2020年中考数学二轮核心考点讲解第15讲非常规思维问题解析版
专题40 代数综合压轴题-2023年中考数学二轮复习核心考点拓展训练(解析版)
![专题40 代数综合压轴题-2023年中考数学二轮复习核心考点拓展训练(解析版)](https://img.taocdn.com/s3/m/81333bf12dc58bd63186bceb19e8b8f67c1cefdf.png)
解得:x=0 或 x=﹣1,
当 x=0 时,y=1,定点为(0,1);
当 x=﹣1 时,y=0,定点为(﹣1,0),
则无论 m 取何值,抛物线 y=(m﹣1)x2+(m﹣2)x﹣1 总过 x 轴上的一个固定点.
总结提升:此题考查了抛物线与 x 轴的交点,以及根的判别式,在解一元二次方程的根时,利用根的判
(2)法 1:用十字相乘法来转换 y=(m﹣1)x2+(m﹣2)x﹣1,即 y=[(m﹣1)x﹣1](x+1),令 y=0
即可确定出抛物线过 x 轴上的固定点坐标;
法 2:函数解析式变形后,根据题意确定出 x 的值进而得出定点即可.
(1)解:根据题意,得Δ=(m﹣2)2﹣4×(m﹣1)×(﹣1)>0,即 m2>0,
(3)由直线与抛物线都经过 y 轴上的定点(0,1),可知直线与抛物线的两个交点到 x 轴的距离都为 1,
由另一个交点的纵坐标为﹣1,求出这个点的坐标并且代入抛物线的解析式即可求出此时 a 的值;
(4)抛物线 G 与抛物线 G′围成的封闭区域是以 x 轴为对称轴的轴对称图形,这样只考虑 x 轴下方(或
1),
∴另一个交点的纵坐标为﹣1,
当 y=﹣1 时,由﹣1=﹣x+1,得 x=2,
∴另一交点坐标为(2,﹣1),
1
把(2,﹣1)代入 y=ax2﹣4ax+1 得 4a﹣8a+1=﹣1,解得 = .
2
(4)由题意可知,抛物线 G 与抛物线 G′围成的封闭区域是以 x 轴为对称轴的轴对称图形,
∴该区域内 x 轴上有三个横、纵坐标均为整数的点,x 轴的下方和上方各有四个这样的点,且两两关于 x
2020年中考数学必考考点专题规律型问题含解析
![2020年中考数学必考考点专题规律型问题含解析](https://img.taocdn.com/s3/m/71d13ea70c22590103029d33.png)
专题30规律型问题专题知识回顾1.数字猜想型:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.2.数式规律型:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.3.图形规律型:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.4.数形结合猜想型:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.5.解题方法规律探索问题的解题方法一般是通过观察、类比特殊情况(特殊点、特殊数量、特殊线段、特殊位置等)中数据特点,将数据进行分解重组、猜想、归纳得出规律,并用数学语言来表达这种规律,同时要用结论去检验特殊情况,以肯定结论的正确.专题典型题考法及解析【例题1】(2019•四川省达州市)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a=5,a是a的差倒数,a是a的差倒数,a是a的差倒数…,1 2 1 3 2 4 3依此类推,a的值是()2019A.5B.﹣C.D.【答案】D.【解析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2019除以3,根据余数的情况确定出与a相同的数即可得解.2019∵a=5,1a=2a=3===﹣,=,a===5,4…∴数列以5,﹣,三个数依次不断循环,∵2019÷3=673,∴a=a=2019 3【例题2】(2019•湖北省咸宁市)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是.【答案】﹣384.【解析】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1.(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384【例题3】(2019•四川省广安市)如图,在平面直角坐标系中,点A的坐标为(1,0),以OA为直角边作1 1△R t OA A,并使∠A OA=60°,再以OA为直角边作△R t OA A,并使∠A OA=60°,再以OA为直角边作 12 1 2 2 23 2 3 3n△R t OA A,并使∠A OA=60°…按此规律进行下去,则点A的坐标为. 34 3 4 2019【答案】(﹣22017,22017).【解析】通过解直角三角形,依次求A,A,A,A,…各点的坐标,再从其中找出规律,便可得结论.1 2 3 4由题意得,A的坐标为(1,0),1A的坐标为(1,),2A的坐标为(﹣2,2),3A的坐标为(﹣8,0),4A的坐标为(﹣8,﹣8),5A的坐标为(16,﹣16),6A的坐标为(64,0),7…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2∵2019÷6=336…3,n﹣2,∴点A2019的方位与点A的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,23纵坐标为22017【例题4】(2019湖南益阳)观察下列等式:①3﹣2=(﹣1)2,②5﹣2③7﹣2=(=(﹣﹣)2,)2,…请你根据以上规律,写出第6个等式.【答案】13﹣2=(﹣)2.【解析】第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(﹣)2(n≥1的整数).写出第6个等式为13﹣2=(﹣)2.【例题5】(2019•甘肃庆阳)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是.【答案】13a+21b.【解析】由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案.由题意知第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b【例题6】(2019•湖北省鄂州市)如图,在平面直角坐标系中,点A、A、A…A在x轴上,B、B、B…B1 2 3 n 1 2 3 n 在直线y=x上,若A(1,0),且△A△B A、△A△B A…△A B A 都是等边三角形,从左到右的小三角形1 1 12 2 23 n n n+1(阴影部分)的面积分别记为S、S、S…S.则S可表示为()1 2 3 n nA.22n B.22n﹣1C.22n﹣2D.22n﹣3【答案】D.【解析】直线y=x与x轴的成角∠B OA=30°,可得∠OB A=30°,…,∠OB A=30°,∠OB A=90°,…,1 12 2 n n 1 2∠OB A=90°;根据等腰三角形的性质可知A B=1,B A=OA=2,B A=4,…,B A=2 n n+1 1 1 2 2 2 3 3 n n n﹣1;根据勾股定理可得B B=,B B=2,…,B B=2n 12 23 n n+1,再由面积公式即可求解;解:∵△A△B A、△A△B A…△A△B A 都是等边三角形,1 12 2 23 n n n+1∴A B∥A B∥A B∥…∥A B,B A∥B A∥B A∥…∥B A,△A△B A、△A△B A…△A△B A 都是等边三角形,1 12 23 3 n n 1 2 2 3 34 n n+1 1 1 2 2 2 3 n n n+1∵直线y=x与x轴的成角∠B OA=30°,∠OA B=120°,1 1 1 1∴∠OB A=30°,1 1∴OA=A B,1 1 1∵A(1,0),1∴A B=1,1 1同理∠OB A=30°,…,∠OB A=30°,2 2 n n∴B A=OA=2,B A=4,…,B A=22 2 23 3 n n n﹣1,易得∠OB A=90°,…,∠OB A =90°,1 2 n n+1∴B B=,B B=2,…,B B=2n,n n+11 2 2 3∴S=×1×=,S=×2×2=2,…,S=×2n﹣1×21 2 nn=。
2024年中考数学二轮复习模块专练—化归思想(含答案)
![2024年中考数学二轮复习模块专练—化归思想(含答案)](https://img.taocdn.com/s3/m/4a9c3738793e0912a21614791711cc7930b77840.png)
2024年中考数学二轮复习模块专练—化归思想(含答案)在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题.三角函数,几何变换,因式分解,乃至古代数学的尺规作图等数学理论无不渗透着转化的思想.常见的转化方式有:一般特殊转化,等价转化,复杂简单转化,数形转化,构造转化,联想转化,类比转化等.转化思想亦可在狭义上称为化归思想.化归思想就是将待解决的或者难以解决的问题A 经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B ,通过解决问题B 来解决问题A 的方法.考点解读:有理数减法转化为有理数的加减,有理数的除法转化为有理数的乘法;多项式乘以多项式转化为单项式乘以单项式,异分母的分式相加减转化为同分母的分式相加减;数式的化归,递进式变化,构建起数式知识与方法的脉络.【例1】(2023·广东江门·统考一模)1.在《九章算术》“割圆术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种由有限到无限的转化思想.比如在求234111112222+++++⋅⋅⋅的和中,“…”代表按此规律无限个数相加不断求和.我们可设234111112222x =+++++⋅⋅⋅.则有234111*********x ⎛⎫=++++++⋅⋅⋅ ⎪⎝⎭,即112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地,请你计算:2468111113333+++++⋅⋅⋅=.(直接填计算结果即可)【变1】考点解读:从一般的三角形到等腰三角形、等边三角形,从平行四边形到矩形、菱形,试卷第2页,共14页A .BEA ∠B .DEB ∠C .ECA ∠D .ADO∠【变1】(2023·浙江·统考中考真题)4.小贺在复习浙教版教材九上第81页第5题后,进行变式、探究与思考:如图1,O 的直径CD 垂直弦AB 于点E ,且8CE =,2DE =.(1)复习回顾:求AB 的长.(2)探究拓展:如图2,连接AC ,点G 是 BC上一动点,连接AG ,延长CG 交AB 的延长线于点F .①当点G 是 BC的中点时,求证:GAF F ∠=∠;②设CG x =,CF y =,请写出y 关于x 的函数关系式,并说明理由;③如图3,连接DF BG ,,当CDF 为等腰三角形时,请计算BG 的长.考点解读:三元一次方程转化为二元一次方程,分式方程转化为整式方程,一元二次方程转化为一元一次方程.方程化归,构成了方程知识和方法体系.【例1】(2019·浙江台州·统考中考真题)考点解读:由正比例函数图像的平移来研究一次函数图像及性质,试卷第4页,共14页(1)求点C,D的坐标;(2)当13a=时,如图1,该抛物线与x轴交于A,B直线AD上方抛物线上一点,将直线PD沿直线AD 2试卷第6页,共14页三、解答题(2023·山西忻州·校联考模拟预测)16.下面是小彬同学解二元一次方程组的过程,请认真阅读并完成相应的任务.用上面方法所作出的正方形,有一个顶点恰好是直角三角形的直角顶点.△的内接正方形的一边恰好在斜边AB上,我就可用如下方法,如图2,如果Rt ABC⊥,垂足为D;第一步:过直角顶点C作CD AB第二步,延长AB到M,使得BM AD=,连接CM;试卷第8页,共14页试卷第10页,共14页试卷第12页,共14页(1)求EPF ∠的度数;(2)设PE x =,PF y =,随着点P 的运动,32x y +的值是否会发生变化?若变化,请求出它的变化范围;若不变,请求出它的值;(3)求EF 的取值范围(可直接写出最后结果).试卷第14页,共14页参考答案:答案第2页,共31页∵O 的直径CD 垂直弦∴10CD CE DE =+=,∴152OA OD CD ===在Rt OAE △中,AE =∵点G 是 BC的中点,∴»»CGBG =,∴GAF D ∠=∠,答案第4页,共31页∵O 的直径CD 垂直弦AB 于点∴ AC BC=,∴CAF CGA ∠=∠,在Rt CEF △中,2EF CF CE =-在Rt DEF △中,2EF DF DE =-在Rt CEF △中,2CF CE EF =+∴464BF EF BE =-=-,同理FGB FAC ∽△△,答案第6页,共31页次方程转化为二元一次方程组是解题关键.7.D【分析】利用“倍值点”的定义得到方程()210t x tx s +++=,则方程的0∆>,可得2440t ts s -->,利用对于任意的实数s 总成立,可得不等式的判别式小于0,解不等式可得出s 的取值范围.【详解】解:由“倍值点”的定义可得:()()2212x t x t x s =++++,整理得,()210t x tx s +++=∵关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠-)总有两个不同的倍值点,∴()22=41440,t t s t ts s ∆-+=-->∵对于任意实数s 总成立,∴()()24440,s s --⨯-<整理得,216160,s s +<∴20,s s +<∴()10s s +<,∴010s s <⎧⎨+>⎩,或010s s >⎧⎨+<⎩,当010s s <⎧⎨+>⎩时,解得10s -<<,当010s s >⎧⎨+<⎩时,此不等式组无解,∴10s -<<,故选:D .【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.答案第8页,共31页答案第10页,共31页(3)解:①当1a =时,抛物线解析式为∴4EH EF FG ===,∴()16H ,,()56G ,,②如图3-1所示,当抛物线与∵当正方形EFGH 的边与该抛物线有且仅有两个交点,∴点T 的纵坐标为2+151 4.5a -++=如图3-2所示,当抛物线与∵当正方形EFGH的边与该抛物线有且仅有两个交点,∴15 2.5a-=,解得0.4a=(舍去,因为此时点如图3-3所示,当抛物线与∵当正方形EFGH的边与该抛物线有且仅有两个交点,∴21152 a aa a⎛⎫-⋅+⋅+⎪⎝⎭17 3.5aa=.综上所述,0.5【点睛】本题主要考查了二次函数综合,勾股定理,轴对称的性质,正方形的性质等等,利用分类讨论和数形结合的思想求解是解题的关键.9.C答案第12页,共31页答案第14页,共31页抛物线223y x x =+-交于C 、D 两点,∵0m n >>,关于x 的方程2230x x m +--=的解为()1212,x x x x <,关于x 的方程2230x x n +--=的解为3434,()x x x x <,∴1234,,,x x x x 分别是A 、B 、C 、D 的横坐标,∴1342x x x x <<<,故选B .【点睛】本题主要考查了抛物线与一元二次方程的关系,正确把一元二次方程的解转换成直线与抛物线交点的横坐标是解题的关键.13.12x y =⎧⎨=⎩【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【详解】解:∵一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),∴联立y =3x -1与y =kx 的方程组31y x y kx =-⎧⎨=⎩的解为:12x y =⎧⎨=⎩,即310x y kx y -=⎧⎨-=⎩的解为:12x y =⎧⎨=⎩,答案第16页,共31页答案第18页,共31页证明:FD AB ⊥ ,FE AC ⊥,90AEG GDF ∴∠=∠=︒,AGE FGD ∠=∠ ,180BAC ∠=BAC DFE ∴∠=∠;(2)解:BC CD ⊥ ,90BCD ∴∠=︒,在Rt BCD 中,tan BC CD BDC =∠在Rt BCE 中,BC CE =答案第20页,共31页解得:9m BC =,9 1.610.6m AB BC AC ∴=+=+=,答:大树的高度AB 为10.6m .【点睛】本题考查了三角形的内角和定理,解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.19.(1)当Δ0=时,方程有两个相等的实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像有一个交点;当Δ0<时,方程没有实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像没有交点;(2)16t =;(3)y x =-,答案不唯一,合理即可.【分析】(1)根据一元二次方程根的判别式说明根的情况和函数图像交点的情况即可;(2)联立方程组,化简成一元二次方程的一般形式,用根的判别式Δ0=,代入求解;(3)函数图像有两个交点,保证根的判别式0∆>即可.【详解】(1)解:根据一元二次方程根的判别式可得:当Δ0=时,方程有两个相等的实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像有一个交点;当Δ0<时,方程没有实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像没有交点;(2)联立函数表达式:253y x x y x t ⎧=-+⎨=-+⎩,可得:253x x x t -+=-+,答案第22页,共31页由旋转的性质,可证明△BPP ′是等边三角形,再证明C 、P 、A ′、P ′四点共线,最后由勾股定理解答.【详解】(1)解:∵ACP ABP ' ≌,∴AP ′=AP =3、CP ′=BP =4,∠AP ′C =∠APB ,由题意知旋转角∠PAP ′=60°,∴△APP ′为等边三角形,PP ′=AP =3,∠AP ′P =60°,由旋转的性质可得:AP ′=AP =PP ′=3,CP ′=4,PC=5,∵32+42=52∴△PP ′C 为直角三角形,且∠PP ′C =90°,∴∠APB =∠AP ′C =∠AP ′P +∠PP ′C =60°+90°=150°;故答案为:150°;(2)证明:∵点P 为△ABC 的费马点,∴120APB ∠=︒,∴60APD ∠=︒,又∵AD AP =,∴APD 为等边三角形∴AP PD AD ==,60PAD ADP ∠=∠=︒,∴120ADE ∠=︒,∴ADE APC ∠=∠,在△APC 和△ADE 中,PAC DAE AP AD APC ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、勾股定理、旋转的性质、费马点等知识,是重要考点,有难度,掌握相关知识,正确做出辅助线是解题关键.21.(1)120︒(2)不会;9(3)9219 7EF≤<【分析】(1)延长EP交BC于点G,根据平行线的性质得出答案第24页,共31页,∵PE CD∠=∠,∴PGB DCB∥,∵PF AB∠=∠,∴PFC ABC答案第26页,共31页则90EHP ∠=︒,∵120EPF ∠=︒,∴18012060EPH ∠=︒-︒=︒,∴906030PEH ∠=︒-︒=︒,22.(1)60︒;(2)①丙;②10【分析】(1)连接BC ',则A BC ''△为等边三角形,即可求得既不相交也不平行的两条直线BA '与AC 所成角的大小;(2)①根据正方体侧面展开图判断即可;②根据对称关系作辅助线即可求得PM PN +的最小值.【详解】解:(1)连接BC ',∵//AC A C '',BA '与A C ''相交与点A ',即既不相交也不平行的两条直线BA '与AC 所成角为BA C ''∠,根据正方体性质可得:A B BC A C ''''==,∴A BC ''△为等边三角形,∴=60BA C ''∠︒,即既不相交也不平行的两条直线BA '与AC 所成角为60︒;(2)①根据正方体展开图可以判断,甲中与原图形中对应点位置不符,乙图形不能拼成正方体,故答案为丙;②如图:作M 关于直线AB 的对称点M ',答案第28页,共31页∵90ABC ∠=︒,DQ ∴四边形DBNQ 是矩形,∴90DQN ∠=︒,QN答案第30页,共31页∵A ABN BNQ AQN ∠+∠+∠+∠∴180ABN AQN ∠+∠=︒,∴AQN PBN ∠=∠.。
2020重庆数学中考调研大二轮(精练):核心母题全辑 (2)
![2020重庆数学中考调研大二轮(精练):核心母题全辑 (2)](https://img.taocdn.com/s3/m/28b06c1689eb172dec63b769.png)
核心母题一全等在几何探究题中的应用【母题示例】如图,已知△ABC中,∠ACB=90°,AC=BC,点D是BC上一点,连接AD,过点C作CE⊥AD于E,过点B作BF⊥BC,交CE的延长线于F.求证:AD=CF.【命题形式】以特殊三角形、特殊的平行四边形为背景,借助基本的全等模型,考查全等三角形的证明.【母题剖析】要证AD=CF,只需证明△ACD≌△CBF即可.【母题详解】【母题解读】全等三角形是几何问题中证明线段相等、角相等时最常用的方法之一.在几何压轴题中,常以基本模型为背景,通过添加条件,增加动点或变换图形等形式,探究线段之间或角之间的关系,是考查学生数学建模、逻辑推理、直观想象、数学运算等核心素养的综合体现.在具体解题中,有时需要添加相应的辅助线,从而将所求或所证的量放在两个全等的三角形中进行证明或计算.常见的全等模型有:倍长中线模型;对角互补模型;手拉手模型(旋转模型);三垂直模型等.模型一倍长中线模型【模型解读】倍长中线模型一般以三角形为背景,题中常有三角形中线(或中点)条件.通过延长中线后构造全等三角形解决问题.【基本图形】基本图形点D是BC的中点,通过延长AD到E,使得DE=AD,构说明造△DCE≌△DBA基本图形点D是BC的中点,点E是AB上一点,通过延长ED到F,说明使得DF=DE,构造△BDE≌△CDF【模型突破】1.如图,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于点F.求证:AF=EF.模型二对角互补模型【模型解读】对角互补模型是一个特殊的四边形(两组对角分别互补),可通过四边形内角和为360°,从而得到其一个外角等于内对角,进而找到图形中的等角关系,得到全等问题中角度相等关系.【基本图形】基本图形已知四边形ABCD中,∠ABC=∠ADC=90°,则∠A+∠BCD 说明=∠BCD+∠DCE=180°基本图形△ABC中,点E,F,G分别在BC,AC,AB上,且∠GEF+说明∠A=180°,则∠BGE=∠AFE【模型突破】1.如图,在△ABC中,∠A=100°,AB=AC,边AB的垂直平分线DE分别交AB于D,交BC于E,点G是AD上一点,且AG=GE,点F在AC上,∠GEF=80°.求证:BG=EF.模型三手拉手模型(旋转模型)【模型解读】手拉手模型(旋转模型)是两个三角形具有公共的顶点,且公共顶点所在的四条线段两两对应相等,常通过角度的加减转化等角关系证明全等.【基本图形】图形已知AB=AC,AE=AD,∠BAC=∠EAD,则△BAE≌△CAD,说明BE=CD基本图形△ABC和△ADE均是等边三角形,则△BAD≌△CAE,BD 说明=CE【模型突破】1.如图,过△ABC的顶点A作AE⊥AB且AE=AB,AF⊥AC且AF=AC,连接BF,CE交于点M.求∠EMF的大小.模型四三垂直模型【模型解读】三垂直模型常出现在正方形或矩形中,也可能在直角三角形中存在,常利用等角的余角相等进行角度转化.【基本图形】图形已知AE⊥AC,DC⊥AC,BE⊥BD,则∠E=∠DBC,∠EBA=说明∠BDC基本图形已知AC⊥BC,AD⊥CE,BE⊥CE,则∠BCE=∠CAD,∠CBE 说明=∠ACD【模型突破】1.如图,正方形EFGH的顶点分别在正方形ABCD的四条边上.求证:AE=BF.参考答案【核心母题剖析】证明:∵∠ACB=90°,∴∠ACE+∠BCE=90°,∵AD⊥CF,∴∠ACE+∠CAE=90°,∴∠CAD=∠BCF,∵BC⊥BF,∴∠CBF=90°=∠ACD,∵AC=BC,∴△ACD≌△CBF,∴AD=CF.【核心归纳突破】模型一、倍长中线模型1.证明:如解图,延长AD到G,使得DG=AD,连接BG.∵AD是BC边上的中线,∴BD=CD,∵∠B DG=∠CDA,DG=AD,∴△BDG≌△CDA,∴BG=AC,∠BGD=∠CAD.∵BE=AC,∴BG=BE,∴∠BGE=∠BEG,∴∠BEG=∠FAE.∵∠AEF=∠BEG,∴∠FAE=∠FEA,∴AF=EF.模型二、对角互补模型1.证明:如解图,连接AE.∵DE垂直平分AB,∴AE=BE,∴∠EBA=∠EAB,∵AB=AC,∴∠B=∠C,∴∠BAE=∠C,∴∠BEA=∠BAC,∵GA=GE,∴∠GAE=∠GEA,∴∠GEB=∠FAE.∵∠GAF=100°,∠GEF=80°,∴∠AGE+∠AFE=360°-∠GAF-∠GEF=180°,∵∠BGE+∠AGE=180°,∴∠BGE=∠EFA,∴△BGE≌△EFA,∴BG=EF.模型三、手拉手模型(旋转模型)1.解:∵AE⊥AB,FA⊥CA,∴∠EAB=∠FAC=90°,∴∠EAB+∠BAC=∠FAC+∠BAC,即∠EAC=∠FAB,∵AE=AB,AF=AC,∴△BAF≌△EAC,∴∠AEM=∠ABM,∵AE⊥AB,∴∠ABE+∠ABM+∠BEM=∠ABE+∠AEB=90°,∴∠BME=90°,即EC⊥BF,∴∠EMF=90°.模型四、三垂直模型1.证明:∵四边形EFGH是正方形,∴EH=EF,∠HEF=90°,∴∠AEH+∠BEF=90°,∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AHE+∠AEH=90°,∴∠AHE=∠BEF,∴△AEH≌△BFE,∴AE=BF.。
