二极管伏安特性曲线的研究
二极管的伏安特性曲线实验报告
二极管的伏安特性曲线实验报告实验报告实验名称:二极管的伏安特性曲线实验实验目的:1. 理解半导体材料的特性2. 理解二极管的基本结构和工作原理3. 掌握二极管的伏安特性曲线及其应用实验原理:二极管是一种半导体元器件,由p型半导体和n型半导体构成。
p型半导体具有正电荷载流子(空穴),n型半导体具有负电荷载流子(电子)。
当p型半导体接触n型半导体时,形成p-n结,随着外加正向电压的增加,p-n结区域中的空穴和电子被推向p区和n区,p-n结中的电阻变小,形成导通状态;当外加反向电压增加时,p-n结中的电阻增大,形成截止状态。
实验步骤:1. 将二极管连接在电路实验板上,通过万用表测量二极管的端子正向电压和反向电压;2. 在电源电压恒定条件下,分别改变二极管的正向电压和反向电压,记录相应的电路电流值;3. 根据实验数据,绘制二极管的伏安特性曲线图。
实验结果:通过实验数据,绘制出了二极管的伏安特性曲线,曲线呈现出明显的“S”型。
当正向电压为0.6-0.7V时,二极管开始导通,电路电流急剧增加;反向电压逐渐增加时,电路电流基本保持稳定。
二极管的正向导通电压和反向击穿电压分别为0.6-0.7V和80-100V。
实验分析:由伏安特性曲线可知,当二极管处于正向电压时,p-n结中的空穴和电子呈现出向前方向移动的趋势,形成电流;而当二极管处于反向电压时,p-n结中的电费载流子被压缩,在p-n结中形成尖锐的电场,电子与空穴受到强烈的吸引而向内流动,从而产生少量的逆向电流。
实验结论:通过本次实验,我们得到了二极管的伏安特性曲线图,理解并掌握了二极管的基本结构和工作原理,这对我们深入理解半导体材料和电子元器件的特性及其应用具有重要意义。
二极管伏安特性曲线的理论分析
二极管伏安特性曲线的理论分析
二极管伏安特性曲线是指二极管在不同的电流和电压条件下的特性曲线,它可以反映出二极管的工作特性。
首先,我们来看一下二极管伏安特性曲线的基本结构。
二极管伏安特性曲线的基本结构是一条从左上角到右下角的抛物线,其中左上角的点代表二极管的开关状态,右下角的点代表二极管的饱和状态。
接下来,我们来看一下二极管伏安特性曲线的理论分析。
二极管伏安特性曲线的理论分析是基于二极管的物理结构和工作原理,以及电路中的电压和电流的变化。
首先,我们来看一下二极管的物理结构和工作原理。
二极管是一种由两个半导体层组成的电子器件,其中一个半导体层是N 型半导体,另一个半导体层是P型半导体。
N型半导体层和P 型半导体层之间形成了一个受控的电子通道,当电压施加到N 型半导体层和P型半导体层之间时,电子通道就会打开,从而使电流流过。
其次,我们来看一下电路中电压和电流的变化。
当电压施加到N型半导体层和P型半导体层之间时,电流会随着电压的增加而增加,但是当电压超过一定的阈值时,电流就会达到饱和状态,此时电流不再随着电压的增加而增加。
最后,我们来看一下二极管伏安特性曲线的理论分析。
根据二极管的物理结构和工作原理,以及电路中电压和电流的变化,我们可以得出二极管伏安特性曲线的理论分析:当电压施加到N型半导体层和P型半导体层之间时,电流会随着电压的增加而增加,但是当电压超过一定的阈值时,电流就会达到饱和状态,此时电流不再随着电压的增加而增加,从而形成了从左上角到右下角的抛物线形的二极管伏安特性曲线。
以上就是二极管伏安特性曲线的理论分析,它可以反映出二极管的工作特性,为电子工程师提供了重要的参考依据。
伏安特性的测定实验报告-伏安特性曲线实验报告思考与讨论
电工实验报告本学院:班级:学号:姓名:指导教师:成绩:、实验名称:伏安特性的测定二、实验目的:1、熟悉电工综合实验装置;2、掌握几种元件的伏安特性的测试方法,加深对线性电阻元件、非线性电阻元件伏安特性的理解;3、掌握实际电压源使用调节方法;4 、学习常用直流电工仪表和设备的使用方法。
三、实验原理电路元件的伏安特性一般用该元件上的电压U 与通过该元件的电流I 之间的函数关系U=f(I) 来表示。
伏安特性以U和I分别作为纵坐标和横坐标绘制成曲线,即伏安特性曲线或外特性曲线。
电路元件的伏安特性可以用电压表、电流表测定,称为伏安测量法(伏安表法) 。
四、实验步骤及任务1、测试线性电阻R 的伏安特性曲线电路电路图:图1-1-2 测试线性电阻R 的伏安特性仿真截图:2, 测试二极管的伏安特性线路电路图:图1-1-4 测试二极管的伏安特性五、思考题:用电压表和电流表测量元件的伏安特性时,电压表可接在电流表之前或之后,两者对测量误差有何影响?实际测量时应根据什么原则选择?(画图并说明)答:伏安特性曲线,有电流表外接和内接。
当电流表外接时:由于电压表的分流作用,有欧姆定律可知,R测<R真。
所以分流越小,误差越小,所以这个适合用来测量小电阻。
即R<<Rv. 当电流表内接时:由于电流表的分压作用,由欧姆定律,R测>R真。
所以分压越少,误差越小,所以这个适合用来测量大电阻。
R>>RA.六、实验结论及收获实验结论以及数据处理:1,线性电阻的的伏安特性曲线为过原点的一条直线,也说明它为线性电阻,电压变化与电流变化是正比关系。
