COMSOL-Multiphysics仿真步骤
comsol多物理场耦合仿真流程
comsol多物理场耦合仿真流程英文回答:COMSOL is a powerful software tool that allows for the simulation of multiphysics phenomena. It enables the coupling of different physical fields, such as heat transfer, fluid flow, and structural mechanics, toaccurately model complex systems and analyze their behavior. The simulation process in COMSOL typically involves several steps, which I will outline below.1. Geometry Definition: The first step is to define the geometry of the system being simulated. This can be done using the built-in CAD tools in COMSOL or by importing a geometry file from an external software. The geometryshould accurately represent the physical system and include all necessary details.2. Physics Setup: Once the geometry is defined, thenext step is to set up the physics of the problem. Thisinvolves selecting the relevant physics modules in COMSOL that correspond to the physical phenomena being simulated. For example, if we are simulating a heat transfer problem, we would select the Heat Transfer module.3. Boundary Conditions and Material Properties: After setting up the physics, we need to define the boundary conditions and material properties. This includes specifying the temperature, pressure, or any other relevant parameters at the boundaries of the system, as well as assigning appropriate material properties to the different regions of the geometry.4. Meshing: Once the physics and boundary conditions are set up, we need to generate a mesh. The mesh divides the geometry into smaller elements, allowing for the numerical solution of the governing equations. The quality of the mesh is important for the accuracy and efficiency of the simulation.5. Solver Settings: After meshing, we need to specify the solver settings. This includes selecting theappropriate solver algorithm, specifying convergence criteria, and setting up any additional solver parameters. The solver is responsible for solving the equations that describe the physical phenomena in the system.6. Running the Simulation: With all the setup steps completed, we can now run the simulation. COMSOL will solve the equations numerically and provide the results for the specified variables of interest. These results can include temperature distributions, velocity profiles, stress distributions, or any other quantities that were defined during the setup.7. Post-processing: Once the simulation is complete, we can analyze and visualize the results using the post-processing tools in COMSOL. This allows us to gain insights into the behavior of the system and evaluate its performance. We can create plots, animations, or export the results for further analysis.In summary, the simulation process in COMSOL involves defining the geometry, setting up the physics and boundaryconditions, meshing the geometry, specifying solver settings, running the simulation, and post-processing the results. This iterative process allows for the accurate modeling and analysis of multiphysics phenomena.中文回答:COMSOL是一款强大的软件工具,可以用于多物理场的仿真。
COMSOL Multiphysics安装指南说明书
COMSOL Multiphysics安装指南C O M S O L M u l t i p h y s i c s安装指南© 1998–2021 COMSOL 版权所有受列于/patents的专利保护;您也可以参见 COMSOL Desktop“文件”菜单中的“帮助 >关于 COMSOL Multiphysics”,获取可能适用的美国专利的详细列表。
专利申请中。
本文档和本文所述的程序根据《COMSOL 软件许可协议》(/comsol-license-agreement)提供,且仅能按照许可协议的条款进行使用或复制。
COMSOL、COMSOL 徽标、COMSOL Multiphysics、COMSOL Desktop、COMSOL Compiler、COMSOL Server 和LiveLink 为COMSOL AB 的注册商标或商标。
所有其他商标均为其各自所有者的财产,COMSOL AB 及其子公司和产品不与上述商标所有者相关联,亦不由其担保、赞助或支持。
相关商标所有者的列表请参见/trademarks。
版本:COMSOL 6.0联系信息请访问“联系我们”页面/contact,以提交一般查询或搜索我们的联系地址和电话号码。
您也可以访问全球销售办事处页面/contact/offices,获取更多地址和联系信息。
如需联系技术支持,请访问 COMSOL Access 页面/support/case,创建并提交在线请求表单。