2020年中考数学复习考点解密 分类讨论(含解析)
![2020年中考数学复习考点解密 分类讨论(含解析)](https://img.taocdn.com/s3/m/9ada060233687e21af45a9de.png)
2020年中考数学二轮复习考点解密 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0).设一次函数解析式为y =kx +b .点A ,B 在一次函数图象上,∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k 则一次函数解析式是 .121--=x y 点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为m y x=. 点C 在反比例函数图象上,则41-=m ,m =-4. 故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。
【例2】如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。
以点O 2(13,5)为圆心的圆与x 轴相切于点D.(1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度;(3)将⊙O 2沿x 轴向右平移,在平移的过程中与x轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG ·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。
2020年中考数学热点专题二 规律探究问题解析版
![2020年中考数学热点专题二 规律探究问题解析版](https://img.taocdn.com/s3/m/a5c3feb5a32d7375a5178060.png)
2020年中考数学热点专题二规律探究问题解析版数学中的所谓归纳,是指从许多个别的事物中概括出一般性概念、原则或结论的思维方法。
探索规律性问题就是根据新课程标准“创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。
学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。
创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终”的要求,近年中考数学经常出现的考题.归纳规律题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律。
它体现了“特殊到一般(再到特殊)”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.结合2019年全国各地中考的实例,我们从下面八方面探讨归纳规律性问题的解法:(1)根据数的排列或运算规律归纳;(2)根据式的排列或运算规律归纳;(3)根据图的变化规律归纳;(4)根据寻找的循环规律归纳;(5)根据代数式拆分规律归纳;(6)根据一阶递推规律归纳;(7)根据二阶递推规律归纳;(8)根据乘方规律归纳.考向1 数字类规律探究型问题1. (2019·海南)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两个数的和,如果第一个数是0,第二个数是1,那么前6个数的和是______,这2019个数的和是______.2.(2019·黄石)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵147101316192225283134374043L L L L则第20行第19个数是_____________________.3.(2019·武威)已知一列数a,b,a b+,35+,⋯⋯,按照这个规律写下去,第9a ba b+,2a b+,23个数是.4.(2019·云南)按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是()A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+15. (2019·聊城) 数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,A n(n≥3,n是整数)处,那么线段A n A的长度为________(n≥3,n是整数).6.(2019·安顺)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是.7.(2019·永州)我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上数之和;图二是二项和的乘方(a+b)n的展开式(按b的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将(s+x)15的展开式按x的升幂排列得:(s+x)15=a0+a1x+a2x2+…+a15x15.依上述规律,解决下列问题:(1)若s=1,则a2= .(2)若s=2,则a0+a1+a2+…+a15= .考向2几何图形类规律探究型问题1.(2019·毕节)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是()A.上方B.右方C.下方D.左方2.(2019·天水)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有个〇.3.(2019·甘肃)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n __________.4. (2019·大庆)归纳"T"字形,用棋子摆成的"T"字形如图所示,按照图①,图②的规律摆下去,摆成第n个"T"字形需要的棋子个数为______.5.(2019·龙东地区)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第三个正方形OA3A4B4,连接A2A4,得到△A2A3A4,…,记△AA1A2,△A1A2A3,△A2A3A4…的面积分别为S1,S2,S3…,如此下去,则S2019=________.6. (2019 ·扬州)如图,在ABC ∆中,5AB =,4AC =,若进行以下操作,在边BC 上从左到右依次取点1D 、2D 、3D 、4D 、⋯;过点1D 作AB 、AC 的平行线分别交AC 、AB 于点1E 、1F ;过点1D 作AB 、AC 的平行线分别交AC 、AB 于点2E 、2F ;过点3D 作AB 、AC 的平行线分别交AC 、AB 于点3E 、3F ⋯,则1122201920191122201920194()5()D E D E D E D F D F D F ++⋯++++⋯+=__________.考向3 点的坐标变化的规律探究型问题1.(2019 ·河南)如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4).将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( ) A. (10,3) B. (-3,10) C. (10,-3) D. (3,-10)2.(2019·菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A 1,第二次移动到点A 2……第n 次移动到点A n ,则点A 2019的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1)3. (2019•广安)如图,在平面直角坐标系中,点1A 的坐标为(1,0),以1OA 为直角边作Rt △12OA A ,并使A 4AA 11260AOA ∠=︒,再以2OA 为直角边作Rt △23OA A ,并使2360A OA ∠=︒,再以3OA 为直角边作Rt △34OA A ,并使3460A OA ∠=︒⋯按此规律进行下去,则点2019A 的坐标为__________.4. (2019·东营)如图,在平面直角坐标系中,函数x y 33=和x y 3-=的图象分别为直线1l ,2l ,过1l 上的点A 1(1,33)作x 轴的垂线交2l 于点A 2,过点A 2作y 轴的垂线交1l 于点A 3,过点A 3作x 轴的垂线交2l 于点A 4…,一次进行下去,则点2019A 的横坐标为 .5. (2019·本溪)如图,点B 1在直线l :12y x =上,点B 1的横坐标为2,过点B 1作B 1A 1⊥l ,交x 轴于点A 1,以A 1B 1为边,向右作正方形A 1B 1B 2C 1,延长B 2C 1交x 轴于点A 2;以A 2B 2为边,向右作正方形A 2B 2B 3C 2,延长B 3C 2交x 轴于点A 3;以A 3B 3为边,向右作正方形A 3B 3B 4C 3,延长B 4C 3交x 轴于点A 4;…;按照这个规律进行下去,点C n 的横坐标为6. (2019·齐齐哈尔) 如图,直线l :y=133+x 分别交x 轴、y 轴于点A 和点A 1,过点A 1作A 1B 1⊥l ,交x 轴于点B 1,过点B 1作B 1A 2⊥x 轴,交直线L 于点A 2;过点A 2作A 2B 2⊥l ,交x 轴于点B 2,过点B 2作B 2A 3⊥x 轴,交直线L 于点A 3;依此规律...若图中阴影△A 1OB 1的面积为S 1,阴影△A 2B 1B 2的面积S 2,阴影△A 3B 2B 3的面积S 3...,则Sn=__________.2020年中考数学热点专题二规律探究问题解析版数学中的所谓归纳,是指从许多个别的事物中概括出一般性概念、原则或结论的思维方法。
2021届中考数学专题复习训练——二次函数 专题15二次函数之胡不归问题
![2021届中考数学专题复习训练——二次函数 专题15二次函数之胡不归问题](https://img.taocdn.com/s3/m/81cdca7c10a6f524ccbf8589.png)
二次函数与胡不归问题题型特点:①PA+k•PB 型线段和最小值(k =21、2、22、31或其它)②动点在直线上以不同的速度运动、解题方法:利用锐角三角函数或三角形相似转化线段长【经典例题1——k =21】如图1,在平面直角坐标系中,二次函数y=ax 2+bx +c 的图象经过点A(−1,0),B(4,0)、C(0,3),其中对称轴与x 轴交于点E. (1)求此二次函数的表达式;(2)如图1,若P 为y 轴上的一个动点,连接PE ,求21PC+PE 的最小值;【解析】(1)将A ,B ,C 的坐标代入函数解析式,得 a −b +c =0;16a +4b +c =0;c =3, 解得a =−43;b =433;c =3, 此二次函数的表达式y=−43x 2+433x +3, (2)如图1中,连接AB ,作DH⊥AB 于H ,交OB 于P ,此时21PC+PE 最小。
理由:⊥OA=1,OC=3,⊥tan⊥ACO=OA/OC=33,⊥⊥ACO=30°, ⊥PH=21PC ,⊥21PC+PE=PH+EP=EH , ⊥此时21PC+PE 最短(垂线段最短).A. B 关于E 点对称,得E 点坐标为(23,0)在RT⊥ADH 中,⊥⊥AHE=90°,AE=23−(−1)=25,⊥HAE=60°,⊥sin60°=HE/AE , ⊥HE=AE⊥sin60°=25×23=435⊥21PC+PE 的最小值为435.【经典例题变式】在平面直角坐标系中,抛物线y=−x 2+bx +c 经过点A ,B ,C ,已知A(−1,0),C(0,3). (1)求抛物线的解析式;(2)如图1,P 为线段BC 上一动点,过点P 作y 轴的平行线,交抛物线于点D ,是否存在这样的P 点,使线段PD 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,抛物线的顶点为E ,EF⊥x 轴于点F ,N 是直线EF 上一动点,M(m ,0)是x 轴一个动点,请直接写出CN+MN+21MB 的最小值以及此时点M 、N 的坐标,直接写出结果不必说明理由。
2020中考数学知识点大全(2020年7月整理).pdf
![2020中考数学知识点大全(2020年7月整理).pdf](https://img.taocdn.com/s3/m/2b810e063b3567ec112d8a23.png)
考点六、实数的运算 1、加法交换律
(做题的基础,分值相当大)
a+b = b+a
2、加法结合律
(a + b) + c = a + (b + c)
3、乘法交换律
ab = ba
4、乘法结合律
(ab)c = a(bc)
5、乘法对加法的分配律 a(b + c) = ab + ac
6、实数的运算顺序 先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程 ax2 + bx + c = 0(a 0) 的求根公式: x = − b b2 − 4ac (b2 − 4ac 0) 2a
4、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用 的方法。 考点四、一元二次方程根的判别式 (3 分) 根的判别式
整式的乘法: am • an = am+n (m, n都是正整数)
(am)n = amn (m, n都是正整数)
(ab)n = anbn (n都是正整数)
(a + b)(a − b) = a 2 − b2
(a + b)2 = a2 + 2ab + b2
(a − b)2 = a2 − 2ab + b2
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意: 3 − a = −3 a ,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数 (3—6 分)
第1页
【2020精品中考数学提分卷】北京—第15讲代数压轴题27题+答案
![【2020精品中考数学提分卷】北京—第15讲代数压轴题27题+答案](https://img.taocdn.com/s3/m/17927b05783e0912a3162a19.png)
代数压轴题1.(2020北京朝阳初三二模)在平面直角坐标系xOy 中,抛物线22(9)6y x m x =-++-的对称轴是2x =.(1)求抛物线表达式和顶点坐标;(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛物线相交于点A ,求点A 的坐标;(3)抛物线22(9)6y x m x =-++-与y 轴交于点C ,点A 关于平移后抛物线的对称轴的对称点为点B ,两条抛物线在点A 、C 和点A 、B 之间的部分(包含点A 、B 、C ) 记 为图象M .将直线22y x =-向下平移b (b >0)个单位,在平移过程中直线与图象M 始终有两个公共点,请你写出b 的取值范围_________.2.(2020北京朝阳初三一模)在平面直角坐标系xOy 中,抛物线c bx x y ++=2经过点(0,–3),(2,–3).(1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将c bx x y ++=2(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx +n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点 N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.3.(2020北京东城中考二模)二次函数21:C y x bx c =++的图象过点A (-1,2),B (4,7).(1)求二次函数1C 的解析式;(2)若二次函数2C 与1C 的图象关于x 轴对称,试判断二次函数2C 的顶点是否在直线AB上;(3)若将1C 的图象位于A ,B 两点间的部分(含A ,B 两点)记为G ,则当二次函数221y x x m =-+++与G 有且只有一个交点时,直接写出m 满足的条件.4.(2020北京房山初三二模)如图,在平面直角坐标系xoy 中,已知点P (-1,0),C ()11-2,,D (0,-3),A ,B 在x 轴上,且P 为AB 中点,1=∆CAP S .(1)求经过A 、D 、B 三点的抛物线的表达式.(2)把抛物线在x 轴下方的部分沿x 轴向上翻折,得到一个新的图象G ,点Q 在此新图象G 上,且APC APQ S S ∆∆=,求点Q 坐标.(3)若一个动点M 自点N (0,-1)出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点D ,求使点M 运动的总路程最短的点E 、点F 的坐标.5.(2020北京房山初三一模)如图,二次函数c=2y的图象(抛物线)与x-+x+bx轴交于A(1,0),且当0x=和2x-=时所对应的函数值相等.(1)求此二次函数的表达式;(2)设抛物线与x轴的另一交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC的周长最小?如果存在,求出D点的坐标;如果不存在,请说明理由.(3)设点M在第二象限,且在抛物线上,如果△MBC的面积最大,求此时点M的坐标及△MBC的面积.6.(2020北京丰台初三一模) 已知抛物线21(2)262y x m x m =+-+-的对称轴为直线x =1,与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求m 的值;(2)求A ,B ,C 三点的坐标;(3)过点C 作直线l ∥x 轴,将该抛物线在y 轴左侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新的图象,记为G .请你结合图象回答: 当直线b x y +21=与图象G 只有一个公共点时,求b 的取值范围.xOy中,抛物线223(0)y mx mx m =--≠3,0).y 的取值范围;x 轴翻折,抛物线的其余部分保持不变,得到一个新图M 在直线21=x 左侧的部分只有一个公共点,结合图象求k 的取值范围.8.(2020北京海淀中考二模)已知:点(,)P m n 为抛物线24y ax ax b =-+(0a ≠)上一动点.(1) 1P (1,1n ),2P (3,2n )为P 点运动所经过的两个位置,判断1n ,2n 的大小,并说明理由;(2) 当14m ≤≤时,n 的取值范围是14n ≤≤,求抛物线的解析式.9.(2020北京怀柔初三二模)已知:二次函数y 1=x 2+bx+c 的图象经过A (-1,0),B (0,-3)两点.(1)求y 1的表达式及抛物线的顶点坐标;(2)点C (4,m )在抛物线上,直线y 2=kx+b(k≠0)经过 A , C 两点,当y 1 >y 2时,求自变量x 的取值范围;(3) 将直线AC 沿y 轴上下平移,当平移后的直线与抛物线只有一个公共点时,求平移后直线的表达式.10.(2020北京怀柔初三一模)在平面直角坐标系中,二次函数y=x2+mx+2m-7的图象经过点(1,0).(1)求抛物线的表达式;(2)把-4<x<1时的函数图象记为H,求此时函数y的取值范围;(3)在(2)的条件下,将图象H在x轴下方的部分沿x轴翻折,图象H的其余部分保持不变,得到一个新图象M.若直线y=x+b与图象M有三个公共点,求b的取值范围.11.(2020北京平谷初三一模)已知:直线l :2y x =+与过点(0,﹣2),且与平行于x 轴的直线交于点A ,点A 关于直线1x =-的对称点为点B .(1)求,A B 两点的坐标;(2)若抛物线2y x bx c =-++经过A ,B 两点,求抛物线解析式;(3)若抛物线2y x bx c =-++的顶点在直线l 上移动,当抛物线与线段AB 有一个公共点时,求抛物线顶点横坐标t 的取值范围.12.(2020北京石景山初三一模)在平面直角坐标系xOy 中,抛物线C :142++=x mx y . (1)当抛物线C 经过点()5,6-A 时,求抛物线的表达式及顶点坐标; (2)当直线1+-=x y 与直线3+=x y 关于抛物线C 的对称轴对称时,求m 的值;(3)若抛物线C :142++=x mx y )0(>m 与x 轴的交点的横坐标都在1-和0之间(不包括1-和0),结合函数的图象,求m 的取值范围.13.(2020北京顺义初三一模)在平面直角坐标系xOy 中,抛物线22y ax x =-的对称轴为1x =-.(1)求a 的值及抛物线22y ax x =-与x 轴的交点坐标;(2)若抛物线22y ax x m =-+与x 轴有交点,且交点都在点A (-4,0),B (1,0)之间,求m 的取值范围.14.(2020北京通州初三一模)已知二次函数2y x mx n =++的图象经过点A (1,0)和D (4,3),与x 轴的另一个交点为B ,与y 轴交于点C . (1)求二次函数的表达式及顶点坐标;(2)将二次函数2y x mx n =++的图象在点B ,C 之间的部分(包含点B ,C )记为图象G . 已知直线l :y kx b =+经过点M (2,3),且直线l 总位于图象G 的上方,请直接写出b 的取值范围;(3)如果点()1,P x c 和点()2,Q x c 在函数2y x mx n =++的图象上,且12x x <,2PQ a =. 求21261x ax a -++的值;15. (2020北京通州中考二模)已知:二次函数c bx -x y ++=2的图象过点A (-1,0)和C (0,2).(1)求二次函数的表达式及对称轴;(2)将二次函数c bx -x y ++=2的图象在直线y =1上方的部分沿直线y =1翻折,图象其余的部分保持不变,得到的新函数图象记为G ,点M(m ,1y )在图象G 上,且0y 1≥,求m 的取值范围。
2020年中考数学试题分类汇编之十五 新概念规律类题 含解析
![2020年中考数学试题分类汇编之十五 新概念规律类题 含解析](https://img.taocdn.com/s3/m/526efdd6866fb84ae45c8dd9.png)