2,二极管的伏安特性曲线为一条曲线,所以为非线性元件。
由图可见,当加二极管上正向电压较小时,正向电流几乎等于0,只有当其两端电压超过某一数值时,正向电流才明显增大。
在此实验数据中加正向电压<0.7V 时, 电流随电压变化较缓慢,当电压超过0.7V时,电流随电压变化很快。
电路实验四实验报告_二极管伏安特性曲线测量
电路实验四实验报告实验题目:二极管伏安特性曲线测量实验内容:1.先搭接一个调压电路,实现电压1-5V连续可调;2.在面包板上搭接一个测量二极管伏安特性曲线的电路;3.测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好;4.给二极管测试电路的输入端加Vp-p=3V、f=100Hz的正弦波,用示波器观察该电路的输入输出波形;5.用excel或matlab画二极管的伏安特性曲线。
实验环境:数字万用表、学生实验箱(直流稳压电源)、电位器、整流二极管、色环电阻、示波器DS1052E,函数发生器EE1641D、面包板。
实验原理:对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。
为了测量二极管的伏安特性曲线,我们用直流电源和电位器搭接一个调压电路,实现电压1-5V连续可调。
调节电位器的阻值,可使二极管两端的电压变化,用万用表测出若干组二极管的电压和电流值,最后绘制出伏安特性曲线。
电路图如下所示:用函数发生器EE1641D给二极管施加Vp-p=3V、f=100Hz的交流电源,再用示波器观察二极管的输入信号波形和输出信号波形。
电路图如下:实验记录及结果分析:得到二极管的伏安特性曲线如下:结论:符合二极管的特性,即开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。
2. 示波器显示二极管的输入输出波形如下图(通道1为输入波形,通道2为输出波形):分析:二极管在交流电中呈现单向导通性,所以当电源信号为正向电压时,二极管导通,呈现正弦波形信号,当电源信号为反向电压时,二极管处于截止状态,此时无信号输出,如波形图所示。
实验总结:这一次的实验,让我们更加深入地了解的二极管的性质,通过实验的方式,加深了对二极管伏安特性的理解。
2021年二极管伏安特性曲线的测绘实验报告
一、名称: 二极管伏安特征曲线测绘二、目:依据二极管非线性电阻元件特点, 选择试验方案, 设计适宜检测电路, 选择配套仪器, 测绘出二极管元件伏安特征曲线。
三、仪器:μ)、万用表、电阻箱、直流稳压电源、直流电流表、直流微安表(500A滑线电阻、单刀开关、导线、待测二极管等。
四、原理:对二极管施加正向偏置电压时, 则二极管中就有正向电流经过(多数载流子导电), 伴随正向偏置电压增加, 开始时, 电流随电压改变很缓慢, 而当正向偏置电压增至靠近二极管导通电压时(锗管为0.2V左右, 硅管为0.7V左右), 电流急剧增加, 二极管导通后, 电压少许改变, 电流改变都很大。
对上述二种器件施加反向偏置电压时, 二极管处于截止状态, 其反向电压增加至该二极管击穿电压时, 电流猛增, 二极管被击穿, 在二极管使用中应尽力避免出现击穿观察, 这很轻易造成二极管永久性损坏。
所以在做二极管反向特征时, 应串联接入限流电阻, 以防因电流过大而损坏二极管。
二极管伏安特征示意图如图:五、步骤:(1)反向特征测试电路。
二极管反向电阻值很大, 采取电流表内接测试电路能够降低测量误差。
测试电路见图, 变阻器设置700Ω。
(2)正向特征测试电路。
二极管在正向导通时, 展现电阻值较小, 拟采取电流表外接测试电路, 电源电压在0~10V内调整, 变阻器开始设置700Ω, 调整电源电压, 以得到所需电流值。
图2-3 二极管反向特征测试电路 图2-4 二极管正向特征测试电路六、数据:反向伏安曲线测试数据表U V()μI A()电阻计算值()KΩ正向伏安曲线测试数据表正向伏安曲线测试数据 ()I mA ()U V 电阻计算值()KΩ 电阻修正值()Ω 注意: 试验时二极管正向电流不得超出20mA七、数据处理:电阻修正值电流表外接修正公式:6(10)V VU R R U I R ==Ω-反向伏安曲线正向伏安曲线。
测量二极管的伏安特性实验报告
测量二极管的伏安特性实验报告实验报告课程名称:大学物理实验(1)实验名称:测量二极管的伏安特性学院:XX学院专业:XX 班级:XX 组号:XX 指导教师:XX报告人学号:XX 实验时间:年月日星期实验地点:科技楼903实验报告提交时间:一、实验目的了解晶体二极管的导电特性并测定其伏安特性曲线。
二、实验原理晶体二极管的导电特性:晶体二极管无论加上正向或反向电压,当电压小于一定数值时只能通过很小的电流,只有当电压大于一定数值时,才有较大电流出现,相应的电压可以称为导通电压。
正向导通电压小,反向导通电压相差很大。
当外加电压大于导通电压时,电流按指数规律迅速增大,此时,欧姆定律对二极管不成立。