其他常用链接包括:•技术支持中心:/support•产品下载:/product-download•产品更新:/support/updates•COMSOL 博客:/blogs•用户论坛:/forum•活动:/events•COMSOL 视频中心:/videos•技术支持知识库:/support/knowledgebase文档编号:CM010002目录前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9安装介质选项 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9系统要求 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10先前安装版本 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11软件许可协议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11许可证类型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11许可证管理工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14COMSOL Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15在 Windows 上安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16通过 Internet 安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16下载并安装 COMSOL 软件 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19通过 USB 闪存驱动器安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20运行 COMSOL 安装程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20移除(卸载)COMSOL 安装程序 . . . . . . . . . . . . . . . . . . . . . 43安装软件更新 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44自动安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45产品更新和库更新 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46LiveLink™for Excel®安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47LiveLink™ for AutoCAD®安装. . . . . . . . . . . . . . . . . . . . . . . 47LiveLink™ for Inventor®安装 . . . . . . . . . . . . . . . . . . . . . . . . 48LiveLink™ for PTC® Creo® Parametric™安装 . . . . . . . . . 49LiveLink™for PTC® Pro/ENGINEER®:更改安装路径 . . 50| 3LiveLink™for Revit®安装 . . . . . . . . . . . . . . . . . . . . . . . . . . .51 LiveLink™for Solid Edge®安装 . . . . . . . . . . . . . . . . . . . . . .52 LiveLink™for SOLIDWORKS®安装 . . . . . . . . . . . . . . . . . . .53集群安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54在 Windows 上安装许可证管理器 . . . . . . . . . . . . . . . . . . . .57什么是 FlexNet®许可证管理器? . . . . . . . . . . . . . . . . . . . . . .57 FlexNet®许可证管理器的系统要求 . . . . . . . . . . . . . . . . . . . . .58 FlexNet®许可证管理器软件组件 . . . . . . . . . . . . . . . . . . . . . . .58 FlexNet®许可证管理器文档 . . . . . . . . . . . . . . . . . . . . . . . . . . .59许可证文件和许可证特征 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59安装许可证管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67启动许可证管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69确认许可证管理器正在运行 . . . . . . . . . . . . . . . . . . . . . . . . . . .70启动 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . . . . . . . . .71更改许可证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71在 IPV6 网络中使用 COMSOL . . . . . . . . . . . . . . . . . . . . . . . . .72许可证错误故障排除 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72在 Windows 上运行 COMSOL Multiphysics . . . . . . . . . . . .73“开始”菜单中的 COMSOL Multiphysics 文件夹 . . . . . . . .73启动使用课堂许可证套装的 COMSOL Multiphysics . . . . . . .74手动创建桌面快捷方式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75在客户端/服务器模式下运行 COMSOL Multiphysics . . . . . .76在批处理模式下运行 COMSOL Multiphysics . . . . . . . . . . . . .78多核设置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .794 |在集群上运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . 80在云上运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . . 82运行 COMSOL Multiphysics with MATLAB . . . . . . . . . . . . . 82运行 COMSOL Multiphysics with Simulink . . . . . . . . . . . . . . 83在 macOS 上安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84通过 Internet 安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84下载并安装 COMSOL 软件 . . . . . . . . . . . . . . . . . . . . . . . . . . . 87通过 USB 闪存驱动器安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . 88运行 COMSOL 安装程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89自动安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89移除(卸载)COMSOL 安装程序 . . . . . . . . . . . . . . . . . . . . . 89产品更新和案例库更新 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90更改 MATLAB®安装路径 . . . . . . . . . . . . . . . . . . . . . . . . . . . 90在 macOS 上安装许可证管理器 . . . . . . . . . . . . . . . . . . . . . 91 FlexNet 许可证管理器软件组件 . . . . . . . . . . . . . . . . . . . . . . . 91FlexNet 许可证管理器文档 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91许可证文件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92安装许可证管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92启动许可证管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94确认许可证管理器正在运行 . . . . . . . . . . . . . . . . . . . . . . . . . . 95启动 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . . . . . . . . 95更改许可证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95在 IPV6 网络中使用 COMSOL . . . . . . . . . . . . . . . . . . . . . . . . 