Rt△PBH,∴ BC=BH=.4、( 1)证明:连结 OB,∵ AC是⊙ O直径,∴∠ ABC=90°,∵OC=OB,∴∠ OBC=∠C,∵∠ PBA=∠C,∴∠ PBA=∠OBC,即∠ PBA+∠ OBA=∠ OBC+∠ ABO=∠ABC=90°,∴ OB⊥PB,∵ OB为半径,∴ PB是⊙ O的切线;(2)解:∵ OC=OB,∠ C=60°,∴△ OBC为等边三角形,∴ BC=OB,∵ OP∥BC,∴∠ CBO=∠ POB,∴∠ C=∠POB,在△ ABC和△ PBO中∵,∴△ ABC≌△ PBO(ASA),∴ AC=OP=8,即⊙ O的半径为4.5、证明:连结 OM,∵ AB=AC,∴∠ B=∠ C,∵ OB=OM,∴∠ B=∠OMB,∴∠ OMB=∠C,∴OM∥AC,∵ MN⊥AC,∴ OM⊥MN.∵点 M在⊙ O上,∴ MN是⊙ O的切线.6、( 1)证明:连结 OD,∵CD是⊙ O切线,∴∠ ODC=90°,即∠ ODB+∠ BDC=90°,∵AB为⊙ O的直径,∴∠ ADB=90°,即∠ ODB+∠ADO=90°,∴∠ BDC=∠ADO,∵OA=OD,∴∠ ADO=∠A,∴∠ BDC=∠A;(2)∵ CE⊥ AE,∴∠ E=∠ADB=90°,∴DB∥EC,∴∠ DCE=∠ BDC,∴∠ DCE=∠A,∵ CE=4, DE=2∴在 Rt △ACE中,可得 AE=8∴ AD=6在在 Rt △ADB中可得BD=3∴依据勾股定理可得7、证明:( 1)连结 AD,∵ AB是⊙ O的直径,∴∠ ADB=90°,又∵ AB=AC,∴ DC=BD;(2)连结半径 OD,∵ OA=OB, CD=BD,∴ OD∥AC,∴∠ ODE=∠CED,又∵ DE⊥ AC,∴∠ CED=90°,∴∠ ODE=90°,即 OD⊥DE.∴ DE是⊙ O的切线.8、( 1)证明:连结 OC,BC,∵ AB是⊙ O的直径,∴∠ ACB=90°,即∠ 1+∠3=90°.∵OA=OC,∴∠ 1=∠ 2.∵∠ DCB=∠BAC=∠1.∴∠ DCB+∠ 3=90°.∴ OC⊥ DF.∴ DF 是⊙ O的切线;( 2)解:在 Rt△ OCD中, OC=3,sin D=.∴ OD=5,AD=8.∵=,∴∠ 2=∠4.∴∠ 1=∠4.∴ OC∥AF.∴△ DOC∽△ DAF.∴.∴ AF=.9、( 1)证明:连结 OP,如图,∴直线PQ与⊙ O相切,∴ OP⊥PQ,∵OP=ON,∴∠ ONP=∠ OPN,∵ NP均分∠ MNQ,∴∠ ONP=∠ QNP,∴∠ OPN=∠QNP,∴OP∥ NQ,∴ NQ⊥PQ;( 2)解:连结 PM,如图,∵ MN是⊙ O的直径,∴∠ MPN=90°,∵NQ⊥PQ,∴∠ PQN=90°,而∠ MNP=∠ QNP,∴ Rt △NMP∽Rt△ NPQ,∴=,即=,∴ NQ=3.10、( 1)证明:( 1)连结 AD;∵ AB是⊙ O的直径,∴∠ ADB=90°.又∵ AB=AC∴ DC=BD(2)连结半径 OD;∵ OA=OB, CD=BD,∴ OD∥AC.∴∠ 0DE=∠CED.又∵ DE⊥ AC,∴∠ CED=90°.∴∠ ODE=90°,即 OD⊥DE.∴ DE是⊙ O的切线.11、( 1)证明:连结 CE,如下图:∵AC为⊙ O的直径,∴∠ AEC=90°.∴∠ BEC=90°.∵点F 为 BC的中点,∴ EF=BF=CF.∴∠ FEC=∠FCE.∵OE=OC,∴∠ OEC=∠OCE.∵∠ FCE+∠ OCE=∠ ACB=90°,∴∠ FEC+∠OEC=∠OEF=90°.∴ EF是⊙ O的切线.( 2)解:∵ OA=OE,∠EAC=60°,∴△ AOE是等边三角形.∴∠ AOE=60°.∴∠COD=∠AOE=60°.∵⊙ O的半径为 2,∴ OA=OC=2在 Rt △OCD中,∵∠ OCD=90°,∠ COD=60°,∴∠ ODC=30°.∴ OD=2OC=4,∴ CD=.在Rt△ ACD中,∵∠ ACD=90°,AC=4,CD=.∴AD==.12、1)AB是⊙ O的直径,得∠ ADB=90°,进而得出∠ BAD=∠DBC,即∠ ABC=90°,即可证明BC是⊙ O的切线;( 2)可证明△ ABC∽△ BDC,则=,即可得出BC=;13、解:( 1)∵∠ ABC与∠ D 都是弧 AC所对的圆周角,∴∠ ABC=∠D=60°;( 2)∵ AB是⊙ O的直径,∴∠ ACB=90°.∴∠ BAC=30°,∴∠ BAE=∠BAC+∠EAC=30°+60°=90°,即 BA⊥AE,∴ AE是⊙ O的切线;( 3)如图,连结 OC,∵∠ ABC=60°,∴∠ AOC=120°,∴劣弧 AC的长为.14、( 1)证明:∵ ED=EC,∴∠ EDC=∠ C,∵∠ EDC=∠B,∴∠ B=∠C,∴ AB=AC;(2)解:连结 AE,∵ AB为直径,∴ AE⊥BC,由( 1)知 AB=AC,∴ BE=CE= BC=,九年级中考数学《圆证明题》专题复习试卷及分析九年级中考数学《圆证明题》专题复习试卷及分析∵△ CDE∽△ CBA,∴,∴ CE?CB=CD?CA,AC=AB=4,∴?2 =4CD,∴ CD= .15、( 1)证明:连结 OD、 OC,如图,∵ D 是弧 BE的中点,∴ OD⊥BE,∴∠ D+∠3=90°,∵∠ 3=∠ 2,∴∠ D+∠2=90°,∵ AF=AC,OD=OC,∴∠ 1=∠2,∠ D=∠ 4,∴∠ 1+∠ 4=90°,∴ OC⊥AC,∴ AC是⊙ O的切线;( 2)解:设⊙ O的半径为 r ,则 OF=OE﹣ EF=r﹣5,22222 2在 Rt△ ODF中,∵ OD+OF=DF,∴ r +( r ﹣ 5) =(),整理得 r 2﹣5r ﹣ 6=0,解得 r 1 =6,r 2=﹣1,∴,⊙ O的半径为 6.10。
中考数学专题复习《圆的证明与计算》检测题(含答案)
专题二 圆的证明与计算类型一 圆基本性质的证明与计算1.如图,⊙O 的半径为5,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. (1)求证:P A ·PB =PD ·PC ;(2)若P A =454,AB =194,PD =DC +2,求点O 到PC 的距离.第1题图2. 如图,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是AB ︵的中点,连接P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AC =3AP ; (2)如图②,若sin ∠BPC =2425,求tan ∠P AB 的值.第2题图3. 已知⊙O 中弦AB ⊥弦CD 于E ,tan ∠ACD =32. (1)如图①,若AB 为⊙O 的直径,BE =8,求AC 的长;(2)如图②,若AB 不为⊙O 的直径,BE =4,F 为BC ︵上一点,BF ︵=BD ︵,且CF =7,求AC 的长.第3题图4.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交CA 的延长线于点E ,连接AD 、DE .(1)求证:D 是BC 的中点;(2)若 DE =3,BD -AD =2,求⊙O 的半径; (3)在(2)的条件下,求弦AE 的长.第4题图5.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点, ∠APC =∠CPB =60°.(1)判断△ABC 的形状:________;(2)试探究线段P A ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?求出最大面积.第5题图 备用图类型二与切线有关的证明与计算(一、与三角函数结合1.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD 交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sin C=35时,求⊙O的半径.第1题图2.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin ∠P =35,CF =5,求BE 的长.第2题图3. 如图①,在⊙O 中,直径AB ⊥CD 于点E ,点P 在BA 的延长线上,且满足∠PDA =∠ADC .(1)判断直线PD 与⊙O 的位置关系,并说明理由;(2)延长DO 交⊙O 于M (如图②),当M 恰为BC ︵的中点时,试求DE BE 的值;(3)若P A =2,tan ∠PDA =12,求⊙O 的半径.第3题图二、与相似三角形结合1.如图,在Rt △ABC 中,∠ACB =90°,E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE . (1)求证:△ABC ∽△CBD ; (2)求证:直线DE 是⊙O 的切线.第1题图2. 如图,⊙O 的圆心在Rt △ABC 的直角边AC 上,⊙O 经过C 、D 两点,与斜边AB 交于点E ,连接BO 、ED ,有BO ∥ED ,作弦EF ⊥AC 于G ,连接DF .(1)求证:CO ·CD =DE ·BO ;(2)若⊙O 的半径为5,sin ∠DFE =35,求EF 的长.第2题图3. 如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为5,sin ∠ADE =45,求BF 的长.第3题图4.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形;(2)若AC=6,AB=10,连接AD,求⊙O的半径和AD的长.第4题图5.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD =DC,延长CB交⊙O于点E.(1)图①的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图②,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)第5题图6.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,OF延长线交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH·EA;(3)若⊙O 的半径为5,sin A =35,求BH 的长.第6题图7.如图①,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD =2 3.过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC =60°,DE =7,求图中阴影部分的面积;(3)若AB AC =43,DF +BF =8,如图②,求BF 的长.第7题图三、与全等三角形结合1.如图,已知PC 平分∠MPN ,点O 是PC 上任意一点,PM 与⊙O 相切于点E ,交PC 于A 、B 两点. (1)求证:PN 与⊙O 相切;(2)如果∠MPC =30°,PE =23,求劣弧BE ︵的长.第1题图2.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M是⊙O上一点,并且∠BMC =60°.(1)求证:AB是⊙O的切线;(2)若E、F分别是边AB、AC上的两个动点,且∠EDF=120°,⊙O 的半径为2.试问BE+CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.第2题图3. 已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接AE.(1)求证:AE与⊙O相切;(2)连接BD,若ED∶DO=3∶1,OA=9,求AE的长和tan B的值.第3题图4. 如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O 交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.第4题图5. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠ACB 的平分线CD 交⊙O 于点D ,过点D 作⊙O 的切线PD ,交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F . (1)求证:PD ∥AB ; (2)求证:DE =BF ;(3)若AC =6,tan ∠CAB =43,求线段PC 的长.第5题图6.如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =163,AC =8,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长.第6题图7. 如图①,AB是⊙O的直径,OC⊥AB,弦CD与半径OB相交于点F,连接BD,过圆心O作OG∥BD,过点A作⊙O的切线,与OG 相交于点G,连接GD,并延长与AB的延长线交于点E.(1)求证:GD=GA;(2)求证:△DEF是等腰三角形;(3)如图②,连接BC,过点B作BH⊥GE,垂足为点H,若BH=9,⊙O的直径是25,求△CBF的周长.第7题图专题二圆的证明与计算类型一圆基本性质的证明与计算1. (1)证明:如解图,连接AD,BC,∵四边形ABCD内接于⊙O,∴∠P AD=∠PCB,∠PDA=∠PBC,∴△P AD ∽△PCB , ∴P A PD =PC PB , ∴P A ·PB =PD ·PC ;(2)解:如解图,连接OD ,过O 点作OE ⊥DC 于点E , ∵P A =454,AB =194,PD =DC +2,∴PB =P A +AB =16,PC =PD +DC =2DC +2, ∵P A ·PB =PD ·PC ,∴454×16=(DC +2)(2DC +2), 解得DC =8或DC =-11(舍去), ∴DE =12DC =4, ∵OD =5,∴在Rt △ODE 中,OE =OD 2-DE 2=3, 即点O 到PC 的距离为3.2. (1)证明:∵∠BAC 与∠BPC 是同弧所对的圆周角, ∴∠BAC =∠BPC =60°, 又∵AB =AC ,∴△ABC 为等边三角形, ∴∠ACB =60°, ∵点P 是AB ︵的中点, ∴P A ︵=PB ︵,∴∠ACP =∠BCP =12∠ACB =30°,而∠APC =∠ABC =60°, ∴△APC 为直角三角形, ∴tan ∠APC =AC AP , ∴AC =AP tan60°=3AP ;(2)解:连接AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG ⊥AC 于点G ,连接OC ,BO ,如解图,∵AB =AC , ∴AF ⊥BC , ∴BF =CF , ∵点P 是AB ︵中点, ∴∠ACP =∠PCB , ∴EG =EF .∵∠BPC =∠BAC =12∠BOC =∠FOC , ∴sin ∠FOC =sin ∠BPC =2425, 设FC =24a ,则OC =OA =25a ,∴OF =OC 2-FC 2=7a ,AF =25a +7a =32a , 在Rt △AFC 中,∵AC 2=AF 2+FC 2, ∴AC =(32a )2+(24a )2=40a , ∵∠EAG =∠CAF , ∴△AEG ∽△ACF , ∴EG CF =AE AC ,又∵EG =EF ,AE =AF -EF ,第2题解图∴EG 24a =32a -EG 40a , 解得EG =12a ,在Rt △CEF 中,tan ∠ECF =EF FC =12a 24a =12, ∵∠P AB =∠PCB ,∴tan ∠P AB =tan ∠PCB =tan ∠ECF =12. 3. 解:(1)如解图①,连接BD , ∵直径AB ⊥弦CD 于点E , ∴CE =DE ,∵∠ACD 与∠ABD 是同弧所对的圆周角, ∴∠ACD =∠ABD , ∴tan ∠ABD =tan ∠ACD =32, ∴ED EB =AE CE =32,即ED 8=32, ∴ED =12, ∴CE =ED =12, 又∵AE =32CE =18, ∴AC =AE 2+CE 2=613;(2)连接CB ,过B 作BG ⊥CF 于G ,如解图②, ∵BF ︵=BD ︵, ∴∠BCE =∠BCG , 在△CEB 和△CGB 中第3题解图①⎩⎪⎨⎪⎧∠BCE =∠BCG ∠BEC =∠BGC BC =BC, ∴△CEB ≌△CGB (AAS), ∴BE =BG =4,∵四边形ACFB 内接于⊙O , ∴∠A +∠CFB =180°, 又∵∠CFB +∠BFG =180°, ∴∠BFG =∠A , ∵∠FGB =∠AEC =90°, ∴△BFG ∽△CAE , ∴FG BG =AE CE =32, ∴FG =32BG =6, ∴CE =CG =13, ∴AE =32CE =392,∴AC =AE 2+CE 2=13213. 4. (1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°, 即AD ⊥BC , ∵AB =AC ,∴等腰△ABC ,AD 为BC 边上的垂线, ∴BD =DC , ∴D 是BC 的中点; (2)解:∵AB =AC ,∴∠ABC =∠C ,∵∠ABC 和∠AED 是同弧所对的圆周角, ∴∠ABC =∠AED , ∴∠AED =∠C , ∴CD =DE =3, ∴BD =CD =3, ∵BD -AD =2, ∴AD =1,在Rt △ABD 中,由勾股定理得AB 2=BD 2+AD 2=32+12=10, ∴AB =10,∴⊙O 的半径=12AB =102; (3)解:如解图,连接BE , ∵AB =10, ∴AC =10,∵∠ADC =∠BEA =90°,∠C =∠C , ∴△CDA ∽△CEB , ∴AC BC =CD CE ,由(2)知BC =2BD =6,CD =3, ∴106=3CE , ∴CE =9510,∴AE =CE -AC =9510-10=4510. 5. 解:(1)等边三角形.第4题解图【解法提示】∵∠APC =∠CPB =60°,又∵∠BAC 和∠CPB 是同弧所对的圆周角,∠ABC 和∠APC 是同弧所对的圆周角,∴∠BAC =∠CPB =60°,∠ABC =∠APC =60°, ∴∠BAC =∠ABC =60°, ∴AC =BC ,又∵有一个角是60°的等腰三角形是等边三角形, ∴△ABC 是等边三角形. (2)P A +PB =PC .证明如下:如解图①,在PC 上截取PD =P A ,连接AD , ∵∠APC =60°, ∴△P AD 是等边三角形, ∴P A =AD =PD ,∠P AD =60°, 又∵∠BAC =60°, ∴∠P AB =∠DAC , 在△P AB 和△DAC 中, ∵⎩⎪⎨⎪⎧AP =AD ∠P AB =∠DAC ,AB =AC ∴△P AB ≌△DAC (SAS), ∴PB =DC , ∵PD +DC =PC , ∴P A +PB =PC ,(3)当点P 为AB ︵的中点时,四边形APBC 的面积最大. 理由如下:如解图②,过点P 作PE ⊥AB ,垂足为E ,第5题解图①第5题解图②过点C 作CF ⊥AB ,垂足为F , ∵S △P AB =12AB ·PE ,S △ABC =12AB ·CF , ∴S 四边形APBC =12AB ·(PE +CF ).当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 的直径, 此时四边形APBC 的面积最大, 又∵⊙O 的半径为1,∴其内接正三角形的边长AB = 3 , ∴四边形APBC 的最大面积为12×2×3= 3 . 类型二 与切线有关的证明与计算 一、与三角函数结合 针对演练1. (1)证明:连接OE ,如解图, ∵AB =BC 且D 是AC 中点, ∴BD ⊥AC , ∵BE 平分∠ABD , ∴∠ABE =∠DBE , ∵OB =OE , ∴∠OBE =∠OEB , ∴∠OEB =∠DBE , ∴OE ∥BD ,第1题解图∵BD ⊥AC , ∴OE ⊥AC , ∵OE 为⊙O 半径, ∴AC 与⊙O 相切;(2)解:∵BD =6,sin C =35,BD ⊥AC , ∴BC =BDsin C =10, ∴AB =BC =10.设⊙O 的半径为r ,则AO =10-r , ∵AB =BC , ∴∠C =∠A , ∴sin A =sin C =35, ∵AC 与⊙O 相切于点E , ∴OE ⊥AC ,∴sin A =OE OA =r 10-r =35,∴r =154, 即⊙O 的半径是154.2. (1)证明:连接OC ,如解图, ∵PC 切⊙O 于点C , ∴OC ⊥PC , ∴∠PCO =90°, ∴∠PCA +∠OCA =90°, ∵AB 为⊙O 的直径,第2题解图∴∠ACB =90°, ∴∠ABC +∠OAC =90°, ∵OC =OA , ∴∠OCA =∠OAC , ∴∠PCA =∠ABC ; (2)解:∵AE ∥PC , ∴∠PCA =∠CAF , ∵AB ⊥CG , ∴AC ︵=AG ︵, ∴∠ACF =∠ABC , ∵∠PCA =∠ABC , ∴∠ACF =∠CAF , ∴CF =AF , ∵CF =5, ∴AF =5, ∵AE ∥PC , ∴∠F AD =∠P , ∵sin ∠P =35, ∴sin ∠F AD =35,在Rt △AFD 中,AF =5,sin ∠F AD =35, ∴FD =3,AD =4, ∴CD =CF +FD =8, 在Rt △OCD 中,设OC =r , ∴r 2=(r -4)2+82,∴r =10, ∴AB =2r =20, ∵AB 为⊙O 的直径, ∴∠AEB =90°,在Rt △ABE 中,sin ∠EAD =35, ∴BE AB =35, ∵AB =20, ∴BE =12.3. 解:(1)直线PD 与⊙O 相切, 理由如下:如解图①,连接DO ,CO , ∵∠PDA =∠ADC , ∴∠PDC =2∠ADC , ∵∠AOC =2∠ADC , ∴∠PDC =∠AOC , ∵直径AB ⊥CD 于点E , ∴∠AOD =∠AOC , ∴∠PDC =∠AOD , ∵∠AOD +∠ODE =90°, ∴∠PDC +∠ODE =90°, ∴OD ⊥PD , ∵OD 是⊙O 的半径, ∴直线PD 与⊙O 相切; (2)如解图②,连接BD , ∵M 恰为BC ︵的中点,第3题解图①∴∠CDM =∠BDM , ∵OD =OB , ∴∠BDM =∠DBA , ∴∠CDM =∠DBA , ∵直线PD 与⊙O 相切, ∴∠PDA +∠ADO =90°, 又∵AB 是⊙O 的直径,∴∠ADB =90°,即∠ADO +∠BDM =90°, ∴∠PDA =∠BDM , ∴∠PDA =∠DBA =∠CDM , 又∵∠PDA =∠ADC , ∴∠PDM =3∠CDM =90°, ∴∠CDM =30°, ∴∠DBA =30°, ∴DE BE =tan30°=33; (3)如解图③,∵tan ∠PDA =12,∠PDA =∠ADC , ∴AE DE =12,即DE =2AE ,在Rt △DEO 中,设⊙O 的半径为r , DE 2+EO 2=DO 2, ∴(2AE )2+(r -AE )2=r 2, 解得r =52AE ,在Rt △PDE 中,DE 2+PE 2=PD 2,第3题解图②第3题解图③∴(2AE )2+(2+AE )2=PD 2, ∵直线PD 与⊙O 相切,连接BD , 由(2)知∠PDA =∠DBA ,∠P =∠P , ∴△P AD ∽△PDB , ∴PD PB =P A PD ,∴PD 2=P A ·PB ,即PD 2=2×(2+2r ), ∴(2AE )2+(2+AE )2=2×(2+2r ), 化简得5AE 2+4AE =4r , ∵r =52AE , 解得r =3. 即⊙O 的半径为3. 二、与相似三角形结合 针对演练1. 证明:(1)∵AC 为⊙O 的直径, ∴∠ADC =90°, ∴∠CDB =90°, 又∵∠ACB =90°, ∴∠ACB =∠CDB , 又∵∠B =∠B , ∴△ABC ∽△CBD ; (2)连接DO ,如解图,∵∠BDC =90°,E 为BC 的中点, ∴DE =CE =BE , ∴∠EDC =∠ECD ,第1题解图又∵OD =OC , ∴∠ODC =∠OCD ,而∠OCD +∠DCE =∠ACB =90°, ∴∠EDC +∠ODC =90°,即∠EDO =90°, ∴DE ⊥OD , ∵OD 为⊙O 的半径, ∴DE 与⊙O 相切.2. (1)证明:连接CE ,如解图, ∵CD 为⊙O 的直径, ∴∠CED =90°, ∵∠BCA =90°, ∴∠CED =∠BCO , ∵BO ∥DE , ∴∠BOC =∠CDE , ∴△CBO ∽△ECD , ∴CO DE =BO CD , ∴CO ·CD =DE ·BO ;(2)解:∵∠DFE =∠ECO ,CD =2·OC =10,∴在Rt △CDE 中,ED =CD ·sin ∠ECO =CD ·sin ∠DFE = 10×35=6,∴CE =CD 2-ED 2=102-62=8, 在Rt △CEG 中,EG CE =sin ∠ECG =35, ∴EG =35×8=245,第2题解图根据垂径定理得:EF =2EG =485. 3. (1)证明:如解图,连接OD , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∵AB =AC ,∴AD 垂直平分BC ,即DC =DB , ∴OD 为△BAC 的中位线, ∴OD ∥AC . 而DE ⊥AC , ∴OD ⊥DE , ∵OD 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)解:∵∠DAC =∠DAB ,且∠AED =∠ADB =90°, ∴∠ADE =∠ABD ,在Rt △ADB 中,sin ∠ADE =sin ∠ABD =AD AB =45,而AB =10, ∴AD =8,在Rt △ADE 中,sin ∠ADE =AE AD =45, ∴AE =325, ∵OD ∥AE , ∴△FDO ∽△FEA ,∴OD AE =FO F A ,即5325=BF +5BF +10,第3题解图∴BF =907.4. (1)证明:如解图①,连接OD 、OE 、ED . ∵BC 与⊙O 相切于点D , ∴OD ⊥BC ,∴∠ODB =90°=∠C , ∴OD ∥AC , ∵∠B =30°, ∴∠A =60°, ∵OA =OE ,∴△AOE 是等边三角形, ∴AE =AO =OD ,∴四边形AODE 是平行四边行, ∵OA =OD ,∴平行四边形AODE 是菱形; (2)解:设⊙O 的半径为r . ∵OD ∥AC , ∴△OBD ∽△ABC ,∴OD AC =OBAB ,即10r =6(10-r ). 解得r =154, ∴⊙O 的半径为154.如解图②,连接OD 、DF 、AD . ∵OD ∥AC , ∴∠DAC =∠ADO ,第4题解图①∵OA =OD , ∴∠ADO =∠DAO , ∴∠DAC =∠DAO , ∵AF 是⊙O 的直径, ∴∠ADF =90°=∠C , ∴△ADC ∽△AFD , ∴AD AC =AF AD , ∴AD 2=AC ·AF ,∵AC =6,AF =154×2=152, ∴AD 2=152×6=45,∴AD =45=3 5.(9分) 5. 解:(1)存在,AE =CE . 理由如下:如解图①,连接AE ,ED , ∵AC 是△ABC 的斜边, ∴∠ABC =90°, ∴AE 为⊙O 的直径, ∴∠ADE =90°, 又∵D 是AC 的中点, ∴ED 为AC 的中垂线, ∴AE =CE ;(2)①如解图②,∵EF 是⊙O 的切线, ∴∠AEF =90°.第5题解图①由(1)可知∠ADE=90°,∴∠AED+∠EAD=90°,∵∠AED+∠DEF=90°,∴∠EAD=∠DEF.又∵∠ADE=∠EDF=90°∴△AED∽△EFD,∴ADED=EDFD,∴ED2=AD·FD.又∵AD=DC=CF,∴ED2=2AD·AD=2AD2,在Rt△AED中,∵AE2=AD2+ED2=3AD2,由(1)知∠AED=∠CED,又∵∠CED=∠CAB,∴∠AED=∠CAB,∴sin∠CAB=sin∠AED=ADAE=13=33.②sin∠CAB=a+2 a+2.【解法提示】由(2)中的①知ED2=AD·FD,∵CF=aCD(a>0),∴CF=aCD=aAD,∴ED2=AD·DF=AD(CD+CF)=AD(AD+aAD)=(a+1)AD2,在Rt△AED中,AE2=AD2+ED2=(a+2)AD2,∴sin ∠CAB =sin ∠AED =ADAE =1a +2=a +2a +2. 