实验线路图如下:注意:无论毫安表内接还是外接,实验数据都应该进行修正:毫安表外接时应该进行电流修正,内接时应该进行电压修正。
由于实验用毫伏表内阻很大(约100~1000多万欧姆),按照上述接法,数据修正简单:正向时伏特表的电流可以忽略;反向时,伏特表的电流始终保持0.0006mA,很容易修正。
假如将毫安表内接,则无论正向反向,每一个数据都要做电压修正,并且每个修正值都不同,给实验带来很大麻烦。
三、实验仪器晶体二极管、电压表、电流表、电阻箱、导线、电源、开关等。
四、实验内容和步骤1、测定正向特性曲线打开电源开关,把电源电压调到最小,然后接通线路,逐步减小限流电阻,直到毫安表显示1.9999mA,记录相应的电流和电压。
然后调节电源电压,将电压表的最后一位调节成0,记录电压与电流;以后按每降低0.010V测量一次数据,直至伏特表读数为0.5500V为止。
此时,正向电流不需要修正。
2、测定反向特性曲线把线路改接后,接通线路,将电源电压调到最大,逐步减小限流电阻,直到毫安表显示1.9999mA为止,记录相应的电流和电压。
然后调节电源电压或者限流电阻,再将电流调节为1.8006、1.6006、1.4006……mA情况下,记录相应的电压;其中0.0006mA为伏特表的电流,此为修正电流,记录电流时应该自行减去。
二极管伏安特性曲线实验报告
二极管伏安特性曲线实验报告实验名称:二极管伏安特性曲线实验报告实验目的:通过对二极管的伏安特性进行测量,了解二极管的基本特性和工作原理。
实验器材:二极管、直流电源、万用表、电阻箱实验原理:二极管是一种半导体元件,具有单向导电性。
二极管正向导通电压较低,反向击穿电压较高。
在正向电压下,二极管两端间的电流与电压之间的关系可以用伏安特性曲线表示。
伏安特性曲线是指在不同电流下,二极管正向电压与两端电压之间的关系。
实验步骤:1. 将二极管连接在直流电源的正极与万用表的红色表笔之间,将直流电源的负极与万用表的黑色表笔之间连接一个小电阻,相当于串联一个电阻作为二极管的负载。
2. 通过调节直流电源的输出电压,从 0V 开始逐渐增加正向电压,每增加 0.1V 记录一组电压和电流数值,直到二极管正向电流较大时停止测量。
3. 将直流电源的极性反向,继续测量二极管反向电压下的电流和电压数值。
实验结果:正向电流(mA)正向电压(V)反向电流(uA)反向电压(V)0 0.00 0 0.000.2 0.10 0 0.101.0 0.20 0 0.205.0 0.30 0 0.3010.0 0.40 0 0.4030.0 0.50 0 0.5050.0 0.60 0 0.6070.0 0.70 0 0.7080.0 0.80 0 0.8090.0 0.90 0 0.90100.0 1.00 2.5 1.00150.0 1.10 27.1 1.10200.0 1.20 204.3 1.20250.0 1.30 614.7 1.30300.0 1.40 3485.8 1.40350.0 1.50 22382.9 1.50实验分析:根据伏安特性曲线,当二极管正向电压超过其正向击穿电压时,电流会急剧增加。
在正向电流较小时,正向电压与电流呈线性关系。
但当正向电流达到一定值时,二极管会进入饱和状态,使电流增加速度变慢,且电压变化范围也会明显缩小。
二极管伏安特性曲线实验报告
二极管伏安特性曲线实验报告二极管伏安特性曲线实验报告引言:二极管是一种常见的电子元件,它具有非线性的伏安特性。
通过研究二极管的伏安特性曲线,可以更好地理解二极管的工作原理和特性。
本实验旨在通过实验测量,绘制二极管的伏安特性曲线,并分析其特点和应用。
实验过程:1. 实验器材准备:本实验所需的器材有:二极管、直流电源、电阻、万用表、导线等。
2. 实验步骤:(1)将二极管连接到电路中,注意极性的正确连接。
(2)将直流电源接入电路,调节电压为适当的范围,如0-10V。
(3)通过万用表测量电压和电流的数值,并记录下来。
(4)调节直流电源的电压,重复步骤(3),得到不同电压下的电流数值。
(5)根据测量数据,绘制二极管的伏安特性曲线。
实验结果:根据实验测量的数据,我们得到了二极管的伏安特性曲线。
在实验中,我们发现了以下几个重要的特点:1. 正向特性:当二极管的正向电压增加时,电流呈指数增长。
这是因为在正向电压作用下,二极管的P区域和N区域之间的势垒逐渐减小,导致电子和空穴的扩散增加,形成电流。
当正向电压超过二极管的导通电压时,电流急剧增加,二极管进入导通状态。
2. 反向特性:当二极管的反向电压增加时,电流基本保持为零,直到达到反向击穿电压。
反向击穿电压是指当反向电压达到一定程度时,势垒电场足以使电子和空穴发生碰撞,形成电流。
在反向击穿电压下,二极管的电流急剧增加,导致二极管受损。
3. 饱和电流和饱和电压:在正向特性中,当二极管的正向电压继续增大时,电流并不会无限增加,而是趋于饱和。
饱和电流是指当正向电压增大到一定程度时,二极管的电流达到最大值并趋于稳定。
饱和电压是指在饱和状态下,二极管的电压维持在一个相对稳定的值。
实验分析:通过实验测量得到的二极管的伏安特性曲线,我们可以进一步分析其特点和应用。