96许可证错误故障排除 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96| 5在 macOS 上运行 COMSOL Multiphysics . . . . . . . . . . . . . .97 COMSOL 应用程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97从终端窗口运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . .98运行课堂许可证套装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98在客户端/服务器模式下运行 COMSOL Multiphysics . . . . . .98在批处理模式下运行 COMSOL Multiphysics . . . . . . . . . . . .100多核设置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101在集群上运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . . .101在云上运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . .102在 Linux 上安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103通过 Internet 安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103下载并安装 COMSOL 软件 . . . . . . . . . . . . . . . . . . . . . . . . . .105从 DVD 安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106通过 USB 闪存驱动器安装 . . . . . . . . . . . . . . . . . . . . . . . . . . .107运行 COMSOL 安装程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . .107用于查看文档的 Web 浏览器 . . . . . . . . . . . . . . . . . . . . . . . . .108自动安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109移除(卸载)COMSOL 安装程序 . . . . . . . . . . . . . . . . . . . . .109产品更新和案例库更新 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109更改 MATLAB®安装路径 . . . . . . . . . . . . . . . . . . . . . . . . . . .110集群安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110在 Linux 上安装许可证管理器 . . . . . . . . . . . . . . . . . . . . .112 FlexNet 许可证管理器软件组件 . . . . . . . . . . . . . . . . . . . . . . .112 FlexNet 许可证管理器文档 . . . . . . . . . . . . . . . . . . . . . . . . . . .112 6 |许可证文件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113安装许可证管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113启动许可证管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115确认许可证管理器正在运行 . . . . . . . . . . . . . . . . . . . . . . . . . 116启动 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . . . . . . . 116更改许可证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117在 IPV6 网络中使用 COMSOL . . . . . . . . . . . . . . . . . . . . . . . 117许可证错误故障排除 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118在 Linux 上运行 COMSOL Multiphysics . . . . . . . . . . . . . 119运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . . . . . . . 119多核设置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119在批处理模式下运行 COMSOL Multiphysics . . . . . . . . . . . 120在客户端/服务器模式下运行 COMSOL Multiphysics . . . . . 121运行课堂许可证套装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122在集群上运行 COMSOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122在云上运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . 124运行 COMSOL Multiphysics with MATLAB . . . . . . . . . . . . 124运行 COMSOL Multiphysics with Simulink . . . . . . . . . . . . . 125 COMSOL 软件安全. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 COMSOL Multiphysics 客户端/服务器安全 . . . . . . . . . . . . . 126App 和物理场开发器安全 . . . . . . . . . . . . . . . . . . . . . . . . . . . 128方法安全性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128COMSOL Server 安全 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129许可证错误故障排除 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130| 78 |前言欢迎您阅读《COMSOL Multiphysics 安装指南》,本书提供有关安装 COMSOL Multiphysics®及其附加产品的操作说明。
微波仿真论坛1COMSOLMULTIPHYSICS和数值分析基础
微波仿真论坛1COMSOLMULTIPHYSICS和数值分析基础第一章COMSOL MULTIPHYSICS及数值分析基础W. B. J. ZIMMERMAN,B. N.HEWAKANDAMBYDepartment of Chemical and ProcessEngineering, University of Sheffield,Newcastle Street, Sheffield S1 3JD UnitedKingdomE-mail: w.zimmerman@ 本章主要介绍COMSOL Multiphysics 在零维和一维模型数值分析方面的几个关键内容。
这些内容包括求根、步进式数值积分、常微分方程数值积分和线性系统分析。
这几乎是所有的化工过程数学分析方法。
下面通过COMSOL Multiphysics中的一些常见化工过程应用实例来介绍这些方法,包括:闪蒸、管式反应器设计、扩散反应系统和固体中热传导。
1.简介本章内容很多,可以分为几个不同的目标。
首先介绍了COMSOL Multiphysics的主要工作特性;其次介绍了如何使用这些特性来分析一些简单的,位于零维空间、一维空间或“空间-时间”系统中的化工问题。
本章还希望通过展示COMSOL Multiphysics和MATLAB工具在化工过程分析中的强大功能,激发读者对使用COMSOL Multiphysics进行建模与仿真的兴趣。
由于COMSOL Multiphysics不是一个通用的问题求解工具,所以一些目标需要迂回实现。
作者在使用FORTRAN、Mathematica和MATLAB解决化工问题方面有着丰富的教学经验,并用这些工具实现过这里所有的例子。
而且,扩展化工问题的数值分析也已经在POLYMATH[1]中实现,这似乎只在化工委员会的CACHE项目中使用过。
本书前一版已经介绍过在零维空间中求解非线性代数方程和与时间有关的常微分方程的内容。
Comsol Multiphics基础操作
做网格,并完成求解
狄利特利边界
边界设定中提供定解条件(初值):自然边界(法向的通量)
纽曼边界
热传问题(多通道的换热器)
COMSOL 把一般的 PDE 方程按照 具体的物理定律做固化
预置的应用模 式 热导率 k PDE方程的系数c 温度 T PDE方程的状态变量u 热源 Q PDE方程的源项f
Comsol Multiphics基础操作
———— 作者:戴红运
What’s comsol? Where is the source of comsol? Learning from the realities of comsol.
