2019年上海各区初三二模数学试卷23题专题汇编(教师版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年上海各区初三二模数学试卷23题专题汇编(教师版)
崇明
23.(本题满分12分,每小题满分各6分)
如图7,在直角梯形ABCD 中,90ABC ∠=︒,AD BC ∥,对角线AC 、BD 相交于点O . 过点D 作DE BC ⊥,交AC 于点F . (1)联结OE ,若
BE AO
EC OF
=
,求证:OE CD ∥; (2)若AD CD =且BD CD ⊥,求证:
AF DF
AC OB
=
. 23.(本题满分12分,每小题满分各6分) 证明(1)∵90ABD ∠=︒,BC DE ⊥
∴//AB DE ………………………………………………………………(1分) ∴AO BO
OF OD
=
………………………………………………………………(2分) ∵
BE AO
EC OF =
∴AO BE
OF EC
=
……… ………………………………………………………(2分) ∴//OE CD …………………………………………………………………(1分) (2)∵BC AD //,//AB DE ,
∴四边形ABED 为平行四边形 又∵90ABD ∠=︒
∴四边形ABED 为矩形 ……………………………………………………(1分) ∴AD BE =,90ADE ∠=︒ 又∵CD BD ⊥
∴90BDC BDE CDE ∠=∠+∠=︒
︒=∠+∠=∠90BDE ADB ADE
∴CDE ADB ∠=∠ …………………………………………………………(1分)
AD CD =
∴DCA DAC ∠=∠
∴()A S A CDF ADO ..∆≅∆…………………………………………………(1分) ∴OD DF =
DE AB //
A
B
C
D
O
E F
图7
∴
AF BE AD
AC BC BC
==
…………………………………………………………(1分) ∵BC AD //
∴BO
DF
BO OD BC AD =
=…………………………………………………………(1分) ∴
AF DF
AC OB
=
…………………………………………………………………(1分) 奉贤
23.(本题满分12分,每小题满分各6分)
已知:如图8,正方形ABCD ,点E 在边AD 上,AF ⊥BE ,垂足为点F ,点G 在线段
BF 上,BG=AF .
(1)求证:CG ⊥BE ;
(2)如果点E 是AD 的中点,联结CF ,求证:CF=CB .
23.证明:(1)∵四边形ABCD 是正方形,∴AB BC =.90ABC
. ·
·········· (1分) ∵AF ⊥BE ,∴90FAB FBA ∠+∠=︒.
∵90FBA CBG ∠+∠=︒,∴FAB CBG ∠=∠. ································ (1分) 又∵AF BG =,∴△AFB ≅△BGC . ············································· (2分)
∴AFB BGC ∠=∠. ······································································· (1分) ∵90AFB ∠=︒,∴90BGC ∠=︒,即CG ⊥BE . ······························· (1分) (2)∵ABF EBA ∠=∠,90AFB BAE ∠=∠=︒,
∴△AEB ∽△FAB .∴
AE AF
AB BF
=
. ················································· (3分) ∵点E 是AD 的中点,AD AB =,∴12AE AB =.∴1
2
AF BF =.·
·················· (1分) ∵AF BG =,∴1
2
BG BF =,即FG BG =.
············································ (1分) ∵CG ⊥BE ,∴CF CB =. ······························································· (1分)
A
B
C
D F
G E 图8
闵行
(本题共2小题,每小题6分,满分12分)
如图,已知四边形ABCD 是菱形,对角线BD AC 、相交于点O ,AC BD 2=,过点A 作CD AE ⊥,垂足为点E ,AE 与BD 相交于点F ,过点C 作AC CG ⊥,与AE 的延长线相交于点G . 求证:(1)DOA ACG ∆∆≌;
(2)AG DE BD DF ⋅=⋅2
23.证明:(1)在菱形ABCD 中,AD = CD ,AC ⊥BD ,OB = OD .
∴ ∠DAC =∠DCA ,∠AOD = 90°.……………………………(1分) ∵ AE ⊥CD ,CG ⊥AC ,
∴ ∠DCA +∠GCE = 90°,∠G +∠GCE = 90°.
∴ ∠G =∠DCA .…………………………………………………(1分) ∴ ∠G =∠DAC .…………………………………………………(1分) ∵ BD = 2AC ,BD = 2OD ,∴ AC = OD . ……………………(1分) 在△ACG 和△DOA 中,
∵ ∠ACG =∠AOD ,∠G =∠DAC ,AC = OD ,
∴ △ACG ≌△DOA . ……………………………………………(2分) (2)∵ AE ⊥CD ,BD ⊥AC ,∴ ∠DOC =∠DEF = 90°.…………(1分) 又∵ ∠CDO =∠FDE ,∴ △CDO ∽△FDE .…………………(1分)
∴ CD OD DF DE
=
.即得 OD DF DE CD ⋅=⋅. ……………………(2分) ∵ △ACG ≌△DOA ,∴ AG = AD = CD . ……………………(1分)
又∵ 1
2
OD BD =,∴ 2DF BD DE AG ⋅=⋅.…………………(1分)