1. 整流器:二极管的正向特性使其成为一种理想的整流器。
在交流电路中,通过使用二极管,可以将交流电信号转换为直流电信号。
二极管的伏安特性实验报告
二极管的伏安特性实验报告二极管的伏安特性实验报告引言:二极管是一种常见的电子元件,具有非常重要的应用价值。
它是一种具有单向导电性的电子器件,能够将电流限制在一个方向上流动。
本实验旨在通过测量二极管在不同电压下的电流变化,探究其伏安特性,并分析其在电子设备中的应用。
实验装置:本实验所需的装置主要包括:二极管、直流电源、电阻、万用表等。
实验过程:1. 首先,将二极管与直流电源和电阻连接起来,组成一个电路。
2. 调节直流电源的电压,从0V开始逐渐增加,每次增加一个固定的电压值。
3. 在每个电压值下,使用万用表测量二极管的电流,并记录下来。
4. 根据测得的电压和电流数据,绘制伏安特性曲线图。
实验结果:根据实验数据绘制的伏安特性曲线图显示,二极管的伏安特性呈现出明显的非线性特性。
在正向偏置时,电流随着电压的增加而迅速增大;而在反向偏置时,电流保持在一个极低的水平上。
讨论与分析:1. 正向偏置时,二极管的导通特性使得电流能够顺利通过。
当电压增加到二极管的正向压降(正向电压)时,电流急剧增加,呈指数增长。
这是由于二极管内部的PN结在正向偏置下形成了导电通道,电流能够自由地流动。
这种特性使得二极管在电子设备中广泛应用于整流、放大、开关等电路中。
2. 反向偏置时,二极管的导通特性被阻断,电流无法通过。
在反向电压下,二极管的电流仅仅是由于少量的载流子扩散而产生的,因此电流非常微弱。
这种反向电流被称为反向饱和电流。
反向偏置使得二极管具有了单向导电性,可以用于保护电路免受反向电压的损害。
3. 二极管的伏安特性曲线图中,还可以观察到一个重要的参数——二极管的截止电压。
截止电压是指当二极管的电压低于一定值时,电流基本上为零。
截止电压是二极管的重要参数之一,它决定了二极管在电路中的工作状态和特性。
结论:通过本次实验,我们深入了解了二极管的伏安特性及其在电子设备中的应用。
二极管具有单向导电性,能够将电流限制在一个方向上流动。
它在正向偏置下具有导通特性,在反向偏置下具有阻断特性。
二极管伏安特性曲线的研究
二极管伏安特性曲线的研究一、设计目的电路中有各种电学元件,如晶体二极管和三极管,光敏和热敏元件等。
人们通常需要了解它们的伏安特性,以便正确的选用它们。
通常以典雅为横坐标,电流为纵坐标作出元件的电压——电流关系曲线,叫做该元件的伏安特性曲线。
该设计通过测量二极管的伏安特性曲线,了解二极管的导电性的实质,使我们在设计电路时能够准确的选择二极管。
二、设计原理1、二极管的伏安特性(1)二极管的伏安特性方程为:式中,Is为反向饱和电流,室温下为常数;u为加在二极管两端电压;UT 为温度的电压当量,当温度为室温27℃时,UT≈26mV。
当PN结正向偏置时,若u≥UT,则上式可简化为:IF≈ISeu/UT。
当PN结反向偏置时,若︱u︱≥UT,则上式可简化为:IR≈-IS。
可知- IS 与反向电压大小基本无关,且IR越小表明二极管的反向性能越好。
对二极管施加正向偏置电压时,则二极管中就有正向电流通过,随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近其导通电压时,电流急剧增加,二极管导通后,电压少许变化,电流的变化都很大。
对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。
所以在做二极管反向特性时,应串入限流电阻,以防因反向电流过大而损坏二极管。
二极管伏安特性示意图1、2所示。
图1锗二极管伏安特性图2硅二极管伏安特性2、二极管的伏安特性曲线下面我们以锗管为例具体分析,其特性曲线如图3所示,分为三部分:图3 半导体二极管(硅管)伏安特性:(a)正向特性①OA段为死区,此时正偏电压称为死区电压Uth,硅管0.5V,锗管0.1V。
②AB段为缓冲区。
③BC段为正向导通区。
当u≥Uth时,二极管才处于完全导通状态,导通电压UF基本不变。
硅管为0.7~0.8V,一般取0.7V,锗管为0.2~0.3V,通常取0.2V。
二极管伏安特性曲线实验报告
二极管伏安特性曲线实验报告一、实验目的1、深入理解二极管的单向导电性。
2、掌握测量二极管伏安特性曲线的方法。
3、了解二极管伏安特性曲线的特点及其影响因素。
二、实验原理二极管是一种由 P 型半导体和 N 型半导体组成的电子元件,具有单向导电性。
当二极管正向偏置时(P 区接高电位,N 区接低电位),电流容易通过;反向偏置时(P 区接低电位,N 区接高电位),电流极小。
二极管的伏安特性方程为:\I = I_S (e^{\frac{U}{nV_T}} 1)\其中,\(I\)是通过二极管的电流,\(I_S\)是反向饱和电流,\(U\)是二极管两端的电压,\(n\)是发射系数,\(V_T\)是温度的电压当量(约为 26 mV,在室温下)。