COMSOL Multiphysics’ FEA
建立方程:所研究的问题归结为PDE或者PDEs(变分原理) 离散化:将求解域离散化成有限数量的单元
热学: C
T (kT ) Q t
Ku=F 电-热-结构耦合
结构力学:
Comsol 公司介绍
成立于1986 成立于瑞典的斯德哥尔摩 研发中心:美国、瑞典、芬兰
Matlab PDE Toolbox 1.0 Femlab 1.0 ~ Femlab 3.1(2003年,v3.0具备独 立求解器) COMSOL Multiphysics 3.2a (2005年) COMSOL Multiphysics 3.5a
在每个单元上,PDEs COMSOL的各个应用模式、自定义PDE 设置相应的方程系数及方程之间的联系(互相耦合) 线性方程组
总装:将各单元上的线性方程组总装成刚度矩阵K 求解:在定解条件下,矩阵求解Ku=F
获得每个单元上每个节点的解u 插值获得任意位置处的解u
电学:
基于COMSOL Multiphysics的磁场仿真分析
[1]]● 宋 J 浩 ,黄彦1j,邓 志扬 ,等.几 组 特殊 形 1{ 状 永磁 体 的磁 ] J
场及梯度 COMSOL分 析 [J].大学物 理实验 ,2013, 26(4):3-7. 刘 延 东 ,徐 志 远 .基 于 Comsol Multiphysics无 限 长 圆 柱载流导线产生 的磁场分 布研究 [J].现代 电子技 术 ,2015,38(2):9.14. 王慧娟 ,李慧奇 .基 于仿 真 软件 的电磁 场实验教 学 研究 [J].大学物理实验 ,2015,28(1):79-81. 郭 硕 鸿.电 动 力 学 [M].北 京 :高 等 教 育 出 版 社 ,2008. 郑晶晶.基于 Comsol电磁器件 的设计 与仿 真 [D]. 南昌 :南 昌大学 ,2014. 梁灿彬 ,秦光戎 ,梁竹健 .电磁学 [M].北京 :高等 教 育出版社 ,2004. 黄 昆.固 体 物 理 学 [M].北 京 :高 等 教 育 出 版 社 .1988. 张裕 恒.超 导物 理 [M].合肥 :中 国科 学 技术 出 版 社 ,2009. 金桂 ,姚敏 ,蒋纯志.大学物理演示实 验教学探索 与 实践 [J].大学物理实验 ,2015,35(4):113—115.
t0r in the external magnetic f ield.Finally.br ief ly ana lyzed these magnetic f ields. Key words:COMSOL;per m anent magnet;superconductor;distr ibution of mag n etic f ield
基于 COMSOL Multiphysics的磁场仿真分析
场 ,而是其 自身产生 的磁场与外磁场方向相反最 终 导致 磁感应 强度 为零 j。
COMSOLMultiphysics仿真步骤
COMSOLMultiph ysics仿真步骤1算例介绍一电磁铁模型截面及几何尺寸如图1所示,铁芯为软铁,磁化曲线(B-H)曲线如图2所示,励磁电流密度J=250 A/cm2。
现需分析磁铁内的磁场分布。
图1电磁铁模型截面图(单位cm)图2铁芯磁化曲线2 COMSOLMultiph ysics仿真步骤根据磁场计算原理,结合算例特点,在COMSOL Multiph ysics中实现仿真。
(1) 设定物理场COMSOLMultiph ysics4.0以上的版本中,在AC/DC模块下自定义有8种应用模式,分别为:静电场(es)、电流(es)、电流-壳(ecs)、磁场(mf)、磁场和电场(mef)、带电粒子追踪(cpt)、电路(cir)、磁场-无电流(mfnc)。
其中,“磁场(mef)”是以磁矢势A作为因变量,可应用于:①已知电流分布的DC线圈;②电流趋于表面的高频AC线圈;③任意时变电流下的电场和磁场分布;根据所要解决的问题的特点——分析磁铁在线圈通电情况下的电磁场分布,选择2维“磁场(mf)”应用模式,稳态求解类型。
(2) 建立几何模型根据图1,在COMSOL Multiph ysics中建立等比例的几何模型,如图3所示。
图3几何模型有限元仿真是针对封闭区域,因此在磁铁外添加空气域,包围磁铁。
由于磁铁的磁导率,因此空气域的外轮廓线可以理想地认为与磁场线迹线重合,并设为磁位的参考点,即(21) 式中,L为空气外边界。
(3) 设置分析条件①材料属性本算例中涉及到的材料有空气和磁铁,在软件自带的材料库中选取A ir和Sof t Iron。
对于磁铁的B-H曲线,在该节点下将已定义的离散B-H曲线表单导入其中即可。
②边界条件由于磁铁的磁导率,因此空气域的外轮廓线可以理想地认为与磁场线迹线重合,并设为磁位的参考点,即(21) 式中,L为空气外边界。
COMSOL_Multiphysics几何建模指南
“第一款真正的任意多物理场直接耦合分析软件”COMSOL Multiphysics V4.x操作手册丛书几何建模用户指南中仿科技公司(CnTech Co., Ltd.)2010年10前言COMSOL Multiphysics是一款大型的高级数值仿真软件,由瑞典的COMSOL公司开发,广泛应用于各个领域的科学研究以及工程计算,被当今世界科学家誉为“第一款真正的任意多物理场直接耦合分析软件”,适用于模拟科学和工程领域的各种物理过程。
作为一款大型的高级数值仿真软件,COMSOL Multiphysics以有限元法为基础,通过求解偏微分方程(单场)或偏微分方程组(多场)来实现真实物理现象的仿真。
