2014高考调研理科数学课时作业讲解_课时作业13
2014高考调研理科数学课时作业讲解_课时作业68
课时作业(六十八)1.已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 212-y24=1的一个焦点重合,直线y =x -4与抛物线交于A ,B 两点,则|AB |等于( )A .28B .32C .20D .40答案 B解析 双曲线x 212-y 24=1的焦点坐标为(±4,0),故抛物线的焦点F 的坐标为(4,0),因此p =8,故抛物线方程为y 2=16x ,易知直线y =x -4过抛物线的焦点.设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).由⎩⎨⎧y 2=16x ,y =x -4,可得x 2-24x +16=0,故x 1+x 2=24. 故|AB |=x 1+x 2+p =24+8=32.2.已知AB 为半圆的直径,P 为半圆上一点,以A 、B 为焦点且过点P 做椭圆,当点P 在半圆上移动时,椭圆的离心率有( )A .最大值12 B .最小值12 C .最大值22 D .最小值22答案 D解析 椭圆的离心率e =|AB ||P A |+|PB |≥|AB |2|P A |2+|PB |22=22,故选D. 3.(2012·武汉调研)设抛物线y 2=4x 的焦点为F ,过点M (-1,0)的直线在第一象限交抛物线于A 、B ,且满足AF →·BF →=0,则直线AB 的斜率k =( )A. 2B.22 C. 3D.33答案 B解析 依题意,设直线AB 的方程为y =k (x +1)(k ≠0),代入抛物线方程y 2=4x 并整理得k 2x 2+(2k 2-4)x +k 2=0,因为直线与抛物线有两个不同的交点,所以Δ=(2k 2-4)2-4k 4>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=4-2k 2k 2,x 1x 2=1.又因为AF →·BF →=0,所以(x 1-1)(x 2-1)+y 1y 2=0,(x 1-1)(x 2-1)+k 2(x 1+1)(x 2+1)=0,(1+k 2)x 1x 2+(k 2-1)(x 1+x 2)+k 2+1=0,把⎩⎪⎨⎪⎧x 1+x 2=4-2k 2k 2x 1x 2=1,代入并整理得k 2=12,又k >0,所以k =22,选B.4.已知抛物线y =2x 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,那么m 的值等于( )A.32B.52 C .2 D .3答案 A解析 因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减得y 1-y 2=2(x 1-x 2)(x 1+x 2),不妨设x 1<x 2.因为直线AB 与直线y=x +m 互相垂直,所以y 1-y 2x 1-x 2=-1,所以x 1+x 2=-12,而x 1x 2=-12,解得x 1=-1,x 2=12,设线段AB 的中点为M (x 0,y 0),则x 0=x 1+x 22=-14,y 0=y 1+y 22=2x 21+2x 222=54.因为中点M 在直线y =x +m 上,所以54=-14+m ,解得m =32.5.已知双曲线x 2-y 24=1,过点A (1,1)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4B .3C .2D .1答案 A解析 ①斜率不存在时,方程为x =1符合. ②设斜率为k ,y -1=k (x -1),kx -y -k +1=0.⎩⎨⎧4x 2-y 2=4,y =kx -k +1,(4-k 2)x 2+(2k 2-2k )x -k 2+2k -5=0. 当4-k 2=0,k =±2时符合;当4-k 2≠0,Δ=0,亦有一个答案,∴共4条.6.已知双曲线的顶点与焦点分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为( )A.13 B.12 C.33D.22答案 D解析 根据题意可知双曲线的方程为x 2a 2-b 2-y 2b 2=1.因为双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,所以双曲线为等轴双曲线,所以a 2-b 2=b 2,即a =2b ,故椭圆的离心率e =a 2-b 2a =b a =b 2b=22,故选D.7.已知两点A (1,0),B (b,0),若抛物线y 2=4x 上存在点C 使△ABC 为等边三角形,则b =________.答案 5或-13解析 A (1,0),B (b,0),且△ABC 为等边三角形,则C ⎝ ⎛⎭⎪⎫b +12,±32(b -1),代入抛物线方程求得b =5或-13,故填5或-13.8.抛物线y =x 2与直线x -y -2=0的最短距离________.答案728解析 设与抛物线相切且与直线x -y -2=0平行的直线为x -y +t =0,∴⎩⎨⎧y =x 2,y =x +t ,消y 得x 2-x -t =0. Δ=1+4t =0,∴t =-14.∴问题转化为x -y -2=0与x -y -14=0的距离. ∴d =|-2-⎝ ⎛⎭⎪⎫-14|2=728.9.椭圆ax 2+by 2=1与直线x +y =1相交于A ,B 两点,C 是AB 的中点,O 为坐标原点,OC 的斜率为22,则ba =________.答案 22解析 (点差法)令A (x 1,y 1),B (x 2,y 2),C (x 0,y 0),⎩⎨⎧ax 21+by 21=1,ax 22+by 22=1, 作差有 a (x 1-x 2)(x 1+x 2)=-b (y 1-y 2)(y 1+y 2), k AB =y 1-y 2x 1-x 2=a (x 1+x 2)-b (y 1+y 2)=-1. 又x 1+x 2=2x 0,y 1+y 2=2y 0,k OC =y 0x 0, ∴ax 0by 0=1,∴a b =y 0x 0=22.10.若抛物线y =ax 2-1上恒有关于直线x +y =0对称的相异两点A 、B ,则a 的取值范围是________.答案 (34,+∞)解析 设抛物线上的两点为A (x 1,y 1)、B (x 2,y 2),直线AB 的方程为y =x +b ,代入抛物线方程y =ax 2-1,得ax 2-x -(b +1)=0,设直线AB 的中点为M (x 0,y 0),则x 0=12a ,y 0=x 0+b=12a +b .由于M (x 0,y 0)在直线x +y =0上,故x 0+y 0=0,由此解得b =-1a ,此时ax 2-x -(b +1)=0可变形为ax 2-x -(-1a +1)=0,由Δ=1+4a (-1a +1)>0,解得a >34.11.如图所示,已知点H (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP →·PM →=0,PM →=-32MQ →.(1)求点P 在y 轴上移动时,求点M 的轨迹F ;(2)已知圆E :x 2+y 2=2x ,过圆心E 作直线l ,此直线与圆E 和(1)中的轨迹F 共有四个交点,自上而下依次记为A 、B 、C 、D ,如果线段AB 、BC 、CD 的长按此顺序构成一个等差数列,求直线l 的方程.解析 (1)设M (x ,y ),P (0,y ′),Q (x ′,0), ∵PM →=-32MQ →,HP →·PM →=0,∴(x ,y -y ′)=-32(x ′-x ,-y ),(3,y ′)·(x ,y -y ′)=0. ∴x ′=13x ,y ′=-12y,3x +yy ′-y ′2=0.又∵点Q 在x 轴的正半轴上,∴x ′>0,x >0.将y ′=-12y 代入3x +yy ′-y ′2=0,得y 2=4x (x >0).∴动点M 的轨迹F 是以O (0,0)为顶点,以(1,0)为焦点的抛物线(除去原点). (2)由题知,圆E 的方程为(x -1)2+y 2=1,则其直径为2,圆心为E (1,0),如图所示.设l 的方程为my =x -1, 即x =my +1, ①将①式代入抛物线方程y 2=4x ,得y 2-4my -4=0. 设A (x 1,y 1),D (x 2,y 2),结合根与系数的关系,得⎩⎨⎧Δ>0,y 1+y 2=4m ,y 1y 2=-4.则(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=16(m 2+1),|AD |2=(y 1-y 2)2+(x 1-x 2)2=(y 1-y 2)2+(y 21-y 224)2=(y 1-y 2)2[1+(y 1+y 24)2]=16(m 2+1)2.∴|AD |=4(m 2+1).又线段AB 、BC 、CD 的长成等差数列, ∴2|BC |=|AB |+|CD |=|AD |-|BC |.∴|AD |=3|BC |=6,∴4(m 2+1)=6,m =±22, 即直线l 的方程为2x -y -2=0或2x +y -2=0.12.已知直线x +y -1=0与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A 、B 两点,M 是线段AB 上的一点,AM →=-BM →,且点M 在直线l :y =12x 上.(1)求椭圆的离心率;(2)若椭圆的焦点关于直线l 的对称点在单位圆x 2+y 2=1上,求椭圆的方程. 解析 (1)由AM →=-BM →知M 是AB 的中点,设A 、B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x +y -1=0,x 2a 2+y 2b2=1,得(a 2+b 2)x 2-2a 2x +a 2-a 2b 2=0.x 1+x 2=2a 2a 2+b 2,y 1+y 2=-(x 1+x 2)+2=2b 2a 2+b 2.∴M 点的坐标为⎝ ⎛⎭⎪⎫a2a 2+b 2,b 2a 2+b 2.又M 点在直线l 上, ∴a 2a 2+b 2-2b 2a 2+b 2=0. ∴a 2=2b 2=2(a 2-c 2),∴a 2=2c 2. ∴e =c a =22.(2)由(1)知b =c ,不妨设椭圆的一个焦点坐标为F (b,0),设F (b,0)关于直线l :y =12x 的对称点为(x 0,y 0),则有⎩⎪⎨⎪⎧y 0-0x 0-b ·12=-1,x 0+b 2-2×y 02=0,解得⎩⎪⎨⎪⎧x 0=35b ,y 0=45b .由已知x 20+y 20=1.∴⎝ ⎛⎭⎪⎫35b 2+⎝ ⎛⎭⎪⎫45b 2=1,∴b 2=1. ∴所求的椭圆的方程为x 22+y 2=1.13.已知椭圆C :x 2+y24=1,过点M (0,3)的直线l 与椭圆C 相交于不同的两点A 、B .(1)若l 与x 轴相交于点N ,且A 是MN 的中点,求直线l 的方程; (2)设P 为椭圆上一点,且OA →+OB →=λOP →(O 为坐标原点).求当|AB |<3时,实数λ的取值范围.解析 (1)设A (x 1,y 1),因为A 是MN 的中点,且M 的纵坐标为3,N 的纵坐标为0,所以y 1=32.又因为点A (x 1,y 1)在椭圆C 上, 所以x 21+y 214=1,即x 21+916=1,解得x 1=±74, 则点A 的坐标为⎝ ⎛⎭⎪⎫74,32或⎝ ⎛⎭⎪⎫-74,32.所以直线l 的方程为67x -7y +21=0或67x +7y -21=0. (2)设直线AB 的方程为y =kx +3或x =0,A (x 1,y 1),B (x 2,y 2),P (x 3,y 3),当AB 的方程为x =0时,|AB |=4>3,与题意不符.当AB 的方程为y =kx +3时,由题设可得A 、B 的坐标是方程组⎩⎪⎨⎪⎧y =kx +3,x 2+y 24=1的解,消去y 得(4+k 2)x 2+6kx +5=0. 所以Δ=(6k )2-20(4+k 2)>0,即k 2>5. 则x 1+x 2=-6k 4+k 2,x 1·x 2=54+k 2, y 1+y 2=(kx 1+3)+(kx 2+3)=244+k 2. 因为|AB |=(x 1-x 2)2+(y 1-y 2)2<3, 所以1+k 2·⎝ ⎛⎭⎪⎫-6k 4+k 22-204+k2<3, 解得-1613<k 2<8,所以5<k 2<8.因为OA →+OB →=λOP →,即(x 1,y 1)+(x 2,y 2)=λ(x 3,y 3), 所以当λ=0时,由OA →+OB →=0, 得x 1+x 2=-6k 4+k 2=0,y 1+y 2=244+k 2=0, 上述方程无解,所以此时符合条件的直线l 不存在;当λ≠0时,x 3=x 1+x 2λ=-6kλ(4+k 2), y 3=y 1+y 2λ=24λ(4+k 2). 因为点P (x 3,y 3)在椭圆上, 所以⎣⎢⎡⎦⎥⎤-6k λ(4+k 2)2+14⎣⎢⎡⎦⎥⎤24λ(4+k 2)2=1, 化简得λ2=364+k 2. 因为5<k 2<8,所以3<λ2<4. 则λ∈(-2,-3)∪(3,2).综上,实数λ的取值范围为(-2,-3)∪(3,2).1.已知抛物线y =ax 2(a ≠0)的焦点为F ,准线l 与对称轴交于R 点,过已知抛物线上一点P (1,2)作PQ ⊥l 于Q ,则(1)抛物线的焦点坐标是____________;(2)梯形PQRF 的面积是____________.答案 (1)⎝ ⎛⎭⎪⎫0,18 (2)1916解析 抛物线上一点P (1,2),求得a =2,焦点坐标为⎝ ⎛⎭⎪⎫0,18;梯形PQRF 的面积是1916.故填(1)⎝ ⎛⎭⎪⎫0,18;(2)1916.2.AB 弦过椭圆x 2a 2+y 2b 2=1(a >b >0)的中心,F 为焦点,则S △ABF 的最大值是________.