应用光学_第9章_激光光学系统
第9章 光学系统的像差
第 九 章 光学系统的像差
9.1
三、光学系统的 球差分布公式
1、原理分析
L L+ L
'
'
*
含义: L 包含了前面几个面的球差贡献 L * L 及该折射面本身所产生的球差
nu sin u = ' ' 其中: ' 为转面倍率 n u sin u
. 应用 . 光学
第 九 章 光学系统的像差
9.1
2、球差分布公式
克莱伯公式: 单个折射球面的球差表示式为:
整个系统的球差表示式为:
或:
. 应用 . 光学
第 九 章 光学系统的像差
9.1
四、单个折射球面的球差分布系数,不晕点 经过推导,可得到单个折射球面的球差分布系数
PA校对法
令上式为零:可以得到一下三个无球差点
第一:L=0,此时L’必为零,故物点、像点和顶点 重合。 第二:sinI-sinI’=0,这个条件只能在I’=I=0时才 能满足,相当于光线与球面法线重合,物点 像点和球面中心重合,此时L=L’=r; 第三:sinI’-sinU=0,则I’=U;
五、单个折射球面的球差正负和物体位置的关系
. 应用 . 光学
第 九 章 光学系统的像差
9.1
一、球差的定义及其计算
1、轴向像差:由轴上点发出的同心光束,经光学系统 各个折射面折射后,不同孔径角的交线交于不同点,相 对于理想像点的位置有不同的偏离,这就是球面像差。
L L l
' '
'
实际像点与理想像点的沿轴距离
L a1U a2U a3U
' ' 2 1 4 1 6 1
应用光学第九章优秀课件
➢ 这里必须指出,近点距离并不是明视距离
2/27/2021
哈工大光电测控技术与装备研究所
15
➢ 后者是指正常的眼睛在正常照明
(约50勒克斯)下最方便和最习惯 的工作距离,它等于250mm。
➢ 它不同于人眼的近点距,两者不能混淆
哈工大光电测控技术与装备研究所
3
人眼的构造剖视图
巩膜 角膜
脉络膜
*巩膜是眼球的第一层保护膜,白色、不透明、坚硬;
*角膜是巩膜的最前端部分,无色而透明;
眼睛内的折射主要发生在角膜上;
*脉络2/膜27是/20眼21 球的第二哈层工膜大,光上电面测有控供技给术眼与睛装营备养研的究网所状微血管;
4
人眼的构造剖视图
*网膜是眼球的第三层膜,上面布满着感光元素,即锥状细胞和杆状
细胞,锥状细胞直径约5微米,长约35微米;杆状细胞直径约2微米
,长约60微米。它们在网膜上的分布式不均匀的。在黄斑中心凹处
是锥状2/2细7/2胞021的密集区哈而工大没光有电杆测状控细技术胞与,装由备中研心究向所外,逐渐相对变6 化;
人眼的构造剖视图
瞳孔 虹膜 角膜
巩膜
网膜 脉络膜 黄斑中心凹
晶状体
盲斑
黄斑中心凹是人眼视觉最灵敏的地方。
光 视神经细胞
神经纤维
盲斑
大脑
盲斑是网膜上没有感光元素的地方,不能引起光刺激。
晶状体在虹膜后面,是由两个不同曲率的面组成的透明体,
2/27/2021
哈工大光电测控技术与装备研究所
7
人眼的构造剖视图
瞳孔 虹膜 角膜
应用光学第九章
精品课件-物理光学与应用光学_第三版(石顺祥)-第9章
第 9 章 光学系统像差基础和光路计算
图9-6 孔径光阑为无限小时视场光阑的确定
21
第 9 章 光学系统像差基础和光路计算 显然,物面上一点要成像,在它发出的主光线在物空间应该通过 所有光阑在物空间的像,所以物面上的成像范围就由所有光阑在 物空间的像中对入瞳中心的最小者决定。在图9-6中,L2′对入 瞳中心的张角比L1对入瞳中心的张角小,由它所决定的物面上AB 范围以内的物点都可以被系统成像,而B点以外的点,如C点,已 不能通过系统成像。因此,光组L2的边框是决定物面上成像范围 的光阑,是视场光阑。根据光路可逆,类似孔径光阑一样,也可 以在系统的像空间确定。
第 9 章 光学系统像差基础和光路计算
第9章 光学系统像差基础和光路计算
9.1 光学系统中的光阑 9.2 光学系统光阑对成像的影响 9.3 像差基本概念 9.4 光学系统中一般光路计算 9.5 光学系统设计软件——ZEMAX简介 例题
1