COMSOL Multiphysics以高效的计算性能和杰出的多场直接耦合分析能力实现了任意多物理场的高度精确的数值仿真,在全球领先的数值仿真领域里广泛应用于声学、生物科学、化学反应、电磁学、流体动力学、燃料电池、地球科学、热传导、微系统、微波工程、光学、光子学、多孔介质、量子力学、射频、半导体、结构力学、传动现象、波的传播等领域。
在全球各著名高校,COMSOL Multiphysics已经成为讲授有限元方法以及多物理场耦合分析的标准工具;在全球500强企业中,COMSOL Multiphysics被视作提升核心竞争力,增强创新能力,加速研发的重要工具。
COMSOL Multiphysics多次被NASA技术杂志选为“本年“当选为NASA科学家所选出的年度最佳CAE 度最佳上榜产品”,NASA技术杂志主编点评到,产品的优胜者,表明COMSOL Multiphysics是对工程领域最有价值和意义的产品”。
COMSOL Multiphysics 提供大量预定义的物理应用模式,涵盖声学、化工、流体流动、热传导、结构力学、电磁分析等多种物理场,模型中的材料属性、源项、以及边界条件等都可以是常数、任意变量的函数、逻辑表达式、或者直接是一个代表实测数据的插值函数等。
comsol培训的仿真实例课件
帮助 取消 完成
选择空间维度
MSOL
选择物理场 选择求解按案 6为选定物理场预置求解流体传热thu管中传热(hp) 地 态)用生物传热(0海 夹 传 热(htsh) 定 制 求 解电题热其然 附加求蝶额 动 括 巨林Ⅲ 热电效应 物理场列数:光 掌 2. 电流(ec3)等 商 子 体 后国体传热 (h3)多 物 通 场物理场列表: 电 燃 热 源(emh3)边界电磁热潭(bemh3)电 流(ec2) 温 卖 规 合(x3)4.Multiphysics物理场翻助 臧COMSOL
OMSOL
293 K
热膨胀:应力-应变
内部热载荷根据温度自动计算
固定约束
固定约束
OMSOL
· 扩展-参数化扫描几何一三维非线性强耦合模型· 添加更多物理场- 添加瞬态效应
·计算得到电势、温度和位移
结果:微阻梁
OMSOL
建模过程
· Microresister
MSOL
三维
一 维
零维
· 选择模型向导;三维:
· 几何模型如图所示:
几何
OMSOL
文件 主屏幕组 增加组件 件 1 、模型
定义P₁ 参数a= 变量f(x)函 数定义
几何 物理场 网格导 入coLiveLink, 构建所有几何
求解 结果 增加材料浏览材料
最近的材料COMSOL 材料库4 基本材料AirAcrylic plasticAlumina中Aluminum 3003-H18中Aluminum 6063-T83中AluminumAmerican red oakBeryllium copper UNS C17200 中Brick中Cast ironConcreteCopperFR⁴(Circut Board)
COMSOLMultiphysics有限元方法模拟次声波传播
COMSOL Multip hysic s有限元方法模拟次声波传播对一组自然或人为产生的声源进行远距离监控,引起了军队和其他政府机构的关注。
其中一种技术是利用次声波,或者说次声频的声波,这是因为它的声源强度在传播成千上万公里的距离后,没有损失信号特征。
接下来的讨论着重分析模拟次声波传播的可行性方法。
一般次声波的频率范围从0.05到20H z之间,不能被人们听到,但是能被专业的亚声频的麦克风探测到,其原理是能够感受到振动压力场激发的可录电子脉冲。
传统的次声波监测着眼于声源和接收器距离超过250公里,不过最近的次声监测研究集中于距离靠近150公里,缩短了远程声波和真实的次声监测间的关系。
历史上,抛物型方程(PE)方法已经被发展成在一个分层的大气条件下远程(> 500 km)次声传播的数值求解方法。
由于其简单的数值实现和有限的计算资源,这种技术可以有效地处理远程传播问题。
PE技术与观测数据中频率——波数相类似,预测在到达时间以及观测振幅衰减时,捕获能量和球形波前现象如何进行相互作用。
PE方法通过假定能量沿着预设方向上锥形范围内传播来近似波方程。
这种近似方法在远程传播中有一定的合理性。
然而,对于短程传播(< 50 km),PE方法使用的数学公式失效,不能提供实际测量和预测所需要的足够精度。
图1.对流层中线性趋势的理想化的大气结构为创造高保真耦合复杂声源函数的传播模型,作者将Alt aSim科技的Dr. Kyle Koppen hoefe r和Dr. Jeffre y Crompt on的工作结合起来,提升基于声学的有限元方法(FEM),通过COMS OL Multip hysic s来实现的这种耦合,无需PE方法的近似条件,准确地表达出声波的传播。
使用 COMSOL Multiphysics 6.1 进行 H 弯波导 - 三维建模说明书
此模型基于《 COMSOL 软件许可协议》6.1 版本授权。
所有商标均为其各自所有者的财产。
请参见 /trademarks 。
在 COMSOL Multiphysics 6.1 版本中创建H 弯波导 - 三维简介本例演示如何对微波的矩形波导进行建模。
一个中空的波导可以传导两种电磁波:横磁波 (TM) 和横电波 (TE)。
本例分析在传播方向上没有电场分量的 TE 波。
更具体地说,在本例中,所选择的频率和波导尺寸使得 TE10为单一传播模式。
在这种模式下,电场只有一个非零分量,即一个带有两个节点的正弦曲线,波导的每一面各有一个节点。
这样即可在二维中建立和求解模型,而且模型是在一个单独的版本中实现的;参见H 弯波导 - 二维。
设计模型时要考虑的一个重要方面是如何设计拐角处波导的形状,以免造成不必要的信号功率损失。
与电线不同,这些损耗通常不是由欧姆电阻引起,而是由不需要的反射产生。
您可以保持弯曲处平滑,同时使半径足够大,将这种反射降至最少。