2020年中考数学试题分类汇编之十五新概念新规律题一、选择题1.(2020河南)定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 只有一个实数根【答案】A【详解】解:根据定义得:2110,x x x =--=☆1,1,1,a b c ==-=-()()22414115b ac ∴∆=-=--⨯⨯-=>0, ∴ 原方程有两个不相等的实数根,故选.A2.(2020湖北武汉)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32⨯方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66⨯方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A. 160B. 128C. 80D. 48解:由图可知,在66⨯方格纸片中,32⨯方格纸片的个数为5420⨯=(个) 则20480n =⨯= 故选:C .③②①3.(2020重庆A 卷)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第①个图案中有3个黑色三角形,第①个图案中有6个黑色三角形,…,按此规律排列下去,则第①个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21解:∵第①个图案中黑色三角形的个数为1, 第①个图案中黑色三角形的个数3=1+2, 第①个图案中黑色三角形的个数6=1+2+3, ……∴第①个图案中黑色三角形的个数为1+2+3+4+5=15, 故选:B .4.(2020重庆B 卷)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A.18B. 19C.20D.21 答案C.5.(2020山东枣庄)(3分)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b=-⊗,这里等式右边是实数运算.例如:21113138==--⊗.则方程2(2)14x x -=--⊗的解是( ) A .4x = B .5x = C .6x = D .7x =【解答】解:根据题意,得12144x x =---, 去分母得:12(4)x =--, 解得:5x =,经检验5x =是分式方程的解.故选:B .6.(3分)(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A .C 、EB .E 、FC .G 、C 、ED .E 、C 、F【解答】解:经实验或按下方法可求得顶点C ,E 和F 棋子不可能停到. 设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+…+k =12k (k +1),应停在第12k (k +1)﹣7p格,这时P 是整数,且使0≤12k (k +1)﹣7p ≤6,分别取k =1,2,3,4,5,6,7时,12k (k +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k ≤2020,设k =7+t (t =1,2,3)代入可得,12k (k +1)﹣7p =7m +12t (t +1),由此可知,停棋的情形与k =t 时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到. 故选:D .7.(3分)(2020•烟台)如图,△OA 1A 2为等腰直角三角形,OA 1=1,以斜边OA 2为直角边作等腰直角三角形OA 2A 3,再以OA 3为直角边作等腰直角三角形OA 3A 4,…,按此规律作下去,则OA n 的长度为( )A .(√2)nB .(√2)n ﹣1C .(√22)nD .(√22)n ﹣1【解答】解:∵△OA 1A 2为等腰直角三角形,OA 1=1, ∴OA 2=√2;∵△OA 2A 3为等腰直角三角形, ∴OA 3=2=(√2)2;∵△OA 3A 4为等腰直角三角形, ∴OA 4=2√2=(√2)3. ∵△OA 4A 5为等腰直角三角形, ∴OA 5=4=(√2)4, ……∴OA n 的长度为(√2)n ﹣1.故选:B .8.(2020云南)(4分)按一定规律排列的单项式:a ,﹣2a ,4a ,﹣8a ,16a ,﹣32a ,…,第n 个单项式是( ) A .(﹣2)n ﹣1aB .(﹣2)n aC .2n ﹣1aD .2n a解:∵a =(﹣2)1﹣1a , ﹣2a =(﹣2)2﹣1a ,4a =(﹣2)3﹣1a ,﹣8a =(﹣2)4﹣1a ,16a =(﹣2)5﹣1a ,﹣32a =(﹣2)6﹣1a ,…由上规律可知,第n 个单项式为:(﹣2)n ﹣1a . 选:A .二、填空题9.(2020江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是 .【解析】依题意可得,有两个尖头表示20102=⨯,有5个丁头表示15⨯,故这个两位数为2510.(2020贵州黔西南)(3分)如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为 1 .【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【解答】解:当x =625时,15x =125,当x =125时,15x =25,当x =25时,15x =5,当x =5时,15x =1,当x =1时,x +4=5, 当x =5时,15x =1,…依此类推,以5,1循环, (2020﹣2)÷2=1010, 即输出的结果是1, 故答案为:111.(2020贵州黔西南)(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为 57 .【解答】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.12.(2020齐齐哈尔)((3分)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),∴第1个等腰直角三角形的面积=12×2×2=2,∵A2(6,0),∴第2个等腰直角三角形的边长为√2=2√2,∴第2个等腰直角三角形的面积=12×2√2×2√2=4=22,∵A4(10,4√2),∴第3个等腰直角三角形的边长为10﹣6=4, ∴第3个等腰直角三角形的面积=12×4×4=8=23, …则第2020个等腰直角三角形的面积是22020; 故答案为:22020(形式可以不同,正确即得分).13.(2020甘肃定西)已知5y x =+,当x 分别取1,2,3,…,2020时,所对应y 值的总和是_________. 答案:203214.(2020辽宁抚顺)(3分)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)解:∵AE =DA ,点F 1是CD 的中点,矩形ABCD 的面积等于2, ∴△EF 1D 和△EAB 的面积都等于1, ∵点F 2是CF 1的中点, ∴△EF 1F 2的面积等于, 同理可得△EF n ﹣1F n 的面积为,∵△BCF n 的面积为2×÷2=,∴△EF n B 的面积为2+1﹣1﹣﹣…﹣﹣=2﹣(1﹣)=.故答案为:.15.(2020内蒙古呼和浩特)(3分)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数过120张,则可算得5月1日到5月28日他共用宣纸张数为 112 ,并可推断出5月30日应该是星期几 五、六、日 .解:∵5月1日~5月30日共30天,包括四个完整的星期, ∴5月1日~5月28日写的张数为:4×=112,若5月30日为星期一,所写张数为112+7+1=120, 若5月30日为星期二,所写张数为112+1+2<120, 若5月30日为星期三,所写张数为112+2+3<120, 若5月30日为星期四,所写张数为112+3+4<120, 若5月30日为星期五,所写张数为112+4+5>120, 若5月30日为星期六,所写张数为112+5+6>120, 若5月30日为星期日,所写张数为112+6+7>120, 故5月30日可能为星期五、六、日. 故答案为:112;五、六、日.16.(2020黑龙江龙东)(3分)如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为(1,1).过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A ,以11O A 为边作正方形1111O A B C ,点1B 的坐标为(5,3).过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C .⋯.则点2020B 的坐标 2020231⨯-,20203 .解:点B 坐标为(1,1), 11OA AB BC CO CO ∴=====,1(2,3)A ,111111123AO A B B C C O ∴====,1(5,3)B ∴,2(8,9)A ∴,222222239A O A B B C C O ∴====,2(17,9)B ∴,同理可得4(53,27)B ,5(161,81)B ,⋯由上可知,(231,3)Bn n n ⨯-,∴当2020n =时,(2320201,32020)Bn ⨯-.故答案为:2020(231⨯-,20203).17.(2020黑龙江牡丹江)(3分)一列数1,5,11,19⋯按此规律排列,第7个数是() A .37 B .41 C .55 D .71解:1121=⨯-, 5231=⨯-, 11341=⨯-, 19451=⨯-,⋯第n 个数为(1)1n n +-, 则第7个数是:55. 故选:C .18.(2020四川遂宁)(4分)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若2a1+2a2+2a3+⋯+2a n=n2020.(n为正整数),则n的值为4039.【解答】解:由图形知a1=1×2,a2=2×3,a3=3×4,∴a n=n(n+1),∵2a1+2a2+2a3+⋯+2a n=n2020,∴21×2+22×3+23×4+⋯+2n(n+1)=n2020,∴2×(1−12+12−13+13−14+⋯⋯+1n−1n+1)=n2020,∴2×(1−1n+1)=n2020,1−1n+1=n4040,解得n=4039,经检验:n=4039是分式方程的解,故答案为:4039.19.(2020广西南宁)(3分)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是556个.解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.20.(3分)(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+√2或x=﹣1−√2.【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1±√2,故答案为:x=2或x=﹣1+√2或x=﹣1−√2.21.(3分)(2020•徐州)如图,∠MON=30°,在OM上截取OA1=√3.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于219.【解答】解:∵B1O=B1A1,B1A1⊥OA2,∴OA1=A1A2,∵B2A2⊥OM,B1A1⊥OM,∴B1A1∥B2A2,∴B1A1=12A2B2,∴A2B2=2A1B1,同法可得A 3B 3=2A 2B 2=22•A 1B 1,…, 由此规律可得A 20B 20=219•A 1B 1,∵A 1B 1=OA 1•tan30°=√3×√33=1, ∴A 20B 20=219, 故答案为219.22.(2020山西)(3分)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有 (3n +1) 个三角形(用含n 的代数式表示).【分析】根据图形的变化发现规律,即可用含n 的代数式表示. 解:第1个图案有4个三角形,即4=3×1+1 第2个图案有7个三角形,即7=3×2+1 第3个图案有10个三角形,即10=3×3+1 …按此规律摆下去,第n 个图案有(3n +1)个三角形. 故答案为:(3n +1).23.(2020东莞)如图,等腰12Rt OA A ∆,1121OA A A ==,以2OA 为直角边作23Rt OA A ∆,再以3OA 为直角边作34Rt OA A ∆,以此规律作等腰89Rt OA A ∆,则89OA A ∆的面积是_________.答案:64(或62)24.(2020四川自贡)(4分)如图,直线y =−√3x +b 与y 轴交于点A ,与双曲线y =kx 在第三象限交于B 、C 两点,且AB •AC =16.下列等边三角形△OD 1E 1,△E 1D 2E 2,△E 2D 3E 3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4√3,前25个等边三角形的周长之和为60.【解答】解:设直线y=−√3x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=−√3x+b,∴当y=0时,x=√33b,即点D的坐标为(√33b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD=−√33b.∵在Rt△AOD中,tan∠ADO=OAOD=√3,∴∠ADO=60°.∵直线y=−√3x+b与双曲线y=kx在第三象限交于B、C两点,∴−√3x+b=k x,整理得,−√3x2+bx﹣k=0,由韦达定理得:x1x2=√33k,即EB•FC=√33k,∵EBAB=cos60°=12,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=4√33k=16,解得:k=4√3.由题意可以假设D1(m,m√3),∴m2•√3=4√3,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,√3n),∵(4+n)•√3n=4√3,解得n=2√2−2,∴E1E2=4√2−4,即第二个三角形的周长为12√2−12,设D3(4√2+a,√3a),由题意(4√2+a)•√3a=4√3,解得a=2√3−2√2,即第三个三角形的周长为12√3−12√2,…,∴第四个三角形的周长为12√4−12√3,∴前25个等边三角形的周长之和12+12√2−12+12√3−12√2+12√4−12√3+⋯+12√25−12√24=12√25=60,故答案为4√3,60.25.(3分)(2020•怀化)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△A n﹣1B n A n,都是一边在x轴上的等边三角形,点B1,B2,B3,…,B n都在反比例函数y=√3x(x>0)的图象上,点A1,A2,A3,…,A n,都在x轴上,则A n的坐标为(2√n,0).解:如图,过点B1作B1C⊥x轴于点C,过点B2作B2D⊥x轴于点D,过点B3作B3E⊥x轴于点E,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C=√3OC,设OC的长度为t,则B1的坐标为(t,√3t),把B1(t,√3t)代入y=√3x得t•√3t=√3,解得t=1或t=﹣1(舍去),∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D=√3m,则B2的坐标表示为(2+m,√3m),把B2(2+m,√3m)代入y=√3x得(2+m)×√3m=√3,解得m=√2−1或m=−√2−1(舍去),∴A1D=√2−1,A1A2=2√2−2,OA2=2+2√2−2=2√2,∴A2(2√2,0)设A2E的长度为n,同理,B3E为√3n,B3的坐标表示为(2√2+n,√3n),把B3(2√2+n,√3n)代入y=√3x得(2√2+n)•√3n=√3,∴A2E=√3−√2,A2A3=2√3−2√2,OA3=2√2+2√3−2√2=2√3,∴A3(2√3,0),综上可得:A n(2√n,0),故答案为:(2√n,0).26.(2020青海)(2分)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =,如:3⊕2==,那么12⊕4=.解:12⊕4==.故答案为:.27.(2020青海)(4分)观察下列各式的规律:①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1. 请按以上规律写出第4个算式 4×6﹣52=24﹣25=﹣1 .用含有字母的式子表示第n 个算式为 n (n +2)﹣(n +1)2=﹣1 . 解:④4×6﹣52=24﹣25=﹣1.第n 个算式为:n (n +2)﹣(n +1)2=﹣1.故答案为:4×6﹣52=24﹣25=﹣1;n (n +2)﹣(n +1)2=﹣1. 28.(2020山东滨州)(5分)观察下列各式:123a =,235a =,3107a =,4159a =,52611a =,⋯,根据其中的规律可得n a =21(1)21n n n ++-+ (用含n 的式子表示). 【解答】解:由分析可得21(1)21n n n a n ++-=+.故答案为:21(1)21n n n ++-+.29.(2020山东泰安)(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200= 20110 .解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.30.(2020海南)(4分)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有 41 个菱形,第n 个图中有 2n 2﹣2n +1 个菱形(用含n 的代数式表示).解:∵第1个图中菱形的个数1=12+02, 第2个图中菱形的个数5=22+12, 第3个图中菱形的个数13=32+22, 第4个图中菱形的个数25=42+32, ∴第5个图中菱形的个数为52+42=41,第n 个图中菱形的个数为n 2+(n ﹣1)2=n 2+n 2﹣2n +1=2n 2﹣2n +1, 故答案为:41,2n 2﹣2n +1.三、解答题31.(2020长沙)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①2y x =( ) ①my (m 0)x=≠( ) ①31y x =-( ) (2)若点()1,A m 与点(),4B n -关于x “H 函数” ()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值域或取值范围;(3)若关于x 的“H 函数” 223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,①(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【答案】(1)√;√;×;(2)-1<a <0,b=4,0<c <0;(3)2<12x x -<. 解:(1)①2y x =是 “H 函数”①my (m 0)x=≠是 “H 函数”①31y x =-不是 “H 函数”; 故答案为:√;√;×; (2)①A,B 是“H 点” ①A,B 关于原点对称, ①m=4,n=1①A(1,4),B (-1,-4) 代入223y ax bx c =++得44a b c a b c ++=⎧⎨-+=-⎩解得40b a c =⎧⎨+=⎩又①该函数的对称轴始终位于直线2x =的右侧,①-2ba >2 ①-42a>2 ①-1<a <0 ①a+c=0 ①0<c <0,综上,-1<a <0,b=4,0<c <0;(3)①223y ax bx c =++是“H 函数”①设H 点为(p,q )和(-p,-q ),代入得222323ap bp c qap bp c q⎧++=⎨-+=-⎩ 解得ap 2+3c=0,2bp=q ①p 2>0 ①a,c 异号, ①ac <0 ①a+b+c=0①b=-a -c ,①(2)(23)0c b a c b a +-++< ①(2)(23)0c a c a c a c a -----+< ①(2)(2)0c a c a -+< ①c 2<4a 2①22c a<4 ①-2<c a <2 ①-2<c a <0设t=ca,则-2<t <0设函数与x 轴的交点为(x 1,0)(x 2,0) ①x 1, x 2是方程223ax bx c ++=0的两根①12x x -== 又①-2<t <0①2<12x x -<.32.(2020山东青岛)实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额? 问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果? 模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果. (2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果.解:探究一:(3)如下表:所取的2个整数之和可以为3,4,5,6,7,8,9也就是从3到9的连续整数,其中最小是3,最大是9,所以共有7种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和的最小值是3,和的最大值是21,n - 所以一共有()213123n n --+=-种. 探究二:(1)从1,2,3,4这4个整数中任取3个整数,如下表:从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有4种,(2)从1,2,3,4,5这5个整数中任取3个整数,这3个整数之和的最小值是6,和的最大值是12,所以从1,2,3,4,5这5个整数中任取3个整数,这3个整数之和共有7种, 从而从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数, 这3个整数之和的最小值是6,和的最大值是33,n -所以一共有()336138n n --+=-种,探究三:从1,2,3,4,5这5个整数中任取4个整数, 这4个整数之和最小是10, 最大是14, 所以这4个整数之和一共有5种,从1,2,3,4,5,6这6个整数中任取4个整数, 这4个整数之和最小是10, 最大是18,, 所以这4个整数之和一共有9种,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和的最小值是10,和的最大值是46n -,所以一共有()46101415n n --+=- 种不同的结果.归纳结论:由探究一,从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有()23n -种.探究二,从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有()38n -种,探究三,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有()415n - 种不同的结果.从而可得:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,这5张奖券和的最小值是15,和的最大值是490,共有490151476-+=种不同的优惠金额.拓展延伸:(1) 从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果. ∴ 当36,n = 有2361204,a a -+=236203,a a ∴-=-()218121,a ∴-= 1811a ∴-=或1811,a -=-29a ∴=或7.a =从1,2,3,…,36这36个整数中任取29个或7个整数,使得取出的这些整数之和共有204种不同的结果.(2)由探究可知:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,等同于从1,2,3,…,1n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,所以:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有()211a n a ⎡⎤+-+⎣⎦种不同的结果. 33.(2020四川遂宁)(9分)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2、b 2、c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x +1的旋转函数,小明是这样思考的,由函数y =2x 2﹣3x +1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y =x 2﹣4x +3的旋转函数.(2)若函数y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为旋转函数,求(m +n )2020的值.(3)已知函数y =2(x ﹣1)(x +3)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1、B 1、C 1,试求证:经过点A 1、B 1、C 1的二次函数与y =2(x ﹣1)(x +3)互为“旋转函数”.【解答】解:(1)由y =x 2﹣4x +3函数可知,a 1=1,b 1=﹣4,c 1=3,∵a 1+a 2=0,b 1=b 2,c 1+c 2=0,∴a 2=﹣1,b 2=﹣4,c 2=﹣3,∴函数y =x 2﹣4x +3的“旋转函数”为y =﹣x 2﹣4x ﹣3;(2)∵y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为“旋转函数”,∴{m −1=−n n −3=0, 解得:{m =−2n =3, ∴(m +n )2020=(﹣2+3)2020=1.(3)证明:当x =0时,y =2(x ﹣1)(x +3))=﹣6,∴点C 的坐标为(0,﹣6).当y =0时,2(x ﹣1)(x +3)=0,解得:x 1=1,x 2=﹣3,∴点A 的坐标为(1,0),点B 的坐标为(﹣3,0).∵点A ,B ,C 关于原点的对称点分别是A 1,B 1,C 1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.34.