第 9 章 光学系统像差基础和光路计算
9.1 光学系统中的光阑 9.1.1
18
第 9 章 光学系统像差基础和光路计算 轴外物点发出的充满入瞳的光束被遮拦情况,与光学系统 中除了孔径光阑外,别的光阑的位置和大小有关,同时还与入 瞳的大小有关。 为了简单起见,先讨论孔径光阑或入瞳为无限 小的情况。 此时只有主光线附近的一束非常细的光束可能通过 光学系统。 因此,光学系统的成像范围,便由对主光线发生限 制的光阑所决定。
15
第 9 章 光学系统像差基础和光路计算 9.1.3 视场光阑和入/
在一个实际的光学系统中,除孔径光阑外,还有其它的光阑。 在大多数情况下,轴外点发出并充满入瞳的光束,会被这些光阑 所遮拦。在图9-5中,由轴外点B发出充满入瞳的光束,其下面有 一部分被透镜L1拦掉,其上面有一部分被透镜L2拦掉,只有中间 一部分(图中阴影区)可以通过光学系统成像,这样轴外点的成像 光束小于轴上点的成像光束,使像面边缘的光照度有所下降。
工程光学知识点整理
工程光学知识点整理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN工程光学课件总结班级:姓名:学号:目录第一章几何光学基本原理 (1)第一节光学发展历史 (1)第二节光线和光波 (2)第三节几何光学基本定律 (5)第四节光学系统的物象概念 (10)第二章共轴球面光学系统 (11)第一节符号规则 (11)第二节物体经过单个折射球面的成像 (13)第三节近轴区域的物像放大率 (16)第四节共轴球面系统成像 (18)第二章理想光学系统 (21)第一节理想光学系统的共线理论 (21)第二节无限远轴上物点与其对应像点F’---像方焦点 (23)第三节理想光学系统的物像关系 1,作图法求像 (27)第四节理想光学系统的多光组成像 (33)第五节实际光学系统的基点和基面 (38)第六节习题 (41)第四章平面系统 (42)第一节平面镜 (42)第二节反射棱镜 (43)第三节平行平面板 (46)第四节习题 (48)第五章光学系统的光束限制 (49)第一节概述 (49)第二节孔径光栅 (51)第三节视场光栅 (54)第四节景深 (55)第五节习题 (56)第八章典型光学系统 (57)第一节眼睛的光学成像特性 (57)第二节放大镜 (62)第三节显微镜系统 (64)第四节望远镜系统 (70)第五节目镜 (74)第六节摄影系统 (76)第七节投影系统 (78)第八节光学系统外形尺寸计算 (80)第九节光学测微原理 (85)第一章几何光学基本原理光和人类的生产活动和生活有着十分密切的关系,光学是人类最古老的科学之一。
对光的每一种描述都只是光的真实情况的一种近似。
研究光的科学被称为“光学”(optics),可以分为三个分支:几何光学物理光学量子光学第一节光学发展历史1,公元前300年,欧几里得论述了光的直线传播和反射定律。
2,公元前130年,托勒密列出了几种介质的入射角和反射角。
3,1100年,阿拉伯人发明了玻璃透镜。
应用光学第一章几何光学基本原理
2015年2月
课程性质与任务
• 以几何光学为理论基础,以光学系统中光 的传播、成像以及光学系统的设计原理与 像质评价为主要内容 • 掌握光学系统成像的概念、理论和原理 • 学习光学系统设计的基本方法、光学系统 的分析评价方法
课程内容
• • • • • • • • • 第一章 几何光学基本原理 第二章 共轴球面系统的物像关系(重点) 第三章 眼睛和目视光学系统 第四章 平面镜、棱镜系统 第五章 光学系统中成像光束的选择 第六章 辐射度学基础 第七章 色度学基础 第八章 光学系统成像质量评价(重点) 第九章 典型光学系统(望远镜、显微镜、照相机、 投影仪以及光纤、激光、红外光学系统)
λ
第1节 光波和光线
三、光的特性
• 光的本质是电磁波 • 光的传播实际上是波动的传播 • 物理光学 研究光的本性,并由此来研究各种光学现象 • 几何光学 不考虑光的本性,研究光的传播规律和传播现象
第1节 光波和光线
四、光波