6. (1)证明:∵∠ODB =∠AEC ,∠AEC =∠ABC , ∴∠ODB =∠ABC , ∵OF ⊥BC , ∴∠BFD =90°,∴∠ODB +∠DBF =90°, ∴∠ABC +∠DBF =90°, 即∠OBD =90°, ∴BD ⊥OB , ∵OB 为⊙O 的半径, ∴BD 是⊙O 的切线;(2)证明:连接AC ,如解图①所示: ∵OF ⊥BC , ∴BE ︵=CE ︵, ∴∠ECH =∠CAE , ∵∠HEC =∠CEA , ∴△CEH ∽△AEC , ∴CE EH =EA CE , ∴CE 2=EH ·EA ;(3)解:连接BE ,如解图②所示: ∵AB 是⊙O 的直径, ∴∠AEB =90°,∵⊙O 的半径为5,sin ∠BAE =35,第6题解图①第6题解图②∴AB =10,BE =AB ·sin ∠BAE =10×35=6, 在Rt △AEB 中,EA =AB 2-BE 2=102-62=8, ∵BE ︵=CE ︵, ∴BE =CE =6, ∵CE 2=EH ·EA , ∴EH =CE 2EA =628=92,在Rt △BEH 中,BH =BE 2+EH 2=62+(92)2=152.7. (1)证明:连接OD ,如解图①, ∵AD 平分∠BAC 交⊙O 于D , ∴∠BAD =∠CAD , ∴BD ︵=CD ︵, ∴OD ⊥BC , ∵BC ∥DF , ∴OD ⊥DF , ∴DF 为⊙O 的切线;(2)解:连接OB ,连接OD 交BC 于P ,作BH ⊥DF 于H ,如解图①,∵∠BAC =60°,AD 平分∠BAC , ∴∠BAD =30°,∴∠BOD =2∠BAD =60°, 又∵OB =OD ,∴△OBD 为等边三角形, ∴∠ODB =60°,OB =BD =23,第7题解图①∴∠BDF =30°, ∵BC ∥DF , ∴∠DBP =30°,在Rt △DBP 中,PD =12BD =3,PB =3PD =3, 在Rt △DEP 中, ∵PD =3,DE =7,∴PE =(7)2-(3)2=2, ∵OP ⊥BC , ∴BP =CP =3,∴CE =CP -PE =3-2=1, 易证得△BDE ∽△ACE , ∴BE AE =DE CE ,即5AE =71, ∴AE =577. ∵BE ∥DF , ∴△ABE ∽△AFD ,∴BE DF =AE AD ,即5DF =5771277,解得DF =12,在Rt △BDH 中,BH =12BD =3, ∴S 阴影=S △BDF -S 弓形BD =S △BDF -(S 扇形BOD -S △BOD )=12·12·3-60·π·(23)2360+34·(23)2=93-2π;(7分)(3)解:连接CD ,如解图②,由AB AC =43可设AB =4x ,AC =3x ,BF =y , ∵BD ︵=CD ︵, ∴CD =BD =23, ∵DF ∥BC ,∴∠F =∠ABC =∠ADC , ∴∠FDB =∠DBC =∠DAC , ∴△BFD ∽△CDA , ∴BD AC =BF CD ,即233x =y 23,∴xy =4,∵∠FDB =∠DBC =∠DAC =∠F AD , 而∠DFB =∠AFD , ∴△FDB ∽△F AD , ∴DF AF =BF DF , ∵DF +BF =8, ∴DF =8-BF =8-y , ∴8-y y +4x =y 8-y , 整理得:16-4y =xy , ∴16-4y =4,解得y =3, 即BF 的长为3.(10分) 三、与全等三角形结合第7题解图②针对演练1. (1)证明:连接OE ,过点O 作OF ⊥PN ,如解图所示, ∵PM 与⊙O 相切, ∴OE ⊥PM ,∴∠OEP =∠OFP =90°, ∵PC 平分∠MPN , ∴∠EPO =∠FPO , 在△PEO 和△PFO 中, ⎩⎪⎨⎪⎧∠EPO =∠FPO ∠OEP =∠OFP OP =OP, ∴△PEO ≌△PFO (AAS), ∴OF =OE ,∴OF 为圆O 的半径且OF ⊥PN, 则PN 与⊙O 相切;(2)解:在Rt △EPO 中,∠MPC =30°,PE =23, ∴∠EOP =60°,OE =PE ·tan30°=2, ∴∠EOB =120°,则劣弧BE ︵的长为120π×2180=4π3.2. (1)证明:如解图①,连接BO 并延长交⊙O 于点N ,连接CN , ∵∠BMC =60°, ∴∠BNC =60°, ∵∠BNC +∠NBC =90°, ∴∠NBC =30°,又∵△ABC 为等边三角形,第1题解图∴∠BAC =∠ABC =∠ACB =60°, ∴∠ABN =30°+60°=90°, ∴AB ⊥BO ,即AB 为⊙O 的切线.(2)解:BE +CF =3,是定值. 理由如下:如解图②,连接D 与AC 的中点P , ∵D 为BC 中点, ∴AD ⊥BC , ∴PD =PC =12AC , 又∵∠ACB =60°,∴PD =PC =CD =BD =12AC , ∴∠DPF =∠PDC =60°, ∴∠PDF +∠FDC =60°, 又∵∠EDF =120°, ∴∠BDE +∠FDC =60°, ∴∠PDF =∠BDE , 在△BDE 和△PDF 中, ⎩⎪⎨⎪⎧∠EBD =∠DPF BD =PD∠BDE =∠PDF, ∴△BDE ≌△PDF (ASA), ∴BE =PF ,∴BE +CF =PF +CF =CP =BD , ∵OB ⊥AB ,∠ABC =60°,第2题解图②∴∠OBC =30°, 又∵OB =2,∴BD =OB ·cos30°=2×32=3, 即BE +CF = 3.3. (1)证明:连接OC ,如解图①, ∵OD ⊥AC ,OC =OA , ∴∠AOD =∠COD . 在△AOE 和△COE 中, ⎩⎪⎨⎪⎧OA =OC ∠AOE =∠COE OE =OE, ∴△AOE ≌△COE (SAS), ∴∠EAO =∠ECO . 又∵EC 是⊙O 的切线, ∴∠ECO =90°, ∴∠EAO =90°. ∴AE 与⊙O 相切;(2)解:设DO =t ,则DE =3t ,EO =4t , 在△EAO 和△ADO 中,⎩⎪⎨⎪⎧∠EOA =∠AOD ∠EAO =∠ADO, ∴△EAO ∽△ADO , ∴AO DO =EO AO ,即9t =4t 9, ∴t =92,即EO =18.第3题解图①∴AE =EO 2-AO 2=182-92=93;延长BD 交AE 于点F ,过O 作OG ∥AE 交BD 于点G , 如解图②, ∵OG ∥AE , ∴∠FED =∠GOD 又∵∠EDF =∠ODG , ∴△EFD ∽△OGD , ∴EF OG =ED OD =31,即EF =3GO . 又∵O 是AB 的中点, ∴AF =2GO ,∴AE =AF +FE =5GO , ∴5GO =93, ∴GO =935, ∴AF =1835, ∴tan B =AF AB =35.4. (1)证明:如解图,连接OB , ∵PB 是⊙O 的切线, ∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D , ∴AD =BD ,∠POA =∠POB , 又∵PO =PO ,∴△P AO ≌△PBO (SAS), ∴∠P AO =∠PBO =90°,第3题解图②第4题解图∴OA ⊥P A ,∴直线P A 为⊙O 的切线;(2)解:线段EF 、OD 、OP 之间的等量关系为EF 2=4OD ·OP . 证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴ OD OA =OA OP ,即OA 2=OD ·OP ,又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3,设AD =x ,∵tan ∠F =12,∴FD =2x ,OA =OF =FD -OD =2x -3,在Rt △AOD 中,由勾股定理,得(2x -3)2=x 2+32,解之得,x 1=4,x 2=0(不合题意,舍去),∴AD =4,OA =2x -3=5,∵AC 是⊙O 直径,∴∠ABC =90°,又∵AC =2OA =10,BC =6,∴ cos ∠ACB =610=35.∵OA 2=OD ·OP ,∴3(PE +5)=25,∴PE =103.5. (1)证明:连接OD ,如解图,∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠ACB 的平分线交⊙O 于点D ,∴∠ACD =∠BCD =45°,∴∠DAB =∠ABD =45°,∴△DAB 为等腰直角三角形,∴DO ⊥AB ,∵PD 为⊙O 的切线,∴OD ⊥PD ,∴PD ∥AB ;(2)证明:∵AE ⊥CD 于点E ,BF ⊥CD 于点F ,∴AE ∥BF ,∴∠FBO =∠EAO ,∵△DAB 为等腰直角三角形,∴∠EDA +∠FDB =90°,∵∠FBD +∠FDB =90°,∴∠FBD =∠EDA ,在△FBD 和△EDA 中,⎩⎪⎨⎪⎧∠BFD =∠DEA ∠FBD =∠EDA BD =DA, ∴△FBD ≌△EDA (AAS),∴DE =BF ;第5题解图(3)解:在Rt △ACB 中,∵AC =6,tan ∠CAB =43,∴BC =6×43=8,∴AB =AC 2+BC 2=62+82=10,∵△DAB 为等腰直角三角形,∴AD =AB 2=52, ∵AE ⊥CD ,∴△ACE 为等腰直角三角形,∴AE =CE =AC 2=62=32, 在Rt △AED 中,DE =AD 2-AE 2=(52)2-(32)2=42,∴CD =CE +DE =32+42=72,∵AB ∥PD ,∴∠PDA =∠DAB =45°,∴∠PDA =∠PCD ,又∵∠DP A =∠CPD ,∴△PDA ∽△PCD ,∴PD PC =P A PD =AD DC =5272=57, ∴P A =57PD ,PC =75PD ,又∵PC =P A +AC ,∴57PD +6=75PD ,解得PD =354,∴PC =57PD +6=57×354+6=254+6=494.6. (1)证明:如解图①,连接OC ,∵P A 切⊙O 于点A ,∴∠P AO =90°,∵BC ∥OP ,∴∠AOP =∠OBC ,∠COP =∠OCB ,∵OC =OB ,∴∠OBC =∠OCB ,∴∠AOP =∠COP ,在△P AO 和△PCO 中,⎩⎪⎨⎪⎧OA =OC ∠AOP =∠COP OP =OP, ∴△P AO ≌△PCO (SAS),∴∠PCO =∠P AO =90°,∴OC ⊥PC ,∵OC 为⊙O 的半径,∴PC 是⊙O 的切线;(2)解:由(1)得P A ,PC 都为圆的切线,∴P A =PC ,OP 平分∠APC ,∠ADO =∠P AO =90°, ∴∠P AD +∠DAO =∠DAO +∠AOD ,又∵∠ADP =∠ADO ,∴∠P AD =∠AOD ,∴△ADP ∽△ODA ,∴AD PD =DO AD ,第6题解图①∴AD 2=PD ·DO ,∵AC =8,PD =163, ∴AD =12AC =4,OD =3,在Rt △ADO 中,AO =AD 2+OD 2=5,由题意知OD 为△ABC 的中位线,∴BC =6,AB =BC 2+AC 2=10.∴S 阴影=12S ⊙O -S △ABC =12·π·52-12×6×8=25π2-24;(3)解:如解图②,连接AE 、BE ,作BM ⊥CE 于点M , ∴∠CMB =∠EMB =∠AEB =90°,∵点E 是AB ︵的中点,∴AE =BE ,∠EAB =∠EBA =45°,∴∠ECB =∠CBM =∠ABE =45°,CM =MB =BC ·sin45°=32,BE =AB ·cos45°=52,∴EM =BE 2-BM 2=42,则CE =CM +EM =7 2.7. (1)证明:连接OD ,如解图①所示,∵OB =OD ,∴∠ODB =∠OBD .∵OG ∥BD ,∴∠AOG =∠OBD ,∠GOD =∠ODB ,∴∠DOG =∠AOG ,在△DOG 和△AOG 中,第6题解图②第7题解图①⎩⎪⎨⎪⎧OD =OA ∠DOG =∠AOG OG =OG, ∴△DOG ≌△AOG (SAS),∴GD =GA ;(2)证明:∵AG 切⊙O 于点A ,∴AG ⊥OA ,∴∠OAG =90°,∵△DOG ≌△AOG ,∴∠OAG =∠ODG =90°,∴∠ODE =180°-∠ODG =90°,∴∠ODC +∠FDE =90°,∵OC ⊥AB ,∴∠COB =90°,∴∠OCD +∠OFC =90°,∵OC =OD ,∴∠ODC =∠OCD ,∴∠FDE =∠OFC ,∵∠OFC =∠EFD ,∴∠EFD =∠EDF ,∴EF =ED ,∴△DEF 是等腰三角形;(3)解:过点B 作BK ⊥OD 于点K ,如解图②所示: 则∠OKB =∠BKD =∠ODE =90°,∴BK ∥DE ,∴∠OBK =∠E ,∵BH ⊥GE ,∴∠BHD =∠BHE =90°, ∴四边形KDHB 为矩形, ∴KD =BH =9,∴OK =OD -KD =72,在Rt △OKB 中,∵OK 2+KB 2=OB 2,OB =252, ∴KB =12,∴tan ∠E =tan ∠OBK =OK KB =724,sin ∠E =sin ∠OBK =OK OB =725,∵tan ∠E =OD DE =724,∴DE =3007,∴EF =3007,∵sin ∠E =BH BE =725,∴BE =2257,∴BF =EF -BE =757,∴OF =OB -BF =2514,在Rt △COF 中,∠COB =90°, ∴OC 2+OF 2=FC 2,∴FC =125214,在Rt △COB 中,∵OC 2+OB 2=BC 2,OC =OB =252, ∴BC =2522,∴BC +CF +BF =1502+757, ∴△CBF 的周长=1502+757.。
2023 年九年级数学中考专题训练——圆的计算和证明(附答案)
1.如图,在ABC中,AB AC=,以AB为直径作O,交BC于点D,交AC于点E,过点B作O 的切线交OD的延长线于点F.(1)求证:A BOF∠=∠;(2)若4AB=,1DF=,求AE的长.2.如图,AB是O的直径,点C在O上,ABC∠的平分线与AC相交于点D,与O过点A的切线相交于点E.(1)猜想EAD的形状,并证明你的猜想;(2)若8AB=,6AD=,求BD的长.3.如图所示,Rt△ABC中∠ACB=90°,斜边AB与⊙O相切于D,直线AC过点O并于⊙O相交于E、F两点,BC与DF交于点G,DH⊥AC于H.(1)求证:∠B=2∠F;(2)若HE=4,cos B=35,求DF的长.4.如图,O的直径23AB=点C为O上一点,CF为O的切线,OE AB⊥于点O,分别交AC,CF于D,E两点.(1)求证:ED EC=;(2)若30∠=︒,求图中两处(点C左侧与点C右侧)阴影部分的面积之和.A5.已知PA,PB分别与O相切于点A,B,C为O上一点,连接AC,BC.∠的大小;(1)如图①,若70∠=︒,求ACBAPB∠的大小.(2)如图②,AE为O的直径交BC于点D,若四边形PACB是平行四边形,求EAC6.如图,AB是O的直径,点C在AB的延长线上,BDC A⊥,交AD的延长线于∠=∠,CE AD点E.(1)求证:CD与O相切:(2)若4CE=,2DE=,求AD的长,7.如图,四边形ABCD为平行四边形,边AD是O的直径,O交AB于F点,DE为O的切线交BC于E,且BE BF=,BD和O交于G点.(1)求证:四边形ABCD为菱形.(2)若O半径52r=,5BG=BF长.8.如图,O为ABC的外接圆,AB为直径,ABC∠的角平分线BD交O于点D,过点D作O 的切线DE,交BC的延长线于点E.(1)求证:DE BC⊥;(2)若1CE=,3DE=O的半径.9.如图,AB是O的直径,CA与O相切于点A,且AB AC=.连接OC,过点A作AD OC⊥于点E,交O于点D,连接DB.(1)求证:ACE BAD△△≌;(2)连接BC交O于点F.若6AD=,求BF的长.10.在Rt ABC中,90C∠=︒,以AC为直径的O与AB相交点D、E是BC的中点.(1)判断ED与O的位置关系,并说明理由;(2)若O的半径为3,DEC A∠=∠,求DC的长.11.如图,在ABC中,以ABC的边AB为直径作O,交AC于点D,DE是O的切线,且DE BC⊥,垂足为点E.(1)求证AB BC=;(2)若3DE=,610AC=O的半径.12.如图,⊙O是△ABC的外接圆,O在AC上,过点C作⊙O的切线,与AB延长线交于点D,过点O作OE BC,交⊙O于点E,连接CE交AB于点F.(1)求证:CE平分∠ACB;(2)连接OD,若CF=CD=6,求OD的长.13.如图,△ABC中,AB=AC,以AB为直径⊙O的交BC于点D,过点D作⊙O的切线DE,交BA 延长线于点E,延长CA交⊙O于点F,交DE于点G,连接DF.(1)求证:点E为线段CF垂直平分线上一点;,BE=8,求AF的长.(2)若sin∠E=3514.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点D是AC的中点,连接OD,交AC于点E ,作BF ∥CD ,交DO 的延长线于点F .(1)求证:四边形BCDF 是平行四边形.(2)若AC =8,连接BD ,tan∠DBF =34,求直径AB 的长及四边形ABCD 的周长.15.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,交AC 于点F ,交BC 于点D ,过点D 作⊙O 的切线DE ,交AC 于点E .(1)求证:DE ⊥AC ;(2)若⊙O 的直径为5,25sin B =EF 的长. 16.如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:△CBE ∽△CPB ;(2)当43AB =34CF CP =时,求扇形COB 的面积. 17.如图,AB 为O 的直径,ACB ∠的角平分线交O 于点D ,交AB 于点E ,CAB ∠的角平分线交CD 于点F .(1)求证:ADB 为等腰直角三角形;(2)求证:2DF DE DC =⋅.18.如图,AB 是圆O 的直径,C ,D 是圆上的点(在AB 同侧),过点D 的圆的切线交直线AB 于点E .(1)若2AB =,1BC =,求AC 的长;(2)若四边形ACDE 是平行四边形,证明:BD 平分ABC ∠.19.如图,AB 与O 相切于点B ,BC 为O 的弦,OC OA ⊥,OA 与BC 相交于点P .(1)求证:AP AB =; (2)若4OB =,3AB =,求线段BP 的长.20.如图,ABC ∆为O 的内接三角形,AD BC ⊥,垂足为D ,直径AE 平分BAD ∠,交BC 于点F ,连接BE .(1)求证:AEB AFD ∠=∠;(2)若10AB =,5BF =,求DF 的长;(3)若点G 为AB 的中点,连接DG ,若点O 在DG 上,求:BF FC 的值.参考答案:1.(1)见解析 (2)83AE =【分析】(1)首先根据等边对等角可证得C ODB ∠=∠,再根据平行线的判定与性质,即可证得结论;(2)首先根据圆周角定理及切线的性质,可证得AEB OBF ∠=∠,即可证得ABE OFB △∽△,再根据相似三角形的性质即可求得.(1)证明:AB AC =C ABC ∴∠=∠ OB OD =ODB OBD ∴∠=∠C ODB ∴∠=∠AC OD ∴∥A BOF ∴∠=∠(2)解:如图:连接BEAB 是O 的直径,AB =490AEB ∴∠=︒,122OB OD AB === BF 是O 的切线90OBF ∴∠=︒AEB OBF ∴∠=∠又A BOF ∠=∠ABE OFB ∴△∽△AE AB OB OF∴=又213OF OD DF =+=+=423AE ∴=,解得83AE = 【点评】本题考查了等腰三角形的性质,平行线的判定与性质,圆周角定理,切线的性质,相似三角形的判定与性质,作出辅助线,证得ABE OFB △∽△是解决本题的关键.2.(1)等腰三角形,证明见解析; (2)145.【分析】(1)利用角平分线和∠C =∠BAE =90°,得出∠E =∠4,从而得到AD =AE 可得三角形的形状;(2)先证明△BCD ∽△BAE ,利用相似比得到得出即34AE DC AB BC ==,若设CD =3x ,则BC =4x ,BD =5x ,再利用勾股定理得到(4x )2+(6+3x )2=82,然后解方程求出x 后计算5x 即可.(1)猜想:△EAD 是等腰三角形,证明:∵BE 平分∠ABC ,∴∠1=∠2,∵AB 为直径,∴∠C =90°,∴∠2+∠3=90°,∵AE 为切线,∴AE ⊥AB ,∴∠E +∠1=90°,∴∠E =∠3,而∠4=∠3,∴∠E =∠4,∴AE =AD ,∴△EAD 是等腰三角形;(2)∵∠2=∠1,∴Rt △BCD ∽Rt △BAE ,∴CD :AE =BC :AB , 即34AE DC AB BC ==, 设CD =3x ,BC =4x ,则BD =5x ,在Rt △ABC 中,AC =AD +CD =3x +6,∵(4x )2+(6+3x )2=82,解得x 1=1425,x 2=-1(舍去), ∴BD =5x =145. 【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径;也考查了利用勾股定理和相似比进行几何计算.3.(1)见解析; (2)85【分析】(1)连接OD ,由题意可得:90ODA =∠°,再根据∠ACB =90°,可得B AOD ∠=∠,由圆周角定理可得2AOD F ∠=∠,即可求解;(2)由(1)可得B AOD ∠=∠,则3cos 5OH AOD OD ∠==,设OD OE r ==,求得半径r ,由勾股定理求得DH ,再由勾股定理即可求得DF .(1)解:连接OD ,如下图:∵AB 与⊙O 相切于D ,∴OD AB ⊥,即90ODA =∠°,∴90A AOD ∠+∠=︒,又∵∠ACB =90°,∴A B ∠∠=︒+90,∴B AOD ∠=∠,由圆周角定理可得:2AOD F ∠=∠,∴2B F ∠=∠;(2)解:∵DH ⊥AC∴90DHO ∠=︒,由(1)得B AOD ∠=∠, ∴3cos cos 5OH B AOD OD =∠==, 设OD OE OF r ===,则4OH r =-, 则435r r -=,解得10r =, 则6OH =,16HF OH OF =+= 由勾股定理可得:228DH OD OH -=, 由勾股定理可得:2285DF DH HF +=【点评】此题考查了圆的综合应用,涉及了切线的性质定理,圆周角定理,三角形内角和的性质,解直角三角形,勾股定理,解题的关键是灵活运用相关性质进行求解.4.(1)见解析 3π-【分析】(1)连接OC ,则OC CF ⊥,故90ACE ACO ∠+∠=︒,又90ADO A ∠+∠=︒,且A ACO ∠=∠,可得ACE ADO EDC ∠=∠=∠,故ED EC =; (2)过点C 作CG AB ⊥于G ,结合三角函数的知识求得CG 与CE 的长,从而利用COE BOC COB COH S S S S S =+--△△阴影扇形扇形求得阴影部分的面积之和.(1)证明:连接OC ,CF 是O 的切线,∴OC CF ⊥,∴90ACO ACE ∠+∠=︒,OE AB ⊥,∴90ADO A ∠+∠=︒,OA OC =,∴A ACO ∠=∠,∴ACE ADO ∠=∠, 又ADO CDE ∠=∠,∴ACE CDE ∠=∠,∴ED EC =.(2)解:过点C 作CG AB ⊥于G ,30A ACO ∠=∠=︒,∴260BOC A ∠=∠=︒, ∴33sin 6032CG OC =︒==, 9030COE BOC ∠=︒-∠=︒,90OCE ∠=︒,∴3tan 3031CE OC =︒==. 1133122COE S OC CE =⨯⨯==△, 260(3)3602COB S ππ=⨯⨯=扇形, 230(3)3604COH S ππ=⨯⨯=扇形, 113333222BOC S OB CG =⨯⨯==△ ∴333324COE BOC COB COH S S S S S πππ-=+--=-=△△阴影扇形扇形 【点评】本题属于圆的综合题,涉及到了圆的切线的性质,扇形面积的计算方法,以及三角函数相关知识,解题的关键是学会常用辅助线的作法.5.(1)55°(2)30°【分析】(1)连接OA 、OB ,根据切线的性质可得∠OAP =∠OBP =90°,再根据四边形内角和等于360度求出AOB ∠,再由圆周角定理即可求出结果;(2)连接AB ,EC ,由切线长定理以及平行四边形的性质可证明四边形PACB 是菱形,进而证明△ABC 是等边三角形,进一步可得结论.(1)如图①,连接OA 、OB ,∵P A ,PB 是⊙O 的切线,∴∠OAP =∠OBP =90°,∵∠APB =70°,∴∠AOB =360°-90°-90°-70°=110°∴∠ACB =12∠AOB =11102⨯︒=55°; (2)如图②,连接AB ,EC ,∴,BAE BCE ∠=∠∵PA ,PB 分别与O 相切于点A ,B ,∴,PA PB =∵四边形PACB 是平行四边形,∴四边形PACB 是菱形,∴,AC BC =∵PA 是O 的切线,且AE 是O 的直径,∴,AE PA ⊥∵四边形APBC 是平行四边形,∴PA //BC∴,AE BC ⊥即∠90,ADB ︒=∴∠90,BAD ABD ︒+∠=∵AE 是O 的直径,∴∠90,ACE ︒=即∠90,ACD BCE ︒+∠=∵∠,BAD BCE =∠∴∠,ABD ACB =∠∴,AB AC =∴,AB AC BC ==即△ABC 是等边三角形,∴∠60,ABC BAC ACB ︒=∠=∠=∵,AE BC ⊥ ∴116030.22EAC BAC ︒︒∠=∠=⨯= 【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的判定与性质,平行四边形的性质,菱形的判定与性质等知识,掌握圆的切线垂直于经过切点的半径是解题的关键.6.(1)见解析(2)6【分析】(1) 连接OD ,然后根据圆的性质和已知可以得到90ODC ∠=︒,即可证得CD 与O 相切;(2)由已知可以得到AEC CED ∽,再根据三角形相似的性质和已知条件即可求出AD 的值.(1)证明:连接OD ,∵AB 为O 的直径,∴90ADB ∠=︒,即90ODB ADO ∠+∠=︒,∵OA OD =,∴ADO A ∠=∠,又∵BDC A ∠=∠;∴90ODB BDC ∠+∠=︒,即90ODC ∠=︒∴CD 是O 切线.(2)∵CE AE ⊥,∴90∠=∠=︒E ADB ,∴DB //EC ,∴DCE BDC ∠=∠,∵BDC A ∠=∠,∴A DCE ∠=∠,∵E E ∠=∠,∴AEC CED ∽, ∴CE AE DE CE=, ∴2CE DE AE =⋅,∴162(2)AD =+,∴6AD =.【点评】本题考查圆的综合应用,熟练掌握圆切线的判定方法、三角形相似的判定和性质是解题关键.7.(1)证明过程见解析(2)2【分析】(1)连接DF ,通过证明Rt △DFB ≌Rt △DEB (HL )得到DF =DE ,证明△ADF ≌△CDE (ASA )得到AF =CE ,即可证明四边形ABCD 是菱形;(2)连接AG,根据等腰三角形三线合一的性质得到DG=GB,设BF=x,则AF=5-x,利用勾股定理可得2222-=-,列出方程求解即可得到BF的长.AD AF DB BF(1)证明:连接DF,如图所示∵DE是切线,AD是直径∴∠ADE=90°,∠DF A=90°∵四边形ABCD是平行四边形∴∠DEB=90°,∠CDF=90°∴∠DFB=∠DEB=90°又∵BF=BE,DB=DB∴Rt△DFB≌Rt△DEB(HL)∴DF=DE∵四边形ABCD是平行四边形∴∠A=∠C又∵∠AFD=∠DEC∴△ADF≌△CDE(AAS)∴AF=CE∴AB=CB∴四边形ABCD是菱形(2)解:连接AG,如图所示∵AD是直径∴∠AGD=90°,即AG⊥BD∵四边形ABCD是菱形∴AB=AD∴DG=GB5∴DB5设BF=x,则AF=5-x∵2222AD AF DB BF -=-∴()(2222555x x --=-,解得x =2∴BF 的长为2【点评】本题考查了菱形的判定、平行四边形的性质、直径所对圆周角是直角、全等三角形的判定与性质、勾股定理等知识,正确作出辅助线,掌握这些知识点是解答本题的关键.8.(1)见解析(2)2【分析】(1)根据切线性质得90ODE ∠=︒,再根据圆及角平分线的性质,证得//OD BC ,最后根据平行线的性质,证得结论.(2)连接OD 交AC 于点F ,证明四边形CEDF 是矩形,再设O 的半径r ,在Rt AOF 中运用勾股定理,建立关于r 的方程,求解即可.(1)证明:如图,连接OD ,DE 与O 相切于点D ,DE OD ∴⊥,90ODE ∴∠=︒,OD OB =,ODB OBD ∴∠=∠, BD 平分ABC ∠,OBD DBC , ODB DBC ,//OD BC ∴,18090E ODE ∴∠=︒-∠=︒,DE BC ∴⊥.(2)解:如图,连接OD 交AC 于点F ,AB 是O 的直径,90ACB ∴∠=︒,18090ECF ACB ∴∠=︒-∠=︒,90ECF E EDF ∴∠=∠=∠=︒,∴四边形CEDF 是矩形.90AFO CFD ∴∠=∠=︒,1DF CE ==,FO AC ∴⊥,3AF CF DE ∴===设O 的半径为r ,则OA OD r ==,222OA OF AF =+,1OF r =-,()22213r r ∴=-+, 解得2r =,O ∴的半径为2.【点评】本题考查了与圆有关的综合问题,灵活运用切线性质,勾股定理进行推理求值是解题的关键.9.(1)证明见解析 310【分析】(1)根据切线的性质可得90BAD CAE ∠+∠=︒,根据圆周角定理的推论可得90BAD ABD ∠+∠=︒,即得出CAE ABD ∠=∠.结合题意即可利用“AAS ”证明ACE BAD △△≌;(2)连接AF .