答案 b a 2-b 2解析 如图,S △ABF =S △AOF +S △BOF =12|OF |(|y A |+|y B |)=12|OF ||y A -y B | =12a 2-b 2|y A -y B |, 而|y A -y B |max =2b , ∴(S △AOF )max =b a 2-b 2.3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,以椭圆的短半轴长为半径的圆与直线x -y +6=0相切.(1)求椭圆C 的方程;(2)设P (4,0),A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E ,证明:直线AE 与x 轴相交于定点Q ;(3)在(2)的条件下,设过点Q 的直线与椭圆C 交于M ,N 两点,求OM →·ON →的取值范围.解析 (1)由题意知e =c a =12,所以e 2=c 2a 2=a 2-b 2a 2=14,即a 2=43b 2.因为以原点为圆心,以椭圆的短半轴长为半径的圆x 2+y 2=b 2,与直线x -y +6=0相切,所以b =612+(-1)2=3,所以a 2=4,b 3=3,故椭圆C 的方程为x 24+y 23=1.(2)由题意知直线PB 的斜率存在且不为0,则可设直线PB 的方程为y =k (x -4),k ≠0.由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 23=1,得(4k 2+3)x 2-32k 2x +64k 2-12=0. ①设点B (x 1,y 1),E (x 2,y 2),则A (x 1,-y 1).由题意知直线AE 的斜率存在,则直线AE 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2).令y =0,得x =x 2-y 2(x 2-x 1)y 2+y 1,将y 1=k (x 1-4),y 2=k (x 2-4)代入整理得x=2x 1x 2-4(x 1+x 2)x 1+x 2-8. ②由①式利用根与系数的关系得x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3,代入②式整理得x =1.所以直线AE 与x 轴相交于定点Q (1,0). (3)当过点Q 的直线MN 的斜率存在时,设直线MN 的方程为y =m (x -1),M (x M ,y M ),N (x N ,y N ). 由⎩⎪⎨⎪⎧y =m (x -1),x 24+y 23=1,得(4m 2+3)x 2-8m 2x +4m 2-12=0,易知Δ=(-8m 2)2-4(4m 2+3)(4m 2-12)=144(m 2+1)>0,由根与系数的关系知x M +x N =8m 24m 2+3,x M x N =4m 2-124m 2+3,则y M y N =m (x M -1)·m (x N -1)=m 2[x M x N -(x M +x N )+1]=-9m 24m 2+3.则OM →·ON →=x M x N +y M y N =-5m 2+124m 2+3=-54-334(4m 2+3).因为m 2≥0,所以-114≤-334(4m 2+3)<0.所以-4≤-54-334(4m 2+3)<-54.所以OM →·ON →∈[-4,-54].当过点Q 的直线MN 的斜率不存在时,其方程为x =1,代入椭圆方程得y =±32,不妨设M (1,32),N (1,-32),此时OM →·ON →=-54.综上所述,OM →·ON →的取值范围是[-4,-54].4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=4x 有共同的焦点F ,且两曲线在第一象限的交点为M ,满足|MF |=53.(1)求椭圆C 的方程;(2)设直线y =kx -2与椭圆C 交于A ,B 两点,OP →=13OA →,ON →=23OB →,若原点O 在以PN 为直径的圆外,求实数k 的取值范围.解析 (1)由题意知,抛物线y 2=4x 的焦点坐标为F (1,0),准线方程为x =-1.设M (x M ,y N )(x M >0,y M >0),因为点M 在抛物线上,且|MF |=53,所以点M 的横坐标x M =53-1=23,从而y 2M =4x M =83.又点M 也在椭圆C :x 2a 2+y 2b 2=1上,故有⎩⎪⎨⎪⎧49a 2+83b 2=1,c 2=a 2-b 2=1,解得a 2=4,b 2=3.所以所求椭圆C 的方程为x 24+y 23=1. (2)由⎩⎪⎨⎪⎧y =kx -2,x 24+y 23=1,消去y ,得(4k 2+3)x 2-16kx +4=0.因为直线与椭圆C 有两个交点A ,B , 所以Δ=(-16k )2-16(4k 2+3)>0,即k 2>14.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=16k 4k 2+3,x 1x 2=44k 2+3.因为原点O 在以PN 为直径的圆外,所以∠PON 为锐角.又因为OP →=13OA →,ON →=23OB →,所以∠PON 为锐角,所以OA →·OB →>0, 即OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(kx 1-2)(kx 2-2)=(k 2+1)·x 1x 2-2k (x 1+x 2)+4=(k 2+1)·44k 2+3-2k ·16k 4k 2+3+4=-12k 2+164k 2+3>0.解得k 2<43.又k 2>14,所以14<k 2<43, 即-233<k <-12或12<k <233.故实数k 的取值范围是(-233,-12)∪(12,233).5.(2012·长春调研)已知点A (-1,0)、B (1,0),动点M 的轨迹曲线C 满足∠AMB =2θ,|AM →||BM →|cos 2θ=3,过点B 的直线交曲线C 于P 、Q 两点.(1)求|AM →|+|BM →|的值,并写出曲线C 的方程; (2)求△APQ 的面积和最大值.解析 (1)设M (x ,y ),在△MAB 中,|AB →|=2,∠AMB =2θ,根据余弦定理得|AM →|2+|BM →|2-2|AM →|·|BM →|cos2θ=|AB →|2=4,即(|AM →|+|BM →|)2-2|AM →|·|BM →|(1+cos2θ)=4. 所以(|AM →|+|BM →|)2-4|AM →|·|BM →|cos 2θ=4.因为|AM →|·|BM →|cos 2θ=3,所以(|AM →|+|BM →|)2-4×3=4, 所以|AM →|+|BM →|=4. 又|AM →|+|BM →|=4>2=|AB →|,因此点M 的轨迹是以A 、B 为焦点的椭圆(点M 在x 轴上也符合题意). 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则 a =2,c =1,所以b 2=a 2-c 2=3. 所以曲线C 的方程为x 24+y 23=1. (2)设直线PQ 的方程为x =my +1. 由⎩⎪⎨⎪⎧x =my +1,x 24+y 23=1,消去x 并整理得(3m 2+4)y 2+6my -9=0. ① 显然方程①的判别式Δ=36m 2+36(3m 2+4)>0. 设P (x 1,y 1),Q (x 2,y 2), 则S △APQ =12×2×|y 1-y 2|=|y 1-y 2|.由根与系数的关系得y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4.所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=48×3m 2+3(3m 2+4)2.令t =3m 2+3,则t ≥3,(y 1-y 2)2=48t +1t +2,由于函数φ(t )=t +1t 在[3,+∞)上是增函数,所以t +1t ≥103,当且仅当t =3m 2+3=3,即m =0时取等号. 所以(y 1-y 2)2≤48103+2=9,即|y 1-y 2|的最大值为3.所以△APQ 的面积的最大值为3,此时直线PQ 的方程为x =1.6.设椭圆ax 2+by 2=1与直线x +y -1=0相交于A 、B 两点,点C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程.解析 设A (x 1,y 1),B (x 2,y 2),那么A 、B 的坐标是方程组⎩⎨⎧ax 2+by 2=1,x +y -1=0的解.由ax 21+by 21=1,ax 22+by 22=1,两式相减,得a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0. 因为y 1-y 2x 1-x 2=-1,所以y 1+y 2x 1+x 2=ab, 即2y C 2x C =a b ,y C x C=a b =22,所以b =2a .①再由方程组消去y ,得(a +b )x 2-2bx +b -1=0. 由|AB |=(x 1-x 2)2+(y 1-y 2)2 =2(x 1-x 2)2=2[(x 1+x 2)2-4x 1x 2]=22, 得(x 1+x 2)2-4x 1x 2=4, 即⎝ ⎛⎭⎪⎫2b a +b 2-4·b -1a +b =4.②由①、②解得a=13,b=23.故所求的椭圆方程为x23+2y23=1.。
2014高考调研理科数学课时作业讲解_课时作业10
课时作业(十)1.(2012·安徽)(log 29)·(log 34)=( )A.14 B.12 C .2 D .4答案 D解析 原式=(log 232)·(log 322)=4(log 23)·(log 32)=4·lg3lg2·lg2lg3=4. 2.log 2sin π12+log 2cos π12的值为( )A .-4B .4C .-2D .2答案 C解析 log 2sin π12+log 2cos π12=log 2(sin π12cos π12)=log 212sin π6=log 214=-2,故选C.3.若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a答案 C解析 由x ∈(e -1,1),得-1<ln x <0,a -b =-ln x >0,a >b ,a -c =ln x (1-ln 2x )<0,a <c ,因此有b <a <c ,选C.4.设a =log 3π,b =log 23,c =log 32,则( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a答案 A解析 ∵a =log 3π>log 33=1,b =log 23<log 22=1,∴a >b ,又b c =12log 2312log 32=(log 23)2>1,∴b >c ,故a >b >c ,选A.5.0<a <1,不等式1log a x >1的解是( )A .x >aB .a <x <1C .x >1D .0<x <a答案 B解析 易得0<log a x <1,∴a <x <1.6.(2011·安徽)若点(a ,b )在y =lg x 图像上,a ≠1,则下列点也在此图像上的是( )A .(1a ,b )B .(10a,1-b )C .(10a ,b +1) D .(a 2,2b )答案 D解析 当x =a 2时,y =lg a 2=2lg a =2b ,所以点(a 2,2b )在函数y =lg x 图像上. 7.若log a (π-3)<log b (π-3)<0,a 、b 是不等于1的正数,则下列不等式中正确的是( )A .b >a >1B .a <b <1C .a >b >1D .b <a <1答案 A解析 ∵0<π-3<1,log a (π-3)<log b (π-3)<0,∴a ,b ∈(1,+∞),且b >a ,∴选A.8.当0<x <1时,下列不等式成立的是( )A .(12)x +1>(12)1-xB .log (1+x )(1-x )>1C .0<1-x 2<1D .log (1-x )(1+x )>0答案 C解析 方法一 考察答案A :∵0<x <1,∴x +1>1-x .∴(12)x +1<(12)1-x ,故A 不正确;考察答案B :∵0<x <1,∴1+x >1,0<1-x <1. ∴log (1+x )(1-x )<0,故B 不正确;考察答案C :∵0<x <1,∴0<x 2<1,∴0<1-x 2<1,故C 正确;考察答案D:∵0<1-x<1,1+x>1.∴log(1-x)(1+x)<0.故D不正确.方法二(特值法)取x=12,验证立得答案C.9.若0<a<1,在区间(0,1)上函数f(x)=log a(x+1)是() A.增函数且f(x)>0 B.增函数且f(x)<0C.减函数且f(x)>0 D.减函数且f(x)<0答案 D解析∵0<a<1时,y=log a u为减函数,又u=x+1增函数,∴f(x)为减函数;又0<x<1时,x+1>1,又0<a<1,∴f(x)<0.选D.10.函数y=f(x)的图像如下图所示,则函数y=log12f(x)的图像大致是()答案 C解析由y=f(x)的图像可知,y=f(x)在(0,1)上单调递减,在(1,2)上单调递增,根据复合函数的单调性法则可知,y=log12f(x)在(0,1)上单调递增,在(1,2)上单调递减,故选C.11.(2012·上海文)方程4x-2x+1-3=0的解是________.答案log23解析原方程可化为(2x)2-2(2x)-3=0,解得2x=3或2x=-1,∵2x>0,∴2x=3,∴x=log23.故答案为log23.12.若log a (a 2+1)<log a 2a <0,则实数a 的取值范围是__________. 