• 光波是一种电磁波,是一定频率范围内的电磁波,波长比一 般的无线电波短 – 可见光:400nm-760nm – 紫外光:5nm-400nm – 红外光:780nm-40μm • 近红外:780nm-3μm • 中红外:3μm-6μm • 远红外:6μm-40μm • 单色光:同一波长的光 • 复色光:不同波长的光混合而成
n1 sin I 0 n 2 sin 90° n 2 n2 sin I 0 n1
I1 O1 I2
I0 O2
I11 O3
第4节 光路可逆和全反射
二、全反射
• 全反射的应用
–用全反射棱镜代替反射镜:减少光能损失 –光纤 –指纹仪
激光照明
数码相机
应用光学各章知识点归纳
第一章 几何光学基本定律与成像概念波面:某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。
光的传播即为光波波阵面的传播,与波面对应的法线束就是光束。
波前:某一瞬间波动所到达的位置。
光线的四个传播定律:1)直线传播定律:在各向同性的均匀透明介质中,光沿直线传播,相关自然现象有:日月食,小孔成像等。
2)独立传播定律:从不同的光源发出的互相独立的光线以不同方向相交于空间介质中的某点时彼此不影响,各光线独立传播。
3)反射定律:入射光线、法线和反射光线在同一平面内,入射光线和反射光线在法线的两侧,反射角等于入射角。
4)折射定律:入射光线、法线和折射光线在同一平面内;入射光线和折射光线在法线的两侧,入射角和折射角正弦之比等于折射光线所在的介质与入射光线所在的介质的折射率之比,即nn I I ''sin sin = 光路可逆:光沿着原来的反射(折射)光线的方向射到媒质表面,必定会逆着原来的入射方向反射(折射)出媒质的性质。
光程:光在介质中传播的几何路程S 和介质折射率n 的乘积。
各向同性介质:光学介质的光学性质不随方向而改变。
各向异性介质:单晶体(双折射现象)马吕斯定律:光束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。
费马原理:光总是沿光程为极小,极大,或常量的路径传播。
全反射临界角:12arcsinn n C = 全反射条件:1)光线从光密介质向光疏介质入射。
2)入射角大于临界角。
共轴光学系统:光学系统中各个光学元件表面曲率中心在一条直线上。
物点/像点:物/像光束的交点。
实物/实像点:实际光线的汇聚点。
虚物/虚像点:由光线延长线构成的成像点。
共轭:物经过光学系统后与像的对应关系。
(A ,A’的对称性)完善成像:任何一个物点发出的全部光线,通过光学系统后,仍然聚交于同一点。
每一个物点都对应唯一的像点。
理想成像条件:物点和像点之间所有光线为等光程。
应用光学-第九章(2)望远系统
施密特物镜由球面主镜和施密特校正板组成。 校正板是个透射元件,其中一个面是平面,另一个面是非球面。 非球面的面型能够使中央的光束略有会聚,而使边缘 的光束略有发散,这样球差得到很好校正。
F’
施密特校正板 球面主镜
马克苏托夫物镜由球面主镜和负弯月形厚透镜组成。 负弯月形厚透镜的结构如满足如下条件就可以不产 生色差,也可以用它来补偿主镜产生的球差。
f
' 1
Δ=0
γ = 1 β = − f1' f 2'
无论物体位于何处,都是常数。
α = β = (f
2
' 2
f
' 2 1
)
4.视角放大率:
望远系统的放大率也用视角放大率表示:
tgω ' Γ= tgω0
y'
−ω
f1’
ω'
-f2’
ω'
ω0
y'
−ω
ω'
ω'
f1’
-f2’
由于物体到眼睛的距离相对于望远镜的长度来说要大得 ω 多, 0 与物体对物镜中心的张角ω可认为相等。
1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目 镜,使放大倍数有了明显的提高
物镜 目镜 视场光阑
D
ω
y'
ω'
ω'
出瞳
D'
f1 ' L
− f2 lp '
1.组成:由正物镜与正目镜组成。 2.系统长度:
L = f − f2 = f + f
