高一人教版必修一三角函数的诱导公式
高一数学(三角函数的诱导公式 2)
3p 3p sin( - a ), cos( - a ), 2 2 3p 3π sin( + a ), cos( +α) 2 2
公式五: 公式五:
sin (
π
2
−α) = cosα −α) = sin α
cos(
π
2
sin(
π
2
+α) = cosα +α) = −sin α
公式六: 公式六:
cos(
π
2
形成结论
kπ 所有诱导公式可统一为 ±α(k ∈Z) 2 的三角函数与α的三角函数之间的关系 的三角函数之间的关系. 的三角函数与 的三角函数之间的关系
它们之间的关系归纳为: 它们之间的关系归纳为:
奇变偶不变,符号看象限. 奇变偶不变,符号看象限.
典例讲解
化简: 例1 化简:
11 π sin(2π -α)cos(π +α)cos( +α)cos( -α) 2 2 9π cos(π -α)sin(3π -α)sin(- π -α)sin( +α) 2
y
π
2 −α 的终边
π
y=x
α的终边
O
x
y
π
2
−α 的终边
(y, P2(y,x) α的终边
O
P1(x ,y) x
),则关 设角α的终边上有一点P1(x,y),则关 π 于直线y=x y=x对称的角 的终边上的点P 于直线y=x对称的角 −α 的终边上的点P2的 2 坐标如何? 坐标如何?
形成结论
2
cos(180 +α) ⋅ sin(α + 360 ) 2. o o sin(-α-180 ) ⋅ cos(-180 -α)
高中三角函数诱导公式知识点
⾼中三⾓函数诱导公式知识点三⾓函数是数学中属于初等函数中的超越函数的函数。
它们的本质是任何⾓的集合与⼀个⽐值的集合的变量之间的映射,那么接下来给⼤家分享⼀些关于⾼中三⾓函数诱导公式知识点,希望对⼤家有所帮助。
⾼中三⾓函数诱导公式知识1公式⼀:设α为任意⾓,终边相同的⾓的同⼀三⾓函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈ztan(2kπ+α)=tanα k∈zcot(2kπ+α)=cotα k∈z公式⼆:设α为任意⾓,π+α的三⾓函数值与α的三⾓函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意⾓α与 -α的三⾓函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利⽤公式⼆和公式三可以得到π-α与α的三⾓函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利⽤公式⼀和公式三可以得到2π-α与α的三⾓函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三⾓函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα⾼中数学三⾓函数的诱导公式学习⽅法⼆推算公式:3π/2±α与α的三⾓函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα⾼⼀数学学习⽅法总结1.先看专题⼀,整数指数幂的有关概念和运算性质,以及⼀些常⽤公式,这公式不但在初中要求熟练掌握,⾼中的课程也是经常要⽤到的。
完整版)三角函数诱导公式总结
完整版)三角函数诱导公式总结三角函数诱导公式与同角的三角函数知识点1】诱导公式及其应用诱导公式是指通过一些特定的公式,将三角函数中的某些角度转化为其他角度,从而简化计算。
以下是常用的诱导公式:公式一:sin(-α) = -sinα;cos(-α) = cosα;tan(-α) = -tanα公式二:sin(π+α) = -sinα;cos(π+α) = -cosα;tan(π+α) =tanα公式三:sin(π-α) = sinα;cos(π-α) = -cosα;tan(π-α) = -tanα公式四:sin(2π-α) = -sinα;cos(2π-α) = cosα;tan(2π-α) = -tanα公式五:sin(π/2-α) = cosα;cos(π/2-α) = sinα公式六:sin(π/2+α) = cosα;cos(π/2+α) = -sinα公式七:sin(-π/2-α) = -cosα;cos(-π/2-α) = -sinα公式八:sin(-π/2+α) = -cosα;cos(-π/2+α) = sinα公式九:sin(α+2kπ) = sinα;cos(α+2kπ) = cosα;tan(α+2kπ) = tanα(其中k∈Z)。
以上公式可以总结为两条规律:1.前四组诱导公式可以概括为:函数名不变,符号看象限。
2.公式五到公式八总结为一句话:函数名改变,符号看象限(原函数所在象限)。
另外,还有一个规律是:奇变偶不变,符号看象限。
也就是说,将三角函数的角度全部化成kπ/2+α或是kπ/2-α的形式,如果k是奇数,那么符号要改变;如果k是偶数,符号不变。
例1、求值:(1)cos(2916π)= ________;(2)tan(-855)= ________;(3)sin(-π)= ________。
例2、已知tan(π+α)=3,求:(2cos(-α)-3sin(π+α))/(4cos(-α)+sin(2π-α))的值。
高中数学三角函数诱导公式有哪些
高中数学三角函数诱导公式有哪些姓名:学校:专业:学号:高中数学三角函数诱导公式有哪些三角函数常用诱导公式公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高1数学-三角函数-诱导公式