由垂径定理可得132AE ED AD ===.再根据全等三角形的性质可得6CE AD ==,3AE ED BD ===,利用勾股定理可求出35AC AB ==.再根据圆周角定理的推论结合等腰三角形“三线合一”的性质即可求出13102BF BC ==.(1)证明:∵CA 与O 相切于点A ,∴90BAC ∠=︒,∴90BAD CAE ∠+∠=︒.∵AB 为直径,∴90BDA ∠=︒,∴90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠.∵AD OC ⊥,∴90AEC ADB ∠=∠=︒.又∵AB AC =,∴()ACE BAD AAS ≌△△;(2)如图,连接AF .∵AD OC ⊥, ∴132AE ED AD ===. ∵ACE BAD △△≌,∴6CE AD ==,3AE ED BD ===∴在Rt AEC 中,22223635AC AE CE AB ++=, ∴2310BC ==∵AB 为直径,∴90AFB ∠=︒.∵AB =AC , ∴13102BF BC ==. 【点评】本题为圆的综合题.考查切线的性质,圆周角定理,三角形全等的判定和性质,等腰直角三角形的性质以及勾股定理.掌握与圆相关的知识点是解题关键.10.(1)相切;理由见解析(2)2π【分析】(1)连接OD,CD,再根据直径所对的圆周角是直角及直角三角形斜边上的中线性质证明OD⊥DE即可;(2)根据DEC A∠=∠证明三角形DEC是等边三角形,即可得到DC的圆心角是120°,再根据弧长公式计算即可.(1)ED与⊙O相切.理由:连接OD,CD.∵AC是直径,∴∠ADC=90°,在Rt△BDC中,E为BC的中点,∴DE=EC,∴∠3=∠2,又∵OD=OC,∴∠1=∠4,∵∠1+∠2=90°,∴∠ODE=∠3+∠4=90°,∴ED与⊙O相切;(2)∵∠A+∠1=90°,∠1+∠2=90°,∴∠A=∠2,∵∠DEC=∠A,∴∠2=∠3=∠DEC=60°,∴∠A=60°,∴∠DOC=2∠A=120°,∴弧DC的长=12032 180ππ⨯=.【点评】本题考查圆的性质及弧长公式,熟记直径所对的圆周角是直角、切线的证明、弧长公式是解题的关键.11.(1)见解析;(2)5【分析】(1)连接OD、BD,根据切线的性质得到OD⊥DE,推出OD∥BC,证得∠ODB=∠CBD,由此推出∠OBD=∠CBD,根据AB为O的直径,得到∠ADB=∠CDB=90°,证得△ABD≌△CBD(ASA),即可得到AB=BC;(2)根据AB=BC,BD⊥AC,求出AD=CD=13102AC=CE=9,证得△CDE∽△CBD,求出CB,即可得到O的半径.(1)证明:连接OD、BD,∵DE是O的切线,∴OD⊥DE,∵DE BC⊥,∴OD∥BC,∴∠ODB=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠OBD=∠CBD,∵AB为O的直径,∴∠ADB=∠CDB=90°,∵BD=BD,∴△ABD≌△CBD(ASA),∴AB=BC;(2)∵AB=BC,BD⊥AC,∴AD=CD=1310 2AC=∵DE=3,∴()222293103 CE CD DE=--,∵∠C=∠C,∠CED=∠CDB=90°,∴△CDE∽△CBD,∴2CD CE CB=⋅,∴(22109310CDCBCE===,∴AB=CB=10,∴O的半径为5.【点评】此题考查了切线的性质定理,圆周角定理,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,熟记各知识点并综合应用是解题的关键.12.(1)见解析(2)37【分析】(1)根据OC=OE,可得∠OCE=∠E,再由OE BC,可得∠E=∠BCE,从而得到∠OCE=∠BCE,即可求证;(2)根据CD=CF,可得∠BCD=∠BCE=∠OCE,再由CD是⊙O的切线,可得∠BCD=30°,再证得∠A=∠BCD=30°,根据直角三角形的性质,即可求解.【解析】(1)证明:∵OC=OE,∴∠OCE=∠E,∵OE BC,∴∠E=∠BCE,∴∠OCE=∠BCE,∴CE平分∠ACB;(2)解:如图,∵CD=CF,∴∠BCD=∠BCE,∵CE平分∠ACB,∴∠BCD=∠BCE=∠OCE,∵CD是⊙O的切线,∴∠ACD=90°,即∠BCD+∠ACB=90°,∴∠BCD=30°,∵AC是⊙O的直径,∴∠ABC=90°,∴∠A+∠ACB=90°,∴∠A=∠BCD=30°,∵CD=6,∴AD=2CD=12,∴2263AC AD CD-=∴33OC=∴2237OD OC CD=+=【点评】本题主要考查了切线的性质,圆周角定理,直角三角形的性质,勾股定理,熟练掌握切线的性质,圆周角定理,直角三角形的性质,勾股定理是解题的关键.13.(1)见解析(2)AF=185.【分析】(1)根据圆周角定理可得AD⊥BC,再由等腰三角形的性质可得BD=CD,进而得出OD是三角形的中位线,由切线的性质可得OD∥FC,证出三角形DFC是等腰三角形即可;(2)在Rt△ODE中,根据锐角三角函数可求出半径OD,进而得出直径AB,在Rt△ABF 中,由锐角三角函数可求出AF.(1)证明:如图,连接OC,AD,∵AB=AC,∴∠ABC=∠ACB,又∵∠ABC=∠F,∴∠F=∠ACB,∴DF=DC,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴FC⊥DE,∵DF=DC,∴DE是FC的垂直平分线,即点E为线段CF垂直平分线上一点;(2)解:连接BF,在Rt△ODE中,设OD=x,则OE=BE-OB=8-x,∵sin∠E=35=ODOE,∴8xx=35,解得x=3,经检验x=3是原方程的根,∴AB=2OD=6,∵AB是⊙O的直径,∴∠AFB=90°,∴DG∥BF,∴∠E=∠ABF,在Rt△ABF中,AB=6,sin∠ABF=sin∠E=35,∴AF =AB •sin ∠ABF =6×35=185. 【点评】本题考查切线的性质,圆周角定理,等腰三角形的判断和性质,直角三角形的边角关系,掌握切线的性质,圆周角定理,等腰三角形的判断和性质,直角三角形的边角关系是正确解答的前提.14.(1)见解析(2)AB =10,周长16+45【分析】(1)根据AB 是⊙O 的直径,得∠C =90°,根据点D 是AC 的中点,得CA ⊥DF ,即有∠AEO =90°,则有BC DF ∥,即可得证;(2)先利用平行及圆周角定理证得∠DBF =∠BAC ,则根据正切值和勾股定理即可求出CB 、AB ,在Rt △AEO 中,利用勾股定理得OE =3,在Rt △AED 中,利用勾股定理,得AD 5则四边形的周长可得.(1)证明:∵AB 是⊙O 的直径,∴∠C =90°,∵点D 是AC 的中点,∴DO 垂直平分AC ,且AD =DC ,∴CA ⊥DF ,AE =EC ,∴∠AEO =90°,∴BC DF ∥,∵BF CD ∥,∴四边形BCDE 是平行四边形;(2)∵BC DF ∥,∴∠DBF =∠CDB ,又∵根据圆周角定理有∠CDB =∠BAC ,∴∠DBF =∠BAC ,即tan ∠BAC =34, ∵AC =8,∴CB =6,则在Rt △ACB 中,利用勾股定理可得AB =10,即AO =5=OD ,∵AE =EC =12AC ,∴AE=EC=4,在Rt△AEO中,利用勾股定理得OE=3,∴DE=OD-OE=5-3=2,在Rt△AED中,利用勾股定理,得AD5CD5∴四边形ABCD的周长=AB+BC+CD+AD5545【点评】本题考查了平行四边的判定与性质、同弧所对的圆周角相等、同弧所对的弦相等、勾股定理以及解直角三角形的知识,利用正切值以及同弧所对的圆周角相等是解答本题的关键.15.(1)见解析(2)1【分析】(1)连接OD,由AB=AC,OB=OD,则∠B=∠ODB=∠C,则OD∥AC,由DE为切线,即可得到结论成立;(2)如图所示,连接BF,AD,先解直角三角形ACD求出AD的长,从而求出CD的长,然后分别解直角三角形BCF,直角三角形DCE,求出BF,DE,进而求出CF,CE,即可得到EF.(1)解:连接OD,如图:∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠ODB=∠C,∴OD∥AC,∵DE是切线,∴OD⊥DE,∴AC⊥DE;(2)解:如图所示,连接BF,AD,∵AB是圆O的直径,∴∠AFB=∠ADB=90°,∴∠BFC=90°,∵DE⊥AC,∴∠DEC=90°∵AB=AC,∴BC=2CD,∠ABD=∠C,∴25 sin sinADABD CAC∠===∴2525 AD AC==∴225CD AC AD-∴5BC=∴sin2DE CD C=⋅=,sin=4BF BC C=⋅,∴221CE CD DE=-=,222CF BC BF=-=,∴EF=CF-CE=1.【点评】本题主要考查的是切线的性质、等腰三角形的性质、平行线的性质与判定,解直角三角形、勾股定理,解题的关键是熟练掌握所学的性质定理,正确的求出边的长度..16.(1)见解析(2)2π【分析】(1)先证明∠CEB=∠CBP=90°,再由∠D+∠P=90°,∠CAB+∠CBE=90°,∠CAB=∠D,推出∠CBE=∠P,即可证明结论;(2)设CF=3k,CP=4k,先证明∠F AC=∠CAB,得到CE=CF=3k,再由相似三角形的性质得到BC2=CE•CP;从而求出sin∠CBE323k∠CBE=60°,即可证明△OBC是等边三角形,得到∠COB=60°,据此求解即可.(1)解:∵CE⊥OB,CD为圆O的直径,∴∠CEB=∠DBC=90°,∴∠CEB=∠CBP=90°,∵PF是切线,∴∠DCP=90°,∴∠D+∠P=90°,∵AB是直径,∴∠ACB=90°∴∠CAB+∠CBE=90°,∵∠CAB=∠D,∴∠CBE=∠P,∴△CBE∽△CPB;(2)解:∵34 CFCP=,∴设CF=3k,CP=4k,∵PF是切线,∴OC⊥PF,∵AF⊥PF,∴AF∥OC.∴∠F AC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠F AC=∠CAB,∴CE=CF=3k,∵△CBE∽△CPB,∴CB CE CP CB=,∴BC2=CE•CP;∴BC =23k∴sin ∠CBE 323k= ∴∠CBE =60°,∵OB =OC ,∴△OBC 是等边三角形,∴∠COB =60°, ∵43AB =∴扇形COB 的面积260232360ππ⨯=() 【点评】本题主要考查了圆切线的性质,相似三角形的性质与判定,圆周角定理,角平分线的性质,解直角三角形,扇形面积,等边三角形的性质与判定等等,熟练掌握圆的相关知识是解题的关键.17.(1)证明见解析(2)证明见解析【分析】(1)根据AB 为O 的直径,可得90ADB ACB ∠=∠=︒,由ACB ∠的角平分线交O 于点D ,可得45ACD BCD ∠=∠=︒,AD BD =,AD BD =,进而结论得证;(2)由CAB ∠的角平分线交CD 于点F ,得到CAF BAF ∠=∠,结合(1)可得ACD BAD ∠=∠,再由∠=∠+∠DFA CAF ACD ,∠=∠+∠DAF BAF BAD ,得到DFA DAF ∠=∠,从而说明DA DF =,最后再证明ADE CDA △∽△,利用相似三角形的性质即可得证.(1)证明:∵AB 为O 的直径,∴90ADB ACB ∠=∠=︒,∵ACB ∠的角平分线交O 于点D ,∴45ACD BCD ∠=∠=︒,∴AD BD =,∴AD BD =,∴ADB 为等腰直角三角形;(2)证明:∵CAB ∠的角平分线交CD 于点F ,∴CAF BAF ∠=∠,由(1)可知:45ACD ∠=︒,AD BD =,90ADB ∠=︒∴45BAD ABD ∠=∠=︒,∴ACD BAD ∠=∠,∵∠=∠+∠DFA CAF ACD ,∠=∠+∠DAF BAF BAD ,∴DFA DAF ∠=∠,∴DA DF =,在ADE 和CDA 中DAE DCA ADE CDA ∠=∠⎧⎨∠=∠⎩, ∴ADE CDA △∽△, ∴AD DE CD AD=, ∴2AD DE DC =⋅,∴2DF DE DC =⋅.【点评】本题考查的是圆和三角形的综合题,考查了直径所对的圆周角为90°,角平分线,圆周角,等腰三角形的判定,相似三角形的判定与性质等知识.对知识的熟练掌握与灵活运用是解题的关键.18.(1)3AC =(2)见解析【分析】(1)根据直径所对的圆周角是直角可得90ACB ∠=︒,再根据勾股定理进行计算即可;(2)连结BD ,连结OD 与AC 交于F 点.根据切线的性质及平行四边形的性质可证明四边形OBCD 是菱形,即可得到结论.(1)∵AB 是圆O 的直径,∴90ACB ∠=︒∴2223AC AB BC =-=,∴3AC =.(2)连结BD ,连结OD 与AC 交于F 点.∵ED 与圆O 相切于D 点,∴OD ED ⊥,∵四边形ACDE 是平行四边形,∴ED AC ∥, CD EA ∥,∴OD AC ⊥,90OFA ACB ∠=︒=∠,∴OD BC ∥,∵CD EB ∥,OD OB =,∴四边形OBCD 是菱形,∴BD 平分ABC ∠.【点评】本题考查了圆周角定理、切线的性质、勾股定理、平行四边形的性质及菱形的判定和性质,熟练掌握知识点是解题的根据.19.(1)见解析 65【分析】(1)根据等角的余角相等,ABP CPO ∠=∠,进而证得APB ABP ∠=∠,最后结论得证;(2)作OH BC ⊥于H ,在Rt POC △中,求出OP ,PC ,OH ,CH 即可解决问题.(1)证明:∵OC OB =,∴OCB OBC ∠=∠,∵AB 是O 的切线,∴OB AB ⊥,∴90OBA ∠=︒,∴90ABP OBC ∠+∠=︒,∵OC AO ⊥,∴=90AOC ∠︒,∴90OCB CPO ∠+∠=︒,∴ABP CPO ∠=∠,∵APB CPO ∠=∠,∴APB ABP ∠=∠,∴AP AB =.(2)解:作OH BC ⊥于H ,在Rt OAB 中,∵4OB =,3AB =, ∴22345OA +,∵3AP AB ==,∴2PO =.在Rt POC △中,∵4OC OB == ∴2225PC OC OP =+=1122POC S PC OH OC OP ==△, ∴455OC OP OH PC == ∴2285CH OC OH =- ∵OH BC ⊥,∴CH BH =,∴1652BC CH = ∴165655PB BC PC =-=-=. 【点评】本题考查切线的性质、解直角三角形、勾股定理、等腰三角形的判定和性质、垂径定理等知识,学会添加适当的辅助线,构造直角三角形解决问题是解本题的关键.20.(1)见解析(2)3DF =22【分析】(1)由题意得BAE DAE ∠=∠,且90ABE ︒∠=,即90BAE AEB ︒∠+∠=,根据AD BC ⊥得90DAE AFD ︒∠+∠=,即可得;(2)根据AEB AFD ∠=∠,AFD BFE ∠=∠得BEF BFE ∠=∠,即BE BF =,根据BAE DAF ∠=∠,90ABE ADF ︒∠=∠=得ΔΔABE ADF ∽,根据10AB =,5BF =得12BE AB =,设DF x =,则2AD x =,在Rt ABD ∆中,根据勾股定理, 即()()2221052x x =++,即可得;(3)根据点G 为AB 中点,点O 在DG 上得OG 是ABE ∆的中位线,即OG BE ∥,12OG BE =,根据90ABE ︒∠=得OD DF =,AEB ∠和ACB ∠是AB 所对的圆周角得AEB ACB ∠=∠,即ACB AFC ∠=∠,即有AC AF =,设BF a =,DF b =, 有11222BE OD a b DG BD BF DF a b ++===++,即可得. (1)解:∵直径AE 平分BAD ∠,∴BAE DAE ∠=∠,且90ABE ︒∠=,∴90BAE AEB ︒∠+∠=,∵AD BC ⊥,∴90DAE AFD ︒∠+∠=,∴AEB AFD ∠=∠.(2)解:∵AEB AFD ∠=∠,AFD BFE ∠=∠,∴BEF BFE ∠=∠,∴BE BF =,∵BAE DAF ∠=∠,90ABE ADF ︒∠=∠=,∴ΔΔABE ADF ∽,∵10AB =,5BF =, ∴51102BE BF DF AB AB AD ====, 设DF x =,则2AD x =,在Rt ABD ∆中,根据勾股定理,222AB BD AD =+,即()()2221052x x =++,解得:13x =,25x =-,舍去负值,得到3DF =.(3)解:如图所示,∵点G 为AB 中点,点O 在DG 上,∴OG 是ABE ∆的中位线,∴OG BE ∥,12OG BE =, ∵90ABE ︒∠=,∴DG AB ⊥,ABD ∆是等腰直角三角形,AOG AEB AFD ∠=∠=∠,∴OD DF =,∵AEB ∠和ACB ∠是AB 所对的圆周角,∴AEB ACB ∠=∠,∴ACB AFC ∠=∠,即有AC AF =,∵AD CF ⊥,∴DF CD =.设BF a =,DF b =, 有11222BE OD a b DG BD BF DF a b ++===++, 解得2a b =, ∴::222BF FC a b ==.【点评】本题考查了圆与三角形,解题的关键是掌握垂径定理,相似三角形的判断与性质,中位线,勾股定理.。
中考数学圆的证明与计算题型专项训练(基础篇)
中考数学圆的证明与计算题型专项训练(基础篇)1.如图,A、B为⊙O上的点,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D,若AC为∠BAD的平分线.求证:(1)AB为⊙O的直径;(2)AC2=AB•AD.2.已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求EM的长;(2)求sin∠EOB的值.3.如图,AC是圆O的直径,AC=10厘米,P A,PB是圆O的切线,A,B为切点,过A 作AD⊥BP,交BP于D点,连接AB,BC.(1)求证:△ABC∽△ADB;(2)若切线AP的长为12厘米,求弦AB的长.4.如图,⊙O的直径AB是4,过B点的直线MN是⊙O的切线,D、C是⊙O上的两点,连接AD、BD、CD和BC.(1)求证:∠CBN=∠CDB;(2)若DC是∠ADB的平分线,且∠DAB=15°,求DC的长.5.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交AB于E,交⊙O于D.求弦AD,CD的长.6.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,D是劣弧的中点,BD交AC于点E.(1)求证:AD2=DE•DB;(2)若BC=,CD=,求DE的长.7.如图,AB为⊙O的直径,D为弦BE的中点,连接OD并延长交⊙O于点F,与过B点的切线相交于点C.若点E为的中点,连接AE.求证:△ABE≌△OCB.8.如图,△ABC内接于⊙O,过点A的直线交⊙O于点P,交BC的延长线于点D,AB2=AP•AD.(1)求证:AB=AC;(2)如果∠ABC=60°,⊙O的半径为1,且P为的中点,求AD的长.9.如图所示,四边形ABCD是以O为圆心,AB为直径的半圆的内接四边形,对角线AC、BD相交于点E.(1)求证:△DEC∽△AEB;(2)当∠AED=60°时,求△DEC与△AEB的面积比.10.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).请你用上面的思想和方法对下面关于圆的问题进行研究:(1)如图1,在圆O所在平面上,放置一条直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些?(直接写出两个即可)(2)如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之;(3)如图3,其中AB是圆O的直径,AC是弦,D是的中点,弦DE⊥AB于点F.请找出点C和点E重合的条件,并说明理由.11.已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD于点D,过点D作DE∥AC交AB于点E.求证:点E是过A,B,D三点的圆的圆心.12.课堂上,老师将图①中△AOB绕O点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化.当△AOB旋转90°时,得到∠A1OB1.已知A(4,2),B(3,0).(1)△A1OB1的面积是;A1点的坐标为();B1点的坐标为();(2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB绕AO的中点C(2,1)逆时针旋转90°得到△A′O′B′,设O′B′交OA于D,O′A′交x轴于E.此时A′,O′和B′的坐标分别为(1,3),(3,﹣1)和(3,2),且O′B′经过B点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD的面积)最小,求四边形CEBD的面积;(3)在(2)的条件下,△AOB外接圆的半径等于.13.我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆就是以线段AB为直径的圆.(1)请分别作出图1中两个三角形的最小覆盖圆;(要求用尺规作图,保留作图痕迹,不写作法)(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论;(不要求证明)(3)某地有四个村庄E,F,G,H(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.14.如图,BD是⊙O的直径,AB与⊙O相切于点B,过点D作OA的平行线交⊙O于点C,AC与BD的延长线相交于点E.(1)试探究AE与⊙O的位置关系,并说明理由;(2)已知EC=a,ED=b,AB=c,请你思考后,选用以上适当的数据,设计出计算⊙O 的半径r的一种方案:①你选用的已知数是;②写出求解过程.(结果用字母表示)15.如图,已知点A从(1,0)出发,以1个单位长度/秒的速度沿x轴向正方向运动,以O,A为顶点作菱形OABC,使点B,C在第一象限内,且∠AOC=60°;以P(0,3)为圆心,PC为半径作圆.设点A运动了t秒,求:(1)点C的坐标(用含t的代数式表示);(2)当点A在运动过程中,所有使⊙P与菱形OABC的边所在直线相切的t的值.16.如图,已知O为坐标原点,点A的坐标为(2,3),⊙A的半径为1,过A作直线l平行于x轴,点P在l上运动.(1)当点P运动到圆上时,求线段OP的长.(2)当点P的坐标为(4,3)时,试判断直线OP与⊙A的位置关系,并说明理由.17.如图,A、B、C三点在⊙O上,=,∠1=∠2.(1)判断OA与BC的位置关系,并说明理由;(2)求证:四边形OABC是菱形;(3)过A作⊙O的切线交CB的延长线于P,且OA=4,求△APB的周长.18.已知:如图△ABC内接于⊙O,OH⊥AC于H,过A点的切线与OC的延长线交于点D,∠B=30°,OH=.请求出:(1)∠AOC的度数;(2)劣弧的长(结果保留π);(3)线段AD的长(结果保留根号).19.如图,⊙O的半径OD经过弦AB(不是直径)的中点C,过AB的延长线上一点P作⊙O的切线PE,E为切点,PE∥OD;延长直径AG交PE于点H;直线DG交OE于点F,交PE于点K.(1)求证:四边形OCPE是矩形;(2)求证:HK=HG;(3)若EF=2,FO=1,求KE的长.20.如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.(1)求证:AT平分∠BAC;(2)若AD=2,TC=,求⊙O的半径.21.如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点,(Ⅰ)求∠AOD的度数;(Ⅱ)若AO=8cm,DO=6cm,求OE的长.22.如图,AB是⊙O的直径,P A切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,求∠B的度数.23.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=2,以AB上的一点O为圆心分别与均AC,BC相切于点D、E.①求⊙O的半径;②求sin∠BOC的值.24.如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,E 为AC延长线上一点,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且OF=,求证:△DCE≌△OCB.25.如图,B,C在⊙O上,△OBC是等边三角形,BA⊥OC于点D,交⊙O于点A,过点A作⊙O的切线交BC的延长线,直径BG的延长线分别为点E、F,(1)求证:△BEF是直角三角形;(2)若=,求线段AE的长.26.如图,P A、PB是⊙O的切线,切点分别为A、B、C是⊙O上一点,若∠APB=40°,求∠ACB的度数.27.为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得P A=5cm,求铁环的半径.。
初三圆的证明专题训练(答案)
初三圆的证明专题训练(答案)初三圆的证明专题训练(答案)下载试卷⽂档前说明⽂档:1、试题左侧⼆维码为该题⽬对应解析;2、请同学们独⽴解答题⽬,⽆法完成题⽬或者对题⽬有困惑的,扫描⼆维码查看解析,杜绝抄袭;3、只有⽼师通过组卷⽅式⽣成的⼆维码试卷,扫描出的解析页⾯才有“求⽼师讲解”按钮,菁优⽹原有的真题试卷、电⼦书上的⼆维码试卷扫出的页⾯⽆此按钮。
学⽣点击该按钮以后,下载试卷教师可查看被点击的相关统计数据。
4、⾃主组卷的教师使⽤该⼆维码试卷后,可在“菁优⽹->我的空间->我的收藏 ->我的下载”处点击重点。
5、在使⽤中有任何问题,欢迎在“意见反馈”提出意见和建议,感谢您对菁优⽹的⽀持。