在正向偏置时,随着电压的增加,电流迅速增大;在反向偏置时,只有很小的反向饱和电流,当反向电压达到一定值(反向击穿电压)时,二极管被击穿,电流急剧增加。
三、实验仪器1、直流电源2、电压表(量程:0 20 V)3、电流表(量程:0 100 mA)4、电阻箱5、二极管6、导线若干四、实验步骤1、按照实验电路图连接好电路。
将二极管、电阻箱、电流表和直流电源串联,电压表并联在二极管两端。
2、调节直流电源,使输出电压为 0 V。
然后逐渐增加电压,每次增加 01 V,记录相应的电流值,直到电压达到 10 V 左右(正向偏置)。
3、接着,将电源极性反转,使二极管反向偏置。
从 0 V 开始逐渐增加反向电压,每次增加 1 V,记录对应的电流值,直到反向电压达到20 V 左右。
4、在实验过程中,要注意电流表和电压表的量程选择,避免超过量程损坏仪器。
五、实验数据记录与处理1、正向特性数据|电压(V)| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 |08 | 09 | 10 ||::|::|::|::|::|::|::|::|::|::|::|::||电流(mA)| 000 | 015 | 050 | 120 | 250 | 500 | 850 |1500 | 2200 | 3000 | 4000 |2、反向特性数据|电压(V)| 00 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 |170 | 180 | 190 | 200 ||::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::||电流(μA)| 000 | 010 | 020 | 030 | 050 | 080 | 120 |180 | 250 | 350 | 500 | 700 | 1000 | 1500 | 2000 | 2500 |3000 | 3500 | 4000 | 4500 | 5000 |3、绘制伏安特性曲线以电压为横坐标,电流为纵坐标,分别绘制出二极管的正向和反向伏安特性曲线。
实验二十四二极管伏安特性的测定
实验三十二 二极管伏安特性的测定【实验目的】1.熟悉测量伏安特性的方法。
2.了解二极管的正、反向伏安特性。
【实验仪器】直流电源、电压表、毫安表、微安表、滑线变阻器、二极管、开关等。
【实验原理】通过一个元件的电流随元件上的外加电压而变化,这种变化关系如以电压为横坐标、电流为纵坐标可得出其关系曲线,该曲线就称为这一元件的伏安特性曲线。
通过元件中的电流I 随外加电压U 的变化可用公式I =U/R 表示,其中比例系数1/R 就是该元件的电导。
如果R 为定值,则伏安特性曲线是一条直线,具有这类性质的元件称为线性电阻元件,它们是严格服从欧姆定律的;如果R 不是定值,而是随着外加电压的变化而变化,则伏安特性是一条曲线,这类元件称为非线性电阻元件。
常用的晶体二极管就是非线性电阻元件,其阻值不仅与外加电压的大小有关,而且还与方向有关。
当二极管正极接高电势端,负极接低电势端时,电流从二极管的正极流入,负极流出,这时的伏安特性称为正向特性;反之,称为反向特性。
用伏安法测量二极管的特性曲线时,线路一般采用两种方法,即外接法(见图32-1a )和内接法(见图32-1b )。
由于测量电表内阻的存在,不管采用哪一种方法都会给测量结果带来系统误差。
下面将分析误差产生的原因和大小,以便在测量时合理选择线路接法。
在图32-1a 所示的外接法中,由于采用这一接法而产生的系统误差就是电压表中流过的电流I V ,并且VD D D V R U I I I I =∆=-= (32-1) 或写成相对误差的形式VD D D R R I I =∆ (32-2) 显然,电压表内阻R V 越大,二极管内阻R D 越小,电流测量产生的系统误差相对越小。
在图32-1b 所示的内接法中,由此而带来的系统误差就是电流表两端的电压U A ,并且D A D D A I R U U U U =∆=-= (32-3)其相对误差为DA D D R R U U =∆ (32-4) 显然,电流表内阻R A 越小,二极管内阻R D 越大,电压测量产生的系统误差相对越小。
二极管伏安特性曲线测量实验报告
二极管伏安特性曲线测量实验报告
二极管伏安特性曲线测量实验是衡量并分析二极管运放特性的一种重要方式,本实验
旨在观察和测量二极管运放原理工作性质,探究一极管伏安特性曲线,测量有源阻抗及输
出特性,并不断改进电路设计,达到理想的电路特性。
实验过程:
1、准备实验设备:万用表、恒流源、可调电阻、电容、Power控制仪、二极管。
2、根据实验报告要求使用万用表调节可调电阻的电阻值,并使用恒流源将合适的电
流流入二极管。
3、进行实验,将二极管的输入和输出特性记录下来,并绘制出二极管伏安特性曲线,分析其特性。
4、修改电路,将实验结果与理论值对比,进行性能指标的比较,确定电路的优劣,
并不断改进电路设计,最终达到理想的电路特性。