在波导工作范围内,传输特性(波导传输信号的能力)必须相当均匀,以避免信号失真。
由于波导内部的介质是空气,因此整个工作范围内的传输几乎没有损耗。
本例中,为了使仿真和结果更有意义,弯曲处填充了石英玻璃(一种电介质)。
模型还演示了如何系统地计算所有 S 参数并导出到 Touchstone 文件。
模型定义本例演示如何创建一个模型来计算给定半径的 90 ︒弯波导的电磁场和传输特性。
这种弯波导会改变H场分量的方向,并保持E场方向不变,因此被称为H 弯波导。
本例中使用的 H 弯波导设计已在实际应用中得到充分验证,您可以从众多制造商处在线购买类似的弯波导。
这种特殊的弯波导在完美导电壁的理想情况下性能最佳。
波导壁通常镀有良导体,例如银。
本例中,壁被视为由理想电导体构成,这意味着电场的切向分量为零,或者边界上n ⨯ E = 0。
此边界条件被称为理想电导体 (PEC) 边界条件。
3 |H 弯波导 - 三维几何结构如下所示:波导被视为在弯曲前后继续无限延长。
Comsol操作步骤
Comsol操作步骤基本步骤
1,构思好所需要仿真的模型,列出所需要的偏微分方程组,写出已知的参数和必要的边界条件。
2,打开Comsol Multiphysics,选择合适的模式。
模式的选择依据所用的偏微分方程组来设定。
3,由仿真模型的尺寸设定好工作空间的大小。
选项---轴/格点设定
4,设定计算中所需要的常数,即模型中已经知道的常数。
选项---常数
5,画出建模型的几何图案
6,设定边界条件和各物理量参数。
物理---边界条件
物理---求解域设定
这里求解域是有限元法中的术语,即所要仿真的区域,所要仿真的区域又分成不同的小块,小块也是求解域。
求解域设定可以对每个小区域分别给定不同的物理参数。
7,网格的划分,选择好合适的网格大小进行划分。
8,求解
9,后处理
选择了求解的模式,计算所能够得到的参数就已经设定好了,这是系统自动设定的,即每个格点的物理量参量是固定的,不能增加或删减。
后处理就是利用计算所得到的这些物理量来计算产生我们所需要的量。
comsol多物理场耦合仿真流程
comsol多物理场耦合仿真流程英文回答:The simulation process for coupling multiple physics fields in COMSOL involves several steps. First, you need to define the geometry of your model. This includes specifying the dimensions and shape of the objects in your simulation. Once the geometry is defined, you can assign the appropriate material properties to each object. This step is crucial as it determines how each material will interact with the different physics fields.Next, you will need to define the physics interfaces. These interfaces are used to couple the different physics fields together. For example, if you are simulating a heat transfer problem, you will need to define an interface that connects the heat transfer physics with the solid mechanics physics. This allows the heat generated by the solid to be transferred to the surrounding environment.After defining the physics interfaces, you can set up the boundary conditions for your simulation. Boundary conditions define the behavior of the system at its boundaries or interfaces. For example, you can specify the temperature or heat flux at certain boundaries to simulatea heat transfer problem. You can also specify the forces or displacements at certain boundaries to simulate astructural mechanics problem.Once the geometry, material properties, physics interfaces, and boundary conditions are defined, you can proceed to solve the equations governing the physics fields. COMSOL uses numerical methods to solve these equations and obtain the solution to your simulation problem. The solver settings can