(2020•怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是④;(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD中,AD∥BC,AC⊥BD,过点D作BD垂线交BC的延长线于点E,且∠DBC=45°,证明:四边形ABCD是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD内接于⊙O中,∠BCD=60°.求⊙O的半径.【解答】解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;②矩形对角线相等但不垂直,故不是垂等四边形;③菱形的对角线互相垂直但不相等,故不是垂等四边形;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;故选:④;(2)∵AC⊥BD,ED⊥BD,∴AC∥DE,又∵AD∥BC,∴四边形ADEC 是平行四边形,∴AC =DE ,又∵∠DBC =45°,∴△BDE 是等腰直角三角形,∴BD =DE ,∴BD =AC ,又∵BD ⊥AC ,∴四边形ABCD 是垂等四边形;(3)如图,过点O 作OE ⊥BD ,∵四边形ABCD 是垂等四边形,∴AC =BD ,又∵垂等四边形的面积是24,∴12AC •BD =24, 解得,AC =BD =4√3,又∵∠BCD =60°,∴∠DOE =60°,设半径为r ,根据垂径定理可得:在△ODE 中,OD =r ,DE =2√3,∴r =DE sin60°=2√332=4,∴⊙O 的半径为4.35.(2020浙江宁波)(14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD ̂=BD ̂,四边形ABCD 的外角平分线DF 交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.【解答】解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD﹣∠EBD=12(∠ACD﹣∠ABC)=12∠A=12α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,̂=BD̂,∵AD∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠F AD,∴∠BEC=∠F AD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A 作AG ⊥BE 于点G ,过点F 作FM ⊥CE 于点M ,∵AC 是⊙O 的直径,∴∠ABC =90°,∵BE 平分∠ABC ,∴∠F AC =∠EBC =12∠ABC =45°,∵∠AED =45°,∴∠AED =∠F AC ,∵∠FED =∠F AD ,∴∠AED ﹣∠FED =∠F AC ﹣∠F AD ,∴∠AEG =∠CAD ,∵∠EGA =∠ADC =90°,∴△EGA ∽△ADC ,∴AE AC =AG CD ,∵在Rt △ABG 中,AG =√22AB =4√2,在Rt △ADE 中,AE =√2AD ,∴AD AC =45, 在Rt △ADC 中,AD 2+DC 2=AC 2,∴设AD =4x ,AC =5x ,则有(4x )2+52=(5x )2,∴x =53,∴ED =AD =203,∴CE =CD +DE =353,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=12CE=356,∴DM=DE﹣EM=5 6,∵∠FDM=45°,∴FM=DM=5 6,∴S△DEF=12DE•FM=259.36.(2020•株洲)如图所示,△OAB的顶点A在反比例函数y=kx(k>0)的图象上,直线AB交y轴于点C,且点C的纵坐标为5,过点A、B分别作y轴的垂线AE、BF,垂足分别为点E、F,且AE=1.(1)若点E为线段OC的中点,求k的值;(2)若△OAB为等腰直角三角形,∠AOB=90°,其面积小于3.①求证:△OAE≌△BOF;②把|x1﹣x2|+|y1﹣y2|称为M(x1,y1),N(x2,y2)两点间的“ZJ距离”,记为d(M,N),求d(A,C)+d(A,B)的值.【解答】解:(1)∵点E为线段OC的中点,OC=5,∴OE=12OC=52,即:E点坐标为(0,52),又∵AE ⊥y 轴,AE =1,∴A(1,52),∴k =1×52=52.(2)①在△OAB 为等腰直角三角形中,AO =OB ,∠AOB =90°,∴∠AOE +∠FOB =90°,又∵BF ⊥y 轴,∴∠FBO +∠FOB =90°,∴∠AOE =∠FBO ,在△OAE 和△BOF 中,{∠AEO =∠OFB =90°∠AOE =∠FBO AO =BO ,∴△OAE ≌△BOF (AAS ),②解:设点A 坐标为(1,m ),∵△OAE ≌△BOF ,∴BF =OE =m ,OF =AE =1,∴B (m ,﹣1),设直线AB 解析式为:l AB :y =kx +5,将AB 两点代入得:则{k +5=m km +5=−1. 解得{k 1=−3m 1=2,{k 2=−2m 2=3. 当m =2时,OE =2,OA =√5,S △AOB =52<3,符合;∴d (A ,C )+d (A ,B )=AE +CE +(BF ﹣AE )+(OE +OF )=1+CE +OE ﹣1+OE +1=1+CE +2OE =1+CO +OE =1+5+2=8,当m =3时,OE =3,OA =√10,S △AOB =5>3,不符,舍去;综上所述:d (A ,C )+d (A ,B )=8.。
2024中考数学全国真题分类卷 第十五讲 图形的相似(含答案)
![2024中考数学全国真题分类卷 第十五讲 图形的相似(含答案)](https://img.taocdn.com/s3/m/8d9a02c903d276a20029bd64783e0912a2167ca0.png)
2024中考数学全国真题分类卷第十五讲图形的相似命题点1比例线段类型一比例的性质1.(2022大庆)已知x2=y3=z4≠0,则x2+xyyz=________.类型二黄金分割2.(2023山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()第2题图A.平移B.旋转C.轴对称D.黄金分割3.(新趋势)·数学文化(2023衡阳)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是(结果精确到0.01m.参考数据:2≈1.414,3≈1.732,5≈2.236)()第3题图A.0.73mB.1.24mC.1.37mD.1.42m4.(新趋势)·数学文化(2023陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE·A B.已知AB为2米,则线段BE的长为________米.第4题图类型三平行线分线段成比例5.(2023丽水)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A ,B ,C 都在横线上.若线段AB =3,则线段BC 的长是()第5题图A.23 B.1 C.32 D.26.(2023凉山州)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,若DE ∥BC ,AD DB =23,DE =6cm ,则BC 的长为()第6题图A.9cmB.12cmC.15cmD.18cm命题点2相似的基本性质7.(2023甘肃省卷)若△ABC ∽△DEF ,BC =6,EF =4,则AC DF =()A.49 B.94 C.23 D.328.(2023连云港)△ABC 的三边长分别为2,3,4,另有一个与它相似的三角形DEF ,其最长边为12,则△DEF 的周长是()A.54B.36C.27D.219.(新趋势)·条件开放性问题(2023盐城)如图,在△ABC 与△A ′B ′C ′中,点D ,D ′分别在边BC ,B ′C ′上,且△ACD ∽△A ′C ′D ′,若________,则△ABD ∽△A ′B ′D ′.请从①BD CD =B ′D ′C ′D ′;②AB CD =A ′B ′C ′D ′;③∠BAD =∠B ′A ′D ′这3个选项中选择一个作为条件(写序号),并加以证明.第9题图命题点3相似三角形的判定与性质类型一A 字型10.(2023云南)如图,在△ABC 中,D ,E 分别为线段BC ,BA 的中点,设△ABC 的面积为S 1,△EBD 的面积为S 2,则S 2S 1=()第10题图A.12 B.14 C.34 D.7811.(2023贵阳)如图,在△ABC 中,D 是AB 边上的点,∠B =∠ACD ,AC ∶AB =1∶2,则△ADC 与△ACB 的周长比是()第11题图A.1∶2B.1∶2C.1∶3D.1∶4源自北师九上P90第3题12.(2023遂宁)如图,D ,E ,F 分别是△ABC 三边上的点,其中BC =8,BC 边上的高为6,且DE ∥BC ,则△DEF 面积的最大值为()第12题图A.6B.8C.10D.1213.(新趋势)·条件开放性问题(2023邵阳)如图,在△ABC中,点D在AB边上,点E在AC 边上,请添加一个条件________,使△ADE∽△AB C.第13题图14.(2023嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD 的长为________.第14题图15.(2022南充)如图,在△ABC中,D为BC上一点,BC=3AB=3BD,则AD∶AC的值为________.第15题图16.(2023江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.第16题图17.(2023杭州)如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,DE BC =14.(1)若AB =8,求线段AD 的长;(2)若△ADE 的面积为1,求平行四边形BFED 的面积.第17题图18.(2020上海)已知:如图,在菱形ABCD 中,点E ,F 分别在边AB ,AD 上,BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:△BEC ∽△BCH ;(2)如果BE 2=AB ·AE ,求证:AG =DF .第18题图19.(挑战题)(2023宁波)【基础巩固】(1)如图①,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF 交DE于点G,求证:DG=EG;【尝试应用】(2)如图②,在(1)的条件下,连接CD,CG.若CG⊥DE,CD=6,AE=3,求DEBC的值;【拓展提高】(3)如图③,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD 交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.第19题图类型二8字型20.(2022雅安)如图,将△ABC 沿BC 边向右平移得到△DEF ,DE 交AC 于点G .若BC ∶EC =3∶1.S △ADG =16.则S △CEG 的值为()第20题图A.2B.4C.6D.821.(2023包头)如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接AB ,C D.则△ABE 与△CDE 的周长比为()第21题图A.1∶4B.4∶1C.1∶2D.2∶122.(2022连云港)如图,△ABC 中,BD ⊥AB ,BD ,AC 相交于点D ,AD =47AC ,AB =2,∠ABC =150°,则△DBC 的面积是()第22题图A.3314 B.9314 C.337 D.63723.(2022淄博)如图,在Rt △ABC 中,∠ACB =90°,CE 是斜边AB 上的中线,过点E 作EF ⊥AB 交AC 于点F ,若BC =4,△AEF 的面积为5,则sin ∠CEF 的值为()A.35 B.55 C.45 D.255第23题图24.(2022云南)如图,在△ABC 中,点D ,E 分别是BC ,AC 的中点,AD 与BE 相交于点F .若BF =6,则BE 的长是________.第24题图25.(2022包头)如图,在Rt △ABC 中,∠ACB =90°,过点B 作BD ⊥CB ,垂足为B ,且BD =3,连接CD ,与AB 相交于点M ,过点M 作MN ⊥CB ,垂足为N .若AC =2,则MN 的长为________.第25题图26.(新考法)·结合网格考查线段位置关系(2023河北)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A ,B 的连线与钉点C ,D 的连线交于点E ,则(1)AB 与CD 是否垂直?________(填“是”或“否”);(2)AE =________.第26题图27.(2022长春)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =4,BD =8,点E 在边AD 上,AE =13AD ,连接BE 交AC 于点M .(1)求AM 的长;(2)tan ∠MBO 的值为________.第27题图28.(2023泰安)如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE 与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.第28题图类型三旋转型29.(2023玉林)如图,在矩形ABCD中,AB=8,AD=4,点E是DC边上的任一点(不包括端点D,C),过点A作AF⊥AE交CB的延长线于点F,设DE=a.(1)求BF的长(用含a的代数式表示);(2)连接EF交AB于点G,连接GC,当GC∥AE时,求证:四边形AGCE是菱形.第29题图类型四三垂直型30.(2023达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.18第30题图31.(2022台州)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB =5,AE=DG=1,则BF=________.第31题图类型五网格中相似三角形的判定与性质32.(2020昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()第32题图A.4个B.5个C.6个D.7个33.(2022临沂)如图,点A,B都在格点上,若BC=2133,则AC的长为()第33题图A.13B.413C.213D.3133命题点4相似三角形的实际应用34.(2020绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2∶5,且三角板的一边长为8cm.则投影三角板的对应边长为()第34题图A.20cmB.10cmC.8cmD.3.2cm35.(2022河北)图①是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图②所示,此时液面AB=()第35题图A.1cmB.2cmC.3cmD.4cm36.(2023盐城)“跳眼法”是指用手指和眼睛估测距离的方法.步骤第一步:水平举起右臂,大拇指竖直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼.此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离.参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂与眼距的比值一般为10),得到的值约为被测物体离观测点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为()第36题图A.40米B.60米C.80米D.100米37.(2023陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O,C,D,F,G五点在同一直线上,A,B,O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.第37题图源自北师九上P103活动参考答案与解析1.562.D3.B 【解析】设该雕像的下部设计高度约为x ,则上部高度为2-x ,根据题意得2-x x =x2,解得x =-1+5(负值已舍去),∴x =-1+2.236≈1.24.经检验x =1.24是该分式方程的解且符合实际,∴该雕像的下部设计高度约是1.24m.4.5-1【解析】∵E 为边AB 的黄金分割点,AB =2,∴BE AB =5-12,即BE2=5-12,∴BE =(5-1)米.5.C 【解析】∵五线谱中五条横线等距离且平行,∴分割线段AC 成比例,∴根据图形得ABBC =21,∵AB =3,∴BC =32.6.C 【解析】∵DE ∥BC ,AD DB =23,∴AD AB =DE BC =25,∵DE =6cm ,∴BC =15cm.7.D8.C 【解析】△ABC 的最长边为4,与△ABC 相似的△DEF 最长边为12,∴相似比为4∶12=1∶3,∵△ABC 的周长为2+3+4=9,∴△DEF 的周长为3×9=27.9.解:选择①BD CD =B ′D ′C ′D ′;证明:∵△ACD ∽△A ′C ′D ′,∴∠ADC =∠A ′D ′C ′,AD A ′D ′=CDC ′D ′,∴∠ADB =∠A ′D ′B ′,又∵BD CD =B ′D ′C ′D ′,∴BD B ′D ′=CDC ′D ′,则BD B ′D ′=CD C ′D ′=AD A ′D ′,∴△ABD ∽△A ′B ′D ′.【一题多解】选择③∠BAD =∠B ′A ′D ′.证明:∵△ACD ∽△A ′C ′D ′,∴∠ADC =∠A ′D ′C ′,∴∠ADB =∠A ′D ′B ′,∵∠BAD =∠B ′A ′D ′,10.B 【解析】在△ABC 中,∵D 、E 分别为线段BC 、BA 的中点,∴DE ∥AC ,∴△BDE ∽△BCA ,∴S 2S 1=(BE AB )2=(12)2=14.11.B 【解析】∵∠CAD =∠BAC ,∠ACD =∠B ,∴△ADC ∽△ACB ,∴C △ADC C △ACB=AC AB =12.12.A【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,设相似比为k ,则DE =8k ,△ADE 的DE边上高为6k ,∴△DEF 的DE 边上高h =6-6k ,S △DEF =12DE ·h =12×8k ×(6-6k )=-24k 2+24k =-24(k -12)2+6,∴当k =12时,S 取最大值,此时最大值为6.13.∠ADE =∠B (答案不唯一)【解析】∵∠A =∠A ,∴添加条件∠ADE =∠B 即可得到△ADE ∽△ABC .14.233【解析】由题意得,DE =1,BC =3,在Rt △ABC 中,∠A =60°,则AB =BC tan A=33=3.∵DE ∥BC ,∴△ADE ∽△ABC ,∴DE BC =AD AB ,即13=3-BD 3,解得BD =233.15.33【解析】∵BC =3AB =3BD ,∴BC AB =ABBD=3,∵∠B =∠B ,∴△ABC ∽△DBA ,∴AD AC =BD BA =33.16.(1)证明:∵四边形ABCD 是菱形,AC 为对角线,∴∠ACB =∠ACD .∵∠ACD =∠ABE ,∴∠ACB =∠ABE .又∵∠BAC =∠EAB ,∴△ABC ∽△AEB ;(2)解:∵△ABC ∽△AEB ,∴AB AE =AC AB ,∵AB =6,AC =4,∴6AE =46,∴AE =9.17.解:(1)∵四边形BFED 是平行四边形,∴DE ∥BC ,∴AD AB =DE BC =14,∵AB =8,∴AD =2;(2)设△ABC 的面积为S ,△ADE 的面积为S 1,△CEF 的面积为S 2.∵AD AB =14,∴S 1S =(AD AB )2=116,∵S 1=1,∴S =16.∵CE CA =34,同理可得S 2=9,∴平行四边形BFED 的面积为S -S 1-S 2=6.18.证明:(1)∵四边形ABCD 是菱形,∴CD =CB ,∠D =∠B ,∵DF =BE ,∴△CDF ≌△CBE (SAS),∴∠DCF =∠BCE ,∵CD ∥BH ,∴∠H =∠DCF ,∴∠H =∠BCE ,∵∠B =∠B ,∴△BEC ∽△BCH ;(2)∵BE 2=AB ·AE ,∴AB BE =BE AE ,∵CB ∥DG ,∴AE BE =AG BC ,∴AG BC =BE AB,∵BC =AB ,∴AG =BE ,∵△CDF ≌△CBE ,∴DF =BE ,∴AG =DF .19.(1)证明:∵DE ∥BC ,∴△ADG ∽△ABF ,△AEG ∽△ACF ,∴DG BF =AG AF ,EG CF =AG AF ,∴DG BF =EG CF .∵BF =CF ,∴DG =EG ;(2)解:由(1)得DG =EG ,∵CG ⊥DE ,∴CE =CD =6.∵AE =3,∴AC =AE +CE =9.∵DE ∥BC ,∴△ADE ∽△ABC ,∴DE BC =AE AC =13;(3)解:如解图,延长GE 交AB 于点M ,连接FM ,过点M 作MN ⊥BC ,垂足为N .在▱ABCD 中,BO =DO ,∠ABC =∠ADC =45°.∵EG ∥BD ,∴同(1)中的方法可得ME =GE .第19题解图∵EF ⊥EG ,∴FM =FG =10,∴∠EFM =∠EFG .∵∠EGF =40°,∴∠EFG =50°.∵FG 平分∠EFC ,∴∠EFG =∠CFG =50°,∴∠BFM =180°-∠EFM -∠EFG -∠CFG =30°.在Rt △FMN 中,MN =FM ·sin 30°=5,FN =FM ·cos 30°=53.∵∠MBN =45°,MN ⊥BC ,∴BN =MN =5,∴BF =BN +FN =5+53.20.B 【解析】由平移性质可得,AD ∥BE ,AD =BE ,∴△ADG ∽△CEG .∵BC ∶EC =3∶1,∴BE ∶EC =2∶1,∴AD ∶EC =2∶1,∴S △ADG ∶S △ECG =(AD EC)2=4.∵S △ADG =16,∴S △CEG =4.21.D 【解析】如解图,取格点F ,H ,易得△AHB ∽△DFC ,∴AB CD =AH DF =2,∠ABF =∠DCF ,∴AB ∥CD ,∴△ABE ∽△CDE ,∵AB ∶CD =2∶1,∴周长比为2∶1.第21题解图22.A 【解析】如解图,过点C 作BD 的垂线,交BD 的延长线于点E ,则∠E =90°,∵BD ⊥AB ,CE ⊥BD ,∴AB ∥CE ,∠ABD =90°,又∵∠ADB =∠CDE ,∴△ABD ∽△CED ,∴AD CD =ABCE=BD DE .∵AD =47AC ,∴AD CD =43,∴AB CE =2CE =43=BD DE ,则CE =32.∵∠ABC =150°,∠ABD =90°,∴∠CBE =60°,∴BE =33CE =32,∴BD =47BE =237,∴S △BCD =12BD ·CE =12×237×32=3314.第22题解图23.A 【解析】如解图,过点E 作EG ⊥AC 于点G ,过点C 作EF 的垂线交EF 的延长线于点H ,∵E 是AB 的中点,BC =4,∴EG ∥BC ,EG =12BC =2,∵△AEF 的面积为5,∴12AF ·EG=5,∴AF =5.∵∠H =∠FEA =90°,∠CFH =∠AFE ,∴△CFH ∽△AFE ,∴CH AE =CFAF,∵E 为AB 的中点,∠ACB =90°,∴CE =AE ,∴CH AE =CH CE =CFAF .∵∠FEA =∠ACB =90°,∠A =∠A ,∴△AEF ∽△ACB ,∴AE AC =AF AB ,∴12AB AC =5AB ,∴AB 2=10AC .∵在Rt △ABC中,AB 2=BC 2+AC 2,∴10AC =16+AC 2,∴AC =2(舍去),AC =8,∴CF =3,∴sin ∠CEF =CH CE =CF AF =35.第23题解图24.9【解析】∵点D ,E 分别是BC ,AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AB ,DE =12AB .