高一数学诱导公式知识点1.诱导公式一~四(1)公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,tan(α+2k π)=tan α,其中k ∈Z .(2)公式二:sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α.(3)公式三:sin(-α)=-sin α,cos(-α)=cos α,tan(-α)=-tan α.(4)公式四:sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α.2.诱导公式的记忆2k π+α(k ∈Z ),π+α,π-α,-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简记为“函数名不变,符号看象限”.3.诱导公式五~六(1)公式五:sin ⎝⎛⎭⎫π2-α=cos α;cos ⎝⎛⎭⎫π2-α=sin α. 以-α替代公式五中的α,可得公式六.(2)公式六:sin ⎝⎛⎭⎫π2+α=cos α;cos ⎝⎛⎭⎫π2+α=-sin α. 4.诱导公式的理解、记忆与灵活应用公式一~四归纳:α+2k π(k ∈Z ),-α,π±α的三角函数值,等于角α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名不变,符号看象限”.公式五~六归纳:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名改变,符号看象限”或“正变余、余变正、符号象限定”.六组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.当k 为偶数时,函数名不改变;当k 为奇数时,函数名改变;前面加一个把α视为锐角时原函数值的符号,记忆口诀为“奇变偶不变,符号看象限”.题型一 给角求值【例1】求下列各三角函数值.(1)sin(-83π); (2)cos 196π; (3)sin[(2n +1)π-23π].【过关练习】1.求下列三角函数值.(1)sin ⎝⎛⎭⎫-436π;(2)cos 296π;(3)tan(-855°).2.sin 585°的值为( )A .-22 B.22 C .-32 D.323.cos(-16π3)+sin(-16π3)的值为( ) A .-1+32B.1-32C.3-12 D.3+12题型二 给值求值问题【例1】已知cos(α-75°)=-13,且α为第四象限角,求sin(105°+α)的值.【例2】已知cos ⎝⎛⎭⎫α+π6=35,π2≤α≤3π2,求sin ⎝⎛⎭⎫α+2π3的值.【过关练习】1.已知cos(α-π)=-513,且α是第四象限角,则sin α等于( ) A .-1213 B.1213 C.512 D .±12132.已知sin(5π2+α)=15,那么cos α等于( ) A .-25 B .-15 C.15 D.253.若sin(3π+α)=-12,则cos(7π2-α)等于( ) A .-12 B.12 C.32 D .-324.已知cos(π+α)=-35,π<α<2π,求sin(α-3π)+cos(α-π)的值.5.已知sin ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫α-π3的值.题型三 三角函数式的化简【例1】化简下列各式.(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(2)1+2sin 290°cos 430°sin 250°+cos 790°.【过关练习】1.化简:(1)sin (540°+α)·cos (-α)tan (α-180°);(2)cos (θ+4π)·cos 2(θ+π)·sin 2(θ+3π)sin (θ-4π)sin (5π+θ)cos 2(-π+θ).2.化简:cos (180°+α)sin (α+360°)sin (-α-180°)cos (-180°-α).题型四 利用诱导公式证明恒等式【例1】求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.【过关练习】1.求证:2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2 (π+θ)=tan (9π+θ)+1tan (π+θ)-1.题型五 诱导公式的综合应用【例1】已知f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α). (1)化简f (α);(2)若α是第三象限的角,且cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值; (3)若α=-31π3,求f (α)的值.【过关练习】1.已知角α终边经过点P (-4,3),求cos (π2+α)sin (-π-α)cos (11π2-α)sin (9π2+α)的值.2.已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin (π2-α)-2cos (π2+α)-sin (-α)+cos (π+α)= .【补救练习】1.cos 600°的值为( ) A.32 B.12 C .-32 D .-122.若sin α=12,则cos(π2+α)的值为( ) A.12 B.32 C .-12 D .-323.化简下列各式.