本次实验测量了二极管伏安特性曲线,从实验结果可以看出,随着施加偏压的增加,
二极管控制区渐渐变大,放大系数逐渐增大,电路稳定性和可靠性也提高,功耗较低,噪
声低无失真,符合要求,可实现正常工作、放大及信号处理等功能。
实验可视化表明,原
理性能良好,各指标符合设计要求,将有助于更好更准确地测量电路特性,改进电路的设计,提高电路性能。
测量二极管的伏安特性实验报告
V
+
-
I
反向截止区
正向导通
正向连接 V
+
-
I
反向连接
反向击穿区 PN结的伏安特性曲线
2、电表的连接和接 入误差 要同时测得二极管的电流和二极管两端的电压,无论用安培表内 接还是安培表外接 总会产生接入误差,所以要尽量减小误差,并给予修正。
安培表内接电压表测得的电压是二极管和安培表的电压之和,所 以安培表的内阻越 小,测量结果越准确。
六、数据记录:
1、 二极管的正向特性
端电压 U/V 0.6778 I/mA(外接) 1.9999 端电压 U/V 0.6270 I/mA(外接) 0.3160 端电压 U/V 0.5670 I/mA(外接) 0.0443
mA 表外接时二极管的正向特性 0.6770 0.6670 0.6570 1.9355 1.3378 0.9276 0.6170 0.6070 0.5970 0.2230 0.1584 0.1135
备注:
指导教师签字: 年月日
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。 2、教师批改学生实验报告时间应在学生提交实验报告时间后 10 日内。
反向特性: 当二极管的正极接在低电位端,负极接在高电位端,此时二极管 中几乎没有电流流 过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时, 仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端 的反向电压增大到某 一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这 种状态称为二极管的 击穿。
四、实验仪器:
电阻元件 V—A 特性实验仪 DH6102(安培表、电压表、变阻器、直流电源、二极 管等。)
物理实验二极管特性曲线
(2)试验设备及仪器
(3)实验原理
(4)实验步骤及内容
(5)实验数据及处理
实验目的:
(1)学习电学基本测量方法/步骤及注意事项 (2)测绘二极管的I~V曲线 (3)学习作图法及最小二乘法处理数据 (4)学习滑动变阻器的分压特性和限流特性 (5)学习电表的内/外接条件和方法
注意的要点:
(1). 测晶体二极管正向伏安特性时,毫安表读数 不得超过二极管允许通过的最大正向电流值,加在 晶体二极管上的电压不得超过管子允许的最大电压 值。
如图所示, 曲线某一点 切线的斜率 表示在该电 压下二极管 的电阻大小
如图中P点 斜率: K=Tan∂=Rx
0.300
I(mA)
0.04 0.03
0.02
P
0.01
∂
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
U(v)
误差分析:
伏安采用法 测试二极管正向特性曲线时采用电流表外接法,会产生电流的测量误差,这些 接入误差属于系统误差,必须对测量结果加以 修正,操作起来比较繁琐。对于半导体整流二极管,正向导通电流为 mA数量级,而反向电流仅为数量级,所以在选择测量电路和仪表 时必须加以考虑
(4).用作图法处理数据,在图纸上画出二极管正向I-V曲 线图。
数据记录表:
非线性电阻(二极管正向)的数据记录表
电压表量程:0~10.0V
电流表量程:0~25mA
U(V)
0.1 0.2
0.3
0.4
0.5
0.6
0.7
0.8
I(mA)
0
0
0
0
0.001 0.003 0.023 0.190
实验数据处理:
用伏安法测定二极管的特性曲线
1§4.4 用伏安法测定二极管的特性曲线目的1.掌握分压器和限流器的使用方法; 2.用伏安法研究非线性元件的特性; 3.学会设计电路并能正确选择测量仪器. 设计要求1.写出设计公式及实验仪器; 2.画出测量线路3.测量二极管的正向伏安特性曲线;4.用线性回归的方法求二极管电流的经验公式)1(-=d aV e D e I I ; 5.掌握内接法和外接法的适用条件.设计提示电流表内接法和外接法适用条件假设待测电阻两端的电压为V ,流过它的电流为I ,并且都已经测量到了,则其电阻值R x 可由下式计算若使用的电流表的内阻R A 很小,而电压表的内阻R V 非常大,则上式计算的结果是正确的,否则必须考虑R A 或R V 对测量结果的影响.图4.4-1为测量未知电阻R x 的电路.当开关K 接“1”时,电流表和R x 都接在电压表的测试端之内,称为电流表的内接法.因此,有关系式)(X A R R I V +=成立,或写成如果用IV表示待测电阻值,则产生的系统误差为由于电压表的读数大于电阻两端的电压值而产生正的系统误差,由(4.4-1)式计算出来的阻值比实际的R X 大.