be adjusted to control the accuracy and speedof the simulation.After the simulation is solved, you can analyze the results. COMSOL provides various post-processing tools to visualize and interpret the simulation results. You can create plots, animations, and 3D visualizations to better understand the behavior of your system. You can alsoextract and export the results for further analysis or presentation.In summary, the process of coupling multiple physics fields in COMSOL involves defining the geometry, assigning material properties, setting up physics interfaces, specifying boundary conditions, solving the equations, and analyzing the results. It is a comprehensive and iterative process that requires careful consideration of the physics involved and the desired outcome.中文回答:在COMSOL中,耦合多物理场的仿真流程包括以下几个步骤。
comsol仿真实验报告
comsol仿真实验报告一、实验目的本次实验旨在通过使用 COMSOL Multiphysics 软件对特定的物理现象或工程问题进行仿真分析,深入理解相关理论知识,并获取直观、准确的结果,为实际应用提供有效的参考和指导。
二、实验原理COMSOL Multiphysics 是一款基于有限元方法的多物理场仿真软件,它能够将多个物理场(如电场、磁场、热场、流体场等)耦合在一个模型中进行求解。
其基本原理是将连续的求解区域离散化为有限个单元,通过对每个单元上的偏微分方程进行近似求解,最终得到整个区域的数值解。
在本次实验中,我们所涉及的物理场及相关方程如下:(一)热传递热传递主要有三种方式:热传导、热对流和热辐射。
热传导遵循傅里叶定律:$q =k\nabla T$,其中$q$ 为热流密度,$k$ 为热导率,$\nabla T$ 为温度梯度。
热对流通过牛顿冷却定律描述:$q = h(T T_{amb})$,其中$h$ 为对流换热系数,$T$ 为物体表面温度,$T_{amb}$为环境温度。
(二)流体流动对于不可压缩流体,其运动遵循纳维斯托克斯方程:$\rho(\frac{\partial \vec{u}}{\partial t} +(\vec{u}\cdot\nabla)\vec{u})=\nabla p +\mu\nabla^2\vec{u} +\vec{f}$其中$\rho$ 为流体密度,$\vec{u}$为流体速度,$p$ 为压力,$\mu$ 为动力粘度,$\vec{f}$为体积力。
(三)电磁场麦克斯韦方程组是描述电磁场的基本方程:$\nabla\cdot\vec{D} =\rho$$\nabla\cdot\vec{B} = 0$$\nabla\times\vec{E} =\frac{\partial \vec{B}}{\partial t}$$\nabla\times\vec{H} =\vec{J} +\frac{\partial \vec{D}}{\partial t}$其中$\vec{D}$为电位移矢量,$\vec{B}$为磁感应强度,$\vec{E}$为电场强度,$\vec{H}$为磁场强度,$\rho$ 为电荷密度,$\vec{J}$为电流密度。
COMSOL_Multiphysics后处理用户指南
中仿科技公司 Cntech Co. Ltd.
“第一款真正的任意多物理场直接耦合分析软件”
COMSOL Multiphysics V4.x 操作手册丛书
后处理用户指南
中仿科技公司(CnTech Co., Ltd.) 2011 年 2 月
全国统一客户服务热线:400 888 5100 网址: 邮箱:info@
全国统一客户服务热线:400 888 5100
中仿科技公司 CnTech Co.,Ltd
本书中的印刷约定遵循 COMSOL Multiphysics 的用户指南中的约定。
其中粗体字表明该段文字确实会出现在 COMSOL Multiphysics 的程序界面中,例如模型 创建器是用户刚打开 COMSOL Multiphysics 时出现的窗口的标题,选项>选择列表是其中一个 菜单项等。
COMSOL Multiphysics 提供大量预定义的物理应用模式,涵盖声学、化工、流体流动、 热传导、结构力学、电磁分析等多种物理场,模型中的材料属性、源项、以及边界条件等都 可以是常数、任意变量的函数、逻辑表达式、或者直接是一个代表实测数据的插值函数等。 同时,用户也可以自主选择需要的物理场并定义他们之间的相互关系。用户也可以输入自己 的偏微分方程(PDEs),并指定它与其它方程或物理之间的关系。
雷诺实验的COMSOL_Multiphysics模拟
COMSOL Multiphysics Sim ulation of Reynolds Experiment .. .