(1)sin(-193π)cos 76π; (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).4.已知sin(π+α)=-13.计算: (1)cos ⎝⎛⎭⎫α-3π2; (2)sin ⎝⎛⎭⎫π2+α; (3)tan(5π-α).1.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( )A .1B .2sin 2αC .0D .22.tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为( ) A.m +1m -1 B.m -1m +1C .-1D .1 3.若sin(π-α)=log 8 14,且α∈⎝⎛⎭⎫-π2,0,则cos(π+α)的值为( ) A.53B .-53C .±53D .以上都不对4.已知cos ⎝⎛⎭⎫π6+θ=33,则cos ⎝⎛⎭⎫5π6-θ= .5.已知sin ⎝⎛⎭⎫α-π6=13,则cos ⎝⎛⎭⎫α+π3的值为( ) A .-233 B.233 C.13 D .-136.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α的值等于( ) A .-13 B.13 C .-223 D.2237.已知f (α)=tan (π-α)·cos (2π-α)·sin (π2+α)cos (-α-π),化简f (α)= .1.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫32π-α+2sin(2π-α)的值为( ) A .-2m 3 B.2m 3 C .-3m 2 D.3m 22.已知cos(π2+φ)=32,且|φ|<π2,则tan φ等于( ) A .-33 B.33C .- 3 D.3 3.式子cos 2(π4-α)+cos 2(π4+α)= . 4.若cos(α-π)=-23,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.5.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.6.已知cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2,求sin 3(π-α)+cos (α+π)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α的值.。
高一数学《三角函数的诱导公式(第1课时)》教案示范三篇
高一数学《三角函数的诱导公式(第1课时)》教案示范三篇高一数学《三角函数的诱导公式(第1课时)》教案1教材分析:高一数学《三角函数的诱导公式(第1课时)》是一节基础性课程,课本中主要包含了三角函数诱导公式的定义、常见角度的三角函数值以及相应的推导方法等内容。
教师需要全面了解教材的内容,并对教材的组织结构、难易程度及与之相应的教学资源进行细致的分析和处理。
教学目标:通过本节课的教学,学生应该能够掌握诱导公式的基本概念、运用方法及其相关定理,能够熟练地计算一些常见角度的三角函数值,并能够对不同情况下的三角函数值进行求解。
教学重点:本节课教学的重点主要集中在诱导公式的定义及其相关定理的理解和运用上,同时也需要教师在教学过程中重点关注学生对于诱导公式的记忆和运用情况。
教学难点:本节课教学难点在于对于一些相对较为复杂的求解题目的讲解和理解,尤其是在涉及到三角函数值之间的相互替换问题时需要引导学生注重方法逻辑的分析和运用。
学情分析:本节课所涉及到的内容主要是在初中阶段所学习的三角函数知识的基础上进一步推广和延伸,对于新生来说可能需要花费一定的时间来加深对于三角函数概念的理解和记忆。
教学策略:教师可以通过引入案例以及图像的呈现等方式来促进学生对于三角函数概念以及诱导公式的理解和记忆,同时也需要关注学生在解题过程中的思维逻辑和分析方法的引导。
教学方法:本节课教学方法需要注重理论掌握和实践操作的结合,可以通过练习习题,讲解案例和互动讨论等方式来提高学生的思维能力和实际操作水平。
同时也可以通过个性化的辅导方式注重对于学生的学习经历和个体差异进行分析和处理。
高一数学《三角函数的诱导公式(第1课时)》教案2本节课的教学过程如下:一、导入环节(约5分钟)教学内容:复习三角函数的基本概念,介绍本节课的主题——三角函数的诱导公式。
教学活动:1.学生们通过手写练习纸,复习三角函数的基本公式和图像;2.老师引导学生们思考有哪些角的三角函数值已知,而另外一个角的三角函数值不易计算;3.通过引导,学生们提出了需要学习三角函数的诱导公式的需求;4.老师介绍三角函数的诱导公式的含义和作用,引发学生们兴趣。
人教A版高中数学必修一3三角函数的诱导公式
人教A版高中数学必修一3三角函数的诱导公式三角函数的诱导公式是高中数学学习中的重要内容之一,它们是用来将角度从一个象限中的特定值转换到其他象限中的值的公式。
在数学中,有六个三角函数,包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。
在三角函数的学习过程中,诱导公式扮演了至关重要的角色。
首先,我们来看看正弦函数和余弦函数的诱导公式。
假设角θ在第一象限,则sinθ和cosθ对应的直角三角形以θ为锐角。
我们可以利用直角三角形的性质来得到sin(π-θ)和cos(π-θ)的值。
在这种情况下,我们可以得到如下的诱导公式:sin(π-θ) = sinθcos(π-θ) = -cosθ同样地,如果角θ在第二象限,则sin(π+θ)和cos(θ+π)可以通过直角三角形的性质得到。