' 1 ' 1
' 2
3.视场:视场光阑设在其公共焦平面上,设b为 视场光阑直径,也为分划板位置。
应用光学-第九章(3)摄影与投影系统
投影系统的核心部分是物镜。 一、主要参数:共轭距、工作距、放大率、视场、相对孔 径等。 1、共轭距(M) 共轭距的大小影响轴向尺寸。
y'
− U max
H
H'
U ' max
y
工作距离
−l
M + HH '
l'
共轭距和放大率、焦距之间的关系如下:
M = − f ' (β − 1) β
2
共轭距与焦距成正比,当横向放大率一定时,共轭距 增大使物镜焦距增大。 小型:M=1m左右、中型M=1~2m、大型M>2m
光圈系数 景深 相对孔径越大,景深越小。
利用光圈与快门配合可以实现特殊摄影效果
摄影物镜的主要光学参数:
1、焦距f ’ 用某一镜头拍摄一定距离的物体时,像高y’为
yf ' y' = = kf ' x
k是常量
焦距不同的镜头,拍摄同一距离的景物,像的大小也不同
2、相对孔径或光圈系数
相对孔径越大,景深越小。 光圈系数 景深
像面能在一定范围内沿轴移动的量称为几何焦深。
几何焦深的大小与像点所允许的弥散斑直径有关。
设弥散斑允许的直径为z′,焦深2△′与z′的关系可由下 图求出:
z' 2Δ' = tgU'
入瞳
出瞳
像平面
A
-U F H
D H’
U’ F’ △’ A’ △’
Z’
-l
f’ l’
x’
在对称式的摄影物镜中,入瞳和出瞳分别靠近物镜的前主 面和后主面,它们有同样的通光孔径,
3、画面大小2y’或物方视场角2ω
2 y ' = 2 f ' tgω
应用光学_09
§9-4 光学传递函数
一、光学传递函数的基本概念
将物体看作是由不同空间频率、对比度和位相的正弦光栅组成, 认为光学系统是一个空间的线性不变系统,物体的像就是这些 不同频率和对比度的正弦光栅的像的光能分布综合的结果。 物体的成像过程:经过系统传递后,光栅频率不变,但对比度 下降,位相发生平移,并在某一频率处截止(对比度为0)。 这种对比度的降低程度和位相的平移量随空间频率的不同而异, 其函数关系称为光学传递函数(Optical transfer function, OTF)。 设空间周期为T的一维正 I T 弦光栅的光能分布为: Ia I ( x) I 0 I a cos 2x I0 Imax 式中:I0为均匀的背景亮度 I0 (平均光强),Ia为正弦分布的 Imin 振幅,=1/T,显然: 0 x
纵坐标:包容圆所 包含的归一化能量 (像点总能量为1); 比中心亮度表达了 更多的信息, 应用广 泛。
§9-2 分辨率
分辨率反映光学系统分辨物体细节的能力,是光学系统的重 要性能参数,在一定程度上反映了成像质量的好坏。
瑞利指出:光学系统能分辨的两个亮点间的距离等于艾里斑 的半径。即一个亮斑衍射图样中心与另一个的第一暗环重合 时,则这两个亮斑刚好能被分辨。 这时:Imax/Imin=1:0.735
Imax=I0+Ia I Imin=I0-Ia 按对比度的定义,有: I 0
T Ia
Ia Imax Imin Imin
I max I min I a M I max I min I 0
()
0
Imax
I0
于是:
I ( x) I 0 1 M ( ) cos 2x
中心点亮度与波像差的关系
应用光学
第一章 几何光学的基本定律§ 1-1 发光点、波面、光线、光束 返回本章要点 发光点 ---- 本身发光或被照明的物点。
既无大小又无体积但能辐射能量的几何点。
对于光学系统来说, 把一个物体看成由许多物点组成,把这些物点都看成几何点 ( 发光点 ) 。
把不论多大的物体均看作许多 几何点组成。
研究每一个几何点的成像。
进而得到物体的成像规律。
当然这种点是不存在的,是简化了的概念。
一个实际的光源总有一定大小才能携带能量,但在计算时,一 个光源按其大小与作用距离相比很小便可认为是几何点。
今后如需回到光的本质的讨论将特别指出。
波面 --- 发光点在某一时刻发出的光形成波面 如果周围是各向同性均匀介质,将形成以发光点为中心的球面波或平面波 第二章 球面和球面系统§ 2-1 什么是球面系统?由球面组成的系统称为球面系统。