图标查看学⽣扫描的⼆维码统计图表,以便确定讲解第1页 xx年04⽉19⽇九年级数学组的初中数学组卷 (扫描⼆维码可查看试题解析)⼀、解答题1、如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB、求证:直线BF是⊙O的切线;若AB=5,sin∠CBF= ,求BC和BF的长、2、如图,四边形OABC是平⾏四边形,以O为圆⼼,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE 是⊙O的切线,解答下列问题:求证:CD是⊙O的切线;若BC=3,CD=4,求平⾏四边形OABC的⾯积、3、如图,点D为⊙O上⼀点,点C在直径BA的延长线上,且∠CDA=∠CBD、判断直线CD和⊙O的位置关系,并说明理、过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE 的长、第2页4、如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平⾏四边形、求AD的长; BC是⊙O的切线吗?若是,给出证明;若不是,说明理、5、如图,BC是⊙O的直径,A是⊙O上⼀点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC 的延长线交于点P、求证:AP是⊙O的切线; OC=CP,AB=6,求CD的长、6、如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB 的弦,垂⾜为E,过点C作DA的平⾏线与AF相交于点F,CD=四边形FADC是菱形; FC是⊙O的切线、,BE=2、求证:第3页7、已知:如图,AB是⊙O的直径,C是⊙O上⼀点,OD⊥B C 于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE、求证:BE与⊙O相切;连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长、8、如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A 作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC、猜想:线段OD与BC有何数量和位置关系,并证明你的结论、求证:PC是⊙O的切线、9、如图,已知点C是以AB为直径的⊙O上⼀点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G、求证:AE?FD=AF?EC;求证:FC=FB;若FB=FE=2,求⊙O的半径r 的长、第4页10、已知:如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A、求证:CD为⊙O的切线;过点C作CE⊥AB于E、若CE=2,cosD=,求AD的长、11、如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP、求证:直线CP是⊙O的切线、若BC=2 ,sin∠BCP= ,求点B 到AC的距离、在第的条件下,求△ACP的周长、12、如图,在△ABC中,BA=BC,以AB为直径作半圆⊙O,交AC于点D,过点D作DE⊥BC,垂⾜为点E、求证:DE为⊙O的切线;2 求证:BD=AB?BE、第5页13、如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上⼀点,且AC平分∠PAE,过C作CD丄PA,垂⾜为D、求证:CD为⊙O的切线;若DC+DA=6,⊙O的直径为10,求AB的长度、14、如图,已知△ABC,以BC为直径,O为圆⼼的半圆交AC 于点F,点E为的中点,连接BE交AC于点M,AD为△ABC的⾓平分线,且AD⊥BE,垂⾜为点H、求证:AB是半圆O的切线;若AB=3,BC=4,求BE的长、15、如图,D为⊙O上⼀点,点C在直径BA的延长线上,且∠CDA=∠CBD、求证:CD是⊙O的切线;过点B作⊙O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求BE的长、第6页16、如图所⽰,P是⊙O外⼀点,PA是⊙O的切线,A是切点,B是⊙O 上⼀点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q、求证:PB是⊙O的切线;求证:AQ?PQ=OQ?BQ;设∠AOQ=α,若,OQ=15,求AB的长、17、如图,C是以AB为直径的⊙O上⼀点,过O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P、求证:PC是⊙O的切线、若AF=1,OA=,求PC的长、第7页 xx年04⽉19⽇九年级数学组的初中数学组卷参考答案与试题解析⼀、解答题1、如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB、求证:直线BF是⊙O的切线;若AB=5,sin∠CBF= ,求BC和BF的长、考点:切线的判定与性质;勾股定理;圆周⾓定理;相似三⾓形的判定与性质;解直⾓三⾓形、专题:⼏何综合题、分析:连接AE,利⽤直径所对的圆周⾓是直⾓,从⽽判定直⾓三⾓形,利⽤直⾓三⾓形两锐⾓相等得到直⾓,从⽽证明∠ABF= 90、利⽤已知条件证得△AGC∽△ABF,利⽤⽐例式求得线段的长即可、解答:证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90,∴∠1+∠2=90、∵AB=AC,∴∠1=∠CAB、∵∠CBF=∠CAB,∴∠1=∠CBF ∴∠CBF+∠2=90 即∠ABF=90 ∵AB是⊙O的直径,∴直线BF是⊙O的切线、解:过点C作CG⊥AB于G、第8页∵sin∠CBF=∴sin∠1=,,∠1=∠CBF,∵在Rt△AEB中,∠AEB=90,AB=5,∴BE=AB?sin∠1=,∵AB=AC,∠AEB=90,∴BC=2BE=2,在Rt△ABE中,勾股定理得AE=∴sin∠2===,cos∠2===, =2,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴∴BF= = 点评:本题考查常见的⼏何题型,包括切线的判定,⾓的⼤⼩及线段长度的求法,要求学⽣掌握常见的解题⽅法,并能结合图形选择简单的⽅法解题、2、如图,四边形OABC是平⾏四边形,以O为圆⼼,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE 是⊙O的切线,解答下列问题:求证:CD是⊙O的切线;若BC=3,CD=4,求平⾏四边形OABC的⾯积、考点:切线的判定与性质;全等三⾓形的判定与性质;平⾏四边形的性质、专题:证明题、第9页分析:连接OD,求出∠EOC=∠DOC,根据SAS推出△EOC≌△DOC,推出∠ODC=∠OEC=90,根据切线的判定推出即可;根据全等三⾓形的性质求出CE=CD=4,根据平⾏四边形性质求出OA=3,根据平⾏四边形的⾯积公式求出即可、解答:证明:连接OD,∵OD=OA,∴∠ODA=∠A,∵四边形OABC 是平⾏四边形,∴OC∥AB,∴∠EOC=∠A,∠COD=∠ODA,∴∠EOC=∠DOC,在△EOC和△DOC中∴△EOC≌△DOC,∴∠ODC=∠OEC=90,即OD⊥DC,∴CD是⊙O的切线;解:∵△EOC≌△DOC,∴CE=CD=4,∵四边形OABC是平⾏四边形,∴OA=BC=3,∴平⾏四边形OABC的⾯积S=OACE=34= 12、点评:本题考查了全等三⾓形的性质和判定,切线的判定,平⾏四边形的性质的应⽤,解此题的关键是推出△EOC≌△DOC、3、如图,点D为⊙O上⼀点,点C在直径BA的延长线上,且∠CDA=∠CBD、判断直线CD和⊙O的位置关系,并说明理、过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE 的长、第10页考点:切线的判定与性质、专题:⼏何图形问题、分析:连接OD,根据圆周⾓定理求出∠DAB+∠DBA=90,求出∠CDA+∠ADO=90,根据切线的判定推出即可;根据勾股定理求出DC,根据切线长定理求出DE=EB,根据勾股定理得出⽅程,求出⽅程的解即可、解答:解:直线CD和⊙O的位置关系是相切,理是:连接OD,∵AB是⊙O的直径,∴∠ADB=90,∴∠DAB+∠DBA=90,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90,即OD⊥CE,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;∵AC=2,⊙O 的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90,设DE=EB=x,在Rt△CBE中,勾股定理得:CE=BE+BC,222则=x+,解得:x=6,即BE=6、222第11页点评:本题考查了切线的性质和判定,勾股定理,切线长定理,圆周⾓定理,等腰三⾓形的性质和判定的应⽤,题⽬⽐较典型,综合性⽐较强,难度适中、4、如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平⾏四边形、求AD的长; BC是⊙O的切线吗?若是,给出证明;若不是,说明理、考点:切线的判定与性质;直⾓三⾓形斜边上的中线;平⾏四边形的性质、专题:计算题、分析:连接BD,ED为圆O的直径,利⽤直径所对的圆周⾓为直⾓得到∠DBE为直⾓,BCOE为平⾏四边形,得到BC与OE平⾏,且BC=OE=1,在直⾓三⾓形ABD中,C为AD的中点,利⽤斜边上的中线等于斜边的⼀半求出AD的长即可;连接OB,BC与OD平⾏,BC=OD,得到四边形BCDO为平⾏四边形,AD为圆的切线,利⽤切线的性质得到OD垂直于AD,可得出四边形BCDO 为矩形,利⽤矩形的性质得到OB垂直于BC,即可得出BC为圆O的切线、解答:解:连接BD,∵DE是直径∴∠DBE=90,∵四边形BCOE为平⾏四边形,∴BC∥OE,BC=OE=1,在Rt△ABD中,C为AD的中点,∴BC=AD=1,则AD=2;是,理如下:如图,连接OB、∵BC∥OD,BC=OD,∴四边形BCDO为平⾏四边形,∵AD 为圆O的切线,∴OD⊥AD,第12页∴四边形BCDO为矩形,∴OB⊥BC,则BC为圆O 的切线、点评:此题考查了切线的判定与性质,直⾓三⾓形斜边上的中线性质,以及平⾏四边形的判定与性质,熟练掌握切线的判定与性质是解本题的关键、5、如图,BC是⊙O的直径,A是⊙O上⼀点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC 的延长线交于点P、求证:AP是⊙O的切线; OC=CP,AB=6,求CD的长、考点:切线的判定与性质;解直⾓三⾓形、分析:连接AO,AC、欲证AP是⊙O的切线,只需证明OA⊥AP即可;利⽤中切线的性质在Rt△OAP中利⽤边⾓关系求得∠ACO=60、然后在Rt△BAC、Rt△ACD中利⽤余弦三⾓函数的定义知AC=2,CD=4、解答:证明:连接AO,AC、∵BC是⊙O的直径,∴∠BAC=∠CAD=90、∵E是CD的中点,∴CE=DE=AE、∴∠ECA=∠EAC、∵OA=OC,∴∠OAC=∠OCA、∵CD是⊙O的切线,∴CD⊥OC、∴∠ECA+∠OCA=90、∴∠EAC+∠OAC=90、∴OA⊥AP、∵A是⊙O上⼀点,∴AP是⊙O的切线;第13页解:知OA⊥AP、在Rt△OAP中,∵∠OAP=90,OC=CP=OA,即OP=2OA,∴sinP==,∴∠P=30、∴∠AOP=60、∵OC=OA,∴∠ACO=60、在Rt△BAC中,∵∠BAC=90,AB=6,∠ACO=60,∴AC==2,⼜∵在Rt△ACD中,∠CAD=90,∠ACD=90﹣∠ACO=30,∴CD===4、点评:本题考查了切线的判定与性质、解直⾓三⾓形、注意,切线的定义的运⽤,解题的关键是熟记特殊⾓的锐⾓三⾓函数值、6、如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB 的弦,垂⾜为E,过点C作DA的平⾏线与AF相交于点F,CD=,BE=2、求证:四边形FADC是菱形; FC是⊙O的切线、考点:切线的判定与性质;菱形的判定、专题:压轴题、分析:⾸先连接OC,垂径定理,可求得CE的长,⼜勾股定理,可求得半径OC的长,然后勾股定理求得AD的长,即可得AD=CD,易证得四边形FADC是平⾏四边形,继⽽证得四边形FADC是菱形;第14页⾸先连接OF,易证得△AFO≌△CFO,继⽽可证得FC 是⊙O的切线、解答:证明:连接OC,∵AB是⊙O的直径,CD⊥AB,∴CE=DE=CD=4=2,设OC=x,∵BE=2,∴OE=x﹣2,222在Rt△OCE中,OC=OE+CE,222∴x=+,解得:x=4,∴OA=OC=4,OE=2,∴AE=6,在Rt△AED中,AD=∴AD=CD,∵AF是⊙O切线,∴AF⊥AB,∵CD⊥AB,∴AF∥CD,∵CF∥AD,∴四边形FADC是平⾏四边形,∵AD=CD,∴平⾏四边形FADC是菱形;连接OF,AC,∵四边形FADC是菱形,∴FA=FC,∴∠FAC=∠FCA,∵AO=CO,∴∠OAC=∠OCA,∴∠FAC+∠OAC=∠FCA+∠OCA,即∠OCF=∠OAF=90,即OC⊥FC,∵点C在⊙O上,∴FC是⊙O的切线、 =4,第15页点评:此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理以及全等三⾓形的判定与性质、此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应⽤、7、已知:如图,AB是⊙O的直径,C是⊙O上⼀点,OD⊥BC 于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE、求证:BE与⊙O相切;连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长、考点:切线的判定与性质;相似三⾓形的判定与性质;解直⾓三⾓形、专题:⼏何综合题、分析:连接OC,先证明△OCE≌△OBE,得出EB⊥OB,从⽽可证得结论、过点D作DH⊥AB,根据sin∠ABC=,可求出OD=6,OH=4,HB=5,然后△ADH∽△AFB,利⽤相似三⾓形的性质得出⽐例式即可解出BF的长、解答:证明:连接OC,第16页∵OD⊥BC,∴∠COE=∠BOE,在△O CE和△OBE 中,∵,∴△OCE≌△OBE,∴∠OBE=∠OCE=90,即OB⊥BE,∵OB 是⊙O半径,∴BE与⊙O相切、过点D作DH⊥AB,连接AD 并延长交BE于点F,∵∠DOH=∠BOD,∠DHO=∠BDO=90,∴△ODH∽△OBD,∴== ⼜∵sin∠ABC=,OB=9,∴OD=6,易得∠ABC=∠ODH,∴sin∠ODH=,即∴OH=4,∴DH==2, =,⼜∵△ADH∽△AFB,∴=,=,第17页∴FB=、点评:此题考查了切线的判定与性质、相似三⾓形的判定与性质,解答本题的关键是掌握切线的判定定理,在第⼆问的求解中,⼀定要注意相似三⾓形的性质的运⽤、8、如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A 作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC、猜想:线段OD与BC有何数量和位置关系,并证明你的结论、求证:PC是⊙O的切线、考点:切线的判定与性质;全等三⾓形的判定与性质;三⾓形中位线定理;圆周⾓定理、分析:根据垂径定理可以得到D是AC的中点,则OD是△ABC的中位线,根据三⾓形的中位线定理可以得到OD∥BC,CD=BC;连接OC,设OP与⊙O交于点E,可以证得△OAP≌△OCP,利⽤全等三⾓形的对应⾓相等,以及切线的性质定理可以得到:∠OCP=90,即OC⊥PC,即可等证、解答:猜想:OD∥BC,OD=BC、证明:∵OD⊥AC,∴AD=DC ∵AB是⊙O的直径,∴OA=OB…2分∴OD是△ABC的中位线,∴OD∥BC,OD=BC 证明:连接OC,设OP与⊙O交于点E、∵OD⊥AC,OD经过圆⼼O,∴,即∠AOE=∠COE 在△OAP和△OCP中,,∴△OAP≌△OCP,∴∠OCP=∠OAP第18页∵PA是⊙O的切线,∴∠OAP=90、∴∠OCP=90,即OC⊥PC ∴PC是⊙O的切线、点评:本题考查了切线的性质定理以及判定定理,三⾓形的中位线定理,证明圆的切线的问题常⽤的思路是根据切线的判定定理转化成证明垂直的问题、9、如图,已知点C是以AB为直径的⊙O上⼀点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G、求证:AE?FD=AF?EC;求证:FC=FB;若FB=FE=2,求⊙O的半径r 的长、考点:切线的判定与性质;等腰三⾓形的性质;等腰三⾓形的判定;直⾓三⾓形斜边上的中线;勾股定理;圆周⾓定理;相似三⾓形的判定与性质、专题:证明题;⼏何综合题;压轴题、分析:BD是⊙O的切线得出∠DBA=90,推出CH∥BD,证△AEC∽△AFD,得出⽐例式即可;连接OC,BC,证△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根据直⾓三⾓形斜边上中线性质得出CF=DF=BF即可;求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,求出∠FCB=∠CAB22推出CG是⊙O切线,切割线定理得出=BGAG=2BG,在Rt△BFG中,2222勾股定理得出BG=FG﹣BF,推出FG﹣4FG﹣12=0,求出FG即可、解答:证明:∵BD是⊙O的切线,∴∠DBA=90,∵CH⊥AB,∴CH∥BD,第19页∴△AEC∽△AFD,∴=,∴AE?FD=AF?EC、证明:连接OC,BC,∵CH∥BD,∴△AEC∽△AFD,△AHE∽△ABF,∴=∴=,==,,∵CE=EH,∴BF=DF,∵AB为⊙O的直径,∴∠ACB=∠DCB=90,∵BF=DF,∴CF=DF=BF,即CF=BF、解:∵BF=CF=DF,EF=BF=2,∴EF=FC,∴∠FCE=∠FEC,∵∠AHE=∠CHG=90,∴∠FAH+∠AEH=90,∠G+∠GCH=90,∵∠AEH=∠CEF,∴∠G=∠FAG,∴AF=FG,∵FB⊥AG,∴AB=BG,∵BF切⊙O于B,∴∠FBC=∠CAB,∵OC=OA,CF=BF,∴∠FCB=∠FBC,∠OCA=∠OAC,∴∠FCB=∠CAB,∵∠ACB=90,∴∠ACO+∠BCO=90,∴∠FCB+∠BCO=90,即O C⊥CG,∴CG是⊙O切线,∵GBA是⊙O割线,AB=BG, FB=FE=2,22∴切割线定理得:=BGAG=2BG,第20页在Rt△BFG中,勾股定理得:BG=FG﹣BF,2∴FG﹣4FG﹣12=0,解得:FG=6,FG=﹣2,勾股定理得:AB=BG=∴⊙O的半径是2=4、,222 点评:本题考查了切线的性质和判定,相似三⾓形的性质和判定,等腰三⾓形的性质和判定,直⾓三⾓形斜边上中线的性质,圆周⾓定理,勾股定理等知识点的综合运⽤,题⽬综合性⽐较强,有⼀定的难度、10、已知:如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A、求证:CD为⊙O的切线;过点C作CE⊥AB于E、若CE=2,cosD=,求AD的长、考点:切线的判定与性质;圆周⾓定理;解直⾓三⾓形、分析:先连接CO,根据AB是⊙O直径,得出∠1+∠OCB=90,再根据AO=CO,得出∠1=∠A,最后根据∠4=∠A,证出OC⊥CD,即可得出CD为⊙O的切线;根据OC⊥CD,得出∠3+∠D=90,再根据CE⊥AB,得出∠3+∠2=90,从⽽得出cos∠2=cosD,再在△OCD中根据余弦定理得出CO的值,最后根据⊙O的半径为,即可得出AD 的长、解答:证明:连接CO,∵AB是⊙O直径∴∠1+∠OCB=90,∵AO=CO,∴∠1=∠A、第21页∵∠4=∠A,∴∠4+∠OCB=90、即∠OCD=90、∴OC⊥CD、⼜∵OC是⊙O半径,∴CD为⊙O的切线、∵OC⊥CD于C,∴∠3+∠D=90、∵CE⊥AB于E,∴∠3+∠2=90、∴∠2=∠D、∴cos∠2=cosD,在△OCD中,∠OCD=90,∴cos∠2=,∵cosD=,CE=2,∴=,tanD=∴CO=,∴⊙O的半径为、 =,∴OD===, AD=、点评:本题考查了切线的判定与性质,要证某线是圆的切线,已知此线过圆上某点,连接圆⼼与这点,再证垂直即可,同时考查了三⾓函数的知识、11、如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP、求证:直线CP是⊙O的切线、第22页若BC=2,sin∠BCP=,求点B到AC的距离、在第的条件下,求△ACP的周长、考点:切线的判定与性质;等腰三⾓形的性质;勾股定理;相似三⾓形的判定与性质;解直⾓三⾓形、专题:⼏何综合题;压轴题、分析:根据∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中∠ABC+∠BAC+∠BCA=180,得到2∠BCP+2∠BCA=180,从⽽得到∠BCP+∠BCA=90,证得直线CP是⊙O的切线、作BD⊥AC于点D,得到BD∥PC,从⽽利⽤sin∠BCP=sin∠DBC===,求得DC=2,再根据勾股定理求得点B到AC的距离为4、先求出AC的长度,然后利⽤BD∥PC的⽐例线段关系求得CP的长度,再勾股定理求出AP的长度,从⽽求得△ACP的周长、解答:解:∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180 ∴2∠BCP+2∠BCA=180,∴∠BCP+∠BCA=90,⼜C点在直径上,∴直线CP是⊙O的切线、如右图,作BD⊥AC于点D,∵PC⊥AC ∴BD∥PC∴∠PCB=∠DBC ∵BC=2,sin∠BCP==, =,∴sin∠BCP=sin∠DBC=解得:DC=2,∴勾股定理得:BD=4,∴点B到AC的距离为4、如右图,连接AN,∵AC为直径,∴∠AN C=90,第23页∴Rt△ACN中,AC==5,⼜CD=2,∴AD=AC﹣CD=5﹣2=3、∵BD∥CP,∴∴CP=,、 ==20,,在Rt△ACP中,AP=AC+CP+AP=5++∴△ACP的周长为20、点评:本题考查了切线的判定与性质等知识,考查的知识点⽐较多,难度较⼤、12、如图,在△ABC中,BA=BC,以AB为直径作半圆⊙O,交AC于点D,过点D作DE⊥BC,垂⾜为点E、求证:DE为⊙O的切线;2 求证:BD=AB?BE、考点:切线的判定与性质;圆周⾓定理;相似三⾓形的判定与性质、专题:证明题、分析:连接OD、BD,根据圆周⾓定理可得∠ADB=90,继⽽得出点D是AC 中点,判断出OD是三⾓形ABC的中位线,利⽤中位线的性质得出∠ODE=90,这样可判断出结论、2根据题意可判断△BED∽△BDC,从⽽可得BD=BC?BE,将BC替换成AB即可第24页得出结论、解答:证明:连接OD、BD,则∠ADB=90,∵BA=BC,∴CD=AD,⼜∵AO=OB,∴OD是△ABC的中位线,∴OD∥BC,∵∠DEB=90,∴∠ODE=90,即OD⊥DE,故可得DE为⊙O的切线;。
2023年九年级数学中考专题训练——圆的计算和证明 (1)
中考专题训练——圆的计算和证明1.如图1,AB 是O 的直径,点C 在O 上,D 为AC AC 的中点,连接BC ,OD .(1)求证:∥OD BC ;(2)如图2,过点D 作AB 的垂线与O 交于点E ,作直径EF 交BC 于点G .若G 为BC 中点,O 的半径为2,求弦BC 的长.2.如图,在Rt ABC 中,∠C =90°,∠BAC 的平分线AD 交BC 于点D ,点E 是AB 上一点,以AE 为直径的∠O 过点D ,且交AC 于点F .(1)求证:BC 是∠O 的切线;(2)若CD =6,AC =8,求AE .3.在扇形AOB 中,半径=6OA ,75O ∠=︒,点P 在半径OA 上,连结PB ,将∠OBP 沿PB 折叠得到O BP '.且BO '与AB 所在的圆相切于点B .(1)求APO '∠的度数;(2)求AP 的长.线段AC 于点G ,交AB 于点E ,交O 于点F ,连接DB ,CF ,A D ∠=∠.(1)求证:BD 与O 相切;(2)若AE OE =,CF 平分ACB ∠,12BD =,求DE 的长.5.如图,正方形ABCD 内接于∠O ,P 为BC 上的一点,连接DP ,CP .(1)求∠CPD 的度数;(2)当点P 为BC 的中点时,CP 是∠O 的内接正n 边形的一边,求n 的值.6.如图,△ABC 内接于∠O ,且AB 为∠O 的直径,∠ACB 的平分线交∠O 于点D ,过点D 作直线l 交CB 的延长线于点E ,且∠DCE =∠BDE ,过点B 作BF ∠CD 于点F .(1)求证:DE 是∠O 的切线;(2)若∠O 的半径为52,AC =4,求线段DE 的长.7.如图,在等腰ABC中,AB=AC,D,E分别是BC,AC的中点,过B,D两点的O 与AC相切于点E,AB与O交于点G.(1)求证:DEC CBE∠=∠;(2)求tan ABE∠的值.8.如图,AB是∠O的直径,DE与∠O相切于D点,AD CD=,BC交DE于点E.(1)求证:2BD=AB•BE;(2)若AB=5,BE=4,求CE的长.9.如图,AB是∠O的直径,BD是弦,弧DC=弧BC,CE是∠O的切线交AD的延长线于点E.(1)求证:AE∠EC;(2)若AB=4,EDAD=12,求弧BD的长.10.如图,AB为∠O的直径,弦CD∠AB于E,点F在DC的延长线上,AF交∠O于G.(1)求证:∠FGC=∠ACD;(2)若AE=CD=8,试求∠O的半径.11.如图,圆O中两条互相垂直的弦AB,CD交于点E.(1)M是CD的中点,OM=4,CD=24,求圆O的半径长;(2)点F在CD上,连接AC,若CE=EF,∠B=∠C,求证:AF∠BD.12.如图,AB是∠O的直径,AC是∠O的弦,过点C的直线交AB的延长线于点D,且∠A=∠D=30°.(1)求证:直线CD为∠O的切线;(2)若CD=3,求图中阴影部分的面积.13.若∠ABC的三个顶点都在∠O上,AD是△ABC的高,AE是∠O的直径.(1)求证:AC AB AD AE⋅=⋅;14.如图,已知P,PB分别与∠O相切于点AB,∠APB=60°,C为∠O上一点.(1)如图∠求∠ACB的度数;(2)如图∠AE为∠O的直径,AB与BC相交于点D,若AB=AD,求∠BAC的度数.15.如图,四边形ABCD是∠O的内接四边形,∠ABC=90°,AD=CD,过A作∠O的切线交CD的延长线于点P.(1)求∠P的度数;(2)若AB=6,BC=8,求P A、PD的长.16.如图,CD是∠O的切线,切点为D,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若tan∠BDC=2,AC=3,求CD的长.317.如图,AB是∠O的直径,BD平分∠ABC,DE∠BC(1)求证:DE是∠O的切线:18.如图,AB 是O 的直径,AC 是弦,D 是AB 的中点,CD 与AB 交于点E .F 是AB 延长线上的一点,且CF EF =.(1)求证:CF 为O 的切线;(2)连接BD ,取BD 的中点G ,连接AG .若4CF =,2BF =,求AG 的长.19.如图,AB 是∠O 的直径,E 为AB 延长线上一点,EC 切∠O 于C ,AD ∠CE 于点D .(1)求证:∠DAC =∠EAC ;(2)如果BE =2,CE =4,求线段AD 的长.20.如图,以AB 为直径的∠O 是ACD 的外接圆,连接OC ,OD ,AC CD =,AB 交CD 于点E ,PB 与O 相切于点B .(1)求证:P PAD ∠=∠(2)若O 的半径为3,2OE =,求CE 的长.参考答案:1.(1)证明见解析 (2)22【分析】(1)连接BD ,由D 为AC 的中点,得=AD CD ,则ABD CBD ∠=∠,由等腰三角形的性质得ABD BDO ∠=∠,推出CBD BDO ∠=∠,即可得证;(2)由垂径定理得OF BC ⊥,由平行线的性质得DO EF ⊥,则DOE △是等腰直角三角形,45OED ∠=︒,易证OGB △是等腰直角三角形,得2BG =,再由2BC BG =,即可得出结果.【解析】(1)证明:连接BD ,如图1所示:∠D 为AC 的中点,∠=AD CD ,∠ABD CBD ∠=∠,∠OD OB =,∠ABD BDO ∠=∠,∠CBD BDO ∠=∠,∠∥OD BC ;(2)解:∠G 为BC 中点,∠OF BC ⊥,由(1)得:∥OD BC ,∠DO EF ⊥,∠DOE △是等腰直角三角形,∠45∠=︒,OED∠DE AB⊥,∠45∠=∠=︒,EOA BOG∠OGB△是等腰直角三角形,∠2BG==∠==.2BC BG【点评】本题考查了垂径定理、圆周角定理、等腰三角形的判定与性质、平行线的判定与性质、等腰直角三角形的判定与性质,熟练掌握垂径定理和平行线的判定与性质是解题的关键.2.(1)见解析(2)12.5【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD∠BC,根据切线的判定推出即可;(2)求出AD,连接DE,证DCA∠EDA,得出比例式,代入数值求解即可.(1)证明:连接OD,∠OA=OD,∠∠OAD=∠ODA,∠AD平分∠BAC,∠∠BAD=∠CAD,∠∠ODA=∠CAD,∠OD∥AC,∠∠C=90°,∠∠ODC=90°,∠OD∠BC,∠OD为半径,∠BC是∠O切线;(2)解:在Rt ADC 中,AC =8,CD =6,由勾股定理得:AD =10.连接DE ,∠AE 为直径,∠∠EDA =∠C =90°,∠∠CAD =∠EAD , ∠DCA ∠EDA , ∠AE AD AD AC =, ∠10108AE =, AE =12.5.【点评】本题考查了切线的判定,相似三角形的性质和判定,平行线的判定与性质,勾股定理,圆周角定理等知识点的应用,主要考查学生的推理能力.3.(1)60APO '∠=︒ (2)626AP =-【分析】(1)根据折叠的性质、切线的性质和四边形内角和度数可求得OPO ∠'的度数,再根据平角的定义即可求得APO '∠的度数;(2)连接OO '交PB 于点G ,由折叠的性质知,BP 垂直平分OO ',BO BO '=.OBP O BP '∠=∠,则45BOO '∠=︒,62OO '=再说明30POO '∠=︒,利用含30°角的直角三角形的性质可得答案;(1)由折叠可得:75O O '∠=∠=︒,∠BO '与AB 所在的圆相切于点B ,∠90OBO '∠=︒,∠四边形内角和为360︒,∠360757590120OPO '∠=︒-︒-︒-︒=︒,∠18012060APO '∠=︒-︒=︒;(2)连接OO '交PB 于点G ,由折叠可知,BP 垂直平分OO ',6BO BO '==,OBP O BP '∠=∠, ∠BO '与圆相切,∠90OBO '∠=︒,∠OO '∠12OG OO '== ∠∠AOB =75°,18090452BOO ︒-︒'∠==︒, ∠30POO '∠=︒, ∠12PG OP =, ∠222OP PG OG =+, ∠221184OP OP =+,∠OP =∠6AP =-【点评】本题是圆的综合题,主要考查了圆的切线的性质,折叠的性质,含30°角的直角三角形的性质,四边形和三角形内角和定理和勾股定理等知识,根据折叠的性质、三角形内角和定理和四边形内角和定理求得30POO '∠=︒是解题的关键.4.(1)见解析 (2)65【分析】(1)根据直径所对的圆周角是直角可得90ACB ∠=︒,再由平行线的性质可得90DGA ∠=︒,结合A D ∠=∠与三角形内角和定理即可得到90DBE ∠=︒,即可得证; (2)如图2,连接OF ,先根据垂径定理证明OF AB ⊥,再证明EFO △∠EDB △,列比例式可得4OF =,即O 的半径为4,根据勾股定理可得DE 的长.(1)证明:AB 是O 的直径90ACB ∴∠=︒,DG BC ∥,90AGE ACB ∴∠=∠=︒,A D ∠=∠,AEG DEB ∠=∠,90DBE AGE ∴∠=∠=︒,A DB B ∴⊥,BD ∴与O 相切;(2)解:如图2,连接OF ,CF 平分ACB ∠,45ACF BCF ∴∠=∠=︒,290AOF ACF ∴∠=∠=︒OF AB ∴⊥,BD AB ⊥,OF BD ∴∥,EFO ∴∠EDB △,OF OE BD BE∴=, AE OE =,13OE EB ∴=, 1123OF ∴=, 4OF ∴=,246BE OE OB ∴=+=+=,DE ∴=【点评】此题考查了相似三角形的判定与性质,切线的判定,圆周角定理,勾股定理等知识,解答本题需要我们熟练掌握切线的判定,第2问关键是证明EFO △∠EDB △.5.