根据该性质,我们可以得到:sin(π+θ) = -sinθcos(π+θ) = -cosθ现在,我们考虑tanθ的诱导公式。
tanθ是正切函数,用于表示角θ的切线斜率。
在第一象限,tanθ可以通过直角三角形的定义得到。
然而,在其他象限中,我们需要利用正切函数的周期性质来得到诱导公式。
在这种情况下,我们可以得到:tan(π-θ) = -tanθ接下来,我们来看cotθ的诱导公式。
cotθ是余切函数,表示角θ的余切线斜率。
类似于tanθ,我们可以利用cotθ的周期性质来得到诱导公式。
在这种情况下,我们可以得到:cot(π-θ) = -cotθ最后,我们来看secθ和cscθ的诱导公式。
secθ是正割函数,表示角θ的余切线斜率。
类似于tanθ和cotθ,我们可以利用secθ和cscθ的周期性质来得到诱导公式。
在这种情况下,我们可以得到:sec(π-θ) = -secθcsc(π-θ) = -cscθ通过上述的诱导公式,我们可以将一个角度的三角函数值转换为同一个角度在其他象限中的三角函数值。
这在解三角方程和三角函数应用问题中非常有用。
三角函数-高中数学诱导公式大全
三角函数-高中数学诱导公式大全常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高一数学诱导公式_公式总结
高一数学诱导公式_公式总结常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)一般的最常用公式有:Sin(A+B)=SinA*CosB+SinB*CosASin(A-B)=SinA*CosB-SinB*CosACos(A+B)=CosA*CosB-SinA*SinBCos(A-B)=CosA*CosB+SinA*SinBTan(A+B)=(TanA+TanB)/(1-TanA*TanB) Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
三角函数-高中数学诱导公式大全
常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀规律总结上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
三角函数诱导公式及记忆口诀
诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。
接下来给大家分享三角函数常用的诱导公式及记忆口诀。
三角函数的诱导公式诱导公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)诱导公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα诱导公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα诱导公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαcot(π-α)=-cotα诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotα三角函数诱导公式记忆口诀奇变偶不变,符号看象限。
三角函数诱导公式大全
三角函数诱导公式大全三角函数是数学中重要的一类函数,由于其广泛应用于几何、物理、工程等领域,深受学生和研究人员的关注。
三角函数的诱导公式是求解三角函数值的重要方法,它们能够将某些特定角度的三角函数值转化为其他角度的三角函数值。
本文将介绍三角函数诱导公式的常见形式和应用。
一、基本诱导公式:1. 正弦函数的诱导公式:已知角α,β满足α+β=π/2,则sinα = cosβ。
例如:sin30° = cos(90°-30°) = cos60° = 1/2。
2. 余弦函数的诱导公式:已知角α,β满足α+β=π/2,则cosα = sinβ。
例如:cos45° = sin(90°-45°) = sin45° = 1/√2。
3. 正切函数的诱导公式:已知角α,β满足α+β=π/4,则tanα = cotβ。
例如:tan30° = cot(45°-30°) = cot15°。
4. 余切函数的诱导公式:已知角α,β满足α+β=π/4,则cotα = tanβ。
例如:cot60° = tan(90°-60°) = tan30° = 1/√3。
二、倍角诱导公式:1. 正弦函数的倍角诱导公式:sin2α = 2sinαcosα。
例如:sin60° = 2sin30°cos30° = 2×(1/2)×(√3/2) = √3/2。
cos2α = cos²α - sin²α。
例如:cos60° = cos²30° - sin²30° = (√3/2)² -(1/2)² = 1/4。
3. 正切函数的倍角诱导公式:tan2α = (2tanα) / (1 - tan²α)。
高中数学人教版三角函数之诱导公式一到六知识讲解专项练习