包括折射球面和反射球面反射面:n ' =-n.平面是半径为无穷大的球面,故讨论球面系统具有普遍意义折射系统折反系统§ 2-2 概念与符号规则•概念① 子午平面 —— 包含光轴的平面② 截距:物方截距 —— 物方光线与光轴的交点到顶点的距离像方截距 —— 像方光线与光轴的交点到顶点的距离③ 倾斜角:物方倾斜角 —— 物方光线与光轴的夹角像方倾斜角 —— 像方光线与光轴的夹角返回本章要点•符号规则返回本章要点因为分界面有左右、球面有凹凸、交点可能在光轴上或下,为使推导的公式具有普遍性,参量具有确切意 义,规定下列规则:a. 光线传播方向:从左向右b. 线段:沿轴线段 ( L,L',r ) 以顶点 O 为基准,左“ - ”右“ + ” 垂轴线段 ( h ) 以光轴为准,上“ + ”下“ - ” 间隔 d(O1O2) 以前一个面为基准,左“ - ”右“ + ” c. 角度:光轴与光线组成角度 ( U,U' ) 以光轴为起始边,以锐角方向转到光线,顺时针“ + ”逆时针“ - ”光线与法线组成角度 ( I,I' ) 以光线为起始边,以锐角方向转到法线,顺“ + ”逆“ - ”光轴与法线组成角度 ( φ ) 以光轴为起始边,以锐角方向转到法线,顺“ + ”逆“ - ”§ 2-3 折射球面返回本章要点•由折射球面的入射光线求出射光线已知: r, n, n',L, U 求: L', U',由 以上几个公式可得出 L' 是 U 的 函数这一结论, 不同 U 的光线经 折射后不能相交于一点点-》斑,不完善成像•近轴光线经折射球面折射并成像.1 .近轴光线:与光轴很靠近的光线,即 -U 很小 , sin(-U) ≈ -U ,此时用小写:sin(-U)= - usinI=iL=l 返回本章要点近轴光线所在的区域叫近轴区2 .对近轴光,已知入射光线求折射球面的出射光线:即由 l , u —> l ',u' , 以上公式组变为:当 u 改变时, l ' 不变!点 —— 》点,完善成像 此时 A , A' 互为物像,称共轭点近轴光所成像称为高斯像,仅考虑近轴光的光学叫高斯光学返回本章要点近轴光线经折射球面计算的其他形式(为计算方便,根据不同情况可使用不同公式)利用:可导出返回本章要点4 .(近轴区)折射球面的光焦度,焦点和焦距可见,当( n'-n )/r 一定时, l ' 仅与 l 有关。
应用光学内容
镜观测天体四百周年。
TMT:Thirty Meter Telescope宇宙喷泉遥远星系哈勃望远镜(主镜口径2.4米)光是电磁波的一种,覆盖特定的波长范围。
图1-1 电磁波按波长的分类图1-2 球面波和平面波图1-3 光线的反射入射光线、法线和反射光线在同一平面内;入射光线和反射光线在法线的两侧;反射角等于入射角图1-4 光线的折射入射光线、法线和折射光线在同一平面内;入射光线和折射光线在法线的两侧;入射角与折射角的正弦之比与入射角无关,是一个与介质与光的波长有关的常数:n′=−n,折射定律可推导出反射定律图1-5 光线在玻璃块中的折射和反射45°§1.1.3 光学材料及色散光的色散、典型玻璃的色散曲线516.7491Fe K393.3666Ca图1-8 透镜对光线的作用与透镜成像图1-7 透镜对波面的作用与透镜成像图1-10 光程图1-9 光线与波面的正交关系光线从P到P',经历时间:图1-11 遵守反射定律的光线图1-12 回转椭球面凹面反射镜图1-13 内切于回转椭球面的凹面反射镜图1-14 由费马原理导出折射定律22()z z d +−=('')('') d d−•−aδaδl'(u')l'(0)图1-15 完善成像(等光程)=Δ=−=[LMP'][OO'P'] [PP'][PP'][PP']0球面顶点图1-16 球面方程中所用的坐标系图1-17 入射光线与球面的两个交点211()ch z −−==22z r r h =±−图1-18 回转椭球面z 在许多商用光学设计程序中zOlympus手机摄像头透镜组富瑞丰公司头盔式显示器。