若R A 值已值,就可以计算E 1的大小.当开关K 和“2”接通时,电流表接在电压表的测试端之外,称为电流表的外接法,因此有关系式)14.4(-=IV R xR AR X图4.4-1A X R IVR -=)24.4(1-=-=XAX XR RR R I VE )1(VX X X V R R R V R V R V I +=+=2或写成)1(VX X R R I V R +=.如果用I V作为待测电阻值,则产生的系统误差为由于通过电流表的电流比通过R X 的电流大而产生负的系统误差.所以,测量值比实际电阻值小,若R V 值已知,则可以计算E 2的大小.对于给定的未知电阻,到底是采用内接法还是外接法,这要取决于测量精确度的要求和E 1、E 2的大小.如果E 1和E 2都比较小,但1E >2E ,则可采取外接法,反之采用内接法. 将(4.4-2)和(4.4-3)式比较可的出内接法与是外接法的使用条件.当1E <2E 时,采用内接法,即可化成02>--V A X A X R R R R R ,解关于R X 的一元二次不等式可以得到内接法的使用条件,即如果电压表的内阻远大于电流表的内阻(即R V >>R A ),则(4.4-4)式表明,待测电阻值大于电流表内阻与电压表内阻的几何中项时,采用内接法所产生的系统误差较小,若R X 与V A R R 接近时,两种方法都可以,否则采用外接法.思考题1.怎样用伏安法测定电流表或电压表的内阻?)34.4(112-+-=-=XVXXR R R R I VE XV XAR R R R +≤11)4(212V A A A X R R R R R ++>)44.4()2(21-=+>V A V A A X R R R R R R。
实验四 二极管伏安特性曲线测量
实验四二极管伏安特性曲线测量一、实验目的:研究二极管的伏安特性曲线二、实验原理和电路图:1.实验原理:晶体二极管是常见的非线性元件。
当对晶体二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。
开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压,电流明显变化。
在导通后,电压变化少许,电流就会急剧变化。
当加反向偏置电压时,二极管处于截止状态,但不是完全没有电流,而是有很小的反向电流。
该反向电流随反向偏置电压增加得很慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二极管PN结被反向击穿。
2.电路图:1)静态的:(图1)2)动态的:(图2)三、实验环境:面包板(SYB—130)、直流电源面板(IT6302)、台式万用表、Tek 示波器、发光二极管、电阻、导线、四、实验步骤1、在面包板上搭接一个测量二极管伏安特性曲线的电路如图1所示。
2、用万用表测量二极管两端的电压及其通过的电流,调节滑动变阻器使二极管两端电压不同,形成多组数据,记录数据。
3、用excel或matlab画二极管的伏安特性曲线。
4、在面包板上搭接一个电路如图1所示。
5、给二极管测试电路的输入端加Vp-p=6.5V、f=1500Hz的正弦波,用示波器观察该电路的输入输出波形。
6、并将二极管的正负极倒过来,用示波器观察此时该电路的输入输出波形。
五、数据记录和分析1、通直流电源是二极管两端的电压及其通过的电流:分析:当对发光二极管加上正向电压大约1.4伏时,则有正向电流流过二极管,且随正向偏置电压的增大而增大。
开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压,电流明显变化。
2、动态电路的结果1)通正向电流时二极管两端的电压V 0.178 0.786 1.431 1.654 1.659 1.665 1.669 1.688 1.695 1.707 1.832 mA0.012 0.796 0.861 0.962 1.03 1.469 1.641 1.828 7.899峰值(Vpp ) 周期T (频率f )最大值(Vmax ) 最小值(Vmin ) 占空比 Duty输入 6.16V 664us 2.84V -3.32V 52.08% 输出5.20V664us1.88V-3.32V 57.35%2)通反向电流时二极管两端的电压(在做实验时按了反相)3)通正向电流时电阻两端的电压峰值(Vpp ) 周期T (频率f )最大值(Vmax ) 最小值(Vmin ) 占空比 Duty输入 6.16V 664us 2.88V -3.28V 52.22% 输出5.20V664us1.88V-3.32V 56.88%峰值(Vpp ) 周期T (频率f )最大值(Vmax ) 最小值(Vmin ) 占空比 Duty输入 6.16V 664us 2.88V -3.28V 52.07% 输出960mV664us920mV-40.0mV 22.55%4)通反向电流时电阻两端的电压。
三问二极管伏安特性曲线的形成原因
三问二极管伏安特性曲线的形成原因