诱导公式(奇变偶不变,符号看象限)公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin (2k π+α)=sin α cos (2k π+α)=cos αtan (2k π+α)=tan α cot (2k π+α)=cot α (其中k ∈Z)公式二:设为任意角,π+α的三角函数的值与的三角函数值之间的关系: sin (π+α)=-sin α cos (π+α)=-cos αtan (π+α)=tan α cot (π+α)=cot α公式三:任意角α与-α的三角函数值之间的关系:sin (-α)=-sin α cos (-α)=cos αtan (-α)=-tan α cot (-α)=-cot α公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan α cot (π-α)=-cot α公式五:与α的三角函数值之间的关系: sin ()=cos α cos ()=sin α tan ()=cot α cot ()=tan α 公式六:与α的三角函数值之间的关系: sin ()=cos α cos ()=-sin α tan ()=-cot α cot ()=-tan α 公式七:与α的三角函数值之间的关系: sin ()=-cos α cos ()=-sin α tan ()=cot α cot ()=tan α ααααπ-2απ-2απ-2απ-2απ-2απ+2απ+2απ+2απ+2απ+2απ-23απ-23απ-23απ-23απ-23公式八:与α的三角函数值之间的关系: sin ()=-cos α cos ()=sin α tan ()=-cot α cot ()=-tan α 公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sin α cos (2π-α)=cos αtan (2π-α)=-tan α cot (2π-α)=-cot α小结:1.诱导公式其作用主要是将三角函数值转化为锐角的三角函数值2.2(),,,2k k Z πααπαπα+∈-±-的三角函数值等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值所在象限的符号. απ±2,απ±23的三角函数值等于α的互余函数值,前面加上一个把α看成锐角时原函数值所在象限的符号.(主要依据是奇、偶指的是2π的奇数倍、偶数倍)练习题1.若cos65°=a ,则sin25°的值是( )2.下列各式正确的是( ))β-αcos(-)βα-cos(.=+B 3.sin(−600°)的值是( )A. −√32 B. −12 C. 12D. √32 απ+23απ+23απ+23απ+23απ+23a A -.a B .2-1.a C 2-1-.a D αcos α-π29sin(.=)A 为第二象限角α ,则0>)α-2π cos(且0,<)α 2π sin(若.+C )α2πcos()2π-αsin(.+=D4.已知31)12sin(=+πα,则7cos()12πα+= .31- 5.已知)2,0(πα∈,54cos =α,则)sin(απ-= .53 6.1717cos()sin()44ππ---=的值为. 7.求值:0750sin = .12 8.已知函数3sin )(xx f π=,则)2014()2()1(f f f +++ =.93记k =-)70cos(0,那么0110tan 等于. 10.求值:)210sin()330(cos 45tan 180cos 120sin 22︒-+︒--︒+︒+︒= .12 11.化简:)2sin()2cos()2cos()cos(απαπαπαπ+--+= .tan α- 12.已知点))6sin(,45(tan ππ-是角θ终边上一点,则)25cos(θπ+=.13.若x x f 3sin )(sin =,则)75(cos 0f.2 14.化简:3sin(3)cos()tan()2cos sin()cos()32ππαπααππαα+⋅-⋅+⋅-⋅- .2- 15.若23)2sin(-=-x π,且ππ2<<x ,则x 等于 .π67 16.在ABC ∆中,已知542sin=A ,则2cos C B += .45 17.求值:ππππ313cos 4tan 713cos )623sin(-+-= .018.在ABC ∆中,若sin cos 22A B C +=,则形状是 .直角三角形 19.已知1cos()33πα+=-,则sin()6πα-= .13 20.设))(42cos()(Z n n x f ∈+=ππ,则(1)(2)(2010)f f f +++.21.已知3tan =α,sin()cos()()sin()sin()n n n Z n n απαπαπαπ+⋅-∈++-的值 .14± 22.求值:251025713sin()cos tan()sin()cos()63436πππππ++-+-- .74- 23.已知⎩⎨⎧≤<-≤=)0(sin 2)0()(2πx x x x x f ,若3)]([0=x f f ,则0x = .233or ππ 24.已知{cos (0)()(1)1(0)x x f x f x x π≤=-+>,则)34(f 的值为 .32 25.化简:23sin ()cos()cos(2)tan()sin ()sin(2)2απαπαπππαααπ+⋅+⋅--+⋅+⋅--= .1 26.若32cos -=α,则cos(4)sin()sin()tan()2πααπαπα-⋅-+⋅-的值为 .23- 27.化简28.化简29.已知sinθ,cosθ是关于x 的方程x 2−ax +a =0(a ∈R)的两个根(1)求cos 3(π2−θ)+sin 3(π2−θ)的值 )α2π9sin()α-π3sin()α-πcos()α-2π11cos()α2πcos()απcos()α-π2sin(+++).2cos()sin()25sin()2cos(αππααππα--+-(2)求tan(π−θ)−1的值tanθ。
高一数学诱导公式知识点和题
高一数学诱导公式知识点和题高一数学诱导公式知识点和题目数学中的诱导公式是指通过一些已知的数学公式或者关系,推导出新的公式或者关系的方法。