(1)45DPC ∠=︒(2)8n =【分析】(1)连接OD,OC,根据正方形ABCD内接于∠O,结合圆周角定理可得∠CPD;(2)结合正多边形的性质以及圆周角定理得出∠COP的度数,进而得出答案.【解析】(1)解:连接OD,OC,∠正方形ABCD内接于∠O,∠∠DOC=90°,∠1452DPC DOC∠=∠=︒.(2)解:连接PO,OB,如图所示:∠正方形ABCD内接于∠O,∠∠COB=90°,∠点P为BC的中点,∠CP BP=,∠1452COP COB∠=∠︒=,∠n=360÷45=8.【点评】本题主要考查了正多边形和圆以及圆周角定理、正方形的性质,解题的关键是熟练掌握同弧所对的圆周角等于圆心角的一半.6.(1)证明见解析;(2)ED=358.【分析】(1)连接OD,先证∠DAB是等腰直角三角形,得OD∠AB,根据已知条件得到OD∠PD,即可得出结论;(2)先由勾股定理求得BC,再由等腰直角三角形的性质求出BD、BF、CF的长,然后由勾股定理和相似三角形的性质即可解决问题.(1)证明:连接OD,BD,如图所示∠AB为∠O的直径,∠∠ACB=90°,∠∠ACB的平分线交∠O于点D,∠∠ACD=∠BCD=45°,∠∠DAB=∠ABD=45°,∠∠DAB是等腰直角三角形,∠OA=OB,∠OD∠AB,∠∠ODB=∠DCB=45°,∠∠DCB=∠BDE,∠∠BDE=45°,∠∠ODE=90°,∠PD是∠O的切线;(2)解:∠∠O的半径为52,∠AB=5,∠AC=4,∠BC3,∠∠DAB为等腰直角三角形,∠BD 252 ∠BF ∠CD ,∠∠BCF 为等腰直角三角形,∠BF =CF 232 在Rt △DBF 中,DF 22BD BF -225232()()22-22 ∠CD =CF +DF 322272, ∠∠BDE =∠DCE ,∠E =∠E ,∠∠BDE ∠∠DCE , ∠DE CE =BE DE =BD CD =57, ∠BE =57ED ,CE =75ED , ∠EC =EB +BE , ∠57ED +3=75ED , 解得:ED =358. 【点评】本题考查了切线的判定与性质、圆周角定理定理、等腰直角三角形的判定与性质、勾股定理以及三角形相似的判定与性质等知识;熟练掌握切线的判定与性质和等腰直角三角形的判定与性质是解题的关键.7.(1)见解析 7【分析】(1)连接OD 、OE ,根据等腰三角形的性质及切线的性质可得结论;(2)根据相似三角形的判定与性质可得2CB CA CE =⋅,设BD CD a ==,则2BC a =,过E 作EH AB ⊥,连接AD ,然后通过解直角三角形可得答案.(1)证明:连接OD 、OE ,OD OE =,1(180)2ODE OED DOE ∴∠=∠=︒-∠, 2DOE DBE ∠=∠,90ODE DBE ∴∠=︒-∠, E 是切点,CE AC ∴⊥,90OEC ∴∠=︒,90OED DEC ∴∠=︒-∠,ODE OED ∠=∠,DEC CBE ∴∠=∠.(2) D ,E 分别是BC ,AC 的中点,DE ∴为ABC ∆的中位线,DE AB ∴∥,CED CAB ∴∠=∠,CED CBE ∠=∠,CBE CAB ∴∠=∠,BCE ACB ∠=∠,CBE CAB ∴∆∆∽, ∴CB CE CA CB=, 2CB CA CE ∴=⋅,设BD CD a ==,则2BC a =,2224CE a ∴=,2CE a ∴, ∴22AC a AB ==,过E 作EH AB ⊥,垂足为H ,连接AD ,AB AC =,D 为BC 中点,AD BC ∴⊥,2222(22)7AD AC CD a a a ∴--,2172ABC S BC AD a ∆∴=⋅, E 为AC 中点,2172ABE ABC S S ∆∆∴==, 即2172AB EH ⋅, 14EH ∴=, 2232AH AE EH ∴=-, 52BH AB AH ∴=-=, 7tan EH ABE BH ∴∠= 【点评】此题考查的是切线的性质,圆周角定理、等腰三角形性质、三角形中位线定理等知识,通过判定相似三角形得线段成比例从而得到答案是解决此题关键.8.(1)见解析(2)1【分析】(1)连接OD ,证明△ABD ∠∠DBE ,得到AB DB DB BE=,结论得证; (2)先求出BD 、AD 、DE ,再证明△ADB ∠∠CED ,得到EC DE AD DB =,代入数值即可得到答案.(1)证明:连接OD ,∠DE与∠O相切于D点,∠DE∠OD,∠∠ODE=90°,∠AD CD=,∠∠ABD=∠CBD,∠OD=OB,∠∠ODB=∠ABD,∠∠ODB=∠CBD,∠OD BE,∠∠E=180°-∠ODE=90°,∠AB是∠O的直径,∠∠ADB=90°,∠∠ABD∠∠DBE,∠AB DB DB BE=,∠2BD=AB•BE;(2)∠AB=5,BE=4,2BD=AB•BE,∠2BD=20,∠BD=∠AD DE2=,∠四边形ABCD是圆内接四边形,∠∠A+∠BCD=180°,∠∠DCE+∠BCD=180°,∠∠DCE =∠A ,又∠∠E =∠ADB =90°,∠∠ADB ∠∠CED , ∠EC DE AD DB=, 525=, ∠EC =1.【点评】此题主要考查了圆的切线的性质定理、圆周角定理及推论、圆内接四边形的性质、相似三角形的判定和性质、勾股定理等知识,证明三角形的相似是解题的关键.9.(1)见解析(2)BD 的长为4π3【分析】(1)连接OC 交BD 于点F ,利用切线的性质可得90OCE ∠=︒,利用垂径定理可得90DFC ∠=︒,利用直径所对的圆周角是直角可得90BDE ∠=︒,从而可得四边形DECF 是矩形,即可解答;(2)连接OD ,利用垂径定理可得DF BF =,从而可得OF 是ABD ∆的中位线,进而可得2AD OF =,然后根据结合已知和矩形的性质可得2AD CF =,从而可得OF CF =,然后在Rt ΔDOF 中,利用锐角三角函数的定义求出60DOF ∠=︒,再利用垂径定理可得60DOF BOF ∠=∠=︒,最后利用弧长公式进行计算即可解答.(1)证明:连接OC 交BD 于点F , CE 是O 的切线,90∴∠=︒OCE ,DC BC =,OC BD ∴⊥,90DFC ∴∠=︒, AB 是O 的直径,90ADB ∴∠=︒,18090BDE ADB ∴∠=︒-∠=︒,∴四边形DECF 是矩形, 90E ∴∠=︒,AE EC ∴⊥;(2)解:连接OD ,OC BD ⊥,DF BF ∴=,122OA OB AB ===, OF ∴是ABD ∆的中位线, 2AD OF ∴=,12ED AD =, 2AD DE ∴=,DE CF ∴=,2AD CF ∴=,12OF CF OC ∴==, 在Rt ΔDOF 中,12OF OD =, 1cos 2OF DOF OD ∴∠==, 60DOF ∴∠=︒,DC BC =,60DOF BOF ∴∠=∠=︒,120DOB DOF BOF ∴∠=∠+∠=︒,∴BD的长120241803ππ⨯==,∴BD的长为43π.【点评】本题考查了矩形的判定与性质,圆周角定理,切线的性质,垂径定理,三角形的中位线定理,弧长的计算,解直角三角形,根据题目的已知条件并结合图形添加的辅助线是解题的关键.10.(1)见解析(2)5【分析】(1)根据垂径定理可得AC=AD,即有∠ACD=∠D,再根据四边形AGCD内接于∠O,可证明∠D=∠FGC,则问题得解;(2)连接OC,设OA=OC=r,则OE=8-r,在Rt∠COE中,利用222OE CE OC+=,即可求解.(1)证明:∠AB为∠O的直径,CD∠AB,∠AB垂直平分CD,∠AC=AD,∠∠ACD=∠D,∠四边形AGCD内接于∠O,∠∠AGC+∠D=180°,∠∠AGC+∠FGC=180°,∠∠D=∠FGC,∠∠ACD=∠FGC;(2)连接OC ,∠AB 为∠O 的直径,CD ∠AB ,AE =CD =8,∠CE =ED =4,设OA =OC =r ,则OE =8-r ,在Rt ∠COE 中,222OE CE OC +=,即()22284r r -+=,解得r =5,即∠O 的半径为5.【点评】本题考查了垂径定理、圆内接四边形的性质、圆周角定理以及勾股定理等知识,掌握垂径定理是解答本题的关键.11.(1)(2)证明见解析【分析】(1)连接OD ,OM ∠CD ,根据垂径定理得出DM =CM =CD =12,根据勾股定理求出OD 即可;(2)延长AF 交BD 于Q ,求出AF =AC ,根据等腰三角形的性质得出∠C =∠AFC ,根据圆周角定理得出∠B =∠C ,求出∠B =∠DFQ ,求出∠B +∠D =90°,求出∠DFQ +∠D =90°即可.(1)解:连接OD ,∠M 是CD 的中点,∠OM ∠CD ,又∠OM 过圆心O ,CD =24,∠DM=CM=1CD=12,∠OMD=90°,2由勾股定理得:2222OD OM DM++412410即圆O的半径长是410(2)解:证明:延长AF交BD于Q,∠AB∠CD,CE=EF,∠AF=AC,∠∠C=∠AFC,∠∠DFQ=∠AFC,∠B=∠C,∠∠B=∠DFQ,∠AB∠CD,∠∠DEB=90°,∠∠B+∠D=90°,∠∠DFQ+∠D=90°,∠∠DQF=180°﹣(∠DFQ+∠D)=90°,∠AF∠BD.【点评】本题考查了垂径定理,圆周角定理,等腰三角形的性质,直角三角形的性质等知识点,能熟记垂径定理是解答(1)的关键,能求出∠B=∠DFQ是解(2)的关键.12.(1)证明见解析-33π【分析】(1)连接OC ,由∠A =∠D =30°,可得∠COD =2∠D ,从而求得∠OCD =90°,可证得直线CD 为∠O 的切线;(2)先求△OCD 和扇形OCB 的面积,进而可求出图中阴影部分的面积.(1)证明:连接OC ,∠∠A =∠D =30°,∠∠COD =2∠D ,∠3∠D =90°,∠∠OCD =90°,∠过点C 的直线交AB 的延长线于点D ,∠OC ∠CD ,∠CO 为圆的半径,∠ 直线CD 为圆的切线.(2)由(1)可知∠COD =60°在Rt △COD 中,∠CD =3,∠OC∠阴影部分的面积=260132360π⨯=【点评】本题主要考查切线的性质及扇形面积的计算,掌握过切点的半径与切线垂直是解题的关键,学会用分割法求阴影部分面积.13.(1)见解析(2)r =【分析】(1)先证明∠AB E=∠ADC ,∠AEB =∠ACB ,然后根据两个角相等的两个三角形相似,证明ABE ADC △∽△,得出AB AE AD AC=,即可得出结论; (2)根据AC AB AD AE ⋅=⋅,代入数据求出AE 的长,即可得出半径的长.(1)证明:连接BE ,如图所示:∠AE 是∠O 的直径,∠∠ABE =90°,∠AD 是△ABC 的高,∠∠ADC =90°,∠∠AB E=∠ADC ,∠AB AB =,∠∠AEB =∠ACB ,∠ABE ADC △∽△, ∠AB AE AD AC=, ∠AC AB AD AE ⋅=⋅.(2)解:∠10AB =,6AD =,35AC =AC AB AD AE ⋅=⋅, ∠103555AC AB AE AD ⋅⨯=== ∠∠O 的半径为:1552r AE == 【点评】本题主要考查圆周角定理,三角形相似的判定和性质,证明ABE ADC △∽△是解题的关键.14.(1)60°(2)45°【分析】(1)连接OA 、OB ,根据切线的性质得到∠OAP =∠OBP =90°,根据四边形内角和等于360°计算;(2)连接CE,根据圆周角定理得到∠ACE=90°,由(1)知∠ACB=60°,则∠BCE=90°-60°=30°,根据圆周角定理可得∠BAE=∠BCE=30°,再根据等腰三角形的性质、三角形的外角性质可计算出∠EAC =15°,然后由∠BAC=∠BAE+∠EAC即可求解.(1)解:连接OA、OB,∠P A,PB是∠O的切线,∠∠OAP=∠OBP=90°,∠∠AOB=360°-90°-90°-60°=120°,∠AOB=60°;由圆周角定理得,∠ACB=12(2)解:连接CE,∠AE为∠O的直径,∠∠ACE=90°,由(1)知∠ACB=60°,∠∠BCE=90°-60°=30°,∠∠BAE=∠BCE=30°,∠AB=AD,∠∠ABD=∠ADB=75°,∠∠EAC=∠ADB-∠ACB=15°.∠∠BAC=∠BAE+∠EAC=30°+15°=45°.【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.15.(1)45°(2)P A=10,PD=52【分析】(1)连接AC,利用圆周角定理得到AC为∠O的直径,则∠ADC=90°,再证明∠ACD=∠CAD=45°,接着根据切线的性质得到∠P AC=90°,从而得到∠P=45°;(2)先利用勾股定理计算出AC=10,则利用∠P=∠ACP=45°得到AP=10,然后利用∠APD 为等腰直角三角形得到PD的长度.(1)解:连接AC,如图,∠∠ABC=90°,∠AC为∠O的直径,∠∠ADC=90°,∠AD=CD,∠∠ACD=∠CAD=45°,∠P A为∠O的切线,∠CA∠P A,∠∠P AC=90°,∠∠P=90°-∠ACD=45°;(2)解:在Rt∠ABC中,2222++=,AC AB BC6810∠∠P=∠ACP=45°,∠AP=AC=10,∠∠ADC =90°,∠∠APD 为等腰直角三角形,∠1022===PD AP 【点评】本题考查了切线的性质、圆周角定理、勾股定理、等腰直角三角形的判定和性质等知识,熟练掌握相关定理是解题的关键.16.(1)见解析(2)2【分析】(1)根据切线的性质得到∠CDB +∠ODB =90°,由AB 是∠O 的直径,推出∠ODB +∠ADO =90°,得到∠CDB =∠ADO ,再利用OA =OD ,推出∠ADO ∠DAO ,即可证得; (2)证明∠CBD ∠∠CDA ,推出BD CD AD AC ,根据tan∠BDC =23,得到tan∠CAD =23=BD CD AD AC,代入AC =3,即可求出CD .(1)证明:连接OD ,∠CD 是∠O 的切线,∠OD ∠CD ,即∠ODC =90°,∠∠CDB +∠ODB =90°,∠AB 是∠O 的直径,∠∠ADB =90°,即∠ODB +∠ADO =90°,∠∠CDB =∠ADO ,∠OA =OD ,∠∠ADO=∠DAO ,∠∠CAD =∠BDC ;(2)∠∠CAD =∠BDC ,∠C =∠C ,∠∠CBD∠∠CDA,∠BD CD AD AC,∠tan∠BDC=23,∠tan∠CAD=23=BD CD AD AC,∠2 33 CD,解得:CD=2.【点评】此题考查了切线的性质,直径所对的圆周角是直角,相似三角形的判定和性质,利用正切值求边长,熟练掌握各知识点是解题的关键.17.(1)见解析(2)5【分析】(1)连接OD,根据等腰三角形的性质和角平分线得出OD∠BE,再根据垂线和平行线的性质得出OD∠DE,进而得出DE是∠O的切线;(2)根据圆周角定理和垂径定理得出AF=FC=DE=4,在Rt∠OAF中,由勾股定理列方程求解即可.【解析】(1)解:如图,连接OD,∠BD平分∠ABC,∠∠ABD=∠DBC,又∠OB=OD,∠∠ABD=∠ODB,∠∠ODB=∠DBC,∠OD∠BE,∠DE∠BE,∠OD∠DE,∠DE 是∠O 的切线;(2)如图,连接AC ,交OD 于F ,∠AB 是∠O 的直径,∠∠ACB =90°,又∠∠FDE =90°,∠DEC =90°,∠四边形FDEC 是矩形,∠DF =CE =2,FC =DE =4.由垂径定理可知4AF CF ==设∠O 的半径为r ,在Rt ∠OAF 中,由勾股定理得,222OF AF OA +=即(r -2)2+42=r 2,解得r =5.即半径为5.【点评】本题考查切线的判定和性质,圆周角定理、垂径定理以及勾股定理,掌握切线的判定方法,掌握圆周角定理、垂径定理以及勾股定理是正确解答的关键.18.(1)见解析(2)AG =【分析】(1)方法一:如图1,连接OC ,OD .由OCD ODC ∠=∠,FC FE =,可得OED FCE ∠=∠,由AB 是O 的直径,D 是AB 的中点,90DOE ∠=︒,进而可得90OCF ∠=︒,即可证明CF 为O 的切线;方法二:如图2,连接OC ,BC .设CAB x ∠=︒.同方法一证明90OCF ∠=︒,即可证明CF 为O 的切线;(2)方法一:如图3,过G 作GH AB ⊥,垂足为H .设O 的半径为r ,则2OF r =+.在Rt ∠OCF 中,勾股定理求得3r =,证明GH DO ∥,得出BHG BOD ∽,根据BH BG BO BD =,求得,BH GH ,进而求得AH ,根据勾股定理即可求得AG ;方法二:如图4,连接AD .由方法一,得3r =.6AB =,D 是AB 的中点,可得AD BD ==根据勾股定理即可求得AG .【解析】(1)(1)方法一:如图1,连接OC ,OD .∠OC OD =,∠OCD ODC ∠=∠.∠FC FE =,∠FCE FEC ∠=∠.∠OED FEC ∠=∠,∠OED FCE ∠=∠.∠AB 是O 的直径,D 是AB 的中点,∠90DOE ∠=︒.∠90OED ODC ∠+∠=︒.∠90FCE OCD ∠+∠=︒,即90OCF ∠=︒.∠OC CF ⊥.∠CF 为O 的切线.方法二:如图2,连接OC ,BC .设CAB x ∠=︒.∠AB 是O 的直径,D 是AB 的中点,∠45ACD DCB ∠=∠=︒.∠()45CEF CAB ACD x ∠=∠+∠=+︒.∠FC FE =,∠()45FCE FEC x ∠=∠=+︒.∠BCF x ∠=︒.∠OA OC =,∠ACO OAC x ∠=∠=︒.∠BCF ACO ∠=∠.∠AB 是O 的直径,∠90ACB ∠=︒.∠90OCB ACO ∠+∠=︒.∠90OCB BCF ∠+∠=︒,即90OCF ∠=︒.∠OC CF ⊥.∠CF 为O 的切线.(2)解:方法一:如图3,过G 作GH AB ⊥,垂足为H .设O 的半径为r ,则2OF r =+.在Rt ∠OCF 中,()22242r r +=+,解之得3r =.∠GH AB ⊥,∠90GHB ∠=︒.∠90DOE ∠=︒,∠GHB DOE ∠=∠.∠GH DO ∥. BHG BOD ∴∽ ∠BH BG BO BD=. ∠G 为BD 中点, ∠12BG BD =. ∠1322BH BO ==,1322GH OD ==.∠39622AH AB BH =-=-=. ∠222239310222AG GH AH ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭方法二:如图4,连接AD .由方法一,得3r =.∠AB 是O 的直径,∠90ADB ∠=︒.∠6AB =,D 是AB 的中点, ∠32AD BD ==∠G 为BD 中点, ∠13222DG BD == ∠()2222333221022AG AD DG ⎛⎫=+=+= ⎪⎝⎭【点评】本题考查了切线的判定,勾股定理,相似三角形的性质与判定,综合运用以上知识是解题的关键.19.(1)见解析 (2)245【分析】(1)连接OC ,利用切线的性质,先证明OC AD ∥,即有DAC OCA ∠=∠,再根据OA OC =,可得ACO CAO ∠=∠,即有DAC EAC ∠=∠;(2)设∠O 的半径为r ,即有2OE r =+,在Rt ∠COE 中,222OC CE OE +=,即()22242r r +=+即可求出r ,根据OC AD ∥,可得OEC AED ∽,则有OE OC AE AD=,则问题得解. (1)(1)连接OC ,如图,∠EC 是∠O 的切线,∠OC CE ⊥,∠AD CE ⊥,∠OC AD ∥,∠DAC OCA ∠=∠,∠OA OC =,∠ACO CAO ∠=∠,∠DAC EAC ∠=∠;(2)设∠O 的半径为r ,∠2BE =,4CE =,∠2OE r =+,∠在Rt ∠COE 中,222OC CE OE +=,∠()22242r r +=+,解得3r =,∠5OE =,8AE =,∠OC AD ∥,∠OEC AED ∽, ∠OE OC AE AD =,即538AD=, 解得245AD =, ∠线段AD 的长为245. 【点评】本题考查了切线的性质、平行的判定与性质、勾股定理、相似三角形的判定与性质等知识,灵活利用平行线的判定与性质是解答本题的关键.20.(1)见解析(2)5【分析】(1)利用直径所对圆周角是直角得出190ADC ∠+∠=︒,再由切线的性质得出90ABP ∠=︒,则290P ∠+∠=︒,又由圆周角定理得12∠=∠,则P ADC ∠=∠,最后由等腰三角形性质得CAD ADC ∠=∠,即可得出结论;(2)先证明AOC DOC ≌△△,得到2345∠=∠=∠=∠,又因为12∠=∠,则14∠=∠,得出OC BD ∥,从而得CE OE DE BE =,即2232CE DE ==-,即12DE CE =,再证明AEC DEB △∽△,得AE CE DE BE=,即3232CE DE +=-,代入即可求解. (1)证明:如图,∠AB 是O 的直径,∠190ADC ∠+∠=︒,∠PB 与O 相切于点B ,∠90ABP ∠=︒,∠290P ∠+∠=︒,∠12∠=∠,∠P ADC ∠=∠,∠AC CD =,∠CAD ADC ∠=∠,∠P CAD ∠=∠,即P PAD ∠=∠,(2)解:如图,∠AC CD =,OC OC =,OA OD =∠AOC DOC ≌△△,∠2345∠=∠=∠=∠,∠12∠=∠,∠14∠=∠,∠OC BD ∥, ∠CE OE DE BE=,即2232CE DE ==-, ∠12DE CE =, ∠AEC DEB ∠=∠,12∠=∠,∠AEC DEB △∽△, ∠AE CE DE BE=,即3232CE DE +=-, ∠5CE DE ⋅=即152CE CE ⋅=,解得10CE .【点评】本题考查圆周角定理及其推论,切线的性质,全等三角形判定和性质,相似三角形△∽△是解题的关键.的判定与性质,证明AEC DEB。
中考数学专题复习演练:圆的有关计算与证明(含答案)
中考数学习题精选:圆的有关计算与证明解答题1.△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=11cm,BC=16cm,CA=15cm,求AF、BD、CE的长?2.如图,在4×4 的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,求扇形OAB 的弧长,周长和面积.(结果保留根号及π).3.如图,直线y=与x轴、y 轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P 与y轴相切于点O.若将圆P沿x 轴向左移动,当圆P与该直线相交时,求横坐标为整数的点P的个数.4.如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF 的中点,AD⊥BC于点D,求证:AD= BF.5.如图,△在ABC中,BE 是它的角平分线,∠C=90°,点D 在AB边上,以DB为直径的半圆O 经过点E,交BC于点F(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为3,求图中阴影部分的面积6.如图,已知是△的外角的平分线,交的延长线于点,延长交△的外接圆于点,连接,.(1)求证:.(2)已知,若△是外接圆的直径,,求的长.7.已知:如图,△在ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD 的长;(3)在(2)的条件下,△求DPE的面积.8.如图,AB是半圆O的直径,AD 为弦,∠DBC=∠A.(1)求证:BC是半圆O 的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD 的长.9.如图1,在正方形ABCD 中,以BC为直径的正方形内,作半圆O,AE切半圆于点F交CD 于点E,连接OA、OE.(1)求证:AO⊥EO;(2)如图2,连接DF 并延长交BC于点M,求的值.10.如图,AD 是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O 于点C,连接AC,过点C作CD∥AB,交AD 于点D.连接AO并延长交BC 于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC 与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.11.如图,点A在⊙O上,点P是⊙O外一点,PA切⊙O于点A,连接OP 交⊙O于点D,作AB⊥OP于点C,交⊙O 于点B,连接PB.(1)求证:PB是⊙O的切线;(2)若PC=9,AB=6,①求图中阴影部分的面积;12.如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC 于E,连接AD.(1)求证△:CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.13.如图,AB是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与AC延长线交于点D,连接BC,OE//BC 交⊙O 于点E,连接BE 交AC于点H.(1)求证:BE平分∠ABC;(2)连接OD,若BH=BD=2,求OD的长.14.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(2,8),且与x 轴相切于点B.图①图②(1)当x>0,y=5时,求x的值;(2)当x =6 时,求⊙P的半径;(3)求y关于x的函数表达式,请判断此函数图象的形状,并在图②中画出此函数的图象(不必列表,画草图即可).15.如图△,OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA 的中点,阴影部分的面积为,求⊙O的半径r.16.如图,△在ABC中,∠C=90°,∠ABC 的平分线交AC于点E,过点E 作BE的垂线交AB 于点F,⊙O△是BEF 的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF 及AF长.17.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,CE=2.(1)求AB 的长;(2)求⊙O的半径.18.如图,△在ABC中,∠ABC=90°,以AB的中点O为圆心,OA 为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE 与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若cos∠BAD=,BE=,求OE 的长.19.如图,AB 为⊙O的直径,点C在⊙O上,过点C作⊙O 的切线交AB的延长线于点D,已知∠D=30°.(1)求∠A的度数;(2)若点F在⊙O 上,CF⊥AB,垂足为E,CF=,求图中阴影部分的面积.20.如图,在 △R t ABC 中,∠C=90°,点 D ,E ,F 分别在 AC ,BC ,AB 边上,以 AF 为直径的⊙O 恰好经过 D , E ,且 DE=EF .(1)求证:BC 为⊙O 的切线;(2)若∠B=40°,求∠CDE 的度数;(3)若 CD=2,CE=4,求⊙O 的半径及线段 BE 的长.21.如图,⊙的圆心在反比例函数的图像上,且与轴、轴相切于点、 ,一次函数的图像经过点 ,且与轴交于点,与⊙的另一个交点为点.(1)求(2)求的值及点长及的坐标;的大小;(3)若将⊙沿轴上下平移,使其与轴及直线均相切,求平移的方向及平移的距离.参考答案解答题1.解:∵△ABC 的内切圆⊙O 与 BC ,CA ,AB 分别相切于点 D 、E 、F , ∴AF=AE ,BF=BD ,CD=CE .设 AF=AE=x ,则 BF=BD=11﹣x ,EC=DC=15﹣x .根据题意得 11﹣x+15﹣x=16.解得;x=5cm .∴AF=5cm .BD=11﹣x=11﹣5=6cm ,EC=15﹣x=10cm .∴AF=5cm ,BD=6cm ,EC=10cm .2.解:由图形可知,∠AOB=90°,∴OA=OB==2,∴= =,扇形 OAB 的面积= =2π.弧 AB 的长是:= π∴周长=弧 AB 的长+2OA=π+4综上所述,扇形 OAB 的弧长是.π,周长是π+4,面积是 2π.3.解:∵直线 y=与 x 轴、y 轴分别相交于 A,B 两点,∴A 点的坐标为(-3,0),B 点的坐标为(0,),∴AB=2.如图,将圆 P 沿 x 轴向左移动,当圆 P 与该直线相切于 C 时,连结 P C ,则 P C =1,易 △知AP C ∽△ABO,∴=,∴AP =2,∴P 的坐标为(-1,0),同理可得 P 的坐标为(-5,0).-5 与-1 之间的整数(不含-5 和-1)有:-4,-3,-2,故满足题意的点 P 的个数是 31 1 1 1 1 1 1 1 1 24.