答案 (12,1)解析 ∵a 2+1>1, log a (a 2+1)<0,∴0<a <1. 又log a 2a <0,∴2a >1,∴a >12. ∴实数a 的取值范围是(12,1).13.若正整数m 满足10m -1<2512<10m ,则m =__________.(lg2≈0.301 0) 答案 155解析 由10m -1<2512<10m ,得m -1<512lg2<m ,∴m -1<154.12<m . ∴m =155.14.若函数f (x )=log a (x +1)(a >0,a ≠1)的定义域和值域都是[0,1],则a =________.答案 2解析 f (x )=log a (x +1)的定义域是[0,1],∴0≤x ≤1,则1≤x +1≤2. 当a >1时,0=log a 1≤log a (x +1)≤log a 2=1,∴a =2;当0<a <1时,log a 2≤log a (x +1)≤log a 1=0,与值域是[0,1]矛盾. 综上,a =2.15.作为对数运算法则:lg(a +b )=lg a +lg b (a >0,b >0)是不正确的.但对一些特殊值是成立的,例如:lg(2+2)=lg2+lg2.那么,对于所有使lg(a +b )=lg a +lg b (a >0,b >0)成立的a ,b 应满足函数a =f (b )表达式为________.答案 a =bb -1(b >1) 解析 lg(a +b )=lg a +lg b ,∴a +b =ab ,∴a (b -1)=b . ∴a =bb -1(b >1).16.已知函数y =log 2(x 2-ax -a )的值域为R ,则实数a 的取值范围是________. 答案 (-∞,-4]∪[0,+∞)解析 要使f (x )=x 2-ax -a 的值能取遍一切正实数,应有Δ=a 2+4a ≥0,解之得a ≥0或a ≤-4,即a 的取值范围为(-∞,-4]∪[0,+∞).17.设a ,b ∈R ,且a ≠2,若奇函数f (x )=lg 1+ax 1+2x 在区间(-b ,b )上有定义.(1)求a 的值; (2)求b 的取值范围. 解析 (1)f (-x )=-f (x ),即lg 1-ax 1-2x =-lg 1+ax 1+2x ,即1-ax 1-2x =1+2x 1+ax ,整理得1-a 2x 2=1-4x 2. ∴a =±2,又a ≠2,∴a =-2.(2)f (x )=lg 1-2x 1+2x的定义域是(-12,12),∴0<b ≤12.18.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2f (a )=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值; (2)x 取何值时,f (log 2x )>f (1),且log 2f (x )<f (1). 解析 (1)∵f (x )=x 2-x +b , ∴f (log 2a )=(log 2a )2-log 2a +b .由已知(log 2a )2-log 2a +b =b ,∴log 2a (log 2a -1)=0. ∵a ≠1,∴log 2a =1,∴a =2. 又log 2f (a )=2,∴f (a )=4.∴a 2-a +b =4,∴b =4-a 2+a =2.故f (x )=x 2-x +2. 从而f (log 2x )=(log 2x )2-log 2x +2=(log 2x -12)2+74. ∴当log 2x =12,即x =2时,f (log 2x )有最小值74.(2)由题意⎩⎨⎧(log 2x )2-log 2x +2>2,log 2(x 2-x +2)<2⇒⎧x>2或0<x<1,-1<x<2⇒0<x<1.⎩⎨。
2014高考调研理科数学课时作业讲解_课时作业18
课时作业(十八)1.已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x . (1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围; (3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值. 解析 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6. 又f (1)=1,故所求的切线方程为y -1=-6(x -1).即y =-6x +7. (2)因为f ′(x )=2(x +2)(x -2)x,又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0. 即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减.欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎨⎧a ≥2,a +1≤7,解得2≤a ≤6.(3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x ,且x >0,所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.2.(2013·衡水调研)设函数f (x )=x 2+2x -2ln(1+x ). (1)求函数f (x )的单调区间;(2)当x ∈[1e -1,e -1]时,是否存在整数m ,使不等式m <f (x )≤-m 2+2m +e 2恒成立?若存在,求整数m 的值;若不存在,则说明理由.解析 (1)由1+x >0,得函数f (x )的定义域为(-1,+∞). f ′(x )=2x +2-2x +1=2x (x +2)x +1. 由f ′(x )>0,得x >0;由f ′(x )<0,得-1<x <0.∴函数f (x )的单调递增区间是(0,+∞),单调减区间是(-1,0).(2)由(1)知,f (x )在[1e -1,0]上单调递减,在[0,e -1]上单调递增.∴f (x )min =f (0)=0.又f (1e -1)=1e 2+1,f (e -1)=e 2-e ,且e 2-3>1e 2+1, ∴x ∈[1e -1,e -1]时,f (x )max =e 2-e. ∵不等式m <f (x )≤-m 2+2m +e 2恒成立,∴⎩⎨⎧-m 2+2m +e 2≥f (x )max ,m <f (x )min .即⎩⎨⎧-m 2+2m +e 2≥e 2-3,m <0⇒⎩⎨⎧m 2-2m -3≤0,m <0⇒ ⎩⎨⎧-1≤m ≤3,m <0⇒-1≤m <0. ∵m 是整数,∴m =-1.∴存在整数m =-1,使不等式m <f (x )≤-m 2+2m +e 2恒成立.3.已知函数f (x )=ax -ln(-x ),x ∈[-e,0),其中e 是自然对数的底数,a ∈R .(1)当a =-1时,确定f (x )的单调性和极值; (2)当a =-1时,证明:f (x )+ln (-x )x >12;(3)是否存在实数a ,使f (x )的最小值为3,如果存在,求出a 的值;如果不存在,请说明理由.解析 (1)∵f (x )=-x -ln(-x ),f ′(x )=-1-1x =-x +1x ,∴当-e ≤x <-1时,f ′(x )<0,此时f (x )单调递减;当-1<x <0时,f ′(x )>0,此时f (x )单调递增.∴f (x )的极小值为f (-1)=1.(2)由(1)知f(x)在区间[-e,0)上有唯一的极小值1,即f(x)在区间[-e,0)上的最小值为1,即f(x)min=1.所证不等式即f(x)>12-ln(-x)x.令h(x)=12-ln(-x)x,则h′(x)=ln(-x)-1x2.当-e≤x<0时,h′(x)≤0,故h(x)在[-e,0)上单调递减.∴h(x)max=h(-e)=1e+12<12+12=1=f(x)min.∴当a=-1时,f(x)+ln(-x)x>12.(3)假设存在实数a,使f(x)=ax-ln(-x)的最小值为3.f′(x)=a-1x(x∈[-e,0)).①若a≥-1e,由于x∈[-e,0),则f′(x)=a-1x≥0.∴函数f(x)=ax-ln(-x)在[-e,0)上是增函数.∴f(x)min=f(-e)=-a e-1=3,解得a=-4e<-1e,与a≥-1e矛盾,舍去.②若a<-1e,则当-e≤x<1a时,f′(x)=a-1x<0,此时f(x)=ax-ln(-x)是减函数.当1a<x<0时,f′(x)=a-1x>0,此时f(x)=ax-ln(-x)是增函数.∴f(x)min=f(1a)=1-ln(-1a)=3,解得a=-e2.由①②知,存在实数a=-e2,使f(x)的最小值为3.4.(2013·山东济宁一模)已知函数f(x)=x-ln x,g(x)=ln x x.(1)求函数f(x)的单调区间;(2)求证:对任意的m,n∈(0,e],都有f(m)-g(n)>12.(注:e≈2.718 28…是自然对数的底数.)解析 (1)∵f (x )=x -ln x (x >0),∴f ′(x )=1-1x =x -1x (x >0). 由f (x )>0,得x >1,由f (x )<0,得0<x <1.∴f (x )的单调递增区间是(1,+∞),单调递减区间是(0,1).(2)由(1)知,当x ∈(0,e]时,f (x )在(0,1)上单调递减,在(1,e]上单调递增. ∴当x =1时,[f (x )]min =f (1)=1.∵g (x )=ln xx (x >0),∴g ′(x )=1-ln x x 2(x >0).当x ∈(0,e]时,g (x )≥0,∴g (x )在(0,e]上单调递增. ∴当x ∈(0,e]时,[g (x )]max =g (e)=1e .对任意的m ,n ∈(0,e],f (m )-g (n )≥[f (m )]min -[g (n )]max =1-1e >12. 即证得,对任意的m ,n ∈(0,e],都有f (m )-g (n )>12.5.(2013·汕头质量测评)设函数f (x )=-13x 3+x 2+(a 2-1)x ,其中a >0. (1)若函数y =f (x )在x =-1处取得极值,求a 的值;(2)已知函数f (x )有3个不同的零点,分别为0、x 1、x 2,且x 1<x 2,若对任意的x ∈[x 1,x 2],f (x )>f (1)恒成立,求a 的取值范围.解析 (1)f ′(x )=-x 2+2x +(a 2-1),因为y =f (x )在x =-1处取得极值,所以f ′(-1)=0. 即-(-1)2+2(-1)+(a 2-1)=0. 解得a =±2.经检验得a =2.(2)由题意得f (x )=x (-13x 2+x +a 2-1)=-13x (x -x 1)(x -x 2). 所以方程-13x 2+x +a 2-1=0有两个相异的实根x 1,x 2. 故Δ=1+43(a 2-1)>0,解得a <-12(舍去)或a >12 且x 1+x 2=3.又因为x 1<x 2,所以2x 2>x 1+x 2=3,故x 2>32>1.①若x1≤1<x2,则f(1)=-13(1-x1)(1-x2)≥0,而f(x1)=0不符合题意.②若1<x1<x2,对任意的x∈[x1,x2],有x-x1≥0,x-x2≤0,所以f(x)=-13x(x-x1)(x-x2)≥0.又f(x1)=0,所以f(x)在[x1,x2]上的最小值为0.于是对任意的x∈[x1,x2],f(x)>f(1)恒成立的充要条件为f(1)=a2-13<0,解得-33<a<33.综上得12<a<33,即a的取值范围为(12,33).6.(2013·西安市质检)设函数f(x)=-13x3+x2+(m2-1)x(x∈R),其中m>0.(1)当m=1时,求曲线y=f(x)在(1,f(1))点处的切线的方程;(2)求函数f(x)的单调区间与极值;(3)已知函数g(x)=f(x)+13有三个互不相同的零点,求m的取值范围.解析(1)当m=1时,f(x)=-13x3+x2,f′(x)=-x2+2x,故f′(1)=1.所以曲线y=f(x)在点(1,f(1))处的切线斜率为1.切线方程为3x-3y-1=0.(2)f′(x)=-x2+2x+m2-1,令f′(x)=0,得到x=1-m或x=1+m. 因为m>0,所以1+m>1-m.当x变化时,f(x),f′(x)的变化情况如下表:函数f(x)在x=1+m处取得极大值f(1+m),且f(1+m)=23m3+m2-13.函数f(x)在x=1-m处取得极小值f(1-m),且f(1-m)=-23m3+m2-13.(3)由(2)知,函数g (x )在x =1+m 处取得极大值g (1+m )=f (1+m )+13, 且g (1+m )=23m 3+m 2.函数g (x )在x =1-m 处取得极小值g (1-m )=f (1-m )+13, 且g (1-m )=-23m 3+m 2.根据三次函数的图像与性质,函数g (x )=f (x )+13有三个互不相同的零点,只需要⎩⎪⎨⎪⎧g (1+m )=23m 3+m 2>0,g (1-m )=-23m 3+m 2<0,即⎩⎪⎨⎪⎧m >0,m >32.所以m 的取值范围是⎝ ⎛⎭⎪⎫23,+∞.7.(2013·沧州七校联考)设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln2-1且x >0时,e x >x 2-2ax +1.解析 (1)由f (x )=e x -2x +2a ,x ∈R ,知f ′(x )=e x -2,x ∈R .令f ′(x )=0,得x =ln2.于是当x 变化时f ′(x ),f (x )的变化情况如下表:f (x故f f (x )在x =ln2处取得极小值,极小值为f (ln2)=e ln2-2ln2+2a =2(1-ln2+a ). (2)设g (x )=e x -x 2+2ax -1,x ∈R . 