Ll P g,XU Zhonghui,LI Na,SHUAI Qin,JIANG Zao,XU Yahong
(Key[,aboratory of Sichuan Province for Non-coal Mine Safety Technology ,Southwest University of Science and Technology,Mianyang 621010,China)
基金项 目:西 南科 技大学实验技术研究项 目(14syis一59)
17O
系 统 仿 真 技 术
第 14卷 第 3期
COMSOL Multiphysics(原 FEM )是 一个 专业 的 有限元数值分析软件包 ,也是对基 于偏微 分方程的多物 理场模型进行建模 和仿真 的交互式 开发环境 系统 。利 用 COMSOL Multiphysics软件模拟雷诺实 验可 以实现流 体从层流到湍流的全过程 ,并且 能够 以动画 的形式展现 流线的变化 ,让学生在视觉上直接观察流体从层流 到湍 流 的全过程 。利用 COMSOL Multiphysics软件模拟雷诺 实验既可以克服高校实验开展 的局 限性 ,又可 以让 学生 掌握 COMSOL Muhiphysics软件的运用 。
2018年 8月 第 14卷 第 3期
中图分类号 :G420
文献标识码 :A
系 统 仿 真 技 术
System Simulation Technology
Aug.,2018 Vo1.14,No.3
雷 诺 实 验 的 COMSOL—Multiphysics模 拟
comsol电弧仿真流程
comsol电弧仿真流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 问题定义。
确定要研究的电弧现象和相关物理过程。
定义电弧的几何形状、边界条件和初始条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
COMSOL Multiphysics仿真步骤
1算例介绍
一电磁铁模型截面及几何尺寸如图1所示,铁芯为软铁,磁化曲线(B-H)曲线如图2所示,励磁电流密度J=250 A/cm2。
现需分析磁铁内的磁场分布。
图1电磁铁模型截面图(单位cm)
图2铁芯磁化曲线
2 COMSOL Multiphysics仿真步骤
根据磁场计算原理,结合算例特点,在COMSOL Multiphysics中实现仿真。
(1) 设定物理场
COMSOL Multiphysics 4.0以上的版本中,在AC/DC模块下自定义有8种应用模式,分别为:静电场(es)、电流(es)、电流-壳(ecs)、磁场(mf)、磁场和电场(mef)、带电粒子追踪(cpt)、电路(cir)、磁场-无电流(mfnc)。
其中,“磁场(mef)”是以磁矢势A作为因变量,可应用于:
①已知电流分布的DC线圈;
②电流趋于表面的高频AC线圈;
③任意时变电流下的电场和磁场分布;
根据所要解决的问题的特点——分析磁铁在线圈通电情况下的电磁场分布,选择2维“磁场(mf)”应用模式,稳态求解类型。
(2) 建立几何模型
根据图1,在COMSOL Multiphysics中建立等比例的几何模型,如图3所示。
图3几何模型
有限元仿真是针对封闭区域,因此在磁铁外添加空气域,包围磁铁。
由于磁铁的磁导率,因此空气域的外轮廓线可以理想地认为与磁场线迹线重合,并设为磁位的参考点,即
(21) 式中,L为空气外边界。
(3) 设置分析条件
①材料属性
本算例中涉及到的材料有空气和磁铁,在软件自带的材料库中选取Air和Soft Iron。
对于磁铁的B-H曲线,在该节点下将已定义的离散B-H曲线表单导入其中即可。
②边界条件
由于磁铁的磁导率,因此空气域的外轮廓线可以理想地认为与磁场线迹线重合,并设为磁位的参考点,即
(21) 式中,L为空气外边界。
为引入磁铁的B-H曲线,除在材料属性节点下导入B-H表单之外,还需在“磁场(mef)”节点下选择“安培
定律”,域为“2”,即磁铁区域,在“磁场 > 本构关系”处将本构关系选择为“H-B曲线”。
此时,即表示将材料性质表达为磁通密度B的函数,也符合以磁矢势A作为因变量时的表达,从而避免在本构关系中定义循环变量。
设置窗口如下图所示。
图4磁铁本构关系设置
该模型中,线圈中励磁电流密度为J=250 A/cm2,因此,在“磁场(mef)”节点下,选择两个“外部电流密度”节点,分别用于设置两个线圈的电流密度。
根据式(2),该电流密度因为z轴方向的电流密度,且两个线圈的电流密度方向应相反。
事先在模型树下定义参数J,表达式为“250e4[A/cm^2]”。
设置窗口如下图所示。
(a)线圈1
(b)线圈1
图5线圈电流设置
(4) 网格划分
网格节点下直接创建三角形网格,结果如下图所示。
图6网格划分结果
(5) 求解
选择“稳态”求解模式,直接进行计算。
该模型结构比较简单,求解时间为2 s。
4后处理
磁通密度如图7所示。
图7面磁通密度分布
由图6可以看出,磁通密度主要集中分布在磁铁上,在转角处磁通密度较大(图中红色区域);在空气域磁通密度很小。
磁通密度等值分布图如下所示:
图8磁通密度等值线分布
磁通密度方向如下图所示,图中箭头表示磁通密度方向。
图9磁通密度等值线分布
磁力线分布如下图所示:
图10磁势分布
由图10可看出,磁矢势A围绕线圈,在磁铁中形成闭合曲线,图中线的密度形象表示了磁场的强弱,在转角处的线较稠密。
2 结论
本文在COMSOL Multiphysics中实现了对一简单电磁铁模型磁场分析,并有以下结论:
(1) COMSOL Multiphysics中,引入B-H曲线数据时,需指定本构关系中的设置,避免在本构关系中出现循环变量;同时,需另在该域上定义安培定律;。