应用光学课件完整版
物象都有虚实之分: 实物— 物方实际光线直接相交而成的点。 虚物— 物方实际光线不能相交,延长线相交而成的点。 实象— 象方实际光线直接相交的点。 虚象— 象方实际光线不能直接相交,反向延长相交。 物空间— 构成物的光线所处的空间。(实物、虚物) 象空间— 构成象的光线所处的空间。(实象、虚象)
由一点A发出的光线经过光学系统后聚交或近似的聚 交在一点A′,则A为物点, A′为物点A通过光学系统 所成的像点。物与象之间的对应关系称为“共轭”。
一个物点,总是发出同心光束,与球面波相对应; 一个像点,理想情况应该由球面波对应的同心光束汇交 而成,称这种像点为完善像点。
3. 成完善象的条件 发光体每一物点发出球面波,通过光学系统后仍为
1. 共轴球面系统的结构参量: 各球面半径:r1 、 r2 …… rk-1 、 rk 相邻球面顶点间隔:d1 、 d2 …… dk-1 各球面间介质折射率:n1 、 n2 …… nk-1 、 nk n 、 k+1
2. 转面公式
原则:前一折射面的象为后一面的物 ,前一面的象空间为后一面的物空间
n2 = n1′, n3 = n2′ …… nk = nk-1′
3)在光学设计中有重要作用。为了设计出一定垂 轴倍率的光学系统,在物方参数nuy固定的条件下,常通 过改变像方孔径角u′的大小来改变y′的数值,使得y′与y 的比值满足系统设计的要求。
§ 2-3 共轴球面系统
探讨方法— 将光线的光路计算公式及放大率公式反复应 用于各个折射面,分别求出各面的u、 u′、l 、 l′、 β、α、γ、y、y′J、J′、Q、 Q′。 转面公式— 前后相邻面之间的基本量的转化关系。
反射定律可表示为 I I ''
应用光学 第九章
i 1
i 1
k S II
i 1
k i 1
SI
iz i
k S III
i 1
k i 1
S II
iz i
SI
i
2 z
i2
k S IV
i 1
k
J2
i 1
n n nnr
k
k
SV
i 1
i 1
SIII SIV
iz i
3. 初级球差:
L 1
2nu2
k
SI
i 1
4. 初级彗差:
KT
M CI
m1
M h2 m1
5. 密接薄透镜系统消初级位置的色差条件:
M
CI
m1
h2
1 1
2 2
M M
0
对双胶合或双分离物镜: 1 2 0 1 2 1 2
1
2
1 1 2
2 1 2
例:设计一个消色差的双胶合望远物镜,选用F2 (nD=1.6128,VD=36.9)和K9(nD=1.516,VD=64.1)两 种玻璃,设物镜的焦距为150mm,要求在近轴区消除位 置色差,确定两块正负透镜的焦距f1′、 f2′。
3. 光学系统结构对彗差的影响(对单个折射面):
1)入瞳面在折射球面球心之前: KT′<0; 2)入瞳面在折射球面球心处: KT′=0; 3)入瞳面在折射球面球心之后: KT′>0。
4. 弧矢彗差:点BS′到主光线的垂直于光轴方向的距离为弧矢彗 差,以KS′表示。
§ 9-5 正弦差
1. 正弦条件(不晕成像):轴上点及近轴外点均理想成像
长,它们的象点离透镜由近到远地排列在光轴上,这种现象就是位
《应用光学》课程教学大纲
应用光学Applied optics一、课程基本情况课程类别: 专业任选课课程学分: 3学分课程总学时: 48学时(讲课: 48学时)课程性质: 必修开课学期: 第7学期先修课程: 高等数学适用专业: 光电信息科学与工程, 物理学1教材: 《工程光学基础教程》, 机械工业出版社, 编者: 郁道银, 出版年份: 2007.4o 开课院系: 物理与光电工程学院光电工程系二、课程性质、课程的教学目标和任务2应用光学是光信息科学与技术专业的技术基础课。
它主要是要让学生学会解决几何光学、典型光学仪器原理、光度学、色度学、光纤光学系统、激光光学系统及红外光学系统等的基础理论和方法。
它包括了此类专业学生必备的光学知识, 为光学仪器、微光夜视、激光红外等学科奠定了理论基础和应用基础, 在培养光学和光电类人才中具有不可替代的地位。