于是g ′(x )=e x -2x +2a ,x ∈R .由(1)知当a >ln2-1时,g ′(x )最小值g ′(ln2)=2(1-ln2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增. 于是当a >ln2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.8.(2013·西北五校)已知函数f (x )=12ax 2-(2a +1)x +2ln x (a ∈R ). (1)若曲线y =f (x )在x =1和x =3处的切线互相平行,求a 的值; (2)求f (x )的单调区间;(3)设g (x )=x 2-2x ,若对任意x 1∈(0,2],均存在x 2∈(0,2],使得f (x 1)<g (x 2),求a 的取值范围.解析 f ′(x )=ax -(2a +1)+2x (x >0). (1)由f ′(1)=f ′(3),解得a =23. (2)f ′(x )=(ax -1)(x -2)x(x >0).①当a ≤0时,x >0,ax -1<0,在区间(0,2)上f ′(x )>0;在区间(2,+∞)上f ′(x )<0. 故f (x )的单调递增区间(0,2),单调递减区间是(2,+∞). ②当0<a <12时,1a >2,在区间(0,2)和⎝ ⎛⎭⎪⎫1a ,+∞上f ′(x )>0;在区间⎝ ⎛⎭⎪⎫2,1a 上f ′(x )<0,故f (x )的单调递增区间是(0,2)和(1a ,+∞),单调递减区间是⎝ ⎛⎭⎪⎫2,1a .③当a =12时,f ′(x )=(x -2)22x , 故f (x )的单调递增区间是(0,+∞). ④当a >12时,0<1a <2,在区间⎝ ⎛⎭⎪⎫0,1a 和(2,+∞)上f ′(x )>0;在区间⎝ ⎛⎭⎪⎫1a ,2上f ′(x )<0,故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1a 和(2,+∞),单调递减区间是⎝ ⎛⎭⎪⎫1a ,2.(3)由已知,在(0,2]上有f (x )max <g (x )max . 由已知,g (x )max =0,由(2)可知, ①当a ≤12时,f (x )在(0,2]上单调递增,故f (x )max =f (2)=2a -2(2a +1)+2ln2=-2a -2+2ln2. 所以,-2a -2+2ln2<0,解得a >ln2-1. 故ln2-1<a ≤12.②当a >12时,f (x )在⎝ ⎛⎦⎥⎤0,1a 上单调递增,在⎣⎢⎡⎦⎥⎤1a ,2上单调递减,故f (x )max =f (1a )=-2-12a -2ln a .由a >12可知ln a >ln 12>ln 1e =-1,2ln a >-2,-2ln a <2. 所以,-2-2ln a <0,f (x )max <0. 综上所述,a >ln2-1.1.(2011·天津文)已知函数f (x )=4x 3+3tx 2-6t 2x +t -1,x ∈R ,其中t ∈R . (1)当t =1时,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)当t ≠0时,求f (x )的单调区间;(3)证明:对任意t ∈(0,+∞),f (x )在区间(0,1)内均存在零点.解析 (1)当t =1时,f (x )=4x 3+3x 2-6x ,f (0)=0,f ′(x )=12x 2+6x -6,f ′(0)=-6.所以曲线y =f (x )在点(0,f (0))处的切线方程为y =-6x .(2)f ′(x )=12x 2+6tx -6t 2.令f ′(x )=0,解得x =-t 或x =t2.因为t ≠0,以下分两种情况讨论:①若t <0,则t2<-t .当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,f (x )的单调递增区间是(-∞,t2),(-t ,+∞);f (x )的单调递减区间是(t2,-t ).②若t >0,则-t <t2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,f (x )的单调递增区间是(-∞,-t ),(t2,+∞);f (x )的单调递减区间是(-t ,t 2).(3)由(2)可知,当t >0时,f (x )在(0,t 2)内单调递减,在(t2,+∞)内单调递增.以下分两种情况讨论:①当t2≥1,即t ≥2时,f (x )在(0,1)内单调递减.f (0)=t -1>0, f (1)=-6t 2+4t +3≤-6×4+4×2+3<0.所以对任意t ∈[2,+∞),f (x )在区间(0,1)内均存在零点.②当0<t 2<1,即0<t <2时,f (x )在(0,t 2)内单调递减,在(t2,1)内单调递增.若t ∈(0,1],f (t 2)=-74t 3+t -1≤-74t 3<0,f (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3>0. 所以f (x )在(t2,1)内存在零点.若t ∈(1,2),f (t 2)=-74t 3+(t -1)<-74t 3+1<0,f (0)=t -1>0.所以f (x )在(0,t2)内存在零点.所以,对任意t ∈(0,2),f (x )在区间(0,1)内均存在零点. 综上,对任意t ∈(0,+∞),f (x )在区间(0,1)内均存在零点. 2.(2011·江西文)设f (x )=13x 3+mx 2+nx .(1)如果g (x )=f ′(x )-2x -3在x =-2处取得最小值-5,求f (x )的解析式; (2)如果m +n <10(m ,n ∈N *),f (x )的单调递减区间的长度是正整数,试求m 和n 的值.(注:区间(a ,b )的长度为b -a ).解析 (1)由题得g (x )=x 2+2(m -1)x +(n -3)=(x +m -1)2+(n -3)-(m -1)2,已知g (x )在x =-2处取得最小值-5,所以⎩⎨⎧m -1=2,(n -3)-(m -1)2=-5,即m =3,n =2. 即得所要求的解析式为f (x )=13x 3+3x 2+2x .(2)因为f ′(x )=x 2+2mx +n ,且f (x )的单调递减区间的长度为正整数,故f ′(x )=0一定有两个不同的根,从而Δ=4m 2-4n >0,即m 2>n .不妨设为x 1,x 2,则|x 2-x 1|=2m 2-n 为正整数. 故m ≥2时才可能有符合条件的m ,n , 当m =2时,只有n =3符合要求, 当m =3时,只有n =5符合要求, 当m ≥4时,没有符合要求的n .综上所述,只有m =2,n =3或m =3,n =5满足上述要求. 3.已知函数f (x )=e x +ax ,g (x )=e x ln x .(e ≈2.718 28…).(1)设曲线y =f (x )在x =1处的切线与直线x +(e -1)y =1垂直,求a 的值; (2)若对于任意实数x ≥0,f (x )>0恒成立,试确定实数a 的取值范围; (3)当a =-1时,是否存在实数x 0∈[1,e],使曲线C :y =g (x )-f (x )在点x =x 0处的切线与y 轴垂直?若存在,求出x 0的值;若不存在,请说明理由.解析 (1)由题知,f ′(x )=e x +a .因此曲线y=f(x)在点(1,f(1))处的切线l的斜率为e+a,又直线x+(e-1)y=1的斜率为11-e,∴(e+a)11-e=-1.∴a=-1.(2)∵当x≥0时,f(x)=e x+ax>0恒成立,∴若x=0,a为任意实数,f(x)=e x+ax>0恒成立.若x>0,f(x)=e x+ax>0恒成立,即当x>0时,a>-e xx恒成立.设Q(x)=-e xx.Q′(x)=-e x x-e xx2=(1-x)e xx2.当x∈(0,1)时,Q′(x)>0,则Q(x)在(0,1)上单调递增,当x∈(1,+∞)时,Q′(x)<0,则Q(x)在(1,+∞)上单调递减.∴当x=1时,Q(x)取得最大值.Q(x)max=Q(1)=-e.∴要使x≥0时,f(x)>0恒成立,a的取值范围为(-e,+∞).(3)依题意,曲线C的方程为y=e x ln x-e x+x.令M(x)=e x ln x-e x+x,∴M′(x)=e xx+ex ln x-e x+1=(1x+ln x-1)ex+1.设h(x)=1x+ln x-1,则h′(x)=-1x2+1x=x-1x2.当x∈[1,e]时,h′(x)≥0.故h(x)在[1,e]上为增函数,因此h(x)在区间[1,e]上的最小值为h(1)=ln1=0.所以h(x)=1x+ln x-1≥0.当x0∈[1,e]时,.∴.曲线y=e x ln x-e x+x在点x=x0处的切线与y轴垂直等价于方程M′(x0)=0在x∈[1,e]上有实数解.而M′(x0)>0,即方程M′(x0)=0无实数解.故不存在实数x0∈[1,e],使曲线y=M(x)在点x=x0处的切线与y轴垂直.4.已知x>12,函数f(x)=x2,h(x)=2eln x(e为自然常数).(1)求证:f(x)≥h(x);(2)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图像为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图像为边界”和“函数f(x),g(x)的图像有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.解析(1)证明:记u(x)=f(x)-h(x)=x2-2eln x,则u′(x)=2x-2e x,令u′(x)>0,因为x>12,所以x> e.所以函数u(x)在(12,e)上单调递减,在(e,+∞)上单调递增.u(x)min=u(e)=f(e)-h(e)=e-e=0,即u(x)≥0,所以f(x)≥h(x).(2)由(1)知,f(x)≥h(x)对x>12恒成立,当且仅当x=e时等号成立.记v(x)=h(x)-g(x)=2eln x+4x2-px-q,则“v(x)≥0恒成立”与“函数f(x),g(x)的图像有且仅有一个公共点”同时成立,即v(x)≥0对x>12恒成立,当且仅当x=e时等号成立.所以函数v(x)在x=e时取极小值.注意到v′(x)=2ex+8x-p=8x2-px+2ex,由v′(e)=0,解得p=10 e.此时v′(x)=8(x-e)(x-e4)x,由x>12知,函数v(x)在(12,e)上单调递减,在(e,+∞)上单调递增,即v(x)min=v(e)=h(e)-g(e)=-5e-q=0,q=-5e,综上,两个条件能同时成立,此时p=10e,q=-5e.5.(2012·山东卷)已知函数f(x)=ln x+ke x(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间;(3)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2.解析(1)由f(x)=ln x+k e x,得f′(x)=1-kx-x ln xx e x,x∈(0,+∞).由于曲线y=f(x)在(1,f(1))处的切线与x轴平行,所以f′(1)=0,因此k=1.(2)由(1)得f′(x)=1x e x(1-x-x ln x),x∈(0,+∞).令h(x)=1-x-x ln x,x∈(0,+∞),当x∈(0,1)时,h(x)>0;当x∈(1,+∞)时,h(x)<0.又e x>0,所以当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(3)因为g(x)=(x2+x)f′(x),所以g(x)=x+1e x(1-x-x ln x),x∈(0,+∞).因此,对任意x>0,g(x)<1+e-2等价于1-x-x ln x<e xx+1(1+e-2).由(2)中h(x)=1-x-x ln x,x∈(0,+∞),所以h′(x)=-ln x-2=-(ln x-ln e-2),x∈(0,+∞).因此,当x∈(0,e-2)时,h′(x)>0,h(x)单调递增;当x∈(e-2,+∞)时,h′(x)<0,h(x)单调递减.所以h(x)的最大值为h(e-2)=1+e-2.故1-x-x ln x≤1+e-2.设φ(x)=e x-(x+1).因为φ′(x)=e x-1=e x-e0,所以当x∈(0,+∞)时,φ′(x)>0,φ(x)单调递增,φ(x)>φ(0)=0.故当x∈(0,+∞)时,φ(x)=e x-(x+1)>0,即e xx+1>1.所以1-x-x ln x≤1+e-2<e xx+1(1+e-2).因此,对任意x>0,g(x)<1+e-2.6.(2011·山东文)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π3立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建筑费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.解析(1)设容器的容积为V,由题意知V=πr2l+43πr3,又V=80π3,故l=V-43πr3πr2=803r2-43r=43(20r2-r).由于l≥2r,因此0<r≤2.所以建造费用y=2πrl×3+4πr2c=2πr×43(20r2-r)×3+4πr2c,因此y=4π(c-2)r2+160πr,0<r≤2.(2)由(1)得y′=8π(c-2)r-160πr2=8π(c-2)r2(r3-20c-2),0<r<2.由于c>3,所以c-2>0.当r3-20c-2=0时,r=320c-2.令320c-2=m,则m>0.所以y′=8π(c-2)r2(r-m)(r2+rm+m2).