这一方法在数学的不同领域都有广泛的应用,尤其在高中数学中,诱导公式的掌握对于解题和理解数学概念非常重要。
本文将介绍几种常见的高一数学诱导公式的知识点和相关题目。
一、三角函数的诱导公式三角函数是高中数学中重要的概念,而三角函数的诱导公式是解三角函数题目的基础。
诱导公式的基本思想是通过已知的三角函数关系求得其他三角函数的值。
以下是几个常见的诱导公式:1. 余弦函数的诱导公式:已知sinθ = a/b,要求cosθ 的值。
根据三角函数之间的关系,我们知道cosθ = √(1 - sin^2θ) = √(1 - a^2/b^2)。
2. 正切函数的诱导公式:已知sinθ = a/b,cosθ = c/b,要求tanθ 的值。
根据三角函数之间的关系,我们知道tanθ = sinθ/cosθ = a/c。
通过掌握这些诱导公式,我们可以在解三角函数题目时转化为我们已知的三角函数进行计算,简化了解题的过程。
二、数列的诱导公式数列是高中数学中的重点内容,通过诱导公式可以推导出数列的通项公式和递推公式,从而更好地理解数列的性质。
以下是几个常见的数列诱导公式:1. 等差数列的诱导公式:已知数列的公差为d,要求第n个数的值an。
根据等差数列的性质,我们知道 an = a1 + (n-1)d。
2. 等比数列的诱导公式:已知数列的公比为q,要求第n个数的值an。
根据等比数列的性质,我们知道 an = a1 * q^(n-1)。
掌握了数列的诱导公式,我们可以通过已知的数列性质计算出数列中任意位置的数值,进一步深入理解数列的规律。
三、平面几何中的诱导公式平面几何是数学中的基础内容,而诱导公式在平面几何中也有着重要的应用。
以下是几个常见的平面几何诱导公式:1. 直角三角形的勾股定理:已知直角三角形的两个直角边长为a和b,要求斜边的长度c。
高1数学-三角函数-诱导公式
高一数学诱导公式知识点1.诱导公式一~四(1)公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,tan(α+2k π)=tan α,其中k ∈Z .(2)公式二:sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α.(3)公式三:sin(-α)=-sin α,cos(-α)=cos α,tan(-α)=-tan α.(4)公式四:sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α.2.诱导公式的记忆2k π+α(k ∈Z ),π+α,π-α,-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简记为“函数名不变,符号看象限”.3.诱导公式五~六(1)公式五:sin ⎝⎛⎭⎫π2-α=cos α;cos ⎝⎛⎭⎫π2-α=sin α. 以-α替代公式五中的α,可得公式六.(2)公式六:sin ⎝⎛⎭⎫π2+α=cos α;cos ⎝⎛⎭⎫π2+α=-sin α. 4.诱导公式的理解、记忆与灵活应用公式一~四归纳:α+2k π(k ∈Z ),-α,π±α的三角函数值,等于角α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名不变,符号看象限”.公式五~六归纳:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名改变,符号看象限”或“正变余、余变正、符号象限定”.六组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.当k 为偶数时,函数名不改变;当k 为奇数时,函数名改变;前面加一个把α视为锐角时原函数值的符号,记忆口诀为“奇变偶不变,符号看象限”.题型一 给角求值【例1】求下列各三角函数值.(1)sin(-83π); (2)cos 196π; (3)sin[(2n +1)π-23π].【过关练习】1.求下列三角函数值.(1)sin ⎝⎛⎭⎫-436π;(2)cos 296π;(3)tan(-855°).2.sin 585°的值为( )A .-22 B.22 C .-32 D.323.cos(-16π3)+sin(-16π3)的值为( ) A .-1+32B.1-32C.3-12 D.3+12题型二 给值求值问题【例1】已知cos(α-75°)=-13,且α为第四象限角,求sin(105°+α)的值.【例2】已知cos ⎝⎛⎭⎫α+π6=35,π2≤α≤3π2,求sin ⎝⎛⎭⎫α+2π3的值.【过关练习】1.已知cos(α-π)=-513,且α是第四象限角,则sin α等于( ) A .-1213 B.1213 C.512 D .±12132.已知sin(5π2+α)=15,那么cos α等于( ) A .-25 B .-15 C.15 D.253.若sin(3π+α)=-12,则cos(7π2-α)等于( ) A .-12 B.12 C.32 D .-324.已知cos(π+α)=-35,π<α<2π,求sin(α-3π)+cos(α-π)的值.5.已知sin ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫α-π3的值.题型三 三角函数式的化简【例1】化简下列各式.(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(2)1+2sin 290°cos 430°sin 250°+cos 790°.【过关练习】1.