本课程从光波、光线和成像等几何光学的概念出发讲述了光线在介质中传播的基本规律, 描述了近轴光学、理想光学系统和平面镜及棱镜的成像性质和规律, 讨论了常用光学仪器的工作原理、成像性能和分辨率。
通过本课程的学习, 学生应能对光学的基本概念、基本原理和典型系统有较为深刻的认识, 为学习光学设计、光信息理论和从事光学研究打下坚实的基础三、教学内容和要求3.章节名称几何光学基本定律与成像概念(8学时)(1)掌握: 几何光学基本定律: 光的直线传播定律、光的独立传播定律、反射定律和折射定律、光路的可逆性、费马原理(最短光程原理): 应用光学中的符号规那么, 单个折射球面的光线光路计算公式、单个折射面的成像公式, 包括垂轴放大率、轴向放大率、角放大率、拉赫不变量等公式。
(2)了解: 共轴球面系统公式、成像条件的概念和相关表述、球面反射镜成像公式;(3)理解: 马吕斯定律;重点:应用光学中的符号规那么, 单个折射球面的光线光路计算公式难点: 单个折射面的成像公式.章节名称理想光学系统(8学时)(1)掌握共轴理想光学系统的成像性质、无限远的轴上(外)物点的共帆像点及光线、无限远的轴上(外)像点的对应物点及光线的性质、物(像)方焦距的计算公式、物方主平面与像方主平面的性质, 光学系统的节点及性质、图解法求像的方法、解析法求像方法(牛顿公式、高斯公式)(2)了解理想光学系统的放大率概念及公式, 理想光学系统两焦距之间的关系, 理想光学系统的组合公式、多个光组组成的理想光学系统的成像公式;重点:物(像)方焦距的计算公式、物方主平面与像方主平面的性质, 光学系统的节点及性质、解析法求像方法难点: 图解法求像的方法.章节名称平面与平面系统(8学时)(1)掌握;折射棱镜的作用, 其最小偏向角公式及应用, 光楔的偏向角公式及其应用;(2)了解;反射棱镜的种类、基本用途、成像方向判别、棱镜色散、色散曲线、白光光谱的概念、常用的光学材料种类和特点;(3)理解;平面光学元件的种类和作用、平面镜的成像特点和性质, 平面镜的旋转特性, 光学杠杆原理和应用;重点: 平面镜系统中光线旋转和平移难点:其最小偏向角公式及应用, 光楔的偏向角公式及其应用.章节名称光学系统中的光束限制(6学时)(1)掌握: 孔径光阑、入瞳、出瞳、孔径角的定义及它们的关系、视场光阑、入窗、出窗、视场角的定义及它们的关系;(2)了解: 照相系统的基本结构、成像关系和光束限制、望远系统的基本结构、成像关系和光束限制、显微系统的基本结构、成像关系和光束限制, 物方远心光路原理;(3)理解光瞳衔接原那么及其作用、场镜的定义、作用和成像关系、景深、远景景深、近景景深的概念, 景深公式和影响因素;重点:孔径光阑位置求解难点: 视场光阑、入窗、出窗、视场角的定义及它们的关系.章节名称光度学和色度学基础(4学时)(2)(1)掌握:光度学中辐射量和光学量的定义、单位, 光度学基本量的定义和单位, 辐射量和光学量的关系;了解: 光传播过程中光学量的主要变化规律;4(3)理解: 颜色的基本概念、性质、定律和相关实验、CIE标准色度学系统简介;重点: 光度学基本量定义难点: 光度学中辐射量计算5.章节名称光线的光路计算及像差理论(7学时)(1)掌握: 像差的定义、种类和消像差的基本原那么;(2)了解: 7种几何像差的定义、影响因素、性质和消像差方法。
专题一 激光光学系统
x2 + y 2 A0 x2 + y 2 E ( x, y , z ) = exp − 2 + Φ ( z ) } exp{−i k z + w( z) w ( z) 2R ( z )
轴不同的横截面内, 在 z轴不同的横截面内,由截面半径定义的光斑大小不同。 轴不同的横截面内 由截面半径定义的光斑大小不同。
3、高斯光束的波面曲率半径 、
π w 2 2 R ( z ) = z 1 + 0 λz
★ 性质
(1) z = 0或∞
R = ∞(平面波)
q1 = q 0 + z
′ q 2 = q0 − z ′
1 1 λ = −i 2 q ( z) R( z) π w ( z)