∴△DEF ∽△ABF ,∴EF BF =DE AB =12,∵BF =6,即EF 6=12,∴EF =3,∴BE=BF +EF =6+3=9.25.65【解析】∵∠ACB =90°,BD ⊥CB ,MN ⊥CB ,∴AC ∥MN ∥DB ,∠CNM =∠CBD ,∴∠MAC =∠MBD ,∠MCA =∠MDB =∠CMN ,∴△MAC ∽△MBD ,△CMN ∽△CDB ,∴MC MD =AC BD =23,MN BD =CM CD ,∴CM CD =25,∴MN 3=25,∴MN =65.26.(1)是;(2)455【解析】(1)如解图,易得△ACH ≌△CGD ,则∠GCD =∠CAH ,又∵∠GCD+∠ECA =90°,∴∠CAH +∠ECA =90°,∴∠CEA =90°;(2)由解图可得△CEA ∽△DEB ,BD =3,AC =2,AB =22+42=25,∴AC BD =AE BE ,∴AE BE =23,∴AE =25AB =455.第26题解图27.解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,AD =BC .∴△AEM ∽△CBM ,∴AM CM =AE CB ,∵AE =13AD =13BC ,∴AM =13CM ,∴AM =14AC ,∵AC =4,∴AM =1;(2)14.【解法提示】∵四边形ABCD 是菱形,AC =4,BD =8,∴AO =OC =2,BO =OD =4,AC ⊥BD ,∵AM =1,∴OM =1,∴在Rt △BOM 中,tan ∠MBO =OM OB =14.28.(1)证明:如解图,∵四边形ABCD 为矩形,∴OC =OD ,AB ∥CD ,∴∠2=∠3=∠4.∵DE =BE ,∴∠1=∠2,∴∠1=∠3,第28题解图又∵BE 平分∠DBC ,∴∠1=∠6,∴∠3=∠6,又∵∠3+∠5=90°,∴∠6+∠5=90°,∴BF ⊥AC ;(2)解:△ECF ,△BAF 与△OBF 相似.理由如下:如解图,由(1)知∠1=∠2,∵AB ∥CD ,∴∠2=∠3=∠4,∴∠1=∠4,又∵∠OFB =∠BFO ,∴△OBF ∽△BAF ,∵∠1=∠3,∠OFB =∠EFC ,∴△OBF ∽△ECF ;(3)解:∵△OBF ∽△ECF ,∴EF OF =CF BF ,∵OF =3,EF =2,∴23=CF BF ,∴3CF =2BF .∵OA =OC ,∴OA =OF +CF ,∴3OA =3CF +3OF .∴3OA =2BF +9,①∵△OBF ∽△BAF ,∴OF BF =BF AF ,∴BF 2=OF ·AF ,∴BF 2=3(OA +3).②由①②,得BF =1+19(负值已舍去),∴DE =BE =2+1+19=3+19.29.(1)解:∵四边形ABCD 是矩形,∴∠ABC =∠BAD =∠D =90°,∴∠ABF =90°=∠D ,∠BAE +∠DAE =90°,∵AE ⊥AF ,∴∠BAE +∠BAF =90°,∴∠DAE =∠BAF ,∴△DAE ∽△BAF ,∴AD AB =DE BF ,即48=a BF,∴BF =2a ;(2)证明:如解图,∵四边形ABCD 是矩形,∴AB ∥CD ,∵CG ∥AE ,∴四边形AGCE 是平行四边形,第29题解图∴CE =AG ,∵AB =CD ,∴DE =GB =a ,∵BF =2a ,∴tan ∠BFG =BG BF =12,∵△DAE ∽△BAF ,∴AE AF =AD AB =12,∴tan ∠AFE =12,∴∠BFG =∠AFE ,即FE 平分∠AFC ,∵EA ⊥AF ,EC ⊥CF ,∴AE =EC ,∴四边形AGCE 是菱形.30.C 【解析】∵四边形ABCD 是矩形,∴AD =BC ,∠A =∠B =∠C =90°,AB =CD ,∵将△ADE 沿DE 翻折,∴AD =DF ,AE =EF ,∠A =∠EFD =90°,设BF =x ,则AB =CD =3x ,∵BE =4,∴AE =EF =3x -4,在Rt △BEF 中,EF 2=BF 2+BE 2,∴(3x -4)2=x 2+42,解得x 1=3,x 2=0(不符合题意,舍去),∴EF =3x -4=5.∵∠BFE +∠CFD =90°,∠BFE+∠BEF =90°,∴∠CFD =∠BEF ,∵∠B =∠C ,∴△CFD ∽△BEF ,∴DF FE =CD BF ,∴DF 5=3BF BF,解得DF =15,即AD =15.31.54【解析】如解图,记EG 与AF 交于点H ,∵四边形ABCD 是正方形,∴∠BAD =∠B =90°.∵AF ⊥EG .∴∠AGE +∠GAH =90°,∠FAB +∠GAH =90°.∴∠AGE =∠FAB .∴△ABF ∽△GAE ,∴AB GA =BF AE ,∴AB AD -GD =BF AE ,∵AB =5,AE =GD =1,∴55-1=BF 1,解得BF =54.第31题解图32.C 【解析】如解图,使得△ADE ∽△ABC 的格点三角形一共有6个.第32题解图33.B 【解析】由相似得AC BC =42,∴AC 2133=42,解得AC =4133.34.A 【解析】设投影三角尺的对应边长为x cm ,∵三角尺与投影三角尺相似且相似比为2∶5,∴8∶x =2∶5,解得x =20.35.C 【解析】根据“相似三角形对应高的比等于相似比”可知15-711-7=6AB ,即84=6AB ,解得AB =3cm.36.C 【解析】根据三角形的相似,可以得到被测物体(汽车头部)到大拇指的距离为被测物体到睁开左眼时,大拇指指向的位置距离的10倍,而这个水平距离约是2个汽车的长度,因此这个距离约是2×4×10+大拇指到右眼的距离=80+0.7(估算手臂长度)≈80.7,因此汽车到观测点的距离约为80米.37.解:∵AD ∥EG ,∴∠ADO =∠EGF .又∵∠AOD =∠EFG =90°,∴△AOD ∽△EFG .∴AO EF =OD FG.∴AO =EF ·OD FG =1.8×202.4=15.同理,△BOC ∽△AOD .∴BO AO =OC OD,∴BO =AO ·OC OD =15×1620=12.∴AB =AO -BO =3(米).∴旗杆的高AB 为3米.。
第15讲 非常规思维问题-2020年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)解析版
![第15讲 非常规思维问题-2020年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)解析版](https://img.taocdn.com/s3/m/9a4ab57383d049649a665854.png)
硬核:狙击2020中考数学重点/难点/热点一、轴对称/翻折的性质1. 关于某条直线对称的两个图形是全等形;2. 如果两个图形关于某条直线对称,那么对称轴是任意一对对应点连线段的垂直平分线;3. 对称轴上的任意一点与每一对对应点所连线段相等;4. 若对应线段或对应线段的延长线相交,则交点一定在对称轴上.二、梯形常见辅助线的作法三、圆幂定理四、正弦定理与余弦定理五、阿基米德折弦定理【例题1】(1)如图1,四边形ABCD是菱形,∠BAD=∠BCD=60°,当AC=12时,则△BCD的周长=______. (2)如图2,若四边形ABCD不是菱形,∠BAD=2∠ACB=2∠ACD=60°,AC=12,判断△BCD的周长是否发生变化,并说明理由。
(3)如图2,在四边形ABCD中,∠BAD=∠ACB=∠ACD=45°,AC=12,求△BCD的周长。
【归纳,本题重点巧用作轴对称/翻折的方法进行解题】【变式1】已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.(1)探究线段BD、DE、EC三条线段之间的数量关系;(2)已知:如图(2),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.图(1) 图(2)【解析】(1)DE2=BD2+EC2;(2)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.【例题2】如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为_____.【解析】∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD 是平行四边形, ∴CE =AD ,AE =CD =3, ∵∠ABC +∠DCB =90°, ∴∠AEB +∠ABC =90°, ∴∠BAE =90°, ∴BE ==2,∵BC =2AD ,∴BC =2BE =4, ∴S 2=(4)2=48, 故选:D .【变式2-1】如图所示.梯形ABCD 中,AB ∥CD ,∠A +∠B =90°,AB =p ,CD =q ,E ,F 分别为AB ,CD 的中点,求EF .【解析】过点F 分别作FG ∥AD ,FH ∥BC 交AB 于G ,H ,(如图) ∴∠A =∠FGH ,∠B =∠FHG , ∵∠B +∠A =90°,∴∠FGH +∠FHG =90°, ∴△FGH 是直角三角形,∵FG ∥AD ,FH ∥BC ,AB ∥CD ,∴四边形ADFG 、FHBC 都是平行四边形, 又∵E 、F 分别是两底的中点, ∴AE =EB ,BH =AG , ∴GE =EH ,∴DF =AG =,FC =HB =,FG =AD ,FH =BC , 在Rt △FGH 中,即EF 是Rt △FGH 斜边的中线, ∴EF =GH =(AB ﹣CD )=.【变式2-2】如图,在梯形ABCD 中,AD ∥BC ,3:8:3:3:::2AB BC CD DA ,求∠B 、∠D解:过A 作AE ∥DC ,设AB=3a (a >0)根据勾股定理逆定理可得∠BAE=90°,∠AEB=30°,可推出 ∠B=60°,∠D=150°【例题3】如图,P A切⊙O于A,PBC是⊙O的割线,如果PB=2,PC=4,则P A的长为.【解析】∵P A切⊙O于A,PBC是⊙O的割线,PB=2,PC=4,∴P A2=PB×PC,∴P A==2.故答案为:2.【变式3-1】如图,CD是⊙O的直径,以D为圆心的圆与⊙O交于A、B两点,AB交CD于点E,CD交⊙D于P,已知PC=6,PE:ED=2:1,则AB的长为()A.B.C.D.【解析】延长PD交⊙D于F.设PE=2x,DE=x.根据相交弦定理,得:CE×ED=AE×BE=PE×EF,(6+2x)×x=2x×4x,解得x=1.所以AE=BE=2,所以AB=4.故选:B.【变式3-2】九年级学生小刚是一个喜欢看书的好学生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:P A•PB=PC•PD,小刚很想知道是如何证明的,可已证明部分污损看不清了,只看到辅助线的做法,分别连结AC、BD.聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程.小刚又看到一道课后习题,如图2,AB是⊙O弦,P是AB上一点,AB=10cm,P A=4cm,OP=5cm,求⊙O的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程.【解析】(1)圆的两条弦相交,这两条弦被交点分成的两条线段的积相等.已知,如图1,⊙O的两弦AB、CD相交于E,求证:AP•BP=CP•DP.证明如下:连结AC,BD,如图1,∵∠C=∠B,∠A=∠D,∴△APC∽△DPB,∴AP:DP=CP:BP,∴AP•BP=CP•DP;所以两条弦相交,被交点分成的两条线段的积相等.(2)过P作直径CD,如图2,∵AB=10,P A=4,OP=5,∴PB=10﹣4=6,PC=OC+OP=R+5,PD=OD﹣OP=R﹣5,由(1)中结论得,P A•PB=PC•PD,∴4×6=(R+5)×(R﹣5),解得R=7(R=﹣7舍去).所以⊙O的半径R=7cm.【例题4】问题呈现:阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是的中点,∴MA=MC……(1)请按照上面的证明思路,写出该证明的剩余部分;实践应用:(2)如图3,已知△ABC内接于⊙O,BC>AB>AC,D是的中点,依据阿基米德折弦定理可得图中某三条线段的等量关系为BE=CE+AC.(3)如图4,已知等腰△ABC内接于⊙O,AB=AC,D为AB上一点,连接DB,∠ACD=45°,AE⊥CD于点E,△BDC的周长为4+2,BC=2,请求出AC的长.【解析】(1)证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG,∵M是的中点,∴MA=MC.在△MBA和△MGC中,,∴△MBA≌△MGC(SAS),∴MB=MG,又∵MD⊥BC,∴BD=GD,∴DC=GC+GD=AB+BD;实践应用(2)如图3,依据阿基米德折弦定理可得:BE=CE+AC;故答案为:BE=CE+AC;(3)∵AB=AC,∴A是的中点,∵AE⊥CD,根据阿基米德折弦定理得,CE=BD+DE,∵△BCD的周长为4+2,∴BD+CD+BC=4+2,∴BD+DE+CE+BC=2CE+BC=4+2,∵BC=2,∴CE=2,在Rt△ACE中,∠ACD=45°,∴AE=CE=2,∴AC=4.【变式4-1】我们知道,如图1,AB是⊙O的弦,点F是的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O 上一点P作PH⊥AC于点H,交AB于点M,当∠P AB=45°时,求AH的长.【解析】(1)如图2,在AC上截取AG=BC,连接F A,FG,FB,FC,∵点F是的中点,F A=FB,在△F AG和△FBC中,,∴△F AG≌△FBC(SAS),∴FG=FC,∵FE⊥AC,∴EG=EC,∴AE=AG+EG=BC+CE;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,理由:如图3,在CA上截取CG=CB,连接F A,FB,FC,∵点F是的中点,∴F A=FB,,∴∠FCG=∠FCB,在△FCG和△FCB中,,∴△FCG≌△FCB(SAS),∴FG=FB,∴F A=FG,∵FE⊥AC,∴AE=GE,∴CE=CG+GE=BC+AE;(3)如图3,在Rt△ABC中,AB=2OA=4,∠BAC=30°,∴BC=AB=2,AC=2,当点P在弦AB上方时,在CA上截取CG=CB,连接P A,PB,PG,∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠P AB=45°,∴∠PBA=45°=∠P AB,∴P A=PB,∠PCG=∠PCB,在△PCG和△PCB中,,∴△PCG≌△PCB(SAS),∴PG=PB,∴P A=PG,∵PH⊥AC,∴AH=GH,∴AC=AH+GH+CG=2AH+BC,∴2=2AH+2,∴AH=﹣1,当点P在弦AB下方时,如图5,在AC上截取AG=BC,连接P A,PB,PC,PG∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠P AB=45°,∴∠PBA=45°=∠P AB,∴P A=PB,在△P AG和△PBC中,,∴△P AG≌△PBC(SAS),∴PG=PC,∵PH⊥AC,∴CH=GH,∴AC=AG+GH+CH=BC+2CH,∴2=2+2CH,∴CH=﹣1,∴AH=AC﹣CH=2﹣(﹣1)=+1,即:当∠P AB=45°时,AH的长为﹣1或+1.【例题5】阅读下列材料,并完成相应的任务.托勒密定理:托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.已知:如图1,四边形ABCD内接于⊙O,求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵∴∠ABE=∠ACD∴△ABE∽△ACD∴∴AB•CD=AC•BE∵∴∠ACB=∠ADE(依据1)∵∠BAE=∠CAD∴∠BAE+∠EAC=∠CAD+∠EAC即∠BAC=∠EAD∴△ABC∽△AED(依据2)……任务:(1)请继续完成上面的证明过程,并回答上述过程中的“依据1”和“依据2”分别是什么.(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:.(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C为的中点,求AC的长.【解析】(1)∴△ABC∽△AED∴AD•BC=AC•ED∴AB•CD+AD•BC=AC•(BE+ED)∴AB•CD+AD•BC=AC•BD上述证明过程中的“依据1”是同弧所对的圆周角相等.“依据2”是两角分别相等的两个三角形相似.(2)当圆内接四边形ABCD是矩形时,则AB=CD,AD=BC,AC=BD,∵AB•CD+AD•BC=AC•BD,∴AB2+AD2=BD2,托勒密定理就是我们非常熟知的一个定理:勾股定理,故答案为勾股定理.(3)连接BD,作CE⊥BD于E.∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,∵∠BAD=60°,∴∠BCD=120°,∵=,∴CD=CB,∴∠CDB=30°,在Rt△CDE中,cos30°=,∴DE=CD,∴BD=2DE=CD,由托勒密定理:AC•BD=AD•BC+CD•AB,∴AC•CD=3CD+5CD,∴AC=,答:AC的长为.【变式5-1】问题探究:(1)已知:如图①,△ABC中请你用尺规在BC边上找一点D,使得点A到点BC的距离最短.(2)托勒密(Ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积.如图②,P是正△ABC外接圆的劣弧BC上任一点(不与B、C重合),请你根据托勒密(Ptolemy)定理证明:P A =PB+PC问题解决:(3)如图③,某学校有一块两直角边长分别为30m、60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点P处,使P到A、B、C三点的距离之和最小,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由.【解析】(1)利用尺规作图,过点A作BC的垂线,交BC于D,则点D即为所求;(2)由托勒密定理得,P A•BC=PB•AC+PC•AB,∵△ABC为正三角形,∴AB=BC=AC,∴P A•BC=PB•BC+PC•BC,∴P A=PB+PC;(3)以BC为边作正△BCD,使点D与点A在BC两侧,作△BCD的外接圆,连接AD交圆于P,连接PB,作DE⊥AC交AC的延长线于E,则点P即为所求,由(2)得,PD=PB+PC,∴P到A、B、C三点的距离之和=DA,且距离之和最小,∵CD=BC=30,∠DCE=∠BCE﹣∠BCD=30°,∴DE=CD=15,由勾股定理得,CE==15,则AD==30,答:P到A、B、C三点的距离之和最小值为30m.【例题6】如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sin A=,sin B=,∴c=,c=,∴=根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.【解析】==,理由为:过A作AD⊥BC,BE⊥AC,在Rt△ABD中,sin B=,即AD=c sin B,在Rt△ADC中,sin C=,即AD=b sin C,∴c sin B=b sin C,即=,同理可得=,则==.【变式6-1】观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则,即AD=c sin B,AD=b sin C,于是c sin B=b sin C,即,同理有:,所以.即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=;AC=;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,)【解析】(1)由正玄定理得:∠A=60°,AC=20;故答案为:60°,20;(2)如图,依题意:BC=40×0.5=20(海里)∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°.∴∠A=45°.在△ABC中,,即,解之得:AB=10≈24.49海里.所以渔政204船距钓鱼岛A的距离约为24.49海里.【变式6-2】在△ABC中,cos A=,cos B=,cos C=,我们称为余弦定理,请用余弦定理完成下面的问题.请用余弦定理完成下面的问题:(1)如图,已知△DEF,∠E=60°,DE=4,DF=,求EF的长度;(2)通过合理的构造,试求cos105°.【解析】(1)由余弦定理,可得cos E=,∵∠E=60°,DE=4,DF=,∴=,解得EF=1或3;(2)如图,在△ABC中,∠B=45°,∠C=30°,AD⊥BC,AD=1.∵在RT△ADC中,AD=1.∴AC=2,CD=,∵在RT△ADB中,AD=1,∴AB=,BD=1,∴在△ABC中,AB=,AC=2,BC=+1,∠BAC=180°﹣30°﹣45°=105°,利用余弦定理可得cos105°===.1. 如图,AB是圆O的直径,弦CD⊥AB于E,P是BA延长线上一点,连接PC交圆O于F,若PF=7,FC=13,P A:AE:EB=2:4:1,则CD长为4.【解析】设BE为x,则P A=2x,PB=7x.根据割线定理,得P A•PB=PF•PC,即2x•7x=7×20,解得x=.又CE2=AE•BE=4x2=40,∴CE=2,∴CD=2CE=4.2. 定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB和BC组成圆的折弦,AB>BC,M是弧ABC的中点,MF⊥AB于F,则AF=FB+BC.如图2,△ABC中,∠ABC=60°,AB=8,BC=6,D是AB上一点,BD=1,作DE⊥AB交△ABC的外接圆于E,连接EA,则∠EAC=60°.【解析】如图2,连接OA、OC、OE,∵AB=8,BC=6,BD=1,∴AD=7,BD+BC=7,∴AD=BD+BC,而ED⊥AB,∴点E为弧ABC的中点,即弧AE=弧CE,∴∠AOE=∠COE,∵∠AOC=2∠ABC=2×60°=120°,∴∠AOE=∠COE=120°,∴∠CAE=∠COE=60°.故答案为60°.3. 如图,在Rt△ABC中,∠ACB=90°,点D是AC上一点,以CD为直径的圆与AB相切于点E,若CD=3,tan∠AED=,则AD的长为1.【解析】连接OE,CE,∵AB与圆O相切于点E,∴∠AED=∠ACE,∴tan∠ACE=tan∠AED=,∵DC为圆O的直径,∴∠DEC=90°,∴=,∵∠A=∠A,∴△AED∽△ACE,∴==,即AE=2AD,设AD=x,则AE=2x,∵CD=3,∴OD=OC=1.5,在Rt△AEO中,根据勾股定理得:OA2=AE2+OE2,即(x+1.5)2=(2x)2+1.52,整理得:x2﹣x=0,即x(x﹣1)=0,解得:x=0(舍去)或x=1,则AD=1.故答案为:14. 已知:如图,直角梯形ABCD中AD∥BC,∠A=90°,CD=CB=2AD.点Q是AB边中点,点P在CD边上运动,以点P为直角顶点作直角∠MPN,∠MPN的两边分别与AB边、CB边交于点M、N.(1)若点P与点D重合,点M在线段AQ上,如图(1).求证:.(2)若点P是CD中点,点M在线段BQ上,如图(2).线段MQ、CN、BC的数量关系是:,并证明你的猜想.【解析】(1)如图1,过点D作DE⊥BC于E,∵AD∥BC,∠A=90°,∴四边形ABED是矩形,∴BE=AD,设AD=x,则CD=CB=2x,∵CD=CB=2AD=2x,∴CE=BE=2x﹣x=x,∴在Rt△CDE中,根据勾股定理得,DE===x,∵∠MPN是直角,∴∠MDE+∠EDN=90°,又∵∠ADM+∠MDE=90°,∴∠DAM=∠EDN,∴Rt△ADM∽Rt△EDN,∴=,即=,∴EN=AM,∵点Q是AB边中点,∴AQ=AB=DE=x,∴MQ=AQ﹣AM=x﹣AM,∴MQ﹣CN=(x﹣AM)﹣(x﹣AM)=x﹣AM﹣x+AM=x,∵CB=2x,∴x=BC,∴MQ﹣CN=BC;(2)如图2,连接PQ,过点D作DE⊥BC于E,过点P作PF⊥BC于F,设AD=x,则CD=CB=2x,∵点P是CD中点,点Q是AB的中点,∴PQ∥AD,PQ=(AD+CB)=(x+2x)=x,同(1)可求,DE=x,∵点P是CD中点,∴PF∥DE,PF=DE=x,CF=CE=x,又∵∠QPM+∠MPN=∠FPN+∠MPN,∴∠QPM=∠FPN,∴△PQM∽△PFN,∴=,即=,∴FN=MQ,∴CN=CE﹣FN=x﹣MQ,∵CB=2x,∴x=BC,∴MQ+CN=BC.故答案为:MQ+CN=BC.5. 已知:如图所示,E是等腰梯形一腰CD的中点,EF⊥AB,垂足为F,求证:S梯形ABCD=AB•EF.【解析】证明:如图,连接AE交BC的延长线于G点,连接BE,∵AD∥CG,∴∠D=∠ECG,在△ADE和△GCE中∴△ADE≌△GCE(ASA),∴AE=GE,∴可得:S△ABG=S梯形ABCD=2S△ABE=AB×FE.6. 