化简:(1)sin (540°+α)·cos (-α)tan (α-180°);(2)cos (θ+4π)·cos 2(θ+π)·sin 2(θ+3π)sin (θ-4π)sin (5π+θ)cos 2(-π+θ).2.化简:cos (180°+α)sin (α+360°)sin (-α-180°)cos (-180°-α).题型四 利用诱导公式证明恒等式【例1】求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.【过关练习】1.求证:2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2 (π+θ)=tan (9π+θ)+1tan (π+θ)-1.题型五 诱导公式的综合应用【例1】已知f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α). (1)化简f (α);(2)若α是第三象限的角,且cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值; (3)若α=-31π3,求f (α)的值.【过关练习】1.已知角α终边经过点P (-4,3),求cos (π2+α)sin (-π-α)cos (11π2-α)sin (9π2+α)的值.2.已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin (π2-α)-2cos (π2+α)-sin (-α)+cos (π+α)= .【补救练习】1.cos 600°的值为( ) A.32 B.12 C .-32 D .-122.若sin α=12,则cos(π2+α)的值为( ) A.12 B.32 C .-12 D .-323.化简下列各式.(1)sin(-193π)cos 76π; (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).4.已知sin(π+α)=-13.计算: (1)cos ⎝⎛⎭⎫α-3π2; (2)sin ⎝⎛⎭⎫π2+α; (3)tan(5π-α).1.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( )A .1B .2sin 2αC .0D .22.tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为( ) A.m +1m -1 B.m -1m +1C .-1D .1 3.若sin(π-α)=log 8 14,且α∈⎝⎛⎭⎫-π2,0,则cos(π+α)的值为( ) A.53B .-53C .±53D .以上都不对4.已知cos ⎝⎛⎭⎫π6+θ=33,则cos ⎝⎛⎭⎫5π6-θ= .5.已知sin ⎝⎛⎭⎫α-π6=13,则cos ⎝⎛⎭⎫α+π3的值为( ) A .-233 B.233 C.13 D .-136.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α的值等于( ) A .-13 B.13 C .-223 D.2237.已知f (α)=tan (π-α)·cos (2π-α)·sin (π2+α)cos (-α-π),化简f (α)= .1.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫32π-α+2sin(2π-α)的值为( ) A .-2m 3 B.2m 3 C .-3m 2 D.3m 22.已知cos(π2+φ)=32,且|φ|<π2,则tan φ等于( ) A .-33 B.33C .- 3 D.3 3.式子cos 2(π4-α)+cos 2(π4+α)= . 4.若cos(α-π)=-23,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.5.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.6.已知cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2,求sin 3(π-α)+cos (α+π)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
������ ∈ ������
������������������(������ + ������������������) = ������������������ ������
探究 给定一个角������ y
(1)角������ + ������、������ − ������
的终边与角������的终边有
(1)������������������ ������������������
������
������������������
������������������ ������
==���������������������������������(������(���������+���������������+���������)������������������)
������������������
������
������
������������������(− ������ ) = ������������������(−������������ − ������ − ������) = ������������������(−������ − ������)
y
观察上面式子,上下
2排公式有什么关系?