①当0<m<2即c>92时,当r=m时,y′=0;当r∈(0,m)时,y′<0;当r∈(m,2)时,y′>0.所以r=m是函数y的极小值点,也是最小值点.②当m≥2即3<c≤92时,当r∈(0,2)时,y′<0,函数单调递减,所以r=2是函数y的最小值点.综上所述,当3<c≤92时,建造费用最小时r=2;当c>92时,建造费用最小时r=320c-2.7.(2013·江南十校)设M是满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1.”(1)若函数f(x)为集合M中的任一元素,试证明方程f(x)-x=0只有一个实根;(2)判断函数g(x)=x2-ln x2+3(x>1)是否是集合M中的元素,并说明理由;(3)“对于(2)中函数g(x)定义域内的任一区间[m,n],都存在x0∈[m,n],使得g(n)-g(m)=(n-m)g′(x0)”,请利用函数y=ln x的图像说明这一结论.解析(1)令h(x)=f(x)-x,则h′(x)=f′(x)-1<0,即h(x)在区间(1,+∞)上单调递减.所以,使h(x)=0,即f(x)-x=0成立的x至多有一解.又由题设①知方程f(x)-x =0有实数根, 所以,方程f(x)-x =0只有一个实数根.(2)由题意知,g ′(x)=12-12x ∈⎝ ⎛⎭⎪⎫0,12⊂(0,1),满足条件.令F(x)=g(x)-x =-x 2-ln x2+3(x>1),则F(e )=-e 2+52>0,F(e 2)=-e22+2<0.又F(x)在区间[e ,e 2]上连续,所以F(x)在[e ,e 2]上存在零点x 0,即方程g(x)-x =0有实数根x 0∈[e ,e 2],故g(x)满足条件①.综上可知,g(x)∈M.(3)由(1)知:g(n)-g(m)=12(n -m)-12(ln n -ln m), 而(n -m)g ′(x 0)=(n -m)(12-12x 0),所以原式等价于ln n -ln m n -m =1x 0.该等式说明函数y =ln x(x>1)上任意两点A(m ,ln m)和B(n ,ln n)的连线段AB(如图所示),在曲线y =ln x(m ≤x ≤n)上都一定存在一点P(x 0,ln x 0),使得该点处的切线平行于AB ,根据y =ln x(x>1)图像知该等式一定成立.8.(2013·郑州质检)已知函数f(x)=x -ln (x +a)在x =1处取得极值. (1)求实数a 的值;(2)若关于x 的方程f(x)+2x =x 2+b 在[12,2]上恰有两个不相等的实数根,求实数b 的取值范围.答案 (1)0 (2)54+ln 2≤b<2 解析 (1)对f(x)求导,得f ′(x)=1-1x +a. 由题意,得f ′(1)=0,即1-11+a=0,∴a =0. (2)由(1)得f(x)=x -ln x.∴f(x)+2x =x 2+b ,即x 2-3x +ln x +b =0.设g(x)=x 2-3x +ln x +b(x>0),则g ′(x)=2x -3+1x =2x 2-3x +1x =(2x -1)(x -1)x.令g ′(x)=0,得x 1=12,x 2=1.当x 变化时,g ′(x)、g(x)的变化情况如下表:又g(12)=b -54-ln 2,g(2)=b -2+ln 2.∵方程f(x)+2x =x 2+b 在[12,2]上恰有两个不相等的实数根, ∴⎩⎪⎨⎪⎧g (12)≥0,g (1)<0,g (2)≥0,即⎩⎪⎨⎪⎧b -54-ln 2≥0,b -2<0,b -2+ln 2≥0,解得54+ln 2≤b<2.9.已知函数f(x)=ax 2-2x +1,g(x)=ln (x +1). (1)求函数y =g(x)-x 在[0,1]上的最小值;(2)当a ≥12时,函数t(x)=f(x)+g(x)的图像记为曲线C ,曲线C 在点(0,1)处的切线为l ,是否存在a 使l 与曲线C 有且仅有一个公共点?若存在,求出所有a 的值;否则,说明理由.(3)当x ≥0时,g(x)≥-12f(x)+12恒成立,求a 的取值范围.解析 (1)y ′=1x +1-1,因为0≤x ≤1,所以y ′≤0. 所以y =g(x)-x 在[0,1]上单调递减. 当x =1时,y 取最小值为ln 2-1. 故y =g(x)-x 在[0,1]的最小值为ln 2-1.(2)函数t(x)的定义域为(-1,+∞),t ′(x)=2ax -2+1x +1,t ′(0)=-1.所以在切点P(0,1)处的切线l 的斜率为-1. 因此切线方程为y =-x +1.因此切线l 与曲线C 有唯一的公共点,所以,方程ax 2-x +ln (x +1)=0有且只有一个实数解.显然,x =0是方程的一个解.令φ(x)=ax 2-x +ln (x +1),则φ′(x)=2ax -1+1x +1=2ax ⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫12a -1x +1.当a =12时,φ′(x)=x 2x +1≥0,于是,φ(x)在(-1,+∞)上单调递增,即x=0是方程唯一的实数解.当a>12时,由φ′(x)=0,得x 1=0,x 2=12a -1∈(-1,0). 在区间(-1,x 2)上,φ′(x)>0,在区间(x 2,0)上,φ′(x)<0. 所以,函数φ(x)在x 2处有极大值φ(x 2),且φ(x 2)>φ(0)=0.而当x →-1时,φ(x)→-∞,因此,φ(x)=0在(-1,x 2)内也有一个解,矛盾.综上,得a =12.(3)令h(x)=g(x)-⎣⎢⎡⎦⎥⎤-12f (x )+12=ln (x +1)+12ax 2-x ,h ′(x)=1x +1+ax -1=ax 2+(a -1)x x +1=x[ax +(a -1)]x +1(x>-1).若a =0,当x ∈[0,+∞)时,h ′(x)≤0,则h(x)在[0,+∞)上单调递减,故h(x)≤h(0)=0,不合题意;若a ≥1,当x ∈[0,+∞)时,h ′(x)≥0,则h(x)在[0,+∞)上单调递增,故h(x)≥h(0)=0,符合题意;若0<a<1,当x ∈⎣⎢⎡⎦⎥⎤0,1-a a 时,h ′(x)≤0,则h(x)在⎣⎢⎡⎦⎥⎤0,1-a a 单调递减,故h(1-aa )<h(0)=0,不合题意;若a<0,当x ∈[0,+∞)时,h ′(x)≤0,则h(x)在[0,+∞)单调递减,故h(1)<h(0)=0,不合题意.综上:a的取值范围是a≥1.。
2014高考数学一轮课时专练(理科安徽省专用)(十三)第13讲变化率与导数、导数的运算
.2014高考数学一轮课时专练(理科安徽省专用):(十三) [第13讲 变化率与导数、导数的运算](时间:45分钟 分值:100分)基础热身1.[2011·江西卷] 若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( )A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)2.曲线y =x x +2在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1C .y =2x -3D .y =-2x -23.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-14.y =cos x 1-x的导数是( ) A .y ′=cos x +sin x +x sin x (1-x )2B .y ′=cos x -sin x +x sin x (1-x )2C .y ′=cos x -sin x +x sin x 1-xD .y ′=cos x +sin x -x sin x (1-x )2能力提升5.[2012·沈阳模拟] 若函数y =x 33-x 2+1(0<x <2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )A.π4B.π6C.5π6D.3π46.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于( )A .-2B .-1C .1D .27.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)…(x -a 8),则f ′(0)=( )A .26B .29C .212D .2158.若曲线y =x -12在点⎝⎛⎭⎫a ,a -12处的切线与两个坐标轴围成的三角形的面积为18,则a =( )A .64B .32C .16D .89.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A.⎣⎡⎭⎫0,π4B.⎣⎡⎭⎫π4,π2 C.⎝⎛⎦⎤π2,3π4 D.⎣⎡⎭⎫3π4,π 10.[2012·安徽明光中学高三押题] 函数f (x )=e x 1-x +e x1+x在x 0=2处的导数为________.11.[2013·安徽金榜二联] 已知函数f (x )=ln x +a x+a 在点(1,f (1))处的切线方程为x +y -b =0,则ab =________.12.[2013·合肥一中阶段考试] 已知函数f 0(x )=x e x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n (x )=f ′n -1(x )(n ∈N *),则f ′2 012(0)=________.13.[2012·安徽市级示范中学联考] 对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),定义f ″(x )是y =f (x )的导函数y =f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.有同学发现任何三次函数都有“拐点”;任何三次函数都有对称中心;且“拐点”就是对称中心.请你根据这一发现判断下列命题:①任意三次函数都关于点-b 3a ,f -b 3a对称; ②存在三次函数f (x ),f ′(x )=0有实数解x 0,点(x 0,f (x 0))为函数y =f (x )的对称中心; ③存在三次函数有两个及两个以上对称中心; ④若函数g (x )=13x 3-12x 2-512+cos x -π+12,则g 12 013+g 22 013+g 32 013+…+g 2 0122 013=-1 006.其中正确命题的序号为________.(把所有正确命题的序号都填上)14.(10分)求下列函数的导数:(1)y =sin ⎝⎛⎭⎫π4-x +cos ⎝⎛⎭⎫π4+x ; (2)y =e 1-2x +ln(3-x ); (3)y =ln 1-x 1+x.15.(13分)设函数f (x )=ax +1x +b(a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求f (x )的解析式;(2)证明:函数y =f (x )的图象是一个中心对称图形,并求其对称中心;(3)证明:曲线y =f (x )上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.难点突破16.(12分)用导数方法求和:1+2x+3x2+…+nx n-1(x≠0,1,n∈N*).。
2014年普通高等学校招生全国统一考试(天津卷)理科数学 解析版
2014年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅰ卷一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.1.i 是虚数单位,复数734ii+=+( )(A )1i - (B )1i -+ (C )17312525i + (D )172577i -+2.设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )53.阅读右边的程序框图,运行相应的程序,输出的S 的值为( ) (A )15 (B )105 (C )245 (D )9455.已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为 ( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -=6.如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF Ð;②2FB FD FA =?;③AE CEBE DE ??;④AF BD AB BF ??.则所有正确结论的序号是 ( )7.设,a b R Î,则|“a b >”是“a a b b >”的 ( )(A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要又不必要条件 【答案】C .【解析】第Ⅱ卷注意事项:1.用黑色墨水钢笔或签字笔将答案写在答题卡上.2.本卷共12小题,共110分.二、填空题(本大题共6个小题,每小题5分,共30分.把答案填在题中横线上.)9.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.【答案】60.【解析】试题分析:应从一年级抽取4604556300?+++名.考点:等概型抽样中的分层抽样方法.10.已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_______3m .俯视图侧视图正视图【答案】203p. 【解析】试题分析:由三视图可知该几何体是组合体,其中下半部分是底面半径为1,高为4的圆柱,上半部分是底面半径为2,高为2的圆锥,其体积为22120142233pp p 鬃+鬃=(3m ). 考点:1.立体几何三视图;2.几何体体积的计算.11.