证明:连接OA,交BF 于点E,∵A是弧BF 的中点,O为圆心,∴OA⊥BF,∴BE=BF,∵AD⊥BC于点D,∴∠ADO=∠BEO=90°,在△OAD△与OBE中,∴△OAD≌△OBE(AAS),∴AD=BE,∴AD=BF5. (1)证明:连结OE,[MISSING IMAGE:,]∵BE平分∠ABC,∴∠ABC=2∠ABE,∵OB=OE,∴∠OBE=∠OEB,∴∠AOE=∠OEB+∠OBE=2∠ABE,∴∠ABC=∠AOE,又∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+∠AOE=90°,∵∠AEO=90°,即OE⊥AC,∴AC为⊙O 的切线.,(2)解:连结 OF , ∵sinA= ,∴∠A=30°,由(1)知 OE ⊥AC ,∴∠AOE=∠ABC=60°, ∵⊙O 半径为 3,∴OD=OE=OF=OB=BF=3,∴∠BOF=∠EOF=∠ABC=60°, ∴S= 扇形在 △R t AOE 中,,∴AO=6,AE=3在 △R tACB 中,,∴AB=9,BC= , AC=∴CE=AC-AE=-3,, CF=BC-BF= -3= ,∴S= ==梯形,∴S =S-S=阴梯形扇形6.(1)解:∵四边形 ∴∵-.内接于圆,,,∴∵△是,的外角平分线,∴∴又∵∴,,,,(2)解:由( )得,OEFOFCEOFCE OEF又∵,∴△∴∽△,,∴,∴又∵∴∵,,,是直径,,∴,∴BD=又∵∠D=∠D,∴△DBF∽△DAC,,∴∴,CD=24,解得:CD=.7.(1)解:∵AB 是⊙O的直径,∴∠ADB=90°,即BD⊥AC∵AB=BC,∴△ABD≌CBD∴∠ABD=∠CBD在⊙O 中,AD与DE分别是∠ABD与∠CBD 所对的弦∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴∵AB=BC=10,CE=2,D是AC的中点,,∴CD=;(3)解:延长EF交⊙O于M,在 △R tABD 中,AD=,AB=10,∴BD=3,∵EM ⊥AB ,AB 是⊙O 的直径,∴ ,∴∠BEP=∠EDB ,∴△BPE ∽△BED ,∴ ∴BP=,,∴DP=BD-BP=,∴ : =DP :BP=13:32,∵ △S BCD= × ×3 =15, :=BE :BC=4:5,∴ △S BDE=12,∴ △S DPE=.8.(1)证明:∵AB 是半圆 O 的直径∴∠D=90°∴∠A+∠DBA=90°∵∠DBC=∠A∴∠DBC+∠DBA=90°∴BC ⊥AB∴BC 是半圆 O 的切线(2)解:∠BEC=∠D=90∘,∵BD ⊥AD ,BD=6,∴BE=DE=3, △S DPE △S BPE△S BDE △S BCD∵∠DBC=∠A,∴△BCE∽△BAD,∴,即∴AD=4.59.(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,AB∥CD,∴AB和CD 为⊙O的切线,∵AE切半圆于点F,∴OA平分∠BAE,OE平分∠AEC,而AB∥CD,∴∠BAE+∠AEC=180°,∴∠OAE+∠OEA=90°,∴∠AOE=90°,∴OA⊥OE(2)解:作FH⊥CD于H,如图,设正方形ABCD的边长为4a,则AF=AB=4a,OB=OC=2a,∵∠AOE=90°,∴∠AOB+∠COE=90°,∵∠AOB+∠OAB=90°,∴∠OAB=∠EOC,∴△R tABO∽△R t OCE,∴AB:OC=OB:CE,即4a:2a=2a:CE,解得CE=a,∴EF=EC=a,∴EA=5a,ED=3a,∵FH∥AD,∴△EFH∽△EAD,∴==,即==,∴FH=a,EH=a,∴DH=3a﹣∴CH=4a﹣∵FH∥CM,a=a,a=a,∴==.10.(1)解:PC与圆O相切,理由为:过C点作直径CE,连接EB,如图,∵CE为直径,∴∠EBC=90°,即∠E+∠BCE=90°,∵AB∥DC,∴∠ACD=∠BAC,∵∠BAC=∠E,∠BCP=∠ACD.∴∠E=∠BCP,∴∠BCP+∠BCE=90°,即∠PCE=90°,∴CE⊥PC,∴PC与圆O相切;(2)解:∵AD是⊙O的切线,切点为A,∴OA⊥AD,∵BC∥AD,∴AM⊥BC,∴BM=CM=BC=3,∴AC=AB=9,在△R tAMC 中,AM==6,设⊙O 的半径为r,则OC=r,OM=AM﹣r=6﹣r,在△R t OCM中,2,即32+(6﹣r)2=r2,解得r=,OM2+CM2=OC∴CE=2r=,OM=6﹣=,∴BE=2OM=,∵∠E=∠MCP,∴△R t PCM∽△R t CEB,∴=,即=,∴PC=.11.(1)证明:如图1,连接OB,∵OP⊥AB,OP经过圆心O,∴AC=BC,∴OP垂直平分AB,∴AP=BP,∵OA=OB,OP=OP,∴△APO≌△BPO(SSS),∴∠PAO=∠PBO,∵PA切⊙O于点A,∴AP⊥OA,∴∠PAO=90°,∴∠PBO=∠PAO=90°,∴OB⊥BP,又∵点B在⊙O 上,∴PB与⊙O相切于点B;(2)解:如图1,∵OP⊥AB,OP经过圆心O,∴BC=AB=3,∵∠PBO=∠BCO=90°,∴∠PBC+∠OBC=∠OBC+∠BOC=90°,∴∠PBC=∠BOC,∴△PBC∽△BOC,∴∴OC===3,∴在△R t OCB中,OB=∴∠COB=60°,==6,tan∠COB==,∴△SOPB=×OP×BC=×=18,S扇DOB==6π,∴S阴影△=SOPB﹣S扇DOB=18﹣6π;②若点E 是⊙O上一点,连接AE,BE,当AE=6时,BE=.3﹣3或3 +312.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O 的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠CAD=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD(2)解:∵AB=2,∴OA=1,在△R t AOC 中,AC=2∴OC=,=3,∴CD=OC﹣OD=3﹣1=2,∵△CDE∽△CAD,∴,即=.∴CE=∴AE=AC﹣CE=2﹣==,.13.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OE//BC,∴OE⊥AC,∴=,∴∠1=∠2,∴BE平分∠ABC(2)解:∵BD 是⊙O的切线,∴∠ABD=90°,∵∠ACB=90°,BH=BD=2,∴∠CBD=∠2,∴∠1=∠2=∠CBD,∴∠CBD=30°,∠ADB=60°,∵∠ABD=90°,∴AB=2,OB=,∵OD2=OB2+BD.∴OD=2,14.(1)解: 由y=5,得到P(x,5),连接AP,PB,∵圆P与x 轴相切,∴PB⊥x轴,即PB=5,由AP=PB,由勾股定理得,x=2+=2+4=6,∴x=6(2)解: 由x=6,得到P(6,y),连接AP,PB,∵圆P 与x 轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=5,则圆P的半径为5(3)解:同(2),由AP=PB,得到(x﹣2)2+(8﹣y)2=y2 ,整理得:=,即图象为抛物线,画出函数图象,如图②所示;15.(1)证明:连OC,如图,∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线;(2)解:∵D为OA的中点,OD=OC=r,∴OA=2OC=2r,∴∠A=30°,∠AOC=60°,AC=∴∠AOB=120°,AB=2r ,r ,∴S 阴影部分 △=S OAB﹣S 扇形 ODE •OC •AB ﹣=﹣ , ∴•r •2 r ﹣ r 2=﹣ , ∴r=1,即⊙O 的半径 r 为 116. (1)证明:如图,连接OE . ∵BE ⊥EF ,∴∠BEF=90°,∴BF 是圆 O 的直径.∵BE 平分∠ABC ,∴∠CBE=∠OBE ,∵OB=OE ,∴∠OBE=∠OEB ,∴∠OEB=∠CBE ,∴OE ∥BC ,∴∠AEO=∠C=90°,∴AC 是⊙O 的切线;(2)证明:如图,连结 DE .∵∠CBE=∠OBE ,EC ⊥BC 于 C ,EH ⊥AB 于 H , ∴EC=EH .∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°, ∴∠CDE=∠HFE . =在△CDE△与HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF(3)由(2)得CD=HF,又CD=1,∴HF=1,在△R t HFE 中,EF=∵EF⊥BE,∴∠BEF=90°,∴∠EHF=∠BEF=90°,∵∠EFH=∠BFE,∴△EHF∽△BEF,=,∴=,即=,∴BF=10,∴OE=BF=5,OH=5﹣1=4,∴△R tOHE中,cos∠EOA=∴△R t EOA 中,cos∠EOA=,=,∴∴OA=∴AF==,,﹣5=17.(1)解:∵∴,在中∴∴∵,∴∵是∴∴(2)解:∵∴∵,∴∵的直径,是,.,的半径,,∴又∵∴∴即的半径是18.(1)证明:连接OD,BD,∵AB为圆O的直径,∴∠ADB=90°,在△R tBDC中,E为斜边BC的中点,∴CE=DE=BE=∴∠C=∠CDE,BC,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,即∠C+∠A=90°,∴∠ADO+∠CDE=90°,即∠ODE=90°,∴DE⊥OD,又OD 为圆的半径,∴DE为圆O的切线;(2)证明:∵E是BC的中点,O点是AB 的中点,∴OE△是ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE(3)解:∵cos∠BAD=∴sin∠BAC==,,又∵BE=∴AC=,E是BC的中点,即BC=.,又∵AC=2OE,∴OE=AC=19.(1)解:连接OC,∵CD切⊙O于点C∴∠OCD=90°∵∠D=30°∴∠COD=60°∵OA=OC∴∠A=∠ACO=30°;(2)解:∵CF ⊥直径 AB ,CF=4∴CE=2∴在 △R t OCE 中,tan ∠COE=,OE=∴OC=2OE=4=2,∴S =扇形, △S EOC ×2×2 =2 ∴S =S 阴影 扇形 BOC △-S EOC-2 .20.(1)证明:连接 OD 、OE 、DF ,如图,∵AF 为直径,∴∠ADF=90°,而∠C=90°,∴DF ∥BC ,∵DE=EF ,∴=∴OE ⊥DF ,∴OE ⊥BC ,∴BC 为⊙O 的切线(2)解:∵∠OEB=90°,∠B=40°,∴∠BOE=90°﹣40°=50°,BOC = =∴∠OFE=(180°﹣50°)=65°,∴∠CDE=∠AFE=65°(3)解:易得四边形CDHE为矩形,∴HE=CD=2,DH=CE=4,设⊙O 的半径为r,则OH=OE﹣HE=r﹣2,OD=r,在△R tOHD中,(r﹣2)2,解得r=5,2+42=r∵OH⊥DF,∴HF=DH=4,∵HF∥BE,∴△OHF∽△OEB,∴HF:BE=OH:OE,即4:BE=3:5,∴BE=21.(1)解:如图1中,连接AC、AB.∵⊙A 与x轴、y轴相切于点B、C,∴AC⊥OC,AB⊥OB,AC=AB,四边形ABOC是正方形,设A(m,m),∵点A在y=上,∴m2=3,∵m>0,∴点A坐标(,),∴OC=,∴点C坐标(0,),∵一次函数y=x+b的图象经过点C,∴b=,∴一次函数的解析式为y=,令y=0得x=-3,∴D(-3,0),b=(2)解:如图2中,连接BC、BE,作AM⊥CE于M.在△R t DOC 中,∵tan∠CDO=,∴∠CDO=30°,∵AC∥BD,∴∠ECA=∠CDO=30°,∠CAM=60°,∵AM⊥CE,∴∠CAM=∠EAM=60°,∴∠CAE=120°,在△R tAMC 中,CM=AC•cos30°=(3)解:如图3中,,∴CE=2CM=3,∴∠CBE=∠CAE=60°①当⊙A″与直线y=∵AB∥OC,相切于点E,AB与直线CD交于点K,∴∠A″KE=∠DKB=∠DCO=60°,在△R tA″EK中,A″E= AK=CA•tan30°=1,∴AA″=A″K+AK=1+2=3,∴⊙A 向上平移3的单位⊙A与y轴及直线y=,A″K=A″E÷cos30°=2,在△R tCKA中,均相切.②同理可得⊙A 向下平移1个单位⊙A与y轴及直线y=均相切。
2020年九年级数学中考三轮冲刺复习:《圆》 证明与计算综合(一)
2020年中考三轮冲刺复习培优练习:《圆》证明与计算综合(一)1.已知四边形ABCD是平行四边形,且以AB为直径的⊙O经过点D.(Ⅰ)如图(1),若∠BAD=45°,求证:CD与⊙O相切;(Ⅱ)如图(2),若AD=6,AB=10,⊙O交CD边于点F,交CB边延长线于点E,求BE,DF的长.2.如图,⊙O过▱ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AP交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.(1)求证:△ABH是等腰三角形;(2)求证:直线PC是⊙O的切线;(3)若AB=2,AD=,求⊙O的半径.3.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,过点A作AE⊥CD,交CD的延长线于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)已知AE=8cm,CD=12cm,求⊙O的半径.4.已知AM是⊙O直径,弦BC⊥AM,垂足为点N,弦CD交AM于点E,连按AB和BE.(1)如图1,若CD⊥AB,垂足为点F,求证:∠BED=2∠BAM;(2)如图2,在(1)的条件下,连接BD,若∠ABE=∠BDC,求证:AE=2CN;(3)如图3,AB=CD,BE:CD=4:7,AE=11,求EM的长.5.如图,在Rt△COD中,∠COD=90°,∠D=30°,斜边CD与以AB为直径,O为圆心的半圆相切于点P,OD与半圆交于点E,连接PA,PE,PA与OC交于点F.猜想与证明:(1)当∠BOD=60°时,试判断四边形AOEP的形状,并证明;探索与发现:(2)当AB=6时,求图中阴影部分的面积;(3)若不再添加任何辅助线和字母,请写出图中两组相等的线段.(半径除外)6.如图,AB是⊙O的直径,点D是半圆圆角上的一点,连结AD,过点B作⊙O的切线BC 交AD的延长线于点C,E为BC的中点,连结DE,延长DE交AB的延长线于点F,连接BD.(1)求证:DF为⊙O的切线;(2)若DE=EF=2,求图中阴影部分的面积.7.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO.若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分及△PBF的面积.8.如图,在ABC中,AB=BC,以BC为直径的⊙O交AC于点D,过点D作DE⊥AB,DF⊥BC,垂足分别为E、F,①求证:ED是⊙O的切线;②求证:DE2=BF•AE;③若DF=3,cos A=,求⊙O的直径.9.已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为4,BE=2,求∠F的度数.10.已知AB为⊙O直径,以OA为直径作⊙M.过B作⊙M得切线BC,切点为C,交⊙O于E.(1)在图中过点B作⊙M作另一条切线BD,切点为点D(用尺规作图,保留作图痕迹,不写作法,不用证明);(2)证明:∠EAC=∠OCB;(3)若AB=4,在图2中过O作OP⊥AB交⊙O于P,交⊙M的切线BD于N,求BN的值.参考答案1.(Ⅰ)证明:连接OD.∵∠A=45°,OA=OD,∴∠A=∠ADO=45°,∴∠BOD=90°.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠CDO+∠BOD=180°.∴∠CDO=∠BOD=90°.∴OD⊥DC,∴CD与⊙O相切.(Ⅱ)如图2中,连接DE,EF,BD.∵AB是⊙O直径,∴∠ADB=90°.∵AD∥BC,∴∠ADB=∠EBD=90°.∴DE是⊙O直径.∴DE=AB=CD=10.∴BE=BC=AD=6.在Rt△DEF和Rt△CEF中,EF2=DE2﹣DF2,EF2=CE2﹣CF2∴DE2﹣DF2=CE2﹣CF2.设DF=x,则CF=10﹣x.∴102﹣x2=122﹣(10﹣x)2.解得.即.2.(1)证明:∵四边形ADCH是圆内接四边形,∴∠ADC+∠AHC=180°,又∵∠AHC+∠AHB=180°,∴∠ADC=∠AHB,∵四边形ABCD是平行四边形,∴∠ADC=∠B,∴∠AHB=∠B,∴AB=AH,∴△ABH是等腰三角形;(2)证明:连接OC,如右图所示,∵边AB与⊙O相切于点A,∴BA⊥AF,∵四边形ABCD是平行四边形,∴AB∥CD,∴CD⊥AF,又∵FA经过圆心O,∴,∠OEC=90°,∴∠COF=2∠DAF,又∵∠PCD=2∠DAF,∴∠COF=∠PCD,∵∠COF+∠OCE=90°,∴∠PCD+∠OCE=90°,即∠OCP=90°,∴直线PC是⊙O的切线;(3)∵四边形ABCD是平行四边形,∴DC=AB=2,∵FA⊥CD,∴DE=CE=1,∵∠AED=90°,AD=,DE=1,∴AE=,设⊙O的半径为r,则OA=OD=r,OE=AE﹣OA=4﹣r,∵∠OED=90°,DE=1,∴r2=(4﹣r)2+12解得,r=,即⊙O的半径是.3.(1)证明:连结OA.∵OA=OD,∴∠ODA=∠OAD.∵DA平分∠BDE,∴∠ODA=∠EDA.∴∠OAD=∠EDA,∴EC∥OA.∵AE⊥CD,∴OA⊥AE.∵点A在⊙O上,∴AE是⊙O的切线.(2)解:过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形.∴OF=AE=8cm.又∵OF⊥CD,∴DF=CD=6cm.在Rt△ODF中,OD==10cm,即⊙O的半径为10cm.4.解:(1)∵BC⊥AM,CD⊥AB,∴∠ENC=∠EFA=90°.∵∠AEF=∠CEN,∴∠BAM=∠BCD.∵AM是⊙O直径,弦BC⊥AM,∴BN=CN,∴EB=EC,∴∠EBC=∠BCD,∴∠BED=2∠BCD=2∠BAM;(2)连接AC,如图2,∵AM是⊙O直径,弦BC⊥AM,∴=,∴∠BAM=∠CAM,∴∠BDC=∠BAC=2∠BAM=∠BED,∴BD=BE.在△ABE和△CDB中,,∴△ABE≌△CDB,∴AE=CB.∵BN=CN,∴AE=CB=2CN;(3)过点O作OP⊥AB于P,作OH⊥BE于H,作OQ⊥CD于Q,连接OC,如图3,则有AP=BP=AB,CQ=DQ=CD.∵AB=CD,∴AP=CQ,∴OP===OQ.∵AM垂直平分BC,∴EB=EC,∴∠BEA=∠CEA.∵OH⊥BE,OQ⊥CD,∴OH=OQ,∴OP=OQ=OH,∴====.又∵=,∴=.设AO=7k,则EO=4k,∴AE=AO+EO=11k=11,∴k=1,∴AO=7,EO=4,∴AM=2AO=14,∴EM=AM﹣AE=14﹣11=3.5.解:(1)当∠BOD=60°时,四边形AOEP为菱形.证明:连接OP,如图所示.∵CD切半圆于点P,∴OP⊥CD,又∵∠D=30°,∴∠DOP=60°,又∵∠BOD=60°,∴∠AOP=60°,∵OE=OP=OA,∴△OAP与△OPE为等边三角形,∴OA=AP=PE=EO,且∠PAO=60°,∴四边形AOEP为菱形.(2)连接OP.在Rt△OPD中,OP=AB=3,∠OPD=90°,∠D=30°,∴PD==3,∠POE=60°,阴影部分的面积S=PD•OP﹣π•OP2=﹣π.(3)在Rt△OPD中,∠OPD=90°,∠D=30°,∴OD==2PD=AB,∠POE=60°.在△OPE中,OP=OE,∠POE=60°,∴△OPE为等边三角形,∴PE=OE.故可得出OD=AB,PE=OE.6.(1)证明:连接OD,如图,∵AB为直径,∴∠BDC=90°,且E为BC中点,∴DE=BE,∴∠EDB=∠EBD,又OD=OB,∴∠ODB=∠OBD,∵BC为切线,∴∠OBE=90°,∴∠ODB+∠EDB=∠OBD+∠EBD=90°,∴OD⊥DF,∴DF为⊙O的切线;(2)解:∴BE =2,EF =4,∴在Rt △BEF 中,∠F =30°,又DF 为切线,∴∠DOB =60°,在Rt △ODF 中,DF =2+4=6,∠F =30°,∴OD =2,∴S 扇形BOD =π•OD 2=2π,S △ODF =OD •DF =6,∴S 阴影=S △ODF ﹣S 扇形BOD =6﹣2π.7.解:(1)∵OC ⊥DE ,∴DC =EC =DE =×2=,∵弦DE 垂直平分半径OA ,∴OC =OA =OE ,在Rt △OCE 中,∵OE =2OC ,∴∠E =30°,∴OC =CE =1,∴OE =2,即⊙O 的半径为2;(2)连结OF ,BF ,BE ,作BH ⊥DF 于H ,如图,∵∠DPA =45°,∴∠DDC =45°,∴∠EOF =2∠EPF =90°,△PCD 为等腰直角三角形,∴图中阴影部分的面积=S 扇形EOF ﹣S △OEF =﹣•2•2=π﹣2;∵BC =AB ﹣AC =4﹣1=3,∴BD==2,∵BC垂直平分DE,∴BD=BE=2,∵BD=DE=BE,∴△BED为等边三角形,∴∠BED=60°,∴∠BFD=∠BED=60°,∵△PCD为等腰直角三角形,∴PC=DC=,∴OP=PC﹣OC=﹣1,∴PB=2﹣(﹣1)=3﹣,在Rt△PBH中,∠BPH=∠DPC=45°,∴BH=PH=PB=,在Rt△BHF中,∠HBF=30°,∴HF=BH=•=,∴PF=PH+HF=+=,∴S=••=.△PBF8.(1)证明:∵BC为⊙O的直径,∴∠BDC=90°,即BD⊥AC,∵BA=BC,∴AD=CD,即D点为AC的中点,∵点O为BC的中点,∴OD为△ABC的中位线,∴OD∥AB,而DE⊥AB,∴DE⊥OD,∴DE是⊙O的切线;(2)证明:∵BA=BC,BD⊥AC,∴BD平分∠ABC,∴DE=DF,∵∠ADE+∠BDE=90°,∠BDE+∠BDO=90°,∴∠ADE=∠BDO,而OB=OD,∴∠BDO=∠OBD,∴∠ADE=∠OBD,∴Rt△AED∽Rt△DFB,∴DE:BF=AE:DF,∴DE:BF=AE:DE,∴DE2=BF•AE;(3)解:∵∠A=∠C,∴cos A=cos C=,在Rt△CDF中,cos C==,设CF=2x,则DC=3x,∴DF==x,而DF=3,∴x=3,解得x=3,∴DC=9,在Rt△CBD中,cos C==,∴BC=×9=,即⊙O的直径为.9.(1)证明:如图,连接OD,AD.∵AC是直径,∴AD⊥BC,又∵在△ABC中,AB=AC,∴∠BAD=∠CAD,∠B=∠C,BD=CD,∵AO=OC,∴OD∥AB,又∵DE⊥AB,∴DE⊥OD,∵OD为⊙O半径,∴DE是⊙O的切线;(2)解:∵⊙O的半径为4,AB=AC,∴AC=AB=4+4=8,∵BE=2,∴AE=8﹣2=6,∵DE⊥AB,AD⊥BC,∴∠AED=∠BED=∠ADB=90°,∴∠DAE+∠ADE+∠BDE=90°,∴∠DAE=∠BDE,∵∠AED=∠BED,∴△AED∽△DEB,∴=,∴=,解得:DE=2,在Rt△BED中,tan B===,∴∠B=60°,∴∠CDF=∠EDB=30°,∵AB=AC,∴∠B=∠ACB=60°,∴∠F=∠ACB﹣∠CDF=60°﹣30°=30°.10.(1)解:以MB为直径作圆,与⊙M相交于点D,直线BD即为另一条切线.(2)证明:∵BC切圆与点C,∴∠OCB=∠OAC,∠ECA=∠COA;∵OA、AB分别为⊙M、⊙O的直径∴∠AEC=∠ACO=90°,∵∠EAC+∠ECA=90°,∠OAC+∠COA=90°,∴∠EAC=∠OAC=∠OCB.(3)解:连接DM,则∠BDM=90°在Rt△BDM中,BD=BC==2.∵△BON∽△BDM,∴,∴,∴BN=.。
初三中考数学复习天天练--圆中证明题
初三数学天天练:圆中证明5.211.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5B.2.8C.3D.3.22.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D 的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.答案1.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5B.2.8C.3D.3.2【解答】解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴=,即=,解得DE=,∴AE=AD﹣DE=5﹣=2.8.故选:B.6.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D 的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设C(m,n),则P (m,0),PA=m+3,PB=3﹣m.∵EH∥AP,∴△ACP∽△ECH,∴===,∴CH=2n,EH=2m+6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴===,∴=,∴m=1,∴P(1,0).方法二:过C作CF∥AB,交BE于F,则CF=2/3AB=4,所以PB=2,则P点坐标为(1,0);(2)由(1)可知,PA=4,HE=8,EF=9,连接OC,在Rt△OCP中,PC==2,∴CH=2PC=4,PH=6,∴E(9,6),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=,∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.。
(完整版)初中数学圆的证明题专项练习大全(精华)
OABCDE圆有关的证明题专项练习1、如图,△ABC 内接于⊙O ,AD 是的边BC 上的高,AE 是⊙O 的直径,连BE. (1)求证:△ABE ∽△ADC ;(2)若AB=2BE=4DC=8,求△ADC 的面积.2、如图,AE 是△ABC 外接圆⊙O 的直径,AD 是△ABC 的边BC 上的高, EF ⊥BC ,F 为垂足。
(1)求证:BF=CD(2)若CD=1,AD=3,BD=6,求⊙O 的直径。
5、如图,AB 是⊙O 的直径,D 是AB 上一点,D 是弧BC 的中点,AD 、BC 交于点E ,CF ⊥AB 于F ,CF 交AD 于G 。
(1)求证:AD =2CF ;(2)若AD=34,BC =62,求⊙O 的半径6、如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,E 为AB 延长线上一点,CE 交⊙O 于F 。
(1)求证:BF 平分∠DFE ;(2)若EF=DF=4,BE=5,CH=3,求⊙O 的半径7、如图,Rt △ABC 内接于⊙O ,D 为弧AC 的中点,DH ⊥AB 于点H ,延长BC 、HD 交于点E 。
(1)求证:AC=2DH ;(2)连接AE ,若DH=2,BC=3,求tan ∠AEB 的值8、在Rt △ABC 中,∠ACB=90º,D 是AB 边上一点,以BD 为直径的⊙O 与边AC 相切于点E ,连结DE 并延长,与BC 的延长线交于点F . (1)求证:BD=BF ;(2)若BC=6,AD=4,求ECF S 。
9、如图,⊙O 中, 直径DE ⊥弦AB 于H 点,C 为圆上一动点,AC 与DE 相交于点F 。
(1)求证△AOG ∽△FAO 。
(2)若OA=4,OF=8,H 点为OD 的中点,求CGF S 。
10、如图,在⊙O 中,弦AB 、CD 相交于AB 的中点E ,连接AD 并延长至F 点,使DF=AD,连接BC 、BF 。
(1)、求证:△CBE ∽△AFB 。
中考专题复习——圆的相关证明(附答案)