������������(−������, ������) ������ − ������ ������������ (������, ������)
公式四
������
������
������������������( ������ − ������) = ������������������ ������
������������ (−������, −������)
������������������(������ + ������) = −������ ������������������(������ + ������) = ������������(������ ≠ ������)
思考
������������������ ������ = ������
什么关系?它们的三角
函数之间有什么关系?
������
������ + ������ O
x
������ + ������的终边与角������ 的终边关于原点对称
y
������������������ ������ = ������
������������������ ������ = ������
公式三
公式四
������������������( −������) = − ������������������ ������ ������������������( −������) = ������������������ ������
������������������( ������ − ������) = ������������������ ������ ������������������(������ −������) = ������������������ ������
x
的终边关于原点对称
������ − ������的终边与角������ 的终边关于������轴对称
思考������������������ ������ = ������
������������������ ������ = ������
������������������ ������ = ������
������
������
������������������( ������ − ������) = ������ ������������������(������ −������) = −������ ������������������( ������ − ������) = − ������
������ + ���������������简��� ���记��� ∈为������:, −函������数, ������名±不������的变三,角符函号数看值象,限等于������的同名 函数值,前面注加意上:一把个������把看���成���看一成个锐锐角时角原函数值的符号
练习 例1 利用公式求下列三角函数值:
探究 给定一个角������ y
(1)角������ + ������、������ − ������
的终边与角������的终边有 什么关系?它们的三角
������ − ������
函数之间有什么关系?
������
������ + ������的终边与角������
������ + ������ O
������������������( −������) = −������ ������������������( −������) = ������
观察上面式子,上下 2排公式有什么关系?
������������������ ������ = ������
������
������
������������������( −������) = − ������
1.3 三角函数的诱导公式
思考 ������������������(− ������������������) 如何求解?
������
������������������
������������
������������
������������������(− ������ ) = ������������������(−������������ + ������ ) = ������������������ ������
−
������ ������)
= ������������������(− ������) ������
= ������������������ ������ ������
= ������
������
(2)������������������(− ������������������)
������
������������������( −������) = − ������������������ ������
������������������( ������ − ������) = ������������������ ������
你能用简洁的语言概括一下公式
一~四吗?他们的作用是什么?
������������ = − ������������������ ������ ������ = −������������������(������ + ������)
������ = ������
������ ������
= −(− ������������������ ������) = ������
������������������(������ + ������) = −������
������������������ ������ = ������ ������������������(������ + ������) = −������
������������������ ������ ������������������(������
������������������
������������
������������������(− ������ ) = ������������������(−������������ + ������ )
������������������
������������
������������������(−
������������
O
−������ −������ x
������������(������, −������
公式一 ������������������(������ + ������������������) = ������������������ ������ ������������������(������ + ������������������) = ������������������ ������ ������������������(������ + ������������������) = ������������������ ������
公式一
������������������(������ + ������������������) = ������������������ ������
������������������(������ + ������������������) = ������������������ ������
������������ (������, ������) ������������������ ������ = ������������(������ ≠ ������)
������ + ������
−������
������
������
−������
O ������
x ������������������(������ + ������) = −������
= − ������������������(������ − ������)
������
= −(− ������������������ ������) = ������
������
������
������������������(������������������������)