设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________. 【答案】12-. 【解析】试题分析:依题意得2214S S S =,∴()()21112146a a a -=-,解得112a =-页眉页脚换.考点:1.等差数列、等比数列的通项公式;2.等比数列的前n 项和公式. 12.在ABC D 中,内角,,A B C 所对的边分别是,,a b c .已知14b c a -=,2sin 3sin B C =,则cos A 的值为_______. 【答案】14-. 【解析】试题分析:∵32sin 3sin ,23,,2B C b c b c =\=\=代入14b c a -=得2a c =,由余弦定理得()f x 与()g x 图象恰有四个交点.当()1y a x =-与23y x x =+(或()1y a x =--与23y x x =--)相切时,()f x 与()g x 图象恰有三个交点.把()1y a x =-代入23y x x =+,得()231x x a x +=-,即()230x a x a +-+=,由0D =,得()2340a a --=,解得1a =或9a =.又当0a =时,()f x 与()g x 仅两个交点,01a ∴<<或9a >.(方法二)显然1a ¹,∴231x x a x +=-.令1t x =-,则45a t t=++.∵(][),,444t t ???++,∴(][)45,19,t t?ゥ+++.结合图象可得01a <<或9a >.考点:方程的根与函数的零点.三、解答题(本题共6道大题,满分80分.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分13分)已知函数()2cos sin 34f x x x x π⎛⎫=⋅++ ⎪⎝⎭,x R ∈. (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.22T pp ==. (Ⅱ)∵()f x 在区间,412pp轾犏--犏臌上是减函数,在区间,124p p 轾犏-犏臌上是增函数,144f p 骣÷ç-=-÷ç÷ç桫,1122f p 骣÷ç-=-÷ç÷ç桫,144f p 骣÷ç=÷ç÷ç桫,∴函数()f x 在闭区间,44p p 轾犏-犏臌上的最大值为14,最小值为12-.考点:1.两角和与差的正弦公式、二倍角的正弦与余弦公式;2.三角函数的周期性和单调性.16.(本小题满分13分)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.()()3463100,1,2,3,k k C C P x k k C -×===\随机变量X 的分布列为随机变量X 的数学期望()12362103050E X ??=+??. 考点:1.古典概型及其概率计算公式;2.互斥事件;3.离散型随机变量的分布列与数学期望.17.(本小题满分13分)如图,在四棱锥P ABCD -中,PA ^底面ABCD ,AD AB ^,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.公式121211cos ,n n n n n n ×=×来求二面角F AB P --的余弦值.综合法:先利用三垂线定理或其逆定理作出二面角F AB P --的平面角,再利用解三角形的有关知识求其余弦值. 试题解析:(方法一)依题意,以点A 为原点建立空间直角坐标系(如图),可得()1,0,0B ,()2,2,0C ,()0,2,0D ,()0,0,2P .由E 为棱PC 的中点,得()1,1,1E .C(方法二)(Ⅰ)如图,取PD 中点M ,连结EM ,AM .由于,E M 分别为,PC PD 的中点,故//EM DC ,且12EM DC =,又由已知,可得//EM AB 且EM AB =,故四边形ABEM 为平行四边形,∴//BE AM .∵PA ^底面ABCD ,故PA CD ^,而CD DA ^,从而CD ^平面PAD ,∵AM Ì平面PAD ,于是CD AM ^,又//BE AM ,∴BE CD ^.(Ⅱ)连结BM ,由(Ⅰ)有CD ^平面PAD ,得CD PD ^,而//EM CD ,故PD EM ^.又∵AD AP =,M 为PD 的中点,故PD AM ^,可得PD BE ^,∴PD ^平面BEM ,故平面BEM ^平面PBD .∴直线BE 在平面PBD 内的射影为直线BM ,而BE EM ^,可得EBM Ð为锐角,故EBM Ð为直线BE 与平面PBD 所成的角.依题意,有PD =,而M 为PD 中点,可得AM =,进而BE =.故在直角三角形BEM中,tan EM AB EBMBEBE ?==,因此in s EMB ?,∴直线BE 与平面PBD 所C18.(本小题满分13分)设椭圆22221x ya b+=(0a b>>)的左、右焦点为12,F F,右顶点为A,上顶点为B.已知12AB F=.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点1F,经过原点O的直线l与该圆相切,求直线l的斜率.【答案】(Ⅰ)e=;(Ⅱ)直线l的斜率为4+或4-.标为4,33c c 骣÷ç-÷ç÷ç桫.设圆的圆心为()11,T x y ,则1402323c x c -+==-,12323ccy c +==,进而圆的半径r ==.设直线l 的斜率为k ,依题意,直线l 的方程为y kx =.由l r,整理得2810kk -+=,解得4k=?l的斜率为4+或4-.考点:1.椭圆的标准方程和几何性质;2.直线和圆的方程;3.直线和圆的位置关系. 19.(本小题满分14分)已知q 和n 均为给定的大于1的自然数.设集合{}0,1,2,1,q M =-,集合{}112,,1,2,,n n i A x x x x q x q x M in -+?==++.(Ⅰ)当2q =,3n =时,用列举法表示集合A ; (Ⅱ)设,s t A Î,112n n s a a q a q -=+++,112n n t b b q b q -=+++,其中,,1,2,,.i i a b M in ?证明:若n n a b <,则s t <.20.(本小题满分14分) 已知函数()xf x x ae=-()a R Î,x R Î.已知函数()y f x =有两个零点12,x x ,且12x x <.(Ⅰ)求a 的取值范围; (Ⅱ)证明21x x 随着a 的减小而增大; (Ⅲ)证明12x x +随着a 的减小而增大.(2)0a >时,由()0f x ¢=,得ln x a =-.当x 变化时,()f x ¢,()f x 的变化情况如下表:这时,()f x 的单调递增区间是(),ln a -?;单调递减区间是()ln ,a -+¥.∴()121ln 1t tx x t ++=-. ①令()()1ln 1x xh x x +=-,()1,x ??,则()()212ln 1x x xh x x -+-¢=-.令()12ln u x x x x=-+-,得()21x u x x 骣-÷ç¢=÷ç÷ç桫.当()1,x ??时,()0u x ¢>.因此,()u x 在()1,+¥上单调递增,故对于任意的()1,x ??,()()10u x u >=,由此可得()0h x ¢>,故()h x 在()1,+¥上单调递增,因此,由①可得12x x +随着t 的增大而增大,而由(Ⅱ),t 随着a 的减小而增大,∴12x x +随着a 的减小而增大.考点:1.函数的零点;2.导数的运算;3..利页眉页脚换用导数研究函数的性质.。
2014高考调研理科数学课时作业讲解_课时作业32
课时作业(三十二)1.已知△ABC 中,(AB →·BC →)∶(BC →·CA →)∶(CA →·AB →)=1∶2∶3,则△ABC 的形状为( )A .钝角三角形B .等边三角形C .直角三角形D .非等腰锐角三角形答案 D解析 设AB →·BC →=-a 2+c 2-b 22=k ,故a 2+c 2-b 2=-2k ,同理可得a 2+b 2-c 2=-4k , b 2+c 2-a 2=-6k 联立解得 a 2=-3k ,b 2=-5k ,c 2=-4k . 故最大角的余弦cos B =36>0,故选D.2.在△ABC 中,若AB →2=AB →·AC →+BA →·BC →+CA →·CB →,则△ABC 是 ( ) A .等边三角形 B .锐角三角形 C .钝角三角形 D .直角三角形 答案 D解析 由已知,AB →2=AB →·AC →-AB →·BC →+CA →·CB →=AB →·(AC →+CB →)+CA →·CB →=AB →2+CA →·CB →,∴CA →·CB →=0.3.设O 点在三角形ABC 内部,且有OA →+2OB →+3OC →=0,则三角形ABC 的面积与三角形AOC 的面积之比( )A .2 B.32 C .3 D.53答案 C解析 联想三角形ABC 重心满足GA →+GB →+GC →=0可延长OB 至E 使OE →=2OB →延长OC 至F 使OF →=3OC →,则O 为三角形AEF 的重心从而S △AOC =13S △AOF =19S △AEF , S △AOB =12S △AOE =16S △AEF , S △BOC =13S △BOF =118S △AEF .∴S △ABC =S △AOC +S △AOB +S △BOC =618S △AEF .4.(2010·湖南卷改编)已知A ,B 是圆心为C 半径为5的圆上两点,且|AB →|=5,则AC →·CB →等于( )A .-52 B.52 C .0 D.532答案 A解析 本题考查向量的数量积的运算.由于弦长|AB |=5与半径相同,则∠ACB =60°⇒AC →·CB →=-CA →·CB →=-|CA →|·|CB →|·cos ∠ACB =-5·5·cos60°=-52.5.已知a ,b 是两个非零向量,给定命题p :|a ·b |=|a ||b |,命题q :∃t ∈R ,使得a =t b ,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 ∵|a ·b |=|a ||b ||cos θ|=|a ||b |, ∴θ=0°或180°,即a ,b 共线. ∴∃t ∈R ,使得a =t b 成立. ∴p 是q 的充分条件.若∃t ∈R ,使得a =t b ,则a ,b 共线. ∴|a ·b |=|a ||b |.∴p 是q 的必要条件. 综上可知,p 是q 的充要条件.6.若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形答案 B解析 OB →+OC →-2OA →=OB →-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →,∴|AB →+AC →|=|AB →-AC →|⇒|AB →+AC →|2=|AB →-AC →|2⇒AB →·AC →=0,∴三角形为直角三角形,故选B.7.已知两个非零向量a =(m -1,n -1),b =(m -3,n -3),且a 与b 的夹角是钝角或直角,则m +n 的取值范围是( )A .[2,32]B .[2,6]C .(2,32)D .(2,6)答案 B解析 根据a 与b 的夹角是钝角或直角得a·b ≤0,即(m -1)(m -3)+(n -1)(n -3)≤0.整理得(m -2)2+(n -2)2≤2.所以点(m ,n )在以(2,2)为圆心,2为半径的圆上或圆内.令m +n =z ,n =-m +z 表示斜率为-1,在纵坐标轴上的截距为z 的直线,根据线性规划知识得2≤m +n ≤6.8.在△ABC 中,AB →·BC →=3,△ABC 的面积S ∈[32,32],则AB →与BC →夹角的取值范围是( )A .[π4,π3] B .[π6,π4] C .[π6,π3] D .[π3,π2]答案 B解析 设〈AB →,BC →〉=α,因为AB →·BC →=|AB →|·|BC →|·cos α=3⇒|AB →|·|BC →|=3cos α,又S =12|AB →|·|BC →|·sin(π-α)=12·3cos α·sin(π-α)=32tan α,而32≤S ≤32⇒32≤32tan α≤32⇒33≤tan α≤1⇒π6≤α≤π4.故选B.9.如图所示,E 、F 、G 、H 分别是四边形ABCD 的所在边的中点,若(AB →+BC →)·(BA →+AD →)=0,则四边形EFGH 是( )A .平行四边形,但不是矩形B .矩形C .菱形D .正方形 答案 B解析 ∵AB →+BC →=AC →,BA →+AD →=BD →, 且(AB →+BC →)·(BA →+AD →)=0, ∴AC →·BD →=0,即AC →⊥BD →.又∵E 、F 、G 、H 为四边形ABCD 四边的中点, ∴EH →∥BD →∥FG →,EF →∥AC →∥HG →.故四边形EFGH 为平行四边形且EH →⊥EF →,即为矩形.10.已知非零向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0且AB →|AB →|·AC →|AC →|=12,则△ABC为( )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形答案 D分析 本题可先由条件的几何意义得出AB =AC ,再求得A =π3,即可得出答案.解析 因为非零向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又cos ∠BAC =AB →|AB →|·AC →|AC →|=12,所以∠BAC =π3.所以△ABC 为等边三角形.故选D.11.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 的夹角的取值范围是( )A .