中考复习专题——圆的相关证明题1.在⊙O 中,AB 为直径,C 为⊙O 上一点.(Ⅰ)如图①,过点C 作⊙O 的切线,与AB 的延长线相交于点P ,若P ∠︒=42,求∠CAB 的大小; (Ⅱ)如图②,D 为上一点,且OD 经过AC 的中点E ,连接DC 并延长,与AB 的延长线相交于点P , 若∠CAB ︒=10,求∠P 的大小.2.已知AB 是⊙O 的直径,C 是⊙O 上一点,过点C 作⊙O 的切线,交AB 的延长线于点P .(Ⅰ)如图①,连接AC ,BC ,若OB BP =,求A ∠和∠P 的大小;(Ⅱ)如图②,过点P 作⊙O 的切线PD ,切点为D ,连接CD ,BD ,若∠BDC =32°,求BDP ∠的大小.图①图②O B COB D CPE AC3.已知点A ,B ,C 是⊙O 上的三个点,︒=∠120AOB . (Ⅰ)如图①,若AC =BC ,求C ∠和CAO ∠的大小;(Ⅱ)如图②,过点C 作⊙O 的切线,交BA 的延长线于点D ,若AC =AD ,求CAO ∠的大小.4.已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AD 交⊙O 于点E .(Ⅰ)如图①,求证:AC 平分DAB ∠;(Ⅱ)如图②,过B 作BF AD ∥交⊙O 于点F ,连接CF ,若45AC =4DC =,求CF 和⊙O 半径的长. ABCDEO图①ABCDEO图②F5.已知,△DBC内接于⊙O,DB=DC.(Ⅰ)如图①,过点B作射线BE交⊙O于点A,若∠EAD=75°,求∠BDC的度数.(Ⅱ)如图②,分别过点B、点D作⊙O的切线相交于点E,若∠E=30°,求∠BDC的度数.①②6.已知P A,PB分别与⊙O相切于点A,B,PO交⊙O于点F,且其延长线交⊙O于点C,∠BCP=28°,E为CF上一点,延长BE交⊙O于点D.(Ⅰ)如图1,求∠CDB与∠APB的大小;(Ⅱ)如图2,当BC=CE时,求∠PBE的大小.7.在ABC △中90B ∠=︒D 为AC 上一点,以CD 为直径的⊙O 与AB 相切于点E ,与BC 相交于点F ,连接CE .(Ⅰ)如图①,若27ACE ∠=︒,求A ∠和ECB ∠的大小; (Ⅱ)如图②,连接EF ,若//EF AC ,求A ∠的大小.8. 已知:在⊙O 中OA BC ⊥垂足为E ,点D 在⊙O 上.(Ⅰ)如图①若50AOB ∠=︒,求ADC ∠和∠CAO 的大小;(Ⅱ)如图②CD ∥AO ,过点D 作⊙O 的切线,与BC 的延长线相交于点P ,若26∠=︒ABC 求∠P 的大小.图①图②ABCF OED ABCOED F 图①O EDCBA图②POE DCBA9.如图,在⊙O 中,直径AB 与弦CD 相交于点E ,58ABC ∠=︒. (Ⅰ)如图①若85AEC ∠=︒,求BAD ∠和CDB ∠的大小;(Ⅱ)如图②若CD AB ⊥过点D 作⊙O 的切线DF ,与AB 的延长线相交于点F ,求F ∠的大小.10. 已知AB 是⊙O 的直径,CD 、CB 是⊙O 的弦,且AB CD ∥.(Ⅰ)如图①若25ABC ∠=︒,求BAC ∠和ODC ∠的大小;(Ⅱ)如图②过点C 作⊙O 的切线,与BA 的延长线交于点F 若OD CF ∥求ABC ∠的大小.图①图②EABO DCFE ABO DC图②图①11. 如图,⊙O 是△ABC 的外接圆,AE 切⊙O 于点A ,AE 与直径BD 的延长线相交于点E .(Ⅰ)如图①,若∠C =71°,求∠E 的大小;(Ⅱ)如图②,当AE =AB ,DE =2时,求∠E 的大小和⊙O 的半径.12. 已知DA 、DC 分别与⊙O 相切于点A 点C ,延长DC 交直径AE 的延长线于点P . (Ⅰ)如图①若DC =PC ,求∠P 的度数;(Ⅱ)如图②在⊙O 上取一点B ,连接AB 、BC 、BE ,当四边形ABCD 是平行四边形时,求∠P 及∠AEB 的大小. OEEDCBAD O C BA图①图②DECAPOB图① 图②ECAPOD13.如图①,AB 是⊙O 的弦,OE ⊥AB ,垂足为P ,交AB 于点E ,且OP =3PE ,AB =74.(Ⅰ)求⊙O 的半径;(Ⅱ)如图②过点E 作⊙O 的切线CD ,连接OB 并延长与该切线交于点D ,延长OA 交CD 于C ,求OC 的长. 图②图①EP A BCODP EOBA参考答案1.解:(Ⅰ)如图,连接OC∵ ⊙O 与PC 相切于点C ∴ OC PC ⊥,即90OCP ∠=︒ ∵ 42P ∠=︒∴ 9048COB P ∠=︒-∠=︒ 在Rt OPC △中,48CAB ACO COP ∠+∠=∠=︒ ∵OA =OC ∴∠CAB =∠ACO ∴ 24CAB ∠=︒(Ⅱ)∵ E 为AC 的中点∴ OD AC ⊥,即90AEO ∠=︒在Rt AOE △中,由10EAO ∠=︒得9080AOE EAO ∠=︒-∠=︒ ∴ 1402ACD AOD ∠=∠=︒∵ ACD ∠是ACP △的一个外角∴ 30P ACD CAP ∠=∠-∠=︒2. 解:(Ⅰ)如图①连接OC ∵PC 是⊙O 的切线∴︒=∠90OCP ∵OB BP =∴OB BC =∵OC OB =∴BOC ∆为等边三角形, ∴∠BOC=60° ∴︒=∠=∠3021BOC A ∠P=90°-∠COB =30°(Ⅱ)如图② 连接OC 、OD 设CD 交OP 于点E∵PC ,PD 是⊙O 的切线∴PD PC = ︒=∠=∠90ODP OCP ∵OD OC =∴OP 为CD 的垂直平分线 ∴︒=∠=∠90DEP CEP∵∠BDC =32°∴∠OBD =90°-∠BDC =58° ∵OB OD =∴∠ODB =∠OBD =58° ∴∠BDP =90°-58°=32°3.解: (Ⅰ)∵︒=∠120AOB ∴∠ACB= 12 ∠AOB=60°如图① 连接OC∵AC =BC ∴∠AOC=∠BOC∵∠AOC+∠BOC +∠AOB=360° ∴∠AOC =12 (360°-120°)=120° ∵OA OC ∴∠CAO=∠ACO=12(180°-120°)=30°O AB PCOAB D CPE(Ⅱ)如图② 连接OC设∠ACD= x ∵ACAD ∴∠ACD =∠ADC= x∴∠CAB=2x ∵∠AOB=120°OAOB ∴∠OAB =∠OBA= 12(180°-120°)=30°∵CD 是⊙O 的切线∴∠OCD=90° ∵OAOC ∴∠OCA =∠OAC∴90°-x=2x -30° 解得x=40° ∴∠CAB=80°∴∠CAO=∠CAB -∠OAB =50°4.(Ⅰ)证明:连接OC ∵CD 为⊙的切线∴OC CD ⊥即90OCM OCD ∠=∠=︒ ∵AD CD ⊥垂足为D ∴90ADC ∠=︒ ∵90ADC OCM ∠=∠=︒∴OC AD ∥ ∴DAC ACO ∠=∠∵OC OA =∴CAO ACO ∠=∠∴DAC CAO ∠=∠∴AC 平分DAB ∠ (Ⅱ)解:连接AF 延长CO 交AF 于G ∵AB 为⊙的直径 ∴=90AFB ∠︒ ∵OC AD BF AD ∥,∥ ∴CO BF ∥∴90AFB AGC ∠=∠=︒ ∴OC AF ⊥由垂径定理可得AC=CF∴45AC CF == ∵90ADC ∠=︒22O O ABC DEOF GABCDEOM∴90ADC DCO AGC ∠=∠=∠=︒ ∴四边形ADCG 是矩形∴8AD CG == 4CD AG == 在Rt AGO 中,得222AG OG AO += 设OC x =则,8OA x OG x ==- 可得方程()22248x x +-=解得5x =. ∴⊙半径的长为545CF =.5.(Ⅰ)解:∵四边形ABCD 是⊙O 的内接四边形∴∠DAB +∠C =180° ∵∠EAD +∠DAB =180° ∴∠C =∠EAD ∵∠EAD =75° ∴∠C =75° ∵DB =DC∴∠DBC =∠C =75°∴∠BDC =180°﹣∠C ﹣∠DBC =30°(Ⅱ)解:连结OB OD∵EB ED 与⊙O 相切于点B 点D∴ED OD ⊥⊥,EB OB ∴ ︒=∠︒=∠90ODE 90,OBE∵︒=∠+∠+∠+∠360BOD ODE E OBE ︒=∠30E ∴︒=∠150BOD∴︒=∠=∠7521BOD C ∵DB =DC ,∴∠DBC =∠C =75°,∴∠BDC =180°﹣∠C ﹣∠DBC =30° O6. (I )解:连接OB∵P A 、PB 与圆O 相切于点A 点,B∴PO 平分∠APB 且∠PBO =90° ∵∠BCP =28°∴∠BOP =2∠BCP =28°×2=56° ∴∠BPO =90°-∠BOP =90°-56°=34° ∴∠APB =2∠BPO =2×34°=68°又∠BDC =BOC ∠21=)180(21BOP ∠- ∴∠BDC = 62)56180(21=-∴∠APB =68°∠BDC= 62 (II )连接OB∵BC =CE ∴∠CBE =∠CEB∵∠BCP =28° ∴∠CBE =76228180=-∵OB =OC ∴∠OBC =∠OCB =28° ∴∠EBO =∠CBE -∠OBC =76°-28°=48° ∵P A 与圆O 相切于点A∴OB ⊥PB ∴∠PBO =90°∴∠PBE =90°- ∠EBO =90°-48°=42°7.解:(Ⅰ)如图连接OE .∵ AB 与⊙O 相切∴ OE AB ⊥,即90AEO ∠=︒ ∵ 27ACE ∠=︒∴ 254AOE ACE ∠=∠=︒ ∴ 9036A AOE ∠=︒-∠=︒ ∵ OE OC =∴ OEC OCE ∠=∠∵ 90B ∠=︒∴ //OE BC ∴ ECB OEC ∠=∠ ∴ 27ECB ∠=︒ (Ⅱ)如图,连接OE OF∵ //OE BC //EF AC ∴ 四边形OEFC 为平行四边形 ∴ OE CF = ∴ OC OF CF == ∴ 60ACB ∠=︒∴ 9030A ACB ∠=︒-∠=︒ABCOED F ABCF OED8. 解:(Ⅰ)∵OA BC ⊥ ∴AB AC = 90∠=︒AEC∴∠=∠ACB ADC ∵1252∠=∠=︒ACB AOB∴25∠=∠=︒ADC ACB9065∠=︒-∠=︒CAO ACB(Ⅱ)连接BD . 由OA BC ⊥知,90∠=∠=︒AEB BEO∴ 9064∠=︒-∠=︒OAB ABC ∵AO ∥CD ∴90∠=∠=︒BCD BEO ∴BD 是⊙O 的直径又PD 与⊙O 相切∴⊥BD PD . 即90∠=︒BDP∵=OA OB ∴64∠=∠=︒OBA OAB∴642636∠=∠-∠=︒-︒=︒CBD ABO ABC ∴9052∠=︒-∠=︒P CBD9. (Ⅰ)∵∠AEC 是ΔBEC 的一个外角 58ABC ∠=︒85AEC ∠=︒27C AEC ABC ∴∠=∠-∠=︒∵在⊙O 中BAD C ∠=∠27BAD ∴∠=︒ AB 为⊙O 的直径90ADB ∴∠=︒ ∵在⊙O 中58ADC ABC ∠=∠=︒ 又CDB ADB ADC ∠=∠-∠32CDB ∴∠=︒(Ⅱ)连接OD∵CD ⊥AB 90CEB ∴∠=︒.9032E E CB BC =-∴∠=∠︒︒∴264DOB DCB ∠=∠=︒ ∵DF 是⊙O 的切线∴90ODF ∠=︒90906426F DOB ∴∠=︒-∠=︒-︒=︒图②POE DCBA图①O E DCBA10. 解:(Ⅰ)如图连接OC ∵ AB 是⊙O 的直径 ∴ 90ACB ∠=︒∴ 90BAC ABC ∠+∠=︒由25ABC ∠=︒得65BAC ∠=︒又AB CD ∥得25ABC BCD ∠=∠=︒ ∵ OB OC = ∴ 25OCB ABC ∠==∠=︒ 则50OCD OCB BCD ∠=∠+∠=︒ 由OC OD =得50ODC OCD ∠=∠=︒(Ⅱ)如图,连接OC∵CF 切⊙O 于点C ∴OC FC ⊥则90OCF ∠=︒∵ OD CF ∥ ∴ 90DOC OCF ∠=∠=︒ 又OC OD =则45ODC OCD ∠==∠=︒ 由AB CD ∥得45BOD ODC ∠=∠=︒∴135BOC DOC BOD ∠=∠+∠=︒ ∵ OC OB = ∴22.5ABC OCB ∠=∠=︒11. 解:(Ⅰ)连接OA .∵AE 切⊙O 于点A ∴OA ⊥AE ,∴∠OAE =90° ∵∠C =71° ∴∠AOB =2∠C =2×71°=142° 又∵∠AOB +∠AOE =180° ∴∠AOE =38° ∵∠AOE +∠E =90° ∴∠E =90°﹣38°=52° (Ⅱ)连接OA 设∠E = x .∵AB =AE ∴∠ABE =∠E = x ∵OA =OB ∴∠OAB =∠ABO = x ∴∠AOE =∠ABO +∠BAO =2x∵AE 是⊙O 的切线∴OA ⊥AE ,即∠OAE =90°在△OAE 中∠AOE +∠E =90°即2x +x =90°解得30x =︒∴∠E =30° 在Rt △OAE 中OA =21OE∵OA =OD ∴OA =OD =DE∵DE =2∴OA =2即⊙O 的半径为212.解:(Ⅰ)∵DA 、DC 是⊙O 的切线 ∴DA =DC OA ⊥DA ∴∠DAO =90°∵DC =PC ∴DA =DC =PC ∵∠DAP =90° ∴sin P=DP AD =21∴∠P=30° (Ⅱ)连接OC 、AC∵DA ,DC 是⊙O 的切线 ∴DA =DC∵四边形ABCD 是平行四边形∴□ABCD 是菱形 ∴DA =DC =CB =AB ∠ABC =∠ADC ∵∠AOC =2∠ABC ∴∠AOC =2∠ADC∵DA 、DC 是⊙O 的切线∴OA ⊥AD OC ⊥DC ∴∠DAO =∠DCO =90°∵∠ADC +∠DCO+∠AOC +∠DAO =360° ∴∠ADC +∠AOC =180°∴3∠ADC =180°∴∠ADC =60°∴∠P =90°-∠ADC =30°,∠ABC =60°又AB =BC ∴△ABC 是等边三角形 ∴∠ACB =60° ∴∠AEB =∠ACB=60°13. 解:(Ⅰ)∵OE ⊥AB∴1272APAB 设PE =x 则OP =3x OA =OE =4x在Rt OAP △中222OA OP AP =+即2216928x x =+ 解得x =2(负舍)∴4x =8 ∴半径OA 为8 (Ⅱ)∵ CD 为⊙O 的切线 ∴OE ⊥CD又∵OE ⊥AB ∴AB //CD ∴34OA OP OCOE∴323OCECAPODB。
中考难点突破圆的证明题50道(含详细解析)
中考难点突破——圆的证明题练习50道(含详细解析)一.解答题(共50小题)1.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.2.如图,已知△ABC内接于⊙O,AB是直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)填空:①当∠B=时,四边形OCAD是菱形;②当∠B=时,AD与⊙O相切.3.如图,AC是⊙O的直径,OB是⊙O的半径,PA切⊙O于点A,PB与AC的延长线交于点M,∠COB=∠APB.(1)求证:PB是⊙O的切线;(2)当OB=3,PA=6时,求MB、MC的长.4.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=√3,求⊙O的直径.5.如图,点B、C、D都在⊙O上,过点C作CA∥BD交OD的延长线于点A,连接BC,且∠B=∠A=30°,BD=2√3.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.6.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.7.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D 作DE⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.8.如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°,(1)求∠ABD的度数;(2)若∠CDB=30°,BC=3,求⊙O的半径.9.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.10.如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求线段BC,AD,BD的长.11.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.12.如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD上,⊙O 与BC相切于点E,且∠OBA=∠OBC.(1)求证:AB为⊙O的切线;(2)求⊙O的半径;(3)求tan∠BAD.13.如图,⊙O的直径AD长为6,AB是弦,∠A=30°,CD∥AB,且CD=√3.(1)求∠C的度数;(2)求证:BC是⊙O的切线;(3)求阴影部分面积.14.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.15.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.16.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,经过A、D两点的圆的圆心O恰好落在AB上,⊙O分别与AB、AC相交于点E、F.(1)判断直线BC与⊙O的位置关系并证明;(2)若⊙O的半径为2,AC=3,求BD的长度.17.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.18.如图,△ABC 内接于⊙O ,∠B=60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点,且AP=AC .(1)求证:PA 是⊙O 的切线;(2)若AB=4+√3,BC=2√3,求⊙O 的半径.19.如图,已知⊙O 是以AB 为直径的△ABC 的外接圆,过点A 作⊙O 的切线交OC 的延长线于点D ,交BC 的延长线于点E .(1)求证:∠DAC=∠DCE ;(2)若AB=2,sin ∠D=13,求AE 的长.20.如图,△ABC 内接于⊙O ,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于点E ,交PC 于点F ,连接AF ;(1)判断AF 与⊙O 的位置关系并说明理由.(2)若⊙O 的半径为4,AF=3,求AC 的长.21.已知四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,∠DAB=45°.(Ⅰ)如图①,判断CD 与⊙O 的位置关系,并说明理由; (Ⅱ)如图②,E 是⊙O 上一点,且点E 在AB 的下方,若⊙O 的半径为3cm ,AE=5cm ,求点E 到AB 的距离.22.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B作BD ⊥AE 于D .(1)求证:∠DBA=∠ABC ;(2)如果BD=1,tan ∠BAD=12,求⊙O 的半径.23.如图,△ABC 中,AB=AC ,点D 为BC 上一点,且AD=DC ,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,连结DE .(1)求证:AC 是⊙O 的切线;(2)若sinC=45,AC=6,求⊙O 的直径.24.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.25.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=43,AB=14,求线段PC的长.26.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD ⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=4,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.27.如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.(1)求证:AC平分∠DAB;(2)探究线段PC,PF之间的大小关系,并加以证明;(3)若tan∠PCB=34,BE=5√2,求PF的长.28.在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.29.如图,⊙O是△ABC的外接圆,∠ABC=45°,AD是⊙O的切线交BC的延长线于D,AB交OC于E.(1)求证:AD∥OC;(2)若AE=2√5,CE=2.求⊙O的半径和线段BE的长.30.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC 的中点,过点D作⊙O的切线交AC边于点E.(1)求证:DE⊥AC;(2)连接OC交DE于点F,若sin∠ABC=34,求OFFC的值.31.如图,△ABC内接于⊙O,AD是⊙O直径,过点A的切线与CB的延长线交于点E.(1)求证:EA2=EB•EC;(2)若EA=AC,cos∠EAB=45,AE=12,求⊙O的半径.32.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O 点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S.33.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=°,理由是:;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.34.如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)判断AE与⊙O的位置关系,并说明理由;(2)当BC=4,AC=3CE时,求⊙O的半径.35.如图,AB是⊙O的直径,点C在⊙O上,CE⊥AB于E,CD平分∠ECB,交过点B的射线于D,交AB于F,且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.36.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.37.如图,在平面直角坐标系中,以点M(0,√3)为圆心,以2√3长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于P 点,连接PC交x轴于E.(1)求点C、P的坐标;(2)求证:BE=2OE.38.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=√3,求PA的长.(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.39.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.40.如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦AB及PA,PB的长.41.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.42.如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为3,AB=4,求AD的长.43.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB 上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°,且⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)44.如图,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD.(2)若BE=3,CD=8,求BC 的长.45.如图,AB 是⊙O 的直径,点D ,E 在⊙O 上,∠A=2∠BDE ,点C 在AB 的延长线上,∠C=∠ABD .(1)求证:CE 是⊙O 的切线;(2)若BF=2,EF=√13,求⊙O 的半径长.46.如图,AB 是⊙O 的直径,点F ,C 是⊙O 上两点,且AF̂=FC ̂=CB ̂,连接AC ,AF ,过点C 作CD ⊥AF 交AF 延长线于点D ,垂足为D .(1)求证:CD 是⊙O 的切线;(2)若CD=2√3,∠CAB=30°,求⊙O 的半径.47.如图,在等腰△ABC 中,AB=BC ,以BC 为直径的⊙O 与AC 相交于点D ,过点D 作DE ⊥AB 交CB 延长线于点E ,垂足为点F .(1)判断DE 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径R=5,tanC=12,求EF 的长.48.如图,AB为⊙O的直径,D为AĈ的中点,连接OD交弦AC于点F,过点D 作DE∥AC,交BA的延长线于点E.(1)求证:DE是⊙O的切线;(2)连接CD,若OA=AE=4,求四边形ACDE的面积.49.如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.50.如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.圆的证明题练习50道参考答案与试题解析一.解答题(共50小题)1.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD=√82−72=√15,∴S=8√15.菱形ABFC∴S半圆=12•π•42=8π.2.如图,已知△ABC内接于⊙O,AB是直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)填空:①当∠B=30°时,四边形OCAD是菱形;②当∠B=45°时,AD与⊙O相切.【解答】解:(1)∵OA=OC,AD=OC,∴OA=AD,∴∠OAC=∠OCA,∠AOD=∠ADO,∵OD∥AC,∴∠OAC=∠AOD,∴∠OAC=∠OCA=∠AOD=∠ADO,∴∠AOC=∠OAD,∴OC∥AD,∴四边形OCAD是平行四边形;(2)①∵四边形OCAD是菱形,∴OC=AC,又∵OC=OA,∴OC=OA=AC,∴∠AOC=60°,∴∠B=12∠AOC=30°;故答案为30.②∵AD 与⊙O 相切,∴∠OAD=90°,∵AD ∥OC ,∴∠AOC=90°,∴∠B=12∠AOC=45°; 故答案为:45°3.如图,AC 是⊙O 的直径,OB 是⊙O 的半径,PA 切⊙O 于点A ,PB 与AC 的延长线交于点M ,∠COB=∠APB .(1)求证:PB 是⊙O 的切线;(2)当OB=3,PA=6时,求MB 、MC 的长.【解答】证明:(1)∵AC 是⊙O 的直径,PA 切⊙O 于点A ,∴PA ⊥OA∴在Rt △MAP 中,∠M +∠P=90°,而∠COB=∠APB ,∴∠M +∠COB=90°,∴∠OBM=90°,即OB ⊥BP ,∴PB 是⊙O 的切线;(2)∵∠COB=∠APB ,∠OBM=∠PAM ,∴△OBM ∽△APM ,∴MB AM =OB AP =OM PB =12, 设MB=x ,则MA=2x ,MO=2x ﹣3,∴MP=4x ﹣6,在Rt △AMP 中,(4x ﹣6)2﹣(2x )2=62,解得x=4或0(舍去)∴MB=4,MC=2.4.如图,△ABC 内接于⊙O ,∠B=60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点,且AP=AC .(1)求证:PA是⊙O的切线;(2)若PD=√3,求⊙O的直径.【解答】解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=√3,∴2OA=2PD=2√3.∴⊙O的直径为2√3.5.如图,点B 、C 、D 都在⊙O 上,过点C 作CA ∥BD 交OD 的延长线于点A ,连接BC ,且∠B=∠A=30°,BD=2√3.(1)求证:AC 是⊙O 的切线;(2)求由线段AC 、AD 与弧CD 所围成的阴影部分的面积.【解答】(1)证明:连接OC ,交BD 于E ,∵∠B=30°,∠B=12∠COD , ∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC ⊥AC ,∴AC 是⊙O 的切线;(2)解:∵AC ∥BD ,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE=12BD=√3, ∵sin ∠COD=DE OD, ∴OD=2,在Rt △ACO 中,tan ∠COA=AC OC ,∴AC=2√3,∴S 阴影=12×2×2√3﹣60π×22360=2√3﹣2π3. 6.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°.(1)求∠ABC 的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.【解答】解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵∠ABC=60°,∴∠AOC=120°,∴劣弧AC的长为120⋅π×4180=8π3.7.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D 作DE⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.【解答】证明:(1)连接CD,∵BC为⊙O的直径,∴CD⊥AB.∵AC=BC,∴AD=BD.(2)连接OD;∵AD=BD,OB=OC,∴OD是△BCA的中位线,∴OD∥AC.∵DE⊥AC,∴DF⊥OD.∵OD为半径,∴DF是⊙O的切线.8.如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°,(1)求∠ABD的度数;(2)若∠CDB=30°,BC=3,求⊙O的半径.【解答】解:(1)∵∠C=45°,∴∠A=∠C=45°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=45°;(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=∠CDB=30°,BC=3,∴AB=6,∴⊙O的半径为3.9.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.【解答】证明:(1)连接OC,∵CD=AC,∴∠CAD=∠D,又∵∠ACD=120°,∴∠CAD=12(180°﹣∠ACD)=30°,∵OC=OA,∴∠A=∠1=30°,∴∠COD=60°,又∵∠D=30°,∴∠OCD=180°﹣∠COD﹣∠D=90°,∴CD是⊙O的切线;(2)∵∠A=30°,∴∴∠1=2∠A=60°∠1=2∠A=60°.