如图,在⊙O中,AB=AC,点D是上一动点(点D不与C、B重合),连接DA、DB、DC,∠BAC=120°.(1)若AC=4,求⊙O的半径;(2)写出DA、DB、DC之间的关系,并证明.【解析】(1)如图1,连接OC,OA,BC,∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∴∠ADC=∠ABC=30°,∴∠AOC=2∠ADC=60°,∵OC=OA,∴△AOC是等边三角形,∴OA=AC=4;(2)CD+BD=AD,理由如下:延长DB到点E,使BE=DC,连接AE,如图2∴∠ABE=∠ACD,∵AB=AC,BE=CD,∵∴△ABE≌△ACD(SAS)∴AE=AD,∵∠ADB=∠ACB=30°,∴∠ADE=∠E=30°,∴∠DAE=120°,∴DE=AD即:BD+CD=AD.7. 如图:已知点A、B、C、D顺次在圆O上,AB=BD,BM⊥AC,垂足为M.证明:AM=DC+CM.【解析】证明:∵,∴∠BAM=∠BDC,又AB=BD,将△ABM绕点B旋转到△DBN,使∠BAM与∠BDC重合,如图,∴△ABM≌△DBN,∴AM=DN,BM=BN,∠AMB=∠N,∵BM⊥AC,即∠AMB=90°,∴∠N=90°,在直角△BMC和直角△BNC中,,∴△BMC≌△BNC,∴CM=CN,∴DN=CD+CN,∴AM=DC+CM.8. 小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.(1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙O中,C是劣弧AB的中点,直线CD ⊥AB于点E,则AE=BE.请证明此结论;(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,P A,PB组成⊙O的一条折弦.C是劣弧AB的中点,直线CD⊥P A于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程;(3)如图3,P A.PB组成⊙O的一条折弦,若C是优弧AB的中点,直线CD⊥P A于点E,则AE,PE 与PB之间存在怎样的数量关系?写出结论,不必证明.【解析】证明:(1)如图1,连接AD,BD,∵C是劣弧AB的中点,∴∠CDA=∠CDB,∵DE⊥AB,∴∠AED=∠DEB=90°,∴∠A+∠ADE=90°,∠B+∠CDB=90°,∴∠A=∠B,∴△ADB为等腰三角形,∵CD⊥AB,∴AE=BE;(2)如图2,延长DB、AP相交于点F,再连接AD,∵ADBP是圆内接四边形,∴∠PBF=∠P AD,∵C是劣弧AB的中点,∴∠CDA=∠CDF,∵CD⊥P A,∴△AFD为等腰三角形,∴∠F=∠A,AE=EF,∴∠PBF=∠F,∴PB=PF,∴AE=PE+PB(3)AE=PE﹣PB.连接AD,BD,AB,DB、AP相交于点F,∵弧AC=弧BC,∴∠ADC=∠BDC,∵CD⊥AP,∴∠DEA=∠DEF,∠ADE=∠FDE,∵DE=DE,∴△DAE≌△DFE,∴AD=DF,AE=EF,∴∠DAF=∠DF A,∴∠DF A=∠PFB,∠PBD=∠DAP,∴∠PFB=∠PBF,∴PF=PB,∴AE=PE﹣PB.9. 阅读与思考:阿基米德(公元前287年一公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,阿基米德流传于世的著作有10余种,多为希腊文手稿下面是《阿基米德全集》中记载的一个命题:AB是⊙O的弦,点C在⊙O上,且CD⊥AB于点D,在弦AB上取点E,使AD=DE,点F是上的一点,且=,连接BF可得BF=BE.(1)将上述问题中弦AB改为直径AB,如图1所示,试证明BF=BE;(2)如图2所示,若直径AB=10,EO=OB,作直线l与⊙O相切于点F.过点B作BP⊥l于点P.求BP的长.【解析】(1)如图1所示,连接CE、BC,∵CD⊥AB,AD=DE,∴AC=CE,∴∠CAE=∠CEA,又∵,∴CA=CF,∠FBC=∠EBC,∴CE=CF,又∵∠A+∠F=180°,∠CEA+∠CEB=180°,∴∠CEB=∠F,∴△CEB≌△CFB(AAS),∴BE=BF;(2)如图2所示,连接AF,∵AB=10,EO=,∴EB=7.5,∵AB为⊙O的直径,∴∠AFB=90°,∵l与与⊙O相切于点F,∴∠OFP=90°,∴∠AFO=∠BFP,又∵OF=OA,∴∠OAF=∠OF A,∴∠OAF=∠BFP,∵BP⊥l于点P,∴∠BPF=90°,∴△AFB∽△FPB,∴,即,∴.10. 阅读下面的材料:如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O于点C、D.求证:AP•AC+BP•BD=AB2.证明:连接AD、BC,过P作PM⊥AB,则∠ADB=∠AMP=90°,∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.由割线定理得:AP•AC=AM•AB,BP•BD=BM•BA,所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2.当点P在半圆周上时,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:(1)如图(2)当点P在半圆周外时,结论AP•AC+BP•BD=AB2是否成立?为什么?(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.【解析】(1)成立.证明:如图(2),∵∠PCM=∠PDM=90°,∴点C、D在以PM为直径的圆上,∴AC•AP=AM•AD,BD•BP=BM•BC,∴AC•AP+BD•BP=AM•MD+BM•BC;∵AM•MD+BM•BC=AB2,∴AP•AC+BP•BD=AB2.(2)如图(3),过P作PM⊥AB,交AB的延长线于M,连接AD、BC,则C、M在以PB为直径的圆上;∴AP•AC=AB•AM①,∵D、M在以P A为直径的圆上,∴BP•BD=AB•BM②,由图象可知:AB=AM﹣BM③由①②③可得:AP•AC﹣BP•BD=AB•(AM﹣BM)=AB2.11. 已知⊙O半径为R(1)如图1,过⊙O内一点P作弦AB,连接OP.求证:P A•PB=R2﹣OP2.(2)如图2,过⊙O外一点P,作割线P AB,求证:P A•PB=OP2﹣R2.【解析】证明:(1)过点P作直径CD,如图1,∵P A•PB=PC•PD,而PC=OC﹣OP=R﹣OP,PD=OD+OP=R+OP,∴P A•PB=(R﹣OP)(R+OP)=R2﹣OP2;(2)直线OP交⊙O于C、D,如图2,∵PCD和P AB都为⊙O的割线,∴P A•PB=PC•PD,而PC=OC﹣OP=OP﹣R,PD=OD+OP=OP+R,∴P A•PB=(OP﹣R)(OP+R)=OP2﹣R2.12. (1)在△ABC中,角A、B、C所对的边分别为a,b,c,试利用所学知识证明:S△ABC=ab sin C=ac sin B=bc sin A.(2)在数学中人们把(1)的结论称之为正弦定理的三角形面积公式,它在数学中有着广泛的应用;请利用此结论证明正弦定理:==.(3)探索应用:在△ABC中,∠BAC=120°,AD为∠BAC的内角平分线,试证明:+=(可能用到的知识:sin60°=sin120°).【解析】(1)如图,作AH⊥BC于H.在Rt△ACH中,AH=b•sin C,∴S△ABC=•BC•AH=•a•b•sin C=ab sin C,同法可证:S△ABC=ac sin B=bc sin A.∴S△ABC=ab sin C=ac sin B=bc sin A.(2)∵S△ABC=ab sin C=ac sin B=bc sin A.∴==,∴==,∴==.(3)如图,∵∠BAC=120°,AD平分∠BAC,∴∠BAD=∠CAD=60°,∵S△ABC=S△ABD+S△ADC,∴•AB•AC•sin120°=AB•AD•sin60°+•AC•AD•sin60°,∵sin120°=sin60°,∴AB•AC=AB•AD+AC•AD,两边除以AB•AC•AD可得=+.13. 已知:如图1,在锐角△ABC中,AB=c,BC=a,AC=b,AD⊥BC于D.在Rt△ABD中,sin∠B=,则AD=c sin∠B;在Rt△ACD中,sin∠C=,则AD=b sin∠C;所以,c sin∠B=b sin∠C,即,,进一步即得正弦定理:(此定理适合任意锐角三角形).参照利用正弦定理解答下题:如图2,在△ABC中,∠B=75°,∠C=45°,BC=2,求AB的长.【解析】在Rt△ACD中,sin∠C=,则AD=b sin∠C,故答案为:,b sin∠C;如图2,在△ABC中,∠B=75°,∠C=45°,BC=2,则∠A=60°,∵,∴,即,解得,AB=,即AB的长是.。
2020年中考复习练习胡不归问题专题训练含答案解析
![2020年中考复习练习胡不归问题专题训练含答案解析](https://img.taocdn.com/s3/m/4151cdf33169a4517723a3e2.png)
2020年中考复习练习胡不归问题专题训练解析一.试题(共8小题)1.如图,△ABC在直角坐标系中,AB=AC,A(0,2),C(1,0),D为射线AO上一点,一动点P从A出发,运动路径为A→D→C,点P在AD上的运动速度是在CD上的3倍,要使整个运动时间最少,则点D的坐标应为()A.(0,)B.(0,)C.(0,)D.(0,)2.如图,在平面直角坐标系中,二次函数y=ax2+b x+c的图象经过点A(﹣1,0),B(0,﹣),C(2,0),其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)若P为y轴上的一个动点,连接PD,则PB+PD的最小值为;(3)M(x,t)为抛物线对称轴上一动点①若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,则这样的点N共有个;②连接MA,MB,若∠AMB不小于60°,求t的取值范围.3.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则线段AP+BP+PD 的最小值为.,4.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE 上.(1)试说明CE是⊙O的切线;(△2)若ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O的直径AB的长.5.如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴于D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点)连接DE,一动点M从点D出发,沿线段DE 以每秒一个单位速度运动到E点,再沿线段EA以每秒当点E的坐标是多少时,点M在整个运动中用时最少?个单位的速度运动到A后停止,6.如图,已知抛物线y=ax2﹣2ax﹣3a(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D,与y 轴交于点E,且DE:BE=2:3.(1)求抛物线的函数表达式;(2)设P为线段BD上一点(不含端点),连接AP,一动点M从点A出发,沿线段AP 以每秒1个单位的速度运动到P,再沿线段PD以每秒2个单位的速度运动到D后停止.当点P的坐标是多少时,点M在整个运动过程中用时最少?(△3)将ABC绕点B顺时针旋转α(0°<α<180°),当点A的对应点A△'落在ECB 的边所在直线上时,求此时点C的对应点C'的坐标.7.二次函数y=ax2﹣2x+c的图象与x轴交于A、C两点,点C(3,0),与y轴交于点B(0,﹣3).(1)a=,c=;(2)如图1,P是x轴上一动点,点D(0,1)在y轴上,连接PD,求小值;(3)如图2,点M在抛物线上,若△S MBC=3,求点M的坐标.PD+PC的最8.已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y 轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在(1)的条件下,抛物线上存在点△P,使得ACP是以AC为直角边的直角三角形,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?2020年中考复习练习胡不归问题专题训练解析参考答案与试题解析一.试题(共8小题)1.如图,△ABC在直角坐标系中,AB=AC,A(0,2),C(1,0),D为射线AO上一点,一动点P从A出发,运动路径为A→D→C,点P在AD上的运动速度是在CD上的3倍,要使整个运动时间最少,则点D的坐标应为()A.(0,)B.(0,)C.(0,)D.(0,)【分析】假设P在AD的速度为3,在CD的速度为1,首先表示出总的时间,再根据根的判别式求出t的取值范围,进而求出D的坐标.【解答】解:假设P在AD的速度为3,在CD的速度为1,设D坐标为(0,y),则AD=2∴设t=+,﹣y,CD==,等式变形为:t+y﹣=,则t的最小值时考虑y的取值即可,∴t2+(y﹣∴y2+()t+(y﹣﹣t)y﹣t2+)2=y2+1,t+1=0,△=(﹣t)2﹣4×(﹣t2+t+1)≥0,∴t的最小值为∴y=,,∴点D的坐标为(0,故选D.),(解法二:假设 P 在 AD 的速度为 3V ,在 CD 的速度为 1V ,总时间 t =+ = ( +CD ),要使 t 最小,就要 +CD 最小,因为 AB =AC =3,过点 B 作 BH ⊥AC 交 AC 于点 H ,交 OA 于 D ,易证△ADH ∽△ACO ,所以= =3,所以 =DH ,因为△ABC 是等腰三角形,所以 BD =CD ,所以要+CD 最小,就是要 DH +BD 最小,就要 B 、D 、H 三点共线就行了.因为△AOC ∽△BOD ,所以= ,即 = ,所以 OD = ,所以点 D 的坐标应为(0,).【点评】本题考查了勾股定理的运用、一元二次方程根的判别式(=△b 2﹣4ac )判断方程的根的情况以及坐标于图形的性质题目的综合性较强,难度较大.2.如图,在平面直角坐标系中,二次函数 y =ax 2+b x +c 的图象经过点 A (﹣1,0),B (0,﹣),C (2,0),其对称轴与 x 轴交于点 D(1)求二次函数的表达式及其顶点坐标;(2)若 P 为 y 轴上的一个动点,连接 PD ,则 PB +PD 的最小值为;(3)M (x ,t )为抛物线对称轴上一动点①若平面内存在点 N ,使得以 A ,B ,M ,N 为顶点的四边形为菱形,则这样的点 N 共有5 个;②连接 MA ,MB ,若∠AMB 不小于 60°,求 t 的取值范围.【分析】 1)利用待定系数法转化为解方程组解决问题.(2)如图 1 中,连接 AB ,作 DH ⊥AB 于 H ,交 OB 于 P ,此时 PB +PD 最小.最小值就是线段 DH ,求出 DH 即可.(3)△①先在对称轴上寻找满足 ABM 是等腰三角形的点 M ,由此即可解决问题.②作AB的中垂线与y轴交于点E,连接EA,则∠AEB=120°,以E为圆心,EB为半径作圆,与抛物线对称轴交于点F、G.则∠AFB=∠AGB=60°,从而线段FG上的点满足题意,求出F、G的坐标即可解决问题.【解答】解:(1)由题意解得,∴抛物线解析式为y=x2﹣x﹣,∵y=x2﹣x﹣∴顶点坐标(,﹣=).(x﹣)2﹣,(2)如图1中,连接AB,作DH⊥AB于H,交OB于P,此时PB+PD最小.理由:∵OA=1,OB=,∴tan∠ABO==,∴∠ABO=30°,∴PH=PB,∴PB+PD=PH+PD=DH,∴此时PB+PD最短(垂线段最短).在△Rt ADH中,∵∠AHD=90°,AD=,∠HAD=60°,∴sin60°=∴DH=,,∴PB+PD的最小值为.故答案为.(3)①以A为圆心AB为半径画弧与对称轴有两个交点,以B为圆心AB为半径画弧与对称轴也有两个交点,线段AB的垂直平分线与对称轴有一个交点,所以满足条件的点M有5个,即满足条件的点N也有5个,故答案为5.②如图,△Rt AOB中,∵tan∠ABO==,∴∠ABO=30°,作AB的中垂线与y轴交于点E,连接EA,则∠AEB=120°,以E为圆心,EB为半径作圆,与抛物线对称轴交于点F、G.则∠AFB=∠AGB=60°,从而线段FG上的点满足题意,∵EB==,∴OE=OB﹣EB=,∵F(,t),EF2=EB2,∴()2+(t+解得t=)2=(或)2,,故F(,∴t的取值范围),G(,≤t≤),【点评】本题考查二次函数综合题、锐角三角函数、最短问题、圆等知识,解题的关键是掌握待定系数法确定函数解析式,学会利用垂线段最短解决实际问题中的最短问题,学会添加辅助线,构造圆解决角度问题,属于中考压轴题.3.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则线段AP+BP+PD 的最小值为6.【分析】将△ADC逆时针旋转△60°,得到AD′C′,连接BD′交AC于P,交AC′于E,连接PD,求出BD′,证明PA=PE,PD=ED′,根据两点之间线段最短得到答案.【解答】解:将△ADC逆时针旋转60°,得到△AD′C′,连接BD′交AC于P,交AC′于E,连接PD,∵∠BAD=30°,∠DAD′=60°,∴∠BAD′=90°,又AB=AD=AD′,∴BD′==6,∠ABP=45°,又∠BAP=15°,∴∠APE=∠P AE=60°,∴△EAP为等边三角形,∴PA=PE,又∵△APD≌△AED′,∴PD=ED′,根据两点之间线段最短,( D H∴AP +BP +PD 的最小值=PB +PE +ED ′=6故答案为:6.,【点评】本题考查的是菱形的性质、轴对称变换和两点之间线段最短的知识,正确找出辅助线是解题的关键,注意轴对称变换的性质的正确运用.4.如图,在△ACE 中,CA =CE ,∠CAE =30°,⊙O 经过点 C ,且圆的直径 AB 在线段 AE上.(1)试说明 CE 是⊙O 的切线;(△2)若 ACE 中 AE 边上的高为 h ,试用含 h 的代数式表示⊙O 的直径 AB ;(3)设点 D 是线段 AC 上任意一点(不含端点),连接 OD ,当 CD +OD 的最小值为 6时,求⊙O 的直径 AB 的长.【分析】 1)连接 OC ,如图 1,要证 CE 是⊙O 的切线,只需证到∠OCE =90°即可;(2)过点 C 作 CH ⊥AB 于 H ,连接 OC ,如图 2,在 △RtOHC 中运用三角函数即可解决问题;(3)作 OF 平分∠AOC ,交⊙O 于 F ,连接 AF 、CF 、DF ,如图 3,易证四边形 AOCF是菱形,根据对称性可得 DF =DO .过点 D 作 DH ⊥OC 于 H ,易得 DH = DC ,从而有CD +OD =DH +FD .根据垂线段最短可得:当 F 、 、 三点共线时,DH +FD (即 CD +OD ) 最小,然后在 △Rt OHF 中运用三角函数即可解决问题.【解答】解:(1)连接 OC ,如图 1,∵CA=CE,∠CAE=30°,∴∠E=∠CAE=30°,∠COE=2∠A=60°,∴∠OCE=90°,∴CE是⊙O的切线;(2)过点C作CH⊥AB于H,连接OC,如图2,由题可得CH=h.在△Rt OHC中,CH=OC•sin∠COH,∴h=OC•sin60°=∴OC==h,OC,∴AB=2OC=h;(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,如图3,则∠AOF=∠COF=∠AOC=(180°﹣60°)=60°.,∵OA =OF =OC ,∴△AOF 、△COF 是等边三角形,∴AF =AO =OC =FC ,∴四边形 AOCF 是菱形,∴根据对称性可得 DF =DO .过点 D 作 DH ⊥OC 于 H ,∵OA =OC ,∴∠OCA =∠OAC =30°,∴DH =DC •sin ∠DCH =DC •sin30°= DC ,∴ CD +OD =DH +FD .根据垂线段最短可得:当 F 、D 、H 三点共线时,DH +FD (即 CD +OD )最小,此时 FH =OF •sin ∠FOH =则 OF =4,AB =2OF =8 OF =6,.∴当 CD +OD 的最小值为 6 时,⊙O 的直径 AB 的长为 8.【点评】本题主要考查了圆周角定理、切线的判定、等腰三角形的性质、三角函数的定义、特殊角的三角函数值、等边三角形的判定与性质、菱形的判定与性质、垂线段最短等知识,把 CD +OD 转化为 DH +FD 是解决第(3)小题的关键.5.如图,抛物线 y = x 2+mx +n 与直线 y =﹣ x +3 交于 A ,B 两点,交 x 轴于 D ,C 两点,连接 AC ,BC ,已知 A (0,3),C (3,0).(Ⅰ)求抛物线的解析式和 tan ∠BAC 的值;(Ⅱ)在(Ⅰ)条件下:(1)P 为 y 轴右侧抛物线上一动点,连接 PA ,过点 P 作 PQ ⊥PA 交 y 轴于点 Q ,问:是否存在点 P 使得以 A ,P ,Q 为顶点的三角形与△ACB 相似?若存在,请求出所有符合条件的点 P 的坐标;若不存在,请说明理由.(2)设 E 为线段 AC 上一点(不含端点) 连接 DE ,一动点 M 从点 D 出发,沿线段 DE以每秒一个单位速度运动到 E 点,再沿线段 EA 以每秒当点 E 的坐标是多少时,点 M 在整个运动中用时最少?个单位的速度运动到 A 后停止,(【分析】(Ⅰ)只需把 A 、C 两点的坐标代入 y = x 2+mx +n ,就可得到抛物线的解析式,然后求出直线 AB 与抛物线的交点 B 的坐标,利用勾股定理逆定理判断出三角形 ABC 是直角三角形,从而得到∠ACB =90°,然后根据三角函数的定义就可求出 tan ∠BAC 的值;(Ⅱ)(1)过点 P 作 PG ⊥y 轴于 G ,则∠PGA =90°.设点 P 的横坐标为 x ,由 P 在 y轴右侧可得 x >0,则 PG =x ,易得∠APQ =∠ACB =90°.若点 G 在点 A 的下方,①当∠P AQ =∠CAB 时,△P AQ ∽△CAB .此时可证得△PGA ∽△BCA ,根据相似三角形的性质可得 AG =3PG =3x .则有 P (x ,3﹣3x ),然后把 P (x ,3﹣3x )代入抛物线的解析式,就可求出点 P 的坐标②当∠P AQ =∠CBA 时,△P AQ ∽△CBA ,同理,可求出点 P 的坐标;若点 G 在点 A 的上方,同理,可求出点P 的坐标; 2)过点 E 作 EN ⊥y 轴于 N ,如图 3.易得 AE =EN ,则点 M 在整个运动中所用的时间可表示为 + =DE +EN .作点 D 关于 AC 的对称点 D ′,连接 D ′E ,则有 D ′E =DE ,D ′C =DC ,∠D ′CA =∠DCA =45°,从而可得∠D ′CD =90°,DE +EN =D ′E +EN .根据两点之间线段最短可得:当 D ′、E 、N 三点共线时,DE +EN =D ′E +EN 最小.此时可证到四边形 OCD ′N是矩形,从而有 ND ′=OC =3,ON =D ′C =DC .然后求出点 D 的坐标,从而得到 OD 、ON 、NE 的值,即可得到点 E 的坐标.【解答】解:(Ⅰ)把 A (0,3),C (3,0)代入 y =x 2+mx +n ,得,解得:.∴抛物线的解析式为 y = x 2﹣ x +3联立,解得:或,∴点B的坐标为(4,1).如图1.∵C(3,0),B(4,1),A(0,3),∴AB2=20,BC2=2,AC2=18,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴tan∠BAC===;(Ⅱ)方法一:(1)存在点P,使得以A,P,Q为顶点的三角形与△ACB相似.过点P作PG⊥y轴于G,则∠PGA=90°.设点P的横坐标为x,由P在y轴右侧可得x>0,则PG=x.∵PQ⊥PA,∠ACB=90°,∴∠APQ=∠ACB=90°.若点G在点A的下方,①如图2①,当∠P AQ=∠CAB时,则△P AQ∽△CAB.∵∠PGA=∠ACB=90°,∠P AQ=∠CAB,∴△PGA∽△BCA,∴==.∴AG=3PG=3x.则P(x,3﹣3x).把P(x,3﹣3x)代入y=x2﹣x+3,得x2﹣x+3=3﹣3x,整理得:x2+x=0解得:x1=0(舍去),x2=﹣1(舍去).②如图2②,当∠P AQ=∠CBA时,则△P AQ∽△CBA.同理可得:AG=PG=x,则P(x,3﹣x),把P(x,3﹣x)代入y=x2﹣x+3,得x2﹣x+3=3﹣x,整理得:x2﹣x=0解得:x1=0(舍去),x2=,∴P(,);若点G在点A的上方,①当∠P AQ=∠CAB时,则△P AQ∽△CAB,同理可得:点P的坐标为(11,36).②当∠P AQ=∠CBA时,则△P AQ∽△CBA.同理可得:点P的坐标为P(,).