[0,π6]B .[π3,π] C .[π3,2π3] D .[π6,π]答案 B解析 |a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则|a |2-4a ·b ≥0,设向量a ·b 的夹角为θ,cos θ=a ·b |a |·|b |≤14|a |212|a |2=12,∴θ∈[π3,π].12.已知坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OA →·OB →等于________.答案 -34解析 设A (y 212,y 1),B (y 222,y 2), 则OA →=(y 212,y 1),OB →=(y 222,y 2). 又由y 1y 2=-p 2=-1,∴OA →·OB →=(y 212,y 1)·(y 222,y 2)=14y 21y 22+y 1y 2 =14-1=-34.13.已知向量i 和j 为互相垂直的单位向量,向量a =i -2j ,b =i +λj ,a 与b 的夹角为锐角,则实数λ的取值范围是________.答案 (-∞,-2)∪(-2,12)解析 ∵0<〈a ,b 〉<π2,∴0<cos 〈a ,b 〉<1,∴0<a ·b|a |·|b |<1,即0<1-2λ5·1+λ2<1,解得λ<12且λ≠-2,∴λ的取值范围是(-∞,-2)∪(-2,12).14.已知向量a =(2,1),b =(x ,y ).(1)若x ∈{-1,0,1,2},y ∈{-1,0,1},求向量a ∥b 的概率; (2)若x ∈[-1,2],y ∈[-1,1],求向量a ,b 的夹角是钝角的概率. 解析 (1)设“a ∥b ”为事件A ,由a ∥b ,得x =2y .基本事件空间为Ω1={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)},共包含12个基本事件.其中A ={(0,0),(2,1)},包含2个基本事件, 则P (A )=212=16,即向量a ∥b 的概率为16.(2)设“a ,b 的夹角是钝角”为事件B ,由a ,b 的夹角是钝角,可得a ·b <0,即2x +y <0,且x ≠2y .基本事件空间为Ω2={(x ,y )|⎩⎨⎧-1≤x ≤2,-1≤y ≤1},B ={(x ,y )|⎩⎨⎧-1≤x ≤2,-1≤y ≤1,2x +y <0,x ≠2y},如图所示,则P (B )==12×(12+32)×23×2=13,即向量a ,b 的夹角是钝角的概率是13. 15.(2013·烟台调研)已知向量m =(a +c ,b ),n =(a -c ,b -a ),且m·n =0,其中A ,B ,C 是△ABC 的内角,a ,b ,c 分别是角A ,B ,C 的对边.(1)求角C 的大小;(2)求sin A +sin B 的取值范围. 解 (1)由m·n =0,得(a +c )(a -c )+b (b -a )=0⇒a 2+b 2-c 2=ab . 由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12. ∵0<C <π,∴C =π3. (2)∵C =π3,∴A +B =2π3. ∴sin A +sin B =sin A +sin(2π3-A ) =sin A +sin 2π3cos A -cos 2π3sin A =32sin A +32cos A =3(32sin A +12cos A ) =3sin(A +π6).∵0<A <2π3,∴π6<A +π6<5π6. ∴12<sin(A +π6)≤1.∴32<3sin(A +π6)≤3,即32<sin A +sin B ≤ 3.16.在△ABC 中,A 、B 、C 的对边分别是a 、b 、c ,且满足(2a -c )cos B =b cos C . (1)求B 的大小;(2)设m =(sin A ,cos2A ),n =(4k,1)(k >1),且m ·n 的最大值是5,求k 的值. 解析 (1)∵(2a -c )cos B =b cos C ,∴(2sin A -sin C )cos B =sin B cos C , 即2sin A cos B =sin B cos C +sin C cos B =sin(B +C ).∵A +B +C =π,∴2sin A cos B =sin A . ∵0<A <π,∴sin A ≠0,∴cos B =12. ∵0<B <π,∴B =π3.(2)m ·n =4k sin A +cos2A =-2sin 2A +4k sin A +1,A ∈(0,2π3), 设sin A =t ,则t ∈(0,1].则m ·n =-2t 2+4kt +1=-2(t -k )2+1+2k 2,t ∈(0,1]. ∵k >1,∴t =1时,m ·n 取最大值. 依题意得(m ·n )max =-2+4k +1=5,∴k =32.1.在平行四边形ABCD 中,AB →=a ,AD →=b ,则当(a +b )2=(a -b )2时,该平行四边形为( )A .菱形B .矩形C .正方形D .以上都不正确答案 B解析 数形结合,在平行四边形中, a +b =AB →+AD →=AC →,a -b =AB →-AD →=DB →,由|a +b |=|a -b |,∴|AC →|=|DB →|,对角线相等的平行四边形为矩形,故选B.2.(2013·唐山统考)在边长为1的正三角形ABC 中,BD →=xBA →,CE →=yCA →,x >0,y >0,且x +y =1,则CD →·BE →的最大值为( )A .-58 B .-34 C .-32 D .-38答案 D解析 建立如图所示的直角坐标系,则A (-12,0),B (12,0),C (0,32),设D (x 1,0),E (x 2,y 2),∵BD →=xBA →,∴(x 1-12,0)=x (-1,0),∴x 1=-x +12. ∵CE →=yCA →,∴(x 2,y 2-32)=y (-12,-32). ∴x 2=-12y ,y 2=32-32y .∴CD →·BE →=(x 1,-32)·(x 2-12,y 2)=(x 1,-32)·(-12y -12,32-32y )=(-x +12,-32)·(-1+x 2,32x )=-12(x 2-x +1)=-12(x -12)2-38.∵0<x <1,∴当x =12时,CD →·BE →取得最大值-38.故选D.3.已知向量a ,b 满足|a |=2|b |≠0,且关于x 的函数f (x )=2x 3+3|a |x 2+6a ·b x +5在实数集R 上单调递增,则向量a ,b 的夹角的取值范围是( )A .[0,π6] B .[0,π3] C .(0,π3] D .[π3,π]答案 B解析 f ′(x )=6x 2+6|a |x +6a ·b ,由Δ=36|a |2-4×6×6|a |·|b |cos 〈a ,b 〉≤0, 且|a |=2|b |≠0.得cos 〈a ,b 〉≥12,故选B.4.设G 是△ABC 的重心,且(56sin A )GA →+(40sin B )GB →+(35sin C )GC →=0,则B 的大小为( )A .15°B .30°C .45°D .60°答案 D解析 ∵G 为△ABC 的重心,∴GA →+GB →+GC →=0.∴56sin A =40sin B =35sin C ,结合正弦定理有56a =40b =35c ,∴a =57b ,c =87b ,由余弦定理有cos B =a 2+c 2-b 22ac =12,∴B =60°.5.设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则 ( )A.P A →+PB →=0 B.PC →+P A →=0 C.PB →+PC →=0 D.P A →+PB →+PC →=0答案 B解析 根据向量加法的几何意义BC →+BA →=2BP →⇔P 是AC 的中点,故P A →+PC →=0.6.设向量a =(3,3),b 为单位向量,且a ∥b ,则b = ( )A .(32,-12)或(-32,12)B .(32,12)C .(-32,-12)D .(32,12)或(-32,-12) 答案 D解析 设b =(x ,y ),由a ∥b 可得3y -3x =0.又x 2+y 2=1,得b =(32,12)或b =(-32,-12),故选D.7.已知三点A (2,3),B (-1,-1),C (6,k ),其中k 为常数.若|AB →|=|AC →|,则AB →与AC →的夹角的余弦值为( ) A .-2425B .0或2425C.2425 D .0或-2425答案 D解析 由|AB →|=|AC →|解得k =0或6,当k =0时,AB →与AC →的夹角为π2,其余弦值为0;当k =6时,AB →与AC →的夹角余弦值为-2425.8.已知a =(-12,32),b =(1,3),则|a +t b |(t ∈R )的最小值等于( ) A .1 B.32 C.12 D.22答案 B解析 方法一 ∵a +t b =(-12+t ,32+3t ),∴|a +t b |2=(-12+t )2+(32+3t )2=4t 2+2t +1=4(t +14)2+34.∴当t =-14时,|a +t b |2取得最小值34,即|a +t b |取得最小值32.故选B. 方法二 如图所示,OA →=a ,OB →=b ,在OB 上任取一点T ,使得OT →=-t b (t <0),则|a +t b |=|TA →|,显然,当AT ⊥OB 时,取最小值.由TA →·OB →=(a +t b )·b =a ·b +t b 2=0,得t =-14. ∴当t =-14时,|a +t b |取得最小值32.9.(2011·浙江理)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________.答案 [π6,5π6]解析 对于以向量α,β为邻边的平行四边形的面积S =12|α||β|·sin 〈α,β〉×2=|β|sin 〈α,β〉=12,因此sin 〈α,β〉=12|β|∈[12,1],因此α与β的夹角θ的取值范围是[π6,5π6].10.(2011·江西理)已知|a |=|b |=2,(a +2b )·(a -b )=-2,则a 与b 的夹角为________.答案 π3解析 由|a |=|b |=2,(a +2b )·(a -b )=-2,得a ·b =2·cos 〈a ,b 〉=a ·b |a ||b |=22×2=12,所以〈a ,b 〉=60°.11.已知a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,求实数λ的取值范围.解析 ∵a 与a +λb 均不是零向量,夹角为锐角, ∴a ·(a +λb )>0,3λ>-5,λ>-53. 当a 与a +λb 共线时,a +λb =m a , 即(1+λ,2+λ)=m (1,2).∴由⎩⎨⎧1+λ=m ,2+λ=2m ,得λ=0,即当λ=0时,a 与a +λb 共线.∴λ≠0.故λ>-53且λ≠0.12.已知△ABC 内接于以O 为圆心,1为半径的圆,且3OA →+4OB →+5OC →=0.(1)求数量积OA →·OB →,OB →·OC →,OC →·OA →; (2)求△ABC 的面积.解析 (1)∵|OA |=|OB |=|OC |=1, 由条件可得3OA →+4OB →=-5OC →,两边平方得9|OA →|2+24OA →·OB →+16|OB →|2=25|OC →|2.∴OA →·OB →=0.同理可得OB →·OC →=-45,OC →·OA →=-35. (2)由OA →·OB →=0,可得OA →⊥OB →. ∴S △AOB =12|OA →||OB →|=12.由OB →·OC →=-45,得cos ∠BOC =-45. ∴sin ∠BOC =35.∴S △BOC =12|OB →||OC →|sin ∠BOC =310.由OC →·OA →=-35,得cos ∠COA =-35,∴sin ∠COA =45. ∴S △AOC =12|OA →||OC →|sin ∠COA =25,即可得S △ABC =S △AOB +S △BOC +S △COA =12+310+25=65.小结 由a 与a +λb 的夹角为锐角,可得a ·(a +λb )>0,但由a ·(a +λb )>0,并不能推得a 与a +λb 的夹角为锐角,如λ=0时,a ·(a ·λb )>0,但此时夹角为0,所以a ·(a +λb )>0仅是a 与a +λb 夹角为锐角的必要条件,而不是充分条件.三角形的“心”的向量表示及应用1.三角形各心的概念介绍 重心:三角形的三条中线的交点; 垂心:三角形的三条高线的交点;内心:三角形的三个内角角平分线的交点(三角形内切圆的圆心); 外心:三角形的三边的垂直平分线的交点(三角形外接圆的圆心). 根据概念,可知各心的特征条件.比如:重心将中线长度分成2∶1;垂线与对应边垂直;角平分线上的任意点到角两边的距离相等;外心到三角形各顶点的距离相等.2.三角形各心的向量表示(1)O 是△ABC 的重心⇔OA →+OB →+OC →=0; (2)O 是△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →;(3)O 是△ABC 的外心⇔|OA →|=|OB →|=|OC →|(或OA →2=OB →2=OC →2);(4)O 是△ABC 的内心⇔OA →·(AB →|AB →|-AC →|AC →|)=OB →·(BA →|BA →|-BC →|BC →|)=OC →·(CA →|CA →|-CB→|CB →|)=0.注意 向量λ(AB →|AB →|+AC→|AC →|)(λ≠0)所在直线过△ABC 的内心(是∠BAC 的角平分线所在直线)1.