二极管伏安特性曲线是一张准确的实验图,它表示了二极管的特性,它可以帮助我们更好地了解和使用二极管。
下面我们将讨论二极管伏安特性曲线的形成原因。
首先,二极管的伏安特性曲线是由二极管的内部特性决定的。
二极管内部包括一个电子控制器,它在一定的电压和电流下运行。
当输入电压超过一定的阈值时,电子控制器会开始放电,从而产生电流。
此外,当输入电压越大,就会产生更多的电流,因此,二极管的伏安特性曲线的形状是一条正比例的线。
其次,二极管的伏安特性曲线受到二极管材料的影响。
二极管的材料包括硅、硒酸钙、锗等,这些材料有不同的电阻特性,因此会影响二极管的伏安特性曲线。
例如,硅材料的导电性能较好,因此其伏安特性曲线越陡峭,反之,硒酸钙材料的导电性能较差,所以其伏安特性曲线越平缓,锗材料的伏安特性曲线也会发生相应的变化。
此外,二极管的伏安特性曲线也受到二极管的结构影响。
在二极管的结构中,最主要的影响因素是电子控制器的设计。
电子控制器的设计会直接影响二极管的特性,例如,电子控制器的设计如果比较灵敏,二极管的伏安特性曲线就会陡峭,反之,电子控制器的设计如果比较稳健,二极管的伏安特性曲线就会平缓。
综上所述,二极管伏安特性曲线形成的原因主要有三个:一是二极管内部特性决定的;二是材料的不同会影响二极管的特性;三是二极管的结构会影响二极管的特性。
因此,了解和掌握二极管的伏安特性曲线,有助于我们更好地利用二极管。
二极管伏安特性曲线的研究
二极管伏安特性曲线的研究贵州师范大学2021级模拟电子技术基础二极管伏安特性曲线的研究2021级电子信息科学与技术第十组 2021/8/25指导老师:王麒实验目的用Mutisim软件研究二极管的伏安特性,并得出二极管的伏安特性曲线实验原理通过设计电路模拟出对二极管施加正向电压或反向电压的情况,从而得到测量的特殊点将二极管的正向及反向特性描述出来。
实验电路电路如下图所示模拟后的现象(正向施加电压)更改试验参数后可得到如图的图像模拟后的现象(正向施加电压)模拟后的现象(反向施加电压)实验现象(1)对二级管正向施加电压时,刚开始的时候电流随电压的变化很小,而随着电压的逐渐增大到某个值时,电流急剧增加,且近似按指数形式增加;(2)对二级管反向施加电压时,刚开始的时候电流无变化,而当电压增加到某个值时,电流急剧增加。
现象分析(1)当外加正向电压时,随着电压U的逐渐增加,电流I也增加。
但在开始的一段,由于外加电压很低,外电场不能克服PN结的内电场,半导体中的多数载流子不能顺利通过阻挡层,所以这时的正向电流极小,当外加电压超过死区电压以后,外电场强于PN结的内电场,多数载流子大量通过阻挡层,使正向电流随电压很快增长;(2)当外加反向电压时,所加的反向电压加强了内电场对多数载流子的阻挡,所以二极管中几乎没有电流通过。
但是这时的外电场能促使少数载流子漂移,所以少数载流子形成很小的反向电流。
由于少数载流子数量有限,只要加不大的反向电压就可以使全部少数载流子越过PN结而形成反向饱和电流,继续升高反向电压时反向电流几乎不再增大。
当反向电压增大到某一值以后,反向电流会突然增大,这时二极管失去单向导电性。
感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二极管伏安特性曲线的研究
一、实验目的
通过对二极管伏安特性的测试,掌握锗二极管和硅二极管的非线性特点,从而为以后正确设计使用这些器件打下技术基础。
二、伏安特性描述
对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时(锗管为0.2V左右,硅管为0.7V左右),电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。
对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。
所以在做二极管反向特性时,应串入限流电阻,以防因反向电流过大而损坏二极管。
二极管伏安特性示意图1-1,1-2
图1-1锗二极管伏安特性图1-2硅二极管伏安特性
三、实验设计
图1-3 二极管反向特性测试电路
1、反向特性测试电路
二极管的反向电阻值很大,采用电流表内接测试电路可以减少测量误差。
测试电路如图1-3,电阻选择510Ω
2、正向特性测试电路
二极管在正向导道时,呈现的电阻值较小,拟采用电流表外接测试电路。
电源电压在0~10V内调节,变阻器开始设置470Ω,调节电源电压,以得到所需电流值。
图1-4 二极管正向特性测试电路
四、数据记录
见表1-1、1-2
表1-1 反向伏安曲线测试数据表
U(V)
I(A
u)
电阻计算值(KΩ)
表1-2 正向伏安曲线测试数据表
正向伏安曲线测
试数据I(A
m)
U(V)
电阻直算值(KΩ)
注意:实验时二极管正向电流不得超过20mA。
五、实验讨论
1、二极管反向电阻和正向电阻差异如此大,其物理原理是什么?
2、在制定表1-2时,考虑到二极管正向特性严重非线性,电阻值变化范围很大,在表1-2中加一项“电阻修正值”栏,与电阻直算值比较,讨论其误差产生过程。