综上所述:满足条件的点P的坐标为(11,36)、(,)、(,);方法二:作△APQ的“外接矩形”AQGH,易证△AHP∽△QGP,∴,∵以A,P,Q为顶点的三角形与△ACB相似,∴或,设P(2t,2t2﹣5t+3),A(0,3),H(2t,3),①,∴||=,∴2t1=,2t2=,②,∴||=3∴2t1=11,2t2=﹣1,(舍),∴满足题意的点P的坐标为(11,36)、(,)、(,);(2)方法一:过点E作EN⊥y轴于N,如图3.在△Rt ANE中,EN=AE•sin45°=AE,即AE=EN,∴点M在整个运动中所用的时间为+=DE+EN.作点D关于AC的对称点D′,连接D′E,则有D′E=DE,D′C=DC,∠D′CA=∠DCA=45°,∴∠D′CD=90°,DE+EN=D′E+EN.根据两点之间线段最短可得:当D′、E、N三点共线时,DE+EN=D′E+EN最小.此时,∵∠D′CD=∠D′NO=∠NOC=90°,∴四边形OCD′N是矩形,∴ND′=OC=3,ON=D′C=DC.对于y=x2﹣x+3,当y=0时,有x2﹣x+3=0,解得:x1=2,x2=3.∴D(2,0),OD=2,∴ON=DC=OC﹣OD=3﹣2=1,∴NE=AN=AO﹣ON=3﹣1=2,∴点E的坐标为(2,1).方法二:作点D关于AC的对称点D′,DD′交AC于点M,显然DE=D′E,作D′N⊥y轴,垂足为N,交直线AC于点E,如图4,在△Rt ANE中,EN=AE•sin45°=AE,即AE=EN,∴当D′、E、N三点共线时,DE+EN=D′E+EN最小,∵A(0,3),C(3,0),∴l AC:y=﹣x+3,∴M(m,﹣m+3),D(2,0),t∵DM ⊥AC ,∴K DM ×K AC =﹣1,∴﹣1×,∴m = ,∴M ( , ),∵M 为 DD ′的中点,∴D ′(3,1),∵E Y =D ′Y =1,∴E (2,1).方法三:如图,5,过 A 作射线 AF ∥x 轴,过 D 作射线 DF ∥y 轴,DF 与 AC 交于点 E .∵A (0,3),C (3,0),∴l AC :y =﹣x +3.∵OA =OC ,∠AOC =90°,∴∠ACO =45°,∵AF ∥OC ,∴∠FAE =45°.∴EF =AE •sin45°=.∴当且仅当 AF ⊥DF 时,DE +EF 取得最小值,点 M 在整个运动中用时最少为:==DE +EF ,∵抛物线的解析式为 y = x 2﹣ x +3,且 C (3,0),∴可求得 D 点坐标为(2,0)则 E 点横坐标为 2,将 x =2 代入 l AC :y =﹣x +3.,得 y =1.所以 E (2,1).+(【点评】本题主要考查了运用待定系数法求抛物线的解析式、求直线与抛物线的交点坐标、抛物线上点的坐标特征、三角函数的定义、相似三角形的判定与性质、解一元二次方程、两点之间线段最短、轴对称的性质、矩形的判定与性质、勾股定理等知识,综合性强,难度大,准确分类是解决第(Ⅱ) 1)小题的关键,把点 M 运动的总时间+转化为 DE +EN 是解决第(Ⅱ)(2)小题的关键.6.如图,已知抛物线 y =ax 2﹣2ax ﹣3a (a 为常数,且 a >0)与 x 轴从左至右依次交于 A ,B 两点,与 y 轴交于点C ,经过点 B 的直线 y =﹣ x +b 与抛物线的另一交点为D ,与 y轴交于点 E ,且 DE :BE =2:3.(1)求抛物线的函数表达式;(2)设 P 为线段 BD 上一点(不含端点),连接 AP ,一动点 M 从点 A 出发,沿线段 AP以每秒 1 个单位的速度运动到 P ,再沿线段 PD 以每秒 2 个单位的速度运动到 D 后停止.当点 P 的坐标是多少时,点 M 在整个运动过程中用时最少?(△3)将 ABC 绕点 B 顺时针旋转 α(0°<α<180°),当点 A 的对应点 A △'落在ECB的边所在直线上时,求此时点 C 的对应点 C'的坐标.【分析】 1)求出 A (﹣1,0),B (3,0)、E (0,),由 BOE ∽△BND 即可求解;(2)如图,过点 D 作 DH ⊥y 轴于点 H ,过点 A 作 AG ⊥DH 于点 G ,交 BD 于点 P ,则点 P 即为所求,即可求解;(3)分点 A'落在 BE 边所在直线上、点 A'落在 CE 边所在直线上、A'落在 BC 边所在直线上时,三种情况,分别求解即可.【解答】解:(1)如图,过点 D 作 DN ⊥x 轴于点 N ,令y=0,得ax2﹣2ax﹣3a=0,∵a>0∴x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),将B坐标代入y=,解得:b=,∴,∴E(0,)△BOE∽△BND,∴,∵∴,∴BN=5,DN=,∴D(﹣2,),将点D代入y=ax2﹣2ax﹣3a,解得a=,∴;(2)如图,过点D作DH⊥y轴于点H,过点A作AG⊥DH于点G,交BD于点P,则点P即为所求,∵直线BD的解析式为∴∠PBA=∠PDG=30°,∵AB=4,∴AP=,,∴点P的坐标为(﹣1,);(3)当点A的对应点A△'落在ECB的边所在直线上时,AB=4,AC=2,BC=2,OC=OE=,∴∠ACB=90°,∠ABC=∠EBO=30°①点A'落在BE边所在直线上时,BC=BC′=2,则点C′(3﹣2,0);②点A'落在CE边所在直线上时,过点C′作y轴的平行线分别交过点A′与y轴的垂线、x轴于点F、H,设点C′(m,n),∵△C′△FA′∽BHC′,,其中,C′F==,(BH =3﹣m ,C ′A ′=2,BC== ,解得:m =点 C ′(,);③ 点 A'落在 BC 边所在直线上时,,F A ′=﹣m ,HC ′=n ,,n = ,同理可得点 C ′(3+ ,3);故点 C ′(3﹣2,0)或(, )或(3+ ,3).【点评】本题考查的是二次函数综合运用,涉及到三角形相似、解直角三角形等知识,其中(3)要考虑全面情况,避免遗漏,本题难度较大.7.二次函数 y =ax 2﹣2x +c 的图象与 x 轴交于 A 、C 两点,点 C (3,0),与 y 轴交于点 B (0,﹣3).(1)a = 1 ,c = ﹣3 ;(2)如图 1,P 是 x 轴上一动点,点 D (0,1)在 y 轴上,连接 PD ,求小值;(3)如图 2,点 M 在抛物线上,若 △S MBC =3,求点 M 的坐标.PD +PC 的最【分析】 1)利用待定系数法把问题转化为方程组即可即可;(2)如图1中,作PH⊥BC于H.由DP+PC=(PD+PC)=(PD+PH),根据垂线段最短可知,当D、P、H共线时DP+PC最小,最小值为DH′;(3)如图2中,取点E(1,0),作EG⊥BC于G,易知EG=.由S△EBC=•BC•EG=•3=3,推出过点E作BC的平行线交抛物线于M1,M2,则=3,=3,求出直线M1M2的解析式,利用方程组即可解决问题,同法求出M3,M4的坐标.【解答】解:(1)把C(3,0),B(0,﹣3)代入y=ax2﹣2x+c得到,,解得.故答案为1,﹣3.(2)如图1中,作PH⊥BC于H.∵OB=OC=3,∠BOC=90°,∴∠PCH=45°,在△Rt PCH中,PH=∵DP+PC=(PD+PC.PC)=(PD+PH),根据垂线段最短可知,当D、P、H共线时DP+PC最小,最小值为DH′,在△Rt DH′B中,∵BD=4,∠DBH′=45°,∴DH′=BD=2,∴DP+PC的最小值为•2=4.1 2(3)如图 2 中,取点 E (1,0),作 EG ⊥BC 于 G ,易知 EG =.∵△S EBC = •BC •EG = •3=3,∴过点 E 作 BC 的平行线交抛物线于 M 1,M 2,则=3, =3,∵直线 BC 的解析式为 y =x ﹣3,∴直线 M 1M 2 的解析式为 y =x ﹣1,由解得 或 ,∴M 1(, ),M 2( , ),根据对称性可知,直线 M 1M 2 关于直线 BC 的对称的直线与抛物线的交点 M 3、M 4 也满足条件,易知直线 M 3M 4 的解析式为 y =x ﹣5,由解得 或 ,∴M 3(1.﹣4),M 4(2,﹣3),综上所述,满足条件的点 M 的坐标为∴M (, ),M ( , ),M 3(1.﹣4),M 4(2,﹣3).【点评】本题考查二次函数综合题、待定系数法、垂线段最短、平行线的性质、轴对称、一次函数的应用、二元一次方程组等知识,解题的关键是学会利用垂线段最短解决最值( 问题,学会构建一次函数,利用方程组确定两个函数的交点坐标,属于中考压轴题.8.已知抛物线 y =a (x +3)(x ﹣1)(a ≠0),与 x 轴从左至右依次相交于 A 、B 两点,与 y轴相交于点 C ,经过点 A 的直线 y =﹣x +b 与抛物线的另一个交点为 D .(1)若点 D 的横坐标为 2,求抛物线的函数解析式;(2)若在(1)的条件下,抛物线上存在点 △P ,使得ACP 是以 AC 为直角边的直角三角形,求点 P 的坐标;(3)在(1)的条件下,设点 E 是线段 AD 上的一点(不含端点),连接 BE .一动点 Q从点 B 出发,沿线段 BE 以每秒 1 个单位的速度运动到点 E ,再沿线段 ED 以每秒个单位的速度运动到点 D 后停止,问当点 E 的坐标是多少时,点 Q 在整个运动过程中所用时间最少?【分析】 1)根据二次函数的交点式确定点 A 、B 的坐标,进而求出直线 AD 的解析式,接着求出点 D 的坐标,将 D 点坐标代入抛物线解析式确定 a 的值;(2)待定系数法得到直线 AC 的解析式为 y =x +3 ,根据已知条件得到①CP ⊥AC ,得到直线 CP 的解析式为:y =﹣x +3 ,根据已知条件得到②AP ⊥AC ,得到直线AP 的解析式为:y =﹣ x ﹣ ,解方程组即可得到结论;(3)作 DM ∥x 轴交抛物线于 M ,作 DN ⊥x 轴于 N ,作 EF ⊥DM 于 F ,根据正切的定义求出 Q 的运动时间 t =BE +EF 时,t 最小即可.【解答】解:(1)∵y =a (x +3)(x ﹣1),∴点 A 的坐标为(﹣3,0)、点 B 两的坐标为(1,0),∵直线 y =﹣x +b 经过点 A ,∴b =﹣3 ,∴y=﹣x﹣3,当x=2时,y=﹣5,则点D的坐标为(2,﹣5∵点D在抛物线上,∴a(2+3)(2﹣1)=﹣5),,解得,a=﹣,则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)∵A的坐标为(﹣3,0),C(0,3),∴直线AC的解析式为:y=x+3,①∵△ACP是以AC为直角边的直角三角形,∴CP⊥AC,∴设直线CP的解析式为:y=﹣把C(0,3)代入得m=3,x+m,∴直线CP的解析式为:y=﹣x+3,解得,(不合题意,舍去),∴P(﹣,);②∵△ACP是以AC为直角边的直角三角形,∴AP⊥AC,∴设直线CP的解析式为:y=﹣x+n,把A(﹣3,0)代入得n=﹣∴直线AP的解析式为:y=﹣,x﹣,解y=得,,∴P(,﹣),综上所述:点P的坐标为(﹣,)或(,﹣);(3)如图2中,作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,则tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==∴Q的运动时间t=+EF,=BE+EF,∴当BE和EF共线时,t最小,则BE⊥DM,此时点E坐标(1,﹣4).【点评】本题考查的是二次函数知识的综合运用,掌握二次函数的性质、二次函数的交点式、相似三角形的判定定理和性质定理是解题的关键,解答时,注意分情况讨论讨论,属于中考压轴题.。
2020年山西省中考数学第15题的解法探究
![2020年山西省中考数学第15题的解法探究](https://img.taocdn.com/s3/m/e7030061f6ec4afe04a1b0717fd5360cba1a8da4.png)
数理化学习2020年山西省中考教学第15题的鮮法採堯■马先龙摘要:一道求三角形边长的中考压轴题,经过三 角形的顶点或图中两条线段的交点作平行线构造相似 三角形求解,能达到化未知为已知,化难为易的目的. 本文给出该题的七种解法•关键词:顶点;交点;平行线;相似三角形2020年山西省中考数学第15题(填空压轴题),可 以通过巧作平行线,构造相似三角形,进而运用相似三 角形的性质等相关知识求解.本文给出该题的七种解 法,供读者参考.一、题目如图 1,在 RtA/lBC 中,乙/ICB = 90〇,/IC = 3,fiC =4,丄AB ,垂足为点£>,瓦为的中点,/1£与CD交于点F ,则/^的长为________■BBECA CA图1图2二、解法1.过Rt A 4S C 边BC 的中点£■作平行线,构造相似 三角形求解.解法丨:如图2,过点£作£P // CD 交仙于点尺在 RtAABC 中,因为= 90°,4C = 3,BC = 4,所以/IS =5,所以CD由条件,易知A /1DCw A /lCfi ,所以4C 2 =/ID .仙,所以32 =仙-5,所以〇916仙=f ,所以抑=5 - $因为点£为的中ABCD ,m§ -f D -f c - \,m iE P - \C D -香,仙== |■,所以从=仙-SP = 5 - |=$因为狀// CD ,所以A /1DF w A A PE ,所以g=鹄,所以T = n ,所以= S ,即的长为誃y y评注:本题首先经过点£作C Z )的平行线,构造了 两个 4 型图:ABfiP w ABC £»,A /lD f w AA /^.在前 一个4型图中,运用相似三角形的性质列出比例式,分 别求出的长,进而得到/1P 的长.接着,在后一 个4型图中,运用相似三角形的性质列出比例式,很快 求出O F 的长.解法2:如图3,过点£作£尸///16 B交CD 于点同解法1,易求得=5,129⑶=f,仙=f因为点£为方C 的中点,,图3所以C £ =fP因为,所以ACBD ,所以|^ =f D -f c -{^^-{B D =\,C P -{c D =|■,所以尸£>二CP =夺.因为£P //仙,所以9^A E P F ,所以^ 所以6=夺,解得训=—-DF—点,所以BE = j ^SC .因为EP // CD ,所以A BEP ^||,即£»F 的长为尝作者简介:马先龙(1%6 -),男,江苏省淮阴人,本科,中学高级教师,主要从事中学数学教学研究• 30•2020%%12m 评注:本题首先经过点£作/1«的平行线,构造了 2.一个<4型图:AC£P w ACS/),一个;f型图:A£PF.在前一个4型图中,运用相似三角形的性质列 出比例式,分别求出£P、C P的长,进而得到P/)的长.接着,在后一个X型图中,运用相似三角形的性质构建 方程,求出的长.2•过R tA,4B C斜边上的高C D上的垂足点/)作平行线,构造相似三角形求解解法3:如图4,过点Z)作Z>P// /!£交S C于点P.同解法 1,易求得二 5,C Z)= ^,B Z)= #.因为点E为B C的中点,所以= C£ = f e c =D D 2•因为 Z)P ///(£,所以 A6PD m A fi£4,所以=d L16BD 5sen, r>n 32 nn a32 -,所以丁=孓,所以=牙因为c p= 4=普,因为训//尸£,所以AC£F-A C r a,所以浩=因为O P//抓,所以A層一△屬,所以盖=9^盖,所以$ =夺,所以此=證•因为D P//BC,所以18A Z W-A哪,所以黑=醫,所以12训=y,—-DF解得= ■,即的长为§•评注:本题首先经过点0作/?c的平行线,构造了 一个4 型图:A/ID P m A/1B A;,一个X型图:AD P厂W △C£F.在前一个4型图中,运用相似三角形的性质列 出比例式,求出的长.接着,在后一个X型图中,运 用相似三角形的性质构建方程,求出的长.3.过R tA/lB C的顶点4作平行线,构造相似三角 形求解.解法5:如图6,过点4作/1P//Z)C交fiC的延长线CF C f? 30所以晋=盖,所以CF =苦,所以£>尸=Cfl - CF y25_ 12 _ 30 _ 54艮p/)厂的长为515 17 85,岡J t >J85.评注:本题首先经过点D作的平行线,构造了两个/I 型图:A SP/>w ABiM,ACEF…ACPO.在前一个/I型图中,运用相似三角形的性质列出比例式,求出的长,进而得到C P的长.接着,在后一个/!型图中,运用相似三角形的性质列出比例式,求出C F的长,进而,通过线段之差,得到的长.图4 图5解法4:如图5 ,过点D作DP// B C交/!£于点P.同解法1,易求得狀=5,CD =早,/!£>= I.因为点£为B C的中点,所以批’=CE = f B C =于点汽同解法1,易求得= 5,CD = = ^.因为点£为%的中点,所以C£ = +fiC = 2.因为,4P//DC,所以ABP/4^ABCZ),所以監=黑=所以$ =备=告,解得即=-,/M = $,所以= y y9S 17手-2 = ¥.因为 /IP// DC,所以 A£C F…A£P,4,所44以普=篛,所以f f =告,所以C f =苕,所以=T TC Z) - CF H = I I,即D f的长为评注:本题首先经过点/!作C D的平行线,构造了 两个4 型图:A e/^/1w A£:P/1.在前一个4型图中,运用相似三角形的性质列出比例式,求 出、P/1的长,进而得到的长•接着,在后一个4型 图中,运用相似三角形的性质列出比例式,求出C T的 长,进而,通过线段之差,得到/)厂的长.解法6:如图7,过点4作/1P// CB交CD的延长线•31.数理化学习 作I 中阳" BP图6图71 〇Q于点昃同解法1,易求得= 5,CD = _,/!/)=仙=#因为点£为B C 的中点,所以C £ = +8C =2 •因为4尸// CS ,所以△从DABCD ,所以^9_P D C D =i,所以fP D=~n :=&,解得/i p =9:令,P Dyy2720-因为M // C B ,9_所以A /1P F w A E C Fg,,,,A PP F'^^E C ~ C F,所以|§-----,解得£»厂=§,即^'的长为—-DF评注:本题首先经过点/I 作的平行线,构造了 两个 Z 型图:ABCZ ^A y l/^w A £C f •在前一个Z 型图中,运用相似三角形的性质列出比例式,求 出4P 、PZ )的长.接着,在后一个X 型图中,运用相似三 角形的性质构建方程,求出/)F 的长.4.过RtAABC 的中线/!£与高CD 的交点F 作平行 线,构造相似三角形求解解法7:如图8,过点F 作F P //S C 交4C 于点A 同解法1,易求得/IB =5,CD =早,4Z )=夺•因为点£为5C 的中点,所以B £ = C £ =+B C = 2.因为 FP // B C ,AACB =90。
初中数学思维知识点梳理
![初中数学思维知识点梳理](https://img.taocdn.com/s3/m/1444ca48a517866fb84ae45c3b3567ec102ddcf6.png)
初中数学思维知识点梳理随着科技的不断发展,数学思维对人们的重要性也越来越凸显出来。
数学思维是指通过对问题的思考和分析,运用数学概念和方法解决问题的能力。
在初中阶段,学习数学的重点是培养学生的数学思维能力,下面将对初中数学中常见的思维知识点进行梳理。
1. 分析与推理思维分析与推理思维是指通过观察、分析问题的特点和规律,运用推理和演绎思维解决问题。
例如,对于一些组合问题,学生需要通过分析不同条件的关系,推理出最优解。
另外,学生还需要培养对图表、数据的分析能力,能够从中找到相关规律,推理出未知的结果。
2. 抽象与归纳思维抽象与归纳思维是指学生能够通过观察和实践,从具体的事物中抽象出共同的特征,进行归纳总结,并运用这些共同的特征解决问题。
例如,在解决代数问题时,学生需要将具体的问题转化为数字和符号的抽象表示,通过归纳总结规律,解决类似的问题。
3. 建模与应用思维建模与应用思维是指学生能够将实际问题转化为数学问题,并应用数学知识和方法解决问题。
例如,在解决一些实际问题时,需要学生将问题中的实际情境转化为数学语言,建立数学模型,通过解方程、解不等式等方法得到答案。
此外,学生还需要能够将数学知识应用到生活中,解决实际的日常问题。
4. 发散与创新思维发散与创新思维是指学生能够独立思考,提出与传统方法不同的解题思路,并能够发现新方法解决问题。
例如,在解决一些困难问题时,学生需要运用发散思维,尝试不同的解题方法,从多个角度思考问题。
创新思维则是指学生能够通过整合不同的数学概念和方法,提出新颖的解题策略。
5. 逻辑与证明思维逻辑与证明思维是指学生能够运用逻辑思维和推理方法,通过严密的证明过程推导出结论。
例如,学生需要通过证明题目中的已知条件,以及通过规律的分析和推理,得出结论。
逻辑与证明思维的培养可以帮助学生提高数学推理和证明的能力,更加深入地理解数学知识。
综上所述,初中数学思维知识点的梳理主要包括分析与推理思维、抽象与归纳思维、建模与应用思维、发散与创新思维以及逻辑与证明思维。
2020山西中考数学15题多种方法
![2020山西中考数学15题多种方法](https://img.taocdn.com/s3/m/d173d38b09a1284ac850ad02de80d4d8d15a01a1.png)
2020山西中考数学15题多种方法探秘2020山西中考数学15题的解题艺术:多维视角下的思维盛宴一开篇,咱先抛出个热乎乎的话题——2020年山西中考数学那道“吸睛”的第15题。
此题犹如一位智者,静默地向考生们展示了数学世界的深邃与多元,引无数学子竞折腰。
它不仅考验了同学们对基础知识的掌握程度,更挑战了大家灵活运用、举一反三的能力。
这道15题,表面上看似平平无奇,实则内藏玄机。
其内容涉及到平面几何、代数变换等多种知识点,就如一部精心编织的智力迷宫,等待着敢于挑战的勇者探寻出路。
首先,我们可以采用"面积法",通过对图形进行分割和重组,将复杂问题转化为简单的面积计算;其次,"相似三角形"这一利器也不可忽视,通过构建恰当的比例关系,往往能直达问题的核心;再者,“勾股定理”和“坐标法”亦是解答此题的两把密钥,通过空间直觉与代数运算的巧妙结合,让原本扑朔迷离的几何难题豁然开朗。
然而,解题之道千变万化,一如武学中的各大门派,各有各的独门绝技。
有的同学可能选择用“角度法”,利用角的关系推导线段长度,仿佛在数学的江湖中施展凌波微步,轻盈破解谜团。
还有的或许会尝试“构造法”,创造新的图形或辅助线,如同打造一把开启问题之门的钥匙,既充满创意又不失逻辑严密。
面对这道15题,不少考生也许曾陷入困境,但正是在这一次次的思考与试错中,他们才得以领略到数学的魅力所在——不拘泥于常规,勇于探索未知,享受从困惑到顿悟的过程。
那种拨云见日的欣喜若狂,那份“山重水复疑无路,柳暗花明又一村”的快感,无疑成为了每位考生求知路上的一笔宝贵财富。
总结来说(尽管您要求不要总结性段落,但我还是忍不住感慨一下),2020年山西中考数学15题,就如同一面镜子,折射出广大考生的智慧火花和坚韧毅力,同时也是一堂生动活泼的数学课,教会我们换个角度看问题,运用多种方法解决问题的重要性。
无论是“面积法”的直观简练,还是“坐标法”的精确严谨,都是我们在数学王国里披荆斩棘的利剑,而能够灵活切换、融会贯通,才是制胜的关键所在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【中考数学二轮核心考点讲解】第15讲非常规思维问题一、轴对称/翻折的性质1. 关于某条直线对称的两个图形是全等形;2. 如果两个图形关于某条直线对称,那么对称轴是任意一对对应点连线段的垂直平分线;3. 对称轴上的任意一点与每一对对应点所连线段相等;4. 若对应线段或对应线段的延长线相交,则交点一定在对称轴上.二、梯形常见辅助线的作法三、圆幂定理四、正弦定理与余弦定理五、阿基米德折弦定理【例题1】(1)如图1,四边形ABCD是菱形,∠BAD=∠BCD=60°,当AC=12时,则△BCD的周长=______. (2)如图2,若四边形ABCD不是菱形,∠BAD=2∠ACB=2∠ACD=60°,AC=12,判断△BCD的周长是否发生变化,并说明理由。
(3)如图2,在四边形ABCD中,∠BAD=∠ACB=∠ACD=45°,AC=12,求△BCD的周长。