1 1 1 − = q2 q1 f′
★高斯光束腰位置的q参数 高斯光束腰位置的 参数
π w0 q0 = q ( 0 ) = − i λ
2
′ π w0 2 ′ ′ q0 = q0 ( z ) = i λ
π w02 z = ± λ
高斯光束沿z轴 高斯光束沿z轴的传播
R m in
dR ( z ) (2)最小值: =0 dz
(3) z > 0, R ( z ) > z
(4) z < 0, R ( − z ) = − R ( z )
π w0 2 ( z ) = ±2 λ
等相面为沿z轴传播的发散球面波, 等相面为沿 轴传播的发散球面波, 轴传播的发散球面波 但其曲率中心不在束腰(z轴原点) 但其曲率中心不在束腰( 轴原点) 轴原点 奇函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学系统设计
光的传播及 光与物质 作用
光学信息处理
9.7 激光谐振腔的计算
长度、半径
与激光束的束腰位置,束腰半径有关。
闭腔 稳定腔 光学谐振腔 开腔 非稳腔 临界腔 气体波导腔
基本模型
系统构成
实现模式选择
1964年,我国科学家钱学森建议定名“激光”。
激光
1953年,第一台激光器原型机出现,美国。
1960年,第一台实验用激光器。
1970~,开始商用,舞台,IBM,飞利浦......
1980~,光盘。
光纤通信、激光武器、科学研究、探测、医疗、 娱乐...... 皮秒激光器、飞秒激光器。
共轴球面腔的稳定图
第九章 激光光学系统
激光
20世纪以来,继原子能、计算机、半导体之后, 人类的又一重大发明。其原理在 1916年被爱因 斯坦发现。 “镭射”、“雷射”、“莱塞”,LASER, Light Amplification by Stimulated Emission of Radiation。
受激辐射。
砷化镓(GaAs)、硫化镉 (CdS)、磷化铟(InP)、硫化锌 (ZnS)
受激辐射
当外来光子的频率满足hv = E2-E1时,使原子中 处于高能级的电子在外来光子的激发下向低能 级跃迁而发光。
E2 E1
发光前
h
发光后
h h
9.1 激光束传输特性
激光光束截面的光强呈高斯分布
P209
9.3.2 激光扩束望远镜
用于激光测距、全息 照相等领域。 原理:令束腰位于物 镜焦距处。|l| = f ' 扩束望远镜的主要作 用是压缩激光发散角。
9.4 激光整形和微光斑形成系统
适用于半导体激光器
方法:
拦光法 柱面镜法 棱镜法
微光斑形成系统
主要考虑因素:
衍射
像差
激光
方向性好
激光
单色性好
激光
集中性好
空间高度集中:亮度比太阳表面高 1010 倍
时间高度集中:功率峰值为 1012 瓦。
激光
相干性好
CD机原理-光学部分
激光器分类
固体激光器
红宝石,Nd:YAG,钕玻璃
气体激光器
He-Ne,C半导体激光器
9.2 激光束的透镜变换
高斯光束的透镜变换
P212-214
透镜的作用是改变高斯光束的特征参数:束腰的大小 和位置。
1 1 1 R1 R2 F
1 2 (薄透镜)
9.3.1 激光聚焦透镜
激光束聚焦的目的就 是希望得到足够小的 激光束束腰半径。
方法:令 |l| >> f ' 例如: |l| =500mm, f '=25mm
傅立叶光学、信息光学。
信息光学
信息光学=数学工具(级数、积分)+经典光 学(光波的传播、干涉、衍射、成像、光学信 息的记 录与再现、光学信号的处理)
应用光学 基本观点:光是能量的 射线
物光 电磁波
信光 光是信号 的载体
基本定理:费玛原理
光波的电磁场 理论
线性系统理论
成像、象差理论 基本内容:
方法如前介绍,注意调整距离。
9.5 激光扫描系统
核心:旋转多面体(旋转棱镜)、fθ透镜。
扫描分:一维、二维
快速,非接触。
9.6 光学信息处理系统和傅立叶变换镜头
空间频谱
一幅图像可以看成是一种光的强度和颜色的空 间分布。这种分布的特征可以用空间频率来表 示。
把图像看成是由各种方向和各种间距的条纹组 成的集合。