∴∴S扇形OBC =60π×22360=23π,在Rt△OCD中,CD=OC⋅tan60°=2√3.∴S Rt△OCD=12OC×CD=12×2×2√3=2√3.∴图中阴影部分的面积为2√3﹣23π.10.如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求线段BC,AD,BD的长.【解答】解:∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵AB=10cm,AC=6cm,∴BC=√AB2−AC2=8(cm),∵∠ACB 的平分线CD 交⊙O 于点D ,∴AD̂=BD ̂, ∴AD=BD ,∴∠BAD=∠ABD=45°,∴AD=BD=AB•cos45°=10×√22=5√2(cm ). 11.如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .(1)若∠B=70°,求∠CAD 的度数;(2)若AB=4,AC=3,求DE 的长.【解答】解:(1)∵AB 是半圆O 的直径,∴∠ACB=90°,又∵OD ∥BC ,∴∠AEO=90°,即OE ⊥AC ,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD ,∴∠DAO=∠ADO=12(180°﹣∠AOD )=12(180°﹣70°)=55°, ∴∠CAD=∠DAO ﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC 中,BC=√AB 2−AC 2=√42−32=√7.∵OE ⊥AC ,∴AE=EC ,又∵OA=OB ,∴OE=12BC=√72. 又∵OD=12AB=2,∴DE=OD ﹣OE=2﹣√72. 12.如图,△ABC 中,∠C=90°,AC=3,AB=5,点O 在BC 边的中线AD 上,⊙O与BC 相切于点E ,且∠OBA=∠OBC .(1)求证:AB 为⊙O 的切线;(2)求⊙O 的半径;(3)求tan ∠BAD .【解答】(1)证明:如图,作OF 垂直AB 于点F ,∵⊙O 与BC 相切于点E ,∴OE ⊥BC又∠OBA=∠OBC ,∴OE=OF ,∴AB 为⊙O 的切线(2)解:∵∠C=90°,AC=3,AB=5,∴BC=√AB 2−AC 2=4,又D 为BC 的中点,∴CD=DB=2,∵S △ACD +S △COB +S △AOB =S △ABC设⊙O 的半径为r ,即12AC•CD +12BD•r +12AC ⋅BC ∴6+2r +5r=12∴r=67∴⊙O 的半径为67(3)解:∵∠C=90°,OE ⊥BC ,∴OE ∥AC ,∴Rt △ODE ∽Rt △ADC ,∴OE AC =DE DC, ∴DE=47, ∴BF=BE=187, ∴AF=AB ﹣BF=177, ∴tan ∠BAD=OF AF =617.13.如图,⊙O 的直径AD 长为6,AB 是弦,∠A=30°,CD ∥AB ,且CD=√3.(1)求∠C 的度数;(2)求证:BC 是⊙O 的切线;(3)求阴影部分面积.【解答】(1)解:如图,连接BD ,∵AD 为圆O 的直径,∴∠ABD=90°,∴BD=12AD=3, ∵CD ∥AB ,∠ABD=90°,∴∠CDB=∠ABD=90°,在Rt △CDB 中,tanC=BD CD =√3=√3, ∴∠C=60°;(2)证明:连接OB ,∵OA=OB ,∴∠OBA=∠A=30°,∵CD ∥AB ,∠C=60°,∴∠ABC=180°﹣∠C=120°,∴∠OBC=∠ABC ﹣∠ABO=120°﹣30°=90°,∴OB ⊥BC ,∴BC 为圆O 的切线;(3)解:过点O 作OE ⊥AB ,则有OE=12OA=32, ∵AB=√AD 2−BD 2=√62−32=3√3,∴S △OAB =12AB•OE=12×3√3×32=9√34, ∵∠AOB=180°﹣2∠A=120°,∴S 扇形OAB =120×32π360=3π,则S 阴影=S 扇形OAB ﹣S △AOB =3π﹣9√34.14.如图,在△ABC 中,AB=AC ,AE 是∠BAC 的平分线,∠ABC 的平分线BM 交AE 于点M ,点O 在AB 上,以点O 为圆心,OB 的长为半径的圆经过点M ,交BC 于点G ,交AB 于点F .(1)求证:AE 为⊙O 的切线;(2)当BC=4,AC=6时,求⊙O 的半径;(3)在(2)的条件下,求线段BG 的长.【解答】(1)证明:连接OM ,如图1,∵BM 是∠ABC 的平分线,∴∠OBM=∠CBM ,∵OB=OM ,∴∠OBM=∠OMB ,∴∠CBM=∠OMB ,∴OM ∥BC ,∵AB=AC ,AE 是∠BAC 的平分线,∴AE ⊥BC ,∴OM ⊥AE ,∴AE 为⊙O 的切线;(2)解:设⊙O 的半径为r ,∵AB=AC=6,AE 是∠BAC 的平分线,∴BE=CE=12BC=2, ∵OM ∥BE ,∴△AOM ∽△ABE ,∴OM BE =AO AB ,即r 2=6−r 6,解得r=32, 即设⊙O 的半径为32; (3)解:作OH ⊥BE 于H ,如图,∵OM ⊥EM ,ME ⊥BE ,∴四边形OHEM 为矩形,∴HE=OM=32, ∴BH=BE ﹣HE=2﹣32=12,∵OH⊥BG,∴BH=HG=1 2,∴BG=2BH=1.15.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.【解答】(1)证明:连接OA.∵AE是⊙O切线,∴OA⊥AE,∴∠OAE=90°,∴∠EAD+∠OAD=90°,∵∠ADO=∠ADE,OA=OD,∴∠OAD=∠ODA=∠ADE,∴∠EAD+∠ADE=90°,∴∠AED=90°,∴AE⊥CD;(2)解:过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE 是矩形.∴OF=AE=4cm .又∵OF ⊥CD ,∴DF=12CD=3cm . 在Rt △ODF 中,OD=√OF 2+DF 2=5cm ,即⊙O 的半径为5cm .16.如图,在Rt △ABC 中,∠C=90°,AD 是∠BAC 的平分线,经过A 、D 两点的圆的圆心O 恰好落在AB 上,⊙O 分别与AB 、AC 相交于点E 、F .(1)判断直线BC 与⊙O 的位置关系并证明;(2)若⊙O 的半径为2,AC=3,求BD 的长度.【解答】解:(1)BC 与⊙O 相切.证明:连接OD .∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD .又∵OD=OA ,∴∠OAD=∠ODA .∴∠CAD=∠ODA .∴OD ∥AC .∴∠ODB=∠C=90°,即OD ⊥BC .又∵BC 过半径OD 的外端点D ,∴BC 与⊙O 相切.(2)由(1)知OD ∥AC .∴△BDO ∽△BCA .∴BO BA =DO CA. ∵⊙O 的半径为2,∴DO=OE=2,AE=4.∴BE+2BE+4=23. ∴BE=2.∴BO=4,∴在Rt △BDO 中,BD=√BO 2−OD 2=2√3.17.如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点,交BD 于点G ,交AB 于点F .(1)判断直线AC 与⊙O 的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O 的半径.【解答】解:(1)AC 与⊙O 相切.理由如下:连结OE ,如图,∵BE 平分∠ABD ,∴∠OBE=∠DBO ,∵OE=OB ,∴∠OBE=∠OEB ,∴∠OBE=∠DBO ,∴OE ∥BD ,∵AB=BC ,D 是AC 中点,∴BD ⊥AC ,∴OE ⊥AC ,∴AC 与⊙O 相切;(2)设⊙O 半径为r ,则AO=10﹣r ,由(1)知,OE ∥BD ,∴△AOE ∽△ABD ,∴AO AB =OE BD ,即10−r 10=r 6, ∴r=154, 即⊙O 半径是154.18.如图,△ABC 内接于⊙O ,∠B=60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点,且AP=AC .(1)求证:PA 是⊙O 的切线;(2)若AB=4+√3,BC=2√3,求⊙O 的半径.【解答】(1)证明:连接OA ,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC ,∴∠OAC=∠OCA=30°,又∵AP=AC ,∴∠P=∠ACP=30°,∴∠OAP=∠AOC ﹣∠P=90°,∴OA ⊥PA ,∴PA 是⊙O 的切线;(2)解:过点C 作CE ⊥AB 于点E .在Rt △BCE 中,∠B=60°,BC=2√3,∴BE=12BC=√3,CE=3, ∵AB=4+√3,∴AE=AB ﹣BE=4,∴在Rt △ACE 中,AC=√AE 2+CE 2=5,∴AP=AC=5.∴在Rt △PAO 中,OA=5√33, ∴⊙O 的半径为5√33.19.如图,已知⊙O 是以AB 为直径的△ABC 的外接圆,过点A 作⊙O 的切线交OC 的延长线于点D ,交BC 的延长线于点E .(1)求证:∠DAC=∠DCE ;(2)若AB=2,sin ∠D=13,求AE 的长.【解答】解:(1)∵AD 是圆O 的切线,∴∠DAB=90°.∵AB 是圆O 的直径,∴∠ACB=90°.∵∠DAC +∠CAB=90°,∠CAB +∠ABC=90°,∴∠DAC=∠B .∵OC=OB ,∴∠B=∠OCB .又∵∠DCE=∠OCB .∴∠DAC=∠DCE .(2)∵AB=2,∴AO=1.∵sin ∠D=13, ∴OD=3,DC=2.在Rt △DAO 中,由勾股定理得AD=√OD 2−OA 2=2√2.∵∠DAC=∠DCE ,∠D=∠D ,∴△DEC ∽△DCA .∴DC AD =DE DC ,即2√2=ED 2. 解得:DE=√2.∴AE=AD﹣DE=√2.20.如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF;(1)判断AF与⊙O的位置关系并说明理由.(2)若⊙O的半径为4,AF=3,求AC的长.【解答】(1)证明:连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,{OA=OC ∠3=∠2 OF=OF,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴OF=√AF 2+OA 2=√32+42=5∵FA ⊥OA ,OF ⊥AC ,∴AC=2AE ,△OAF 的面积=12AF•OA=12OF•AE , ∴3×4=5×AE ,解得:AE=125, ∴AC=2AE=245.21.已知四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,∠DAB=45°.(Ⅰ)如图①,判断CD 与⊙O 的位置关系,并说明理由; (Ⅱ)如图②,E 是⊙O 上一点,且点E 在AB 的下方,若⊙O 的半径为3cm ,AE=5cm ,求点E 到AB 的距离.【解答】解:(1)CD 与圆O 相切.证明:如图①,连接OD ,则∠AOD=2∠DAB=2×45°=90°,∵四边形ABCD 是平行四边形,∴AB ∥DC .∴∠CDO=∠AOD=90°.∴OD ⊥CD .∴CD 与圆O 相切.(2)如图②,作EF ⊥AB 于F ,连接BE ,∵AB 是圆O 的直径,∴∠AEB=90°,AB=2×3=6.∵AE=5,∴BE=√AB 2−AE 2=√11,∵sin ∠BAE=BE AB =EF AE. ∴√116=EF 5∴EF=5√116.22.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B作BD ⊥AE 于D .(1)求证:∠DBA=∠ABC ;(2)如果BD=1,tan ∠BAD=12,求⊙O 的半径.【解答】(1)证明:如图,连接OA ,∵AE 为⊙O 的切线,BD ⊥AE ,∴∠DAO=∠EDB=90°,∴∠DBA=∠BAO ,又∵OA=OB ,∴∠ABC=∠BAO ,∴∠DBA=∠ABC ;(2)解:∵BD=1,tan ∠BAD=12, ∴AD=2,∴AB=√22+12=√5,∴cos ∠DBA=√55; ∵∠DBA=∠CBA ,∴BC=AB cos∠CBA =√5√55=5.∴⊙O 的半径为2.5.23.如图,△ABC 中,AB=AC ,点D 为BC 上一点,且AD=DC ,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,连结DE .(1)求证:AC 是⊙O 的切线;(2)若sinC=45,AC=6,求⊙O 的直径.【解答】(1)证明:∵AB=AC ,AD=DC ,∴∠C=∠B ,∠1=∠C ,又∵∠E=∠B ,∴∠1=∠E ,∵AE 是⊙O 的直径,∴∠ADE=90°,∴∠E +∠EAD=90°,∴∠1+∠EAD=90°,即∠EAC=90°,∴AE ⊥AC ,∴AC 是⊙O 的切线;(2)解:过点D 作DF ⊥AC 于点F ,如图,∵DA=DC ,∴CF=12AC=3, 在Rt △CDF 中,∵sinC=DF DC =45, 设DF=4x ,DC=5x ,∴CF=√CD 2−DF 2=3x ,∴3x=3,解得x=1,∴DC=5,∴AD=5,∵∠ADE=∠DFC=90°,∠E=∠C ,∴△ADE ∽△DFC ,∴AE DC =AD DF ,即AE 5=54,解得AE=254, 即⊙O 的直径为254.24.如图,已知三角形ABC 的边AB 是⊙O 的切线,切点为B .AC 经过圆心O 并与圆相交于点D 、C ,过C 作直线CE 丄AB ,交AB 的延长线于点E .(1)求证:CB 平分∠ACE ;(2)若BE=3,CE=4,求⊙O 的半径.【解答】(1)证明:如图1,连接OB ,∵AB 是⊙0的切线,∴OB ⊥AB ,∵CE 丄AB ,∴OB ∥CE ,∴∠1=∠3,∵OB=OC ,∴∠1=∠2∴∠2=∠3,∴CB 平分∠ACE ;(2)如图2,连接BD ,∵CE 丄AB ,∴∠E=90°,∴BC=√BE 2+CE 2=√32+42=5,∵CD 是⊙O 的直径,∴∠DBC=90°,∴∠E=∠DBC ,∴△DBC ∽△CBE ,∴CD BC =BC CE, ∴BC 2=CD•CE ,∴CD=524=254,∴OC=12CD=258,∴⊙O的半径=25 8.25.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=43,AB=14,求线段PC的长.【解答】(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC .∵OC=OA ,∴∠ACO=∠CAO ,∴∠DAC=∠CAO ,即AC 平分∠DAB ;(2)证明:∵AD ⊥PD ,∴∠DAC +∠ACD=90°.又∵AB 为⊙O 的直径,∴∠ACB=90°.∴∠PCB +∠ACD=90°,∴∠DAC=∠PCB .又∵∠DAC=∠CAO ,∴∠CAO=∠PCB .∵CE 平分∠ACB ,∴∠ACF=∠BCF ,∴∠CAO +∠ACF=∠PCB +∠BCF ,∴∠PFC=∠PCF ,∴PC=PF ;(3)解:∵∠PAC=∠PCB ,∠P=∠P ,∴△PAC ∽△PCB ,∴PC PB =AP PC. 又∵tan ∠ABC=43, ∴AC BC =43, ∴PC PB =43, 设PC=4k ,PB=3k ,则在Rt △POC 中,PO=3k +7,OC=7,∵PC 2+OC 2=OP 2,∴(4k )2+72=(3k +7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=24.26.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD ⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=4,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.【解答】(1)证明:连接OE,如图,∵CD与⊙O相切于点E,∴OE⊥CD,∵AD⊥CD,∴OE∥AD,∴∠DAE=∠AEO,∵AO=OE,∴∠AEO=∠OAE,∴∠OAE=∠DAE,∴AE平分∠DAC;(2)解:①∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt △ABE 中,BE=12AB=12×4=2, AE=√3BE=2√3,在Rt △ADE 中,∠DAE=∠BAE=30°,∴DE=12AE=√3, ∴AD=√3DE=√3×√3=3;②∵OA=OB ,∴∠AEO=∠OAE=30°,∴∠AOE=120°,∴阴影部分的面积=S 扇形AOE ﹣S △AOE=S 扇形AOE ﹣12S △ABE =120⋅π⋅22360﹣12•12•2√3•2 =43π﹣√3.27.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,直线DC 与AB 的延长线相交于P .弦CE 平分∠ACB ,交直径AB 于点F ,连结BE .(1)求证:AC 平分∠DAB ;(2)探究线段PC ,PF 之间的大小关系,并加以证明;(3)若tan ∠PCB=34,BE=5√2,求PF 的长.【解答】解:(1)连接OC.∵OA=OC,∴∠OAC=∠OCA.∵PC是⊙O的切线,AD⊥CD,∴∠OCP=∠D=90°,∴OC∥AD.∴∠CAD=∠OCA=∠OAC.即AC平分∠DAB.(2)PC=PF.证明:∵AB是直径,∴∠ACB=90°,∴∠PCB+∠ACD=90°又∵∠CAD+∠ACD=90°,∴∠CAB=∠CAD=∠PCB.又∵∠ACE=∠BCE,∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE.∴∠PFC=∠PCF.∴PC=PF.(3)连接AE.∵∠ACE=∠BCE,̂=BÊ,∴AE∴AE=BE.又∵AB是直径,∴∠AEB=90°.AB=√2BE=10,∴OB=OC=5.∵∠PCB=∠PAC ,∠P=∠P ,∴△PCB ∽△PAC .∴PB PC =BC CA. ∵tan ∠PCB=tan ∠CAB=34. ∴PB PC =BC CA =34. 设PB=3x ,则PC=4x ,在Rt △POC 中,(3x +5)2=(4x )2+52,解得x 1=0,x 2=307.∵x >0,∴x =307,∴PF=PC=1207.28.在△ABC 中,∠ACB=90°,经过点C 的⊙O 与斜边AB 相切于点P .(1)如图①,当点O 在AC 上时,试说明2∠ACP=∠B ;(2)如图②,AC=8,BC=6,当点O 在△ABC 外部时,求CP 长的取值范围.【解答】解:(1)当点O 在AC 上时,OC 为⊙O 的半径,∵BC ⊥OC ,且点C 在⊙O 上,∴BC 与⊙O 相切.∵⊙O 与AB 边相切于点P ,∴BC=BP,∴∠BCP=∠BPC=180°−∠B2,∵∠ACP+∠BCP=90°,∴∠ACP=90°﹣∠BCP=90°﹣180°−∠B2=12∠B.′即2∠ACP=∠B;(2)在△ABC中,∠ACB=90°,AB=√AC2+BC2=10,如图,当点O在CB上时,OC为⊙O的半径,∵AC⊥OC,且点C在⊙O上,∴AC与⊙O相切,连接OP、AO,∵⊙O与AB边相切于点P,∴OP⊥AB,设OC=x,则OP=x,OB=BC﹣OC=6﹣x,∵AC=AP,∴BP=AB﹣AP=10﹣8=2,在△OPA中,∠OPA=90°,根据勾股定理得:OP2+BP2=OB2,即x2+22=(6﹣x)2,解得:x=8 3,在△ACO中,∠ACO=90°,AC2+OC2=AO2,∴AO=√AC2+OC2=83√10.∵AC=AP,OC=OP,∴AO垂直平分CP,∴根据面积法得:CP=2×AC⋅OCAO=85√10,则符合条件的CP长大于85√10.由题意可知,当点P与点A重合时,CP最长,综上,当点O在△ABC外时,8√105<CP≤8.。
2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)
2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。
中考数学复习《圆的证明与计算》经典题型及测试题(含答案)
中考数学复习《圆的证明与计算》经典题型及测试题(含答案)阅读与理解圆的相关知识的考查是中考数学中的一个重要内容,圆作为一个载体,常与三角形、四边形结合,考查切线的性质及判定、相似三角形的性质与判定、解直角三角形、求阴影面积等.解题时要先分析题干中的条件,然后从图象中挖掘隐含条件,最后再解题.类型一切线的判定判定一条直线是圆的切线,首先看圆的半径是否过直线与圆的交点,有半径则证垂直;没有半径,则连接圆心与切点,构造半径证垂直.例1 (2016·黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.【分析】(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;(2)连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得⊥OCA=⊥CAD,即可得到OC⊥AD,由于AD⊥CD,那么OC⊥CD,由此得证.【自主解答】(1)解:⊥AB是⊥O直径,C在⊥O上,⊥⊥ACB=90°,又⊥BC=3,AB=5,⊥由勾股定理得AC=4;(2)证明:⊥AC是⊥DAB的角平分线,⊥⊥DAC=⊥BAC,又⊥AD⊥DC,⊥⊥ADC=⊥ACB=90°,⊥⊥ADC⊥⊥ACB,⊥⊥DCA=⊥CBA,又⊥OA=OC,⊥⊥OAC=⊥OCA,⊥⊥OAC+⊥OBC=90°,⊥⊥OCA+⊥ACD=⊥OCD=90°,⊥DC是⊥O的切线.变式训练1.(2017·白银) 如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.类型二切线的性质已知某条直线是圆的切线,当圆心与切点有线段连接时,直接利用切线的性质:圆的切线垂直于过切点的半径;当圆心与切点没有线段相连时,则作辅助线连接圆心与切点,再利用切线的性质解题.例2 (2016·资阳) 如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连接BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=1时,求MN的长.【分析】(1)连接OD,由切线的性质可得∠CDB+∠ODB=90°,由AB是直径,可得∠ADB=90°,进而可得∠A+∠ABD=90°,进而求得∠A=∠BDC;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,再根据勾股定理求得MN的长.【自主解答】(1)如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠BDC+∠ODB=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∴∠A=∠BDC.(2)∵CM平分∠ACD,∴∠DCM=∠ACM.∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM.即∠DMN=∠DNM.∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN=变式训练2.(2017·长沙)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2=2﹣π∴S阴影类型三圆与相似的综合圆与相似的综合主要体现在圆与相似三角形的综合,一般结合切线的判定与性质综合考查,求线段长或半径.一般的解题思路是利用切线的性质构造角相等,进而构造相似三角形,利用相似三角形对应边成比例求出所求线段或半径.例3 (2017·兰州) 如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为5,CE=2,求EF的长.【分析】(1)由BC是⊙O的直径,得到∠BAF+∠FAC=90°,等量代换得到∠D+∠AOD=90°,于是得到结论;(2)连接BF,根据相似三角形的判定和性质即可得到结论.【自主解答】解:(1)∵BC是⊙O的直径,∴∠BAF+∠FAC=90°,∵∠D=∠BAF,∠AOD=∠FAC,∴∠D+∠AOD=90°,∴∠OAD=90°,∴AD是⊙O的切线;(2)连接BF,∴∠FAC=∠AOD,∴△ACE∽△OCA,∴,∴,∴AC=AE=,∵∠CAE=∠CBF,∴△ACE∽△BFE,∴,∴=,∴EF=.变式训练3.(2016·丹东)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.(1)证明:如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°. ∴∠BDC=∠ADO.∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A.(2)解:∵CE⊥AE,∴∠E=90°,∴DB∥EC,∴∠DCE=∠BDC.∵∠BDC=∠A,∴∠A=∠DCE.∵∠E=∠E,∴△AEC∽△CED,∴∴CE2=DE·AE,即16=2(2+AD),∴AD=6.。
九年级数学圆证明题专题
圆证明专题1.如图,已知在⊙O 中,AB =43,AC 是⊙O 的直径,AC ⊥BD 于F ,∠A =30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.2.AB 是⊙O 的直径,BC 是弦,OD ⊥BC 于E ,交弧BC 于D 。
(1)请写出四个正确的结论;(2)若BC=6,ED=2,求⊙O 的半径。
3.已知:如图,ABC △中,AB AC =,以AB 为直径的⊙O 交BC 于点P ,PD AC ⊥于点D .(1)求证:PD 是⊙O 的切线;(2)若1202CAB AB ∠==,,求BC 的值4.如图,在Rt △ABC 中,∠B=90°,∠A 的平分线交BC 于D ,E 为AB 上一点,DE=DC ,以D 为圆心,以DB 的长为半径画圆。
求证:(1)AC 是⊙D 的切线;(2)AB+EB=AC 。
AB C D OF EOBAC DCPBOAD5.已知:⊙O 的直径AB 和弦CD ,且AB ⊥CD 于E ,F 为DC 延长线上一点,连结AF 交⊙O 于M 。
求证:∠AMD =∠FMC 。
6.已知AB 是☉O 的直径,AC 是弦,CD 切☉O 于点C ,交AB 的延长线于点D ,120ACD ∠=,10BD =.(1)求证:CA CD =;(2)求☉O 的半径.7.ABC △内接于⊙O ,点D 在半径OB 的延长线上,30BCD A ∠=∠=°.(1)试判断直线CD 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径长为1,求由弧BC 、线段CD 和BD 所围成的阴影部分面积(结果保留π和根号).8. 如图,PA ,PB 是⊙O 的切线,点A ,B 为切点,AC 是⊙O 的直径,∠ACB =70°.求∠P 的度数.BCOAOC BDOP C BA9. 如图,已知点C 、D 在以O 为圆心,AB 为直径的半圆上,且BD OC ⊥于点M 、AB CF ⊥于点F 交BD 于点E ,8=BD ,2=CM 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三天天练必考题型-圆证明4.19
1、如图,CD 为⊙O 的直径,弦AB 垂直于CD ,垂足为H ,
EAD HAD .(1)求证:AE 为⊙O 的切线;
(2)延长AE 与CD 的延长线交于点P ,过D 作DE AP ,垂足为E ,已知2PA ,1PD ,求⊙O 的半径和DE 的长.
2、如图,在ABC △中,AB AC ,以AB 为直径作半圆
O 交BC 于点D ,过点D
作DE AC ,垂足为E .
(1)求证:DE 是⊙O 的切线;
(2)若1CE ,6BC ,求半圆O 的半径的长.
3、如图,在Rt ABC
A,点D、E分别在AC、BC上,且CD BC AC CE,△中,90
以E为圆心,DE长为半径作圆,⊙E经过点B,与AB、AB分别交于点F、G.
(1)求证:AC是⊙E的切线.
CG,
(2)若4
AF,5
①求⊙E的半径;
△的内切圆圆心为I,则IE_____________.
②若Rt ABC
答案
1、【解析】(1)证明:连结OA ,如图所示.∵AB CD ,
∴90AHD ,
∴90HAD
ODA .∵OA OD ,
∴OAD ODA .
又∵EAD
HAD ,∴90EAD
OAD ,∴OA AE .
又∵点A 在圆上,
∵AE 为⊙O 的切线.
(2)解:设⊙O 的半径为x ,在Rt AOP △中,222OA AP OP ,即222
2(1)x x ,解得: 1.5x ,
∴⊙O 的半径为1.5.
∵DE AP ,OA AP ,
∴OA DE ∥,
∴PED PAO ∽△△,
∴DP
DE PO AO ,即
1=2.5 1.5DE ,解得:3
5DE .。