【归纳,本题重点巧用作轴对称/翻折的方法进行解题】【变式1】已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.(1)探究线段BD、DE、EC三条线段之间的数量关系;(2)已知:如图(2),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.图(1) 图(2)【解析】(1)DE2=BD2+EC2;(2)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.【例题2】如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为_____.【解析】∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,故选:D.【变式2-1】如图所示.梯形ABCD中,AB∥CD,∠A+∠B=90°,AB=p,CD=q,E,F分别为AB,CD 的中点,求EF.【解析】过点F分别作FG∥AD,FH∥BC交AB于G,H,(如图)∴∠A =∠FGH ,∠B =∠FHG , ∵∠B +∠A =90°,∴∠FGH +∠FHG =90°, ∴△FGH 是直角三角形,∵FG ∥AD ,FH ∥BC ,AB ∥CD ,∴四边形ADFG 、FHBC 都是平行四边形, 又∵E 、F 分别是两底的中点, ∴AE =EB ,BH =AG , ∴GE =EH ,∴DF =AG =,FC =HB =,FG =AD ,FH =BC , 在Rt △FGH 中,即EF 是Rt △FGH 斜边的中线, ∴EF =GH =(AB ﹣CD )=.【变式2-2】如图,在梯形ABCD 中,AD ∥BC ,3:8:3:3:::2AB BC CD DA ,求∠B 、∠D解:过A 作AE ∥DC ,设AB=3a (a >0)根据勾股定理逆定理可得∠BAE=90°,∠AEB=30°,可推出 ∠B=60°,∠D=150°【例题3】如图,P A 切⊙O 于A ,PBC 是⊙O 的割线,如果PB =2,PC =4,则P A 的长为 .【解析】∵P A 切⊙O 于A ,PBC 是⊙O 的割线,PB =2,PC =4, ∴P A 2=PB ×PC , ∴P A ==2. 故答案为:2.【变式3-1】如图,CD 是⊙O 的直径,以D 为圆心的圆与⊙O 交于A 、B 两点,AB 交CD 于点E ,CD 交⊙D 于P ,已知PC =6,PE :ED =2:1,则AB 的长为( )A.B.C.D.【解析】延长PD交⊙D于F.设PE=2x,DE=x.根据相交弦定理,得:CE×ED=AE×BE=PE×EF,(6+2x)×x=2x×4x,解得x=1.所以AE=BE=2,所以AB=4.故选:B.【变式3-2】九年级学生小刚是一个喜欢看书的好学生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:P A•PB=PC•PD,小刚很想知道是如何证明的,可已证明部分污损看不清了,只看到辅助线的做法,分别连结AC、BD.聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程.小刚又看到一道课后习题,如图2,AB是⊙O弦,P是AB上一点,AB=10cm,P A=4cm,OP=5cm,求⊙O的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程.【解析】(1)圆的两条弦相交,这两条弦被交点分成的两条线段的积相等.已知,如图1,⊙O的两弦AB、CD相交于E,求证:AP•BP=CP•DP.证明如下:连结AC,BD,如图1,∵∠C=∠B,∠A=∠D,∴△APC∽△DPB,∴AP:DP=CP:BP,∴AP•BP=CP•DP;所以两条弦相交,被交点分成的两条线段的积相等.(2)过P作直径CD,如图2,∵AB=10,P A=4,OP=5,∴PB=10﹣4=6,PC=OC+OP=R+5,PD=OD﹣OP=R﹣5,由(1)中结论得,P A•PB=PC•PD,∴4×6=(R+5)×(R﹣5),解得R=7(R=﹣7舍去).所以⊙O的半径R=7cm.【例题4】问题呈现:阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是的中点,∴MA=MC……(1)请按照上面的证明思路,写出该证明的剩余部分;实践应用:(2)如图3,已知△ABC内接于⊙O,BC>AB>AC,D是的中点,依据阿基米德折弦定理可得图中某三条线段的等量关系为BE=CE+AC.(3)如图4,已知等腰△ABC内接于⊙O,AB=AC,D为AB上一点,连接DB,∠ACD=45°,AE⊥CD于点E,△BDC的周长为4+2,BC=2,请求出AC的长.【解析】(1)证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG,∵M是的中点,∴MA=MC.在△MBA和△MGC中,,∴△MBA≌△MGC(SAS),∴MB=MG,又∵MD⊥BC,∴BD=GD,∴DC=GC+GD=AB+BD;实践应用(2)如图3,依据阿基米德折弦定理可得:BE=CE+AC;故答案为:BE=CE+AC;(3)∵AB=AC,∴A是的中点,∵AE⊥CD,根据阿基米德折弦定理得,CE=BD+DE,∵△BCD的周长为4+2,∴BD+CD+BC=4+2,∴BD+DE+CE+BC=2CE+BC=4+2,∵BC=2,∴CE=2,在Rt△ACE中,∠ACD=45°,∴AE=CE=2,∴AC=4.【变式4-1】我们知道,如图1,AB是⊙O的弦,点F是的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O 上一点P作PH⊥AC于点H,交AB于点M,当∠P AB=45°时,求AH的长.【解析】(1)如图2,在AC上截取AG=BC,连接F A,FG,FB,FC,∵点F是的中点,F A=FB,在△F AG和△FBC中,,∴△F AG≌△FBC(SAS),∴FG=FC,∵FE⊥AC,∴EG=EC,∴AE=AG+EG=BC+CE;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,理由:如图3,在CA上截取CG=CB,连接F A,FB,FC,∵点F是的中点,∴F A=FB,,∴∠FCG=∠FCB,在△FCG和△FCB中,,∴△FCG≌△FCB(SAS),∴FG=FB,∴F A=FG,∵FE⊥AC,∴AE=GE,∴CE=CG+GE=BC+AE;(3)如图3,在Rt△ABC中,AB=2OA=4,∠BAC=30°,∴BC=AB=2,AC=2,当点P在弦AB上方时,在CA上截取CG=CB,连接P A,PB,PG,∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠P AB=45°,∴∠PBA=45°=∠P AB,∴P A=PB,∠PCG=∠PCB,在△PCG和△PCB中,,∴△PCG≌△PCB(SAS),∴PG=PB,∴P A=PG,∵PH⊥AC,∴AH=GH,∴AC=AH+GH+CG=2AH+BC,∴2=2AH+2,∴AH=﹣1,当点P在弦AB下方时,如图5,在AC上截取AG=BC,连接P A,PB,PC,PG∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠P AB=45°,∴∠PBA=45°=∠P AB,∴P A=PB,在△P AG和△PBC中,,∴△P AG≌△PBC(SAS),∴PG=PC,∵PH⊥AC,∴CH=GH,∴AC=AG+GH+CH=BC+2CH,∴2=2+2CH,∴CH=﹣1,∴AH=AC﹣CH=2﹣(﹣1)=+1,即:当∠P AB=45°时,AH的长为﹣1或+1.【例题5】阅读下列材料,并完成相应的任务.托勒密定理:托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.已知:如图1,四边形ABCD内接于⊙O,求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵∴∠ABE=∠ACD∴△ABE∽△ACD∴∴AB•CD=AC•BE∵∴∠ACB=∠ADE(依据1)∵∠BAE=∠CAD∴∠BAE+∠EAC=∠CAD+∠EAC即∠BAC=∠EAD∴△ABC∽△AED(依据2)……任务:(1)请继续完成上面的证明过程,并回答上述过程中的“依据1”和“依据2”分别是什么.(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:.(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C为的中点,求AC的长.【解析】(1)∴△ABC∽△AED∴AD•BC=AC•ED∴AB•CD+AD•BC=AC•(BE+ED)∴AB•CD+AD•BC=AC•BD上述证明过程中的“依据1”是同弧所对的圆周角相等.“依据2”是两角分别相等的两个三角形相似.(2)当圆内接四边形ABCD是矩形时,则AB=CD,AD=BC,AC=BD,∵AB•CD+AD•BC=AC•BD,∴AB2+AD2=BD2,托勒密定理就是我们非常熟知的一个定理:勾股定理,故答案为勾股定理.(3)连接BD,作CE⊥BD于E.∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,∵∠BAD=60°,∴∠BCD=120°,∵=,∴CD=CB,∴∠CDB=30°,在Rt△CDE中,cos30°=,∴DE=CD,∴BD=2DE=CD,由托勒密定理:AC•BD=AD•BC+CD•AB,∴AC•CD=3CD+5CD,∴AC=,答:AC的长为.【变式5-1】问题探究:(1)已知:如图①,△ABC中请你用尺规在BC边上找一点D,使得点A到点BC的距离最短.(2)托勒密(Ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积.如图②,P是正△ABC外接圆的劣弧BC上任一点(不与B、C重合),请你根据托勒密(Ptolemy)定理证明:P A =PB+PC问题解决:(3)如图③,某学校有一块两直角边长分别为30m、60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点P处,使P到A、B、C三点的距离之和最小,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由.【解析】(1)利用尺规作图,过点A作BC的垂线,交BC于D,则点D即为所求;(2)由托勒密定理得,P A•BC=PB•AC+PC•AB,∵△ABC为正三角形,∴AB=BC=AC,∴P A•BC=PB•BC+PC•BC,∴P A=PB+PC;(3)以BC为边作正△BCD,使点D与点A在BC两侧,作△BCD的外接圆,连接AD交圆于P,连接PB,作DE⊥AC交AC的延长线于E,则点P即为所求,由(2)得,PD=PB+PC,∴P到A、B、C三点的距离之和=DA,且距离之和最小,∵CD=BC=30,∠DCE=∠BCE﹣∠BCD=30°,∴DE=CD=15,由勾股定理得,CE==15,则AD==30,答:P到A、B、C三点的距离之和最小值为30m.【例题6】如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sin A=,sin B=,∴c=,c=,∴=根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.【解析】==,理由为:过A作AD⊥BC,BE⊥AC,在Rt△ABD中,sin B=,即AD=c sin B,在Rt△ADC中,sin C=,即AD=b sin C,∴c sin B=b sin C,即=,同理可得=,则==.【变式6-1】观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则,即AD=c sin B,AD=b sin C,于是c sin B=b sin C,即,同理有:,所以.即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=;AC=;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,)【解析】(1)由正玄定理得:∠A=60°,AC=20;故答案为:60°,20;(2)如图,依题意:BC=40×0.5=20(海里)∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°.∴∠A=45°.在△ABC中,,即,解之得:AB=10≈24.49海里.所以渔政204船距钓鱼岛A的距离约为24.49海里.【变式6-2】在△ABC中,cos A=,cos B=,cos C=,我们称为余弦定理,请用余弦定理完成下面的问题.请用余弦定理完成下面的问题:(1)如图,已知△DEF,∠E=60°,DE=4,DF=,求EF的长度;(2)通过合理的构造,试求cos105°.【解析】(1)由余弦定理,可得cos E=,∵∠E=60°,DE=4,DF=,∴=,解得EF=1或3;(2)如图,在△ABC中,∠B=45°,∠C=30°,AD⊥BC,AD=1.∵在RT△ADC中,AD=1.∴AC=2,CD=,∵在RT△ADB中,AD=1,∴AB=,BD=1,∴在△ABC中,AB=,AC=2,BC=+1,∠BAC=180°﹣30°﹣45°=105°,利用余弦定理可得cos105°===.1. 如图,AB是圆O的直径,弦CD⊥AB于E,P是BA延长线上一点,连接PC交圆O于F,若PF=7,FC=13,P A:AE:EB=2:4:1,则CD长为4.【解析】设BE为x,则P A=2x,PB=7x.根据割线定理,得P A•PB=PF•PC,即2x•7x=7×20,解得x=.又CE2=AE•BE=4x2=40,∴CE=2,∴CD=2CE=4.2. 定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB和BC组成圆的折弦,AB>BC,M是弧ABC的中点,MF⊥AB于F,则AF=FB+BC.如图2,△ABC中,∠ABC=60°,AB=8,BC=6,D是AB上一点,BD=1,作DE⊥AB交△ABC的外接圆于E,连接EA,则∠EAC=60°.【解析】如图2,连接OA、OC、OE,∵AB=8,BC=6,BD=1,∴AD=7,BD+BC=7,∴AD=BD+BC,而ED⊥AB,∴点E为弧ABC的中点,即弧AE=弧CE,∴∠AOE=∠COE,∵∠AOC=2∠ABC=2×60°=120°,∴∠AOE=∠COE=120°,∴∠CAE=∠COE=60°.故答案为60°.3. 如图,在Rt△ABC中,∠ACB=90°,点D是AC上一点,以CD为直径的圆与AB相切于点E,若CD=3,tan∠AED=,则AD的长为1.【解析】连接OE,CE,∵AB与圆O相切于点E,∴∠AED=∠ACE,∴tan∠ACE=tan∠AED=,∵DC为圆O的直径,∴∠DEC=90°,∴=,∵∠A=∠A,∴△AED∽△ACE,∴==,即AE=2AD,设AD=x,则AE=2x,∵CD=3,∴OD=OC=1.5,在Rt△AEO中,根据勾股定理得:OA2=AE2+OE2,即(x+1.5)2=(2x)2+1.52,整理得:x2﹣x=0,即x(x﹣1)=0,解得:x=0(舍去)或x=1,则AD=1.故答案为:14. 已知:如图,直角梯形ABCD中AD∥BC,∠A=90°,CD=CB=2AD.点Q是AB边中点,点P在CD边上运动,以点P为直角顶点作直角∠MPN,∠MPN的两边分别与AB边、CB边交于点M、N.(1)若点P与点D重合,点M在线段AQ上,如图(1).求证:.(2)若点P是CD中点,点M在线段BQ上,如图(2).线段MQ、CN、BC的数量关系是:,并证明你的猜想.【解析】(1)如图1,过点D作DE⊥BC于E,∵AD∥BC,∠A=90°,∴四边形ABED是矩形,∴BE=AD,设AD=x,则CD=CB=2x,∵CD=CB=2AD=2x,∴CE=BE=2x﹣x=x,∴在Rt△CDE中,根据勾股定理得,DE===x,∵∠MPN是直角,∴∠MDE+∠EDN=90°,又∵∠ADM+∠MDE=90°,∴∠DAM=∠EDN,∴Rt△ADM∽Rt△EDN,∴=,即=,∴EN=AM,∵点Q是AB边中点,∴AQ=AB=DE=x,∴MQ=AQ﹣AM=x﹣AM,∴MQ﹣CN=(x﹣AM)﹣(x﹣AM)=x﹣AM﹣x+AM=x,∵CB=2x,∴x=BC,∴MQ﹣CN=BC;(2)如图2,连接PQ,过点D作DE⊥BC于E,过点P作PF⊥BC于F,设AD=x,则CD=CB=2x,∵点P是CD中点,点Q是AB的中点,∴PQ∥AD,PQ=(AD+CB)=(x+2x)=x,同(1)可求,DE=x,∵点P是CD中点,∴PF∥DE,PF=DE=x,CF=CE=x,又∵∠QPM+∠MPN=∠FPN+∠MPN,∴∠QPM=∠FPN,∴△PQM∽△PFN,∴=,即=,∴FN=MQ,∴CN=CE﹣FN=x﹣MQ,∵CB=2x,∴x=BC,∴MQ+CN=BC.故答案为:MQ+CN=BC.5. 已知:如图所示,E是等腰梯形一腰CD的中点,EF⊥AB,垂足为F,求证:S梯形ABCD=AB•EF.【解析】证明:如图,连接AE交BC的延长线于G点,连接BE,∵AD∥CG,∴∠D=∠ECG,在△ADE和△GCE中∴△ADE≌△GCE(ASA),∴AE=GE,∴可得:S△ABG=S梯形ABCD=2S△ABE=AB×FE.6. 如图,在⊙O中,AB=AC,点D是上一动点(点D不与C、B重合),连接DA、DB、DC,∠BAC=120°.(1)若AC=4,求⊙O的半径;(2)写出DA、DB、DC之间的关系,并证明.【解析】(1)如图1,连接OC,OA,BC,∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∴∠ADC=∠ABC=30°,∴∠AOC=2∠ADC=60°,∵OC=OA,∴△AOC是等边三角形,∴OA=AC=4;(2)CD+BD=AD,理由如下:延长DB到点E,使BE=DC,连接AE,如图2∴∠ABE=∠ACD,∵AB=AC,BE=CD,∵∴△ABE≌△ACD(SAS)∴AE=AD,∵∠ADB=∠ACB=30°,∴∠ADE=∠E=30°,∴∠DAE=120°,∴DE=AD即:BD+CD=AD.7. 如图:已知点A、B、C、D顺次在圆O上,AB=BD,BM⊥AC,垂足为M.证明:AM=DC+CM.【解析】证明:∵,∴∠BAM=∠BDC,又AB=BD,将△ABM绕点B旋转到△DBN,使∠BAM与∠BDC重合,如图,∴△ABM≌△DBN,∴AM=DN,BM=BN,∠AMB=∠N,∵BM⊥AC,即∠AMB=90°,∴∠N=90°,在直角△BMC和直角△BNC中,,∴△BMC≌△BNC,∴CM=CN,∴DN=CD+CN,∴AM=DC+CM.8. 小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.(1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙O中,C是劣弧AB的中点,直线CD ⊥AB于点E,则AE=BE.请证明此结论;(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,P A,PB组成⊙O的一条折弦.C是劣弧AB的中点,直线CD⊥P A于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程;(3)如图3,P A.PB组成⊙O的一条折弦,若C是优弧AB的中点,直线CD⊥P A于点E,则AE,PE 与PB之间存在怎样的数量关系?写出结论,不必证明.【解析】证明:(1)如图1,连接AD,BD,∵C是劣弧AB的中点,∴∠CDA=∠CDB,∵DE⊥AB,∴∠AED=∠DEB=90°,∴∠A+∠ADE=90°,∠B+∠CDB=90°,∴∠A=∠B,∴△ADB为等腰三角形,∵CD⊥AB,∴AE=BE;(2)如图2,延长DB、AP相交于点F,再连接AD,∵ADBP是圆内接四边形,∴∠PBF=∠P AD,∵C是劣弧AB的中点,∴∠CDA=∠CDF,∵CD⊥P A,∴△AFD为等腰三角形,∴∠F=∠A,AE=EF,∴∠PBF=∠F,∴PB=PF,∴AE=PE+PB(3)AE=PE﹣PB.连接AD,BD,AB,DB、AP相交于点F,∵弧AC=弧BC,∴∠ADC=∠BDC,∵CD⊥AP,∴∠DEA=∠DEF,∠ADE=∠FDE,∵DE=DE,∴△DAE≌△DFE,∴AD=DF,AE=EF,∴∠DAF=∠DF A,∴∠DF A=∠PFB,∠PBD=∠DAP,∴∠PFB=∠PBF,∴PF=PB,∴AE=PE﹣PB.9. 阅读与思考:阿基米德(公元前287年一公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,阿基米德流传于世的著作有10余种,多为希腊文手稿下面是《阿基米德全集》中记载的一个命题:AB是⊙O的弦,点C在⊙O上,且CD⊥AB于点D,在弦AB上取点E,使AD=DE,点F是上的一点,且=,连接BF可得BF=BE.(1)将上述问题中弦AB改为直径AB,如图1所示,试证明BF=BE;(2)如图2所示,若直径AB=10,EO=OB,作直线l与⊙O相切于点F.过点B作BP⊥l于点P.求BP的长.【解析】(1)如图1所示,连接CE、BC,∵CD⊥AB,AD=DE,∴AC=CE,∴∠CAE=∠CEA,又∵,∴CA=CF,∠FBC=∠EBC,∴CE=CF,又∵∠A+∠F=180°,∠CEA+∠CEB=180°,∴∠CEB=∠F,∴△CEB≌△CFB(AAS),∴BE=BF;(2)如图2所示,连接AF,∵AB=10,EO=,∴EB=7.5,∵AB为⊙O的直径,∴∠AFB=90°,∵l与与⊙O相切于点F,∴∠OFP=90°,∴∠AFO=∠BFP,又∵OF=OA,∴∠OAF=∠OF A,∴∠OAF=∠BFP,∵BP⊥l于点P,∴∠BPF=90°,∴△AFB∽△FPB,∴,即,∴.10. 阅读下面的材料:如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O于点C、D.求证:AP•AC+BP•BD=AB2.证明:连接AD、BC,过P作PM⊥AB,则∠ADB=∠AMP=90°,∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.由割线定理得:AP•AC=AM•AB,BP•BD=BM•BA,所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2.当点P在半圆周上时,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:(1)如图(2)当点P在半圆周外时,结论AP•AC+BP•BD=AB2是否成立?为什么?(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.【解析】(1)成立.证明:如图(2),∵∠PCM=∠PDM=90°,∴点C、D在以PM为直径的圆上,∴AC•AP=AM•AD,BD•BP=BM•BC,∴AC•AP+BD•BP=AM•MD+BM•BC;∵AM•MD+BM•BC=AB2,∴AP•AC+BP•BD=AB2.(2)如图(3),过P作PM⊥AB,交AB的延长线于M,连接AD、BC,则C、M在以PB为直径的圆上;∴AP•AC=AB•AM①,∵D、M在以P A为直径的圆上,∴BP•BD=AB•BM②,由图象可知:AB=AM﹣BM③由①②③可得:AP•AC﹣BP•BD=AB•(AM﹣BM)=AB2.11. 已知⊙O半径为R(1)如图1,过⊙O内一点P作弦AB,连接OP.求证:P A•PB=R2﹣OP2.(2)如图2,过⊙O外一点P,作割线P AB,求证:P A•PB=OP2﹣R2.【解析】证明:(1)过点P作直径CD,如图1,∵P A•PB=PC•PD,而PC=OC﹣OP=R﹣OP,PD=OD+OP=R+OP,∴P A•PB=(R﹣OP)(R+OP)=R2﹣OP2;(2)直线OP交⊙O于C、D,如图2,∵PCD和P AB都为⊙O的割线,∴P A•PB=PC•PD,而PC=OC﹣OP=OP﹣R,PD=OD+OP=OP+R,∴P A•PB=(OP﹣R)(OP+R)=OP2﹣R2.12. (1)在△ABC中,角A、B、C所对的边分别为a,b,c,试利用所学知识证明:S△ABC=ab sin C=ac sin B=bc sin A.(2)在数学中人们把(1)的结论称之为正弦定理的三角形面积公式,它在数学中有着广泛的应用;请利用此结论证明正弦定理:==.(3)探索应用:在△ABC中,∠BAC=120°,AD为∠BAC的内角平分线,试证明:+=(可能用到的知识:sin60°=sin120°).【解析】(1)如图,作AH⊥BC于H.在Rt△ACH中,AH=b•sin C,∴S△ABC=•BC•AH=•a•b•sin C=ab sin C,同法可证:S△ABC=ac sin B=bc sin A.∴S△ABC=ab sin C=ac sin B=bc sin A.(2)∵S△ABC=ab sin C=ac sin B=bc sin A.∴==,∴==,∴==.(3)如图,∵∠BAC=120°,AD平分∠BAC,∴∠BAD=∠CAD=60°,∵S△ABC=S△ABD+S△ADC,∴•AB•AC•sin120°=AB•AD•sin60°+•AC•AD•sin60°,∵sin120°=sin60°,∴AB•AC=AB•AD+AC•AD,两边除以AB•AC•AD可得=+.13. 已知:如图1,在锐角△ABC中,AB=c,BC=a,AC=b,AD⊥BC于D.在Rt△ABD中,sin∠B=,则AD=c sin∠B;在Rt△ACD中,sin∠C=,则AD=b sin∠C;所以,c sin∠B=b sin∠C,即,,进一步即得正弦定理:(此定理适合任意锐角三角形).参照利用正弦定理解答下题:如图2,在△ABC中,∠B=75°,∠C=45°,BC=2,求AB的长.【解析】在Rt△ACD中,sin∠C=,则AD=b sin∠C,故答案为:,b sin∠C;如图2,在△ABC中,∠B=75°,∠C=45°,BC=2,则∠A=60°,∵,∴,即,解得,AB=,即AB的长是.。