将平面向量与三角形内心结合考查例1 O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC →|AC →|),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心【解析】 因为AB→|AB →|是向量AB →的单位向量,设AB →与AC →方向上的单位向量分别为e 1和e 2,又OP →-OA →=AP →,则原式可化为AP →=λ(e 1+e 2),由菱形的基本性质可知AP 平分∠BAC ,那么在△ABC 中,AP 平分∠BAC ,故选B.【答案】 B2.将平面向量与三角形垂心结合考查例2 点P 是△ABC 所在平面上一点,若P A →·PB →=PB →·PC →=PC →·P A →,则点P 是△ABC 的( )A .外心B .内心C .重心D .垂心【解析】 由P A →·PB →=PB →·PC →,得P A →·PB →-PB →·PC →=0,即PB →·(P A →-PC →)=0,即PB →·CA →=0,则PB ⊥CA .同理P A ⊥BC ,PC ⊥AB ,所以P 为△ABC 的垂心.故选D.【讲评】 本题考查平面向量有关运算,及“数量积为零,则两向量所在直线垂直”、三角形的垂心的定义等相关知识.将三角形的垂心的定义与平面向量有关运算及“数量积为零,则两向量所在直线垂直”等相关知识巧妙结合.【答案】 D3.将平面向量与三角形重心结合考查例3 点P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔PG →=13(P A →+PB →+PC →).【证明】 PG →=P A →+AG →=PB →+BG →=PC →+CG →⇒3PG →=(AG →+BG →+CG →)+(P A →+PB →+PC →).∵点G 是△ABC 的重心,∴GA →+GB →+GC →=0⇒AG →+BG →+CG →=0,即3PG →=P A →+PB →+PC →,由此得PG →=13(P A →+PB →+PC →).反之亦然(证略).4.将平面向量与三角形外心结合考查例4 若O 为△ABC 内一点,|OA →|=|OB →|=|OC →|,则O 是△ABC 的( ) A .内心 B .外心 C .垂心D .重心【解析】 由向量模的定义知O 到△ABC 的三顶点距离相等,故O 是△ABC的外心,故选B.【答案】 B5.将平面向量与三角形四心结合考查例5 已知向量OP 1→,OP 2→,OP 3→满足条件OP 1→+OP 2→+OP 3→=0,|OP 1→|=|OP 2→|=|OP 3→|=1,求证:△P 1P 2P 3是正三角形.【证明】 由已知条件可得OP 1→+OP 2→=-OP 3→,两边平方得OP 1→·OP 2→=-12. 同理OP 2→·OP 3→=OP 3→·OP 1→=-12. ∴|P 1P 2→|=|P 2P 3→|=|P 3P 1→|= 3. 从而△P 1P 2P 3是正三角形.1.O 为空间中一定点,动点P 在A 、B 、C 三点确定的平面内且满足(OP →-OA →)·(AB →-AC →)=0,则点P 的轨迹一定过△ABC 的( )A .外心B .内心C .重心D .垂心答案 D2.已知A 、B 、C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13(12OA →+12OB →+2OC →),则点P 一定为三角形ABC 的( )A .AB 边中线的中点B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点 答案 B解析 取AB 边中点M ,则OA →+OB →=2OM →.由OP →=13(12OA →+12OB →+2OC →),可得3OP →=3OM →+2MC →,∴MP →=23MC →,即点P 为△ABC 中AB 边上的中线的一个三等分点,且点P 不过重心,故选B.3.在同一个平面上有△ABC 及一点O 满足关系式:OA →2+BC →2=OB →2+CA →2=OC →2+AB →2,则点O 为△ABC 的( )A .外心B .内心C .重心D .垂心答案 D解析 由OA →2-OB →2=CA →2-BC →2,得(OA →+OB →)(OA →-OB →)=(CA →-BC →)(CA →+BC →),即(OA →+OB →)·BA →=(CA →+CB →)·BA →,∴BA →·(OA →+OB →-CA →-CB →)=2BA →·OC →=0,∴BA →⊥OC →.同理OB →⊥CA →,OA →⊥CB →,故选D.4.已知O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →+AC →),则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心答案 C解析 设BC 边中点为D ,则有OP →-OA →=λ(AB →+AC →),即AP →=λ·2AD →=2λAD →,∴AP →过△ABC 的重心,故选C.5.在△ABC 中,动点P 满足CA →2=CB →2-2AB →·CP →,则P 点轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心答案 A解析 2AB →·CP →=CB →2-CA →2=(CB →-CA →)·(CB →+CA →)=AB →·(CB →+CA →),即2AB →·CP →=AB →·(CB →+CA →),∴AB →·(2CP →-CB →-CA →)=AB →·(BP →+AP →)=0,∴以BP →,AP→为邻边的平行四边形的对角线互相垂直,∴点P 在线段AB 的中垂线上,故选A.6.在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则P A →·(PB →+PC →)等于( )A.49 B.43 C .-43 D .-49答案 D解析 由AP →=2PM →知,P 为△ABC 的重心,根据向量的加法,PB →+PC →=2PM →,则P A →·(PB →+PC →)=P A →·2PM →=P A →·AP →=-(P A →)2=-(23MA →)2=-49,故选D.7.已知非零向量AB →,AC →满足(AB →|AB →|cos B +AC→|AC →|cos C)·BC →=AB →·AC →,则△ABC为( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形答案 C解析 要注意到向量的数量积是满足分配律的,则左边=|AB →||BC →|(-cos B )|AB →|cos B +|AC →||BC →|cos C |AC →|cos C =0,所以有AB →·AC →=0,则∠A =π2,是直角三角形,如图所示,选C.8.△ABC 外接圆的圆心为O ,两条边上高的交点为H ,OH →=m (OA →+OB →+OC →),则实数m =________.答案 1解析 特殊法,设△ABC 为Rt △,则O 为斜边BC 的中点,H 与A 重合,∴OA →=m ·OA →,∴m =1.。
2014高考调研理科数学课时作业讲解_课时作业23
课时作业(二十三)1.(2013·东城区期末)已知cos78°约等于0.20,那么sin66°约等于 ( ) A .0.92 B .0.85 C .0.88 D .0.95答案 A2.设f (sin x )=cos2x ,那么f (32)等于 ( )A .-12B .-32 C.12 D.32答案 A 3.若cos2αsin (α-π4)=-22,则sin α+cos α的值为( )A .-72 B .-12 C.12 D.72答案 C解析cos2αsin (α-π4)=sin (π2-2α)sin (α-π4)=2sin (π4-α)cos (π4-α)sin (α-π4)=-2cos(π4-α)=-2(22sin α+22cos α)=-2(sin α+cos α)=-22. 所以sin α+cos α=12.4.(2013·湖北八校)已知f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则f (π12)的值为 ( )A .4 3 B.833 C .4 D .8答案 D解析 ∵f (x )=2(tan x +cos x sin x )=2×(sin x cos x +cos xsin x ) =2×1cos x ·sin x =4sin2x , ∴f (π12)=4sin π6=8.5.若3sin α+cos α=0,则1cos 2α+sin2α的值为( )A.103B.53C.23 D .-2答案 A解析 由3sin α+cos α=0,得cos α=-3sin α. 则1cos 2α+sin2α=sin 2α+cos 2αcos 2α+2sin αcos α =9sin 2α+sin 2α9sin 2α-6sin 2α=103,故选A. 6.(2012·山东)若θ∈[π4,π2],sin2θ=378,则sin θ= ( )A.35B.45C.74D.34答案 D解析 ∵θ∈[π4,π2],2θ∈[π2,π],故cos2θ<0. ∴cos2θ=-1-sin 22θ=-1-(378)2=-18.又cos2θ=1-2sin 2θ, ∴sin 2θ=1-cos2θ2=1-(-18)2=916.∴sin θ=34,故选D. 7.(2013·洛阳统考)若cos2αsin (α+π4)=12,则sin2α的值为( )A .-78 B.78 C .-47 D.47答案 B解析 cos2αsin (α+π4)=cos 2α-sin 2αsin αcos π4+cos αsin π4=2(cos α-sin α)=12,即cos α-sin α=24,等式两边分别平方得cos 2α-2sin αcos α+sin 2α=1-sin2α=18,解得sin2α=78.8.(2013·衡水调研卷)计算tan (π4+α)·cos2α2cos 2(π4-α)的值为( )A .-2B .2C .-1D .1答案 D解析 tan (π4+α)·cos2α2cos 2(π4-α)=sin (π4+α)·cos2α2sin 2(π4+α)cos (π4+α)=cos2α2sin (π4+α)cos (π4+α)=cos2αsin2(π4+α)=cos2αsin (π2+2α)=cos2αcos2α=1,选D. 9.(2013·郑州质检)已知tan α=2,则2sin 2α+1sin2α= ( )A.53B .-134C.135D.134答案 D解析 2sin 2α+1sin2α=3sin 2α+cos 2α2sin αcos α=3tan 2α+12tan α=134,故选D.10.已知函数f (x )=sin x -cos x 且f ′(x )=2f (x ),f ′(x )是f (x )的导函数,则1+sin 2xcos 2x -sin2x=( )A .-195 B.195 C.113 D .-113答案 A解析 f ′(x )=cos x +sin x ,由f ′(x )=2f (x ),即cos x +sin x =2(sin x -cos x ),得tan x =3,所以1+sin 2x cos 2x -sin2x =1+sin 2x cos 2x -2sin x cos x =2sin 2x +cos 2x cos 2x -2sin x cos x =2tan 2x +11-2tan x =-195.11.若θ∈[0,π)且cos θ(sin θ+cos θ)=1,则θ=________. 答案 0或π412.已知sin x =5-12,则sin2(x -π4)=________. 答案 2- 5解析 sin2(x -π4)=sin(2x -π2)=-cos2x =-(1-2sin 2x )=2sin 2x -1=2- 5.13.设α为第四象限的角,若sin3αsin α=135,则tan2α=________. 答案 -34解析 sin3αsin α=sin (2α+α)sin α =sin2αcos α+cos2αsin αsin α=135.∴2cos 2α+cos2α=135,2cos 2α-1+cos2α=85.∴cos2α=45.∵2k π-π2<α<2k π,∴4k π-π<2α<4k π(k ∈Z ). 又∵cos2α=45>0,∴2α为第四象限的角. sin2α=-1-cos 22α=-35,∴tan2α=-34.14.已知sin α=cos2α,α∈(π2,π),则tan α=________. 答案 -33解析 sin α=1-2sin 2α,∴2sin 2α+sin α-1=0. ∴(2sin α-1)(sin α+1)=0,∵α∈(π2,π), ∴2sin α-1=0.∴sin α=12,cos α=-32,∴tan α=-33.15.在△ABC 中,tan A +tan B +3=3tan A ·tan B ,且sin A ·cos A =34,则此三角形为________.答案 等边三角形解析 ∵tan A +tan B +3=3tan A tan B , ∴tan(A +B )=-3,得A +B =120°. 又由sin A cos A =34,得sin2A =32.∴A =60°(A =30°舍去),∴△ABC 为等边三角形.16.(2013·西城区期末)已知tan(π4+θ)=3,则sin2θ-2cos 2θ=__________. 答案 -45解析 方法一 sin2θ-2cos 2θ=sin2θ-cos2θ-1,sin2θ=-cos2(θ+π4)=-1-tan 2(θ+π4)1+tan 2(θ+π4)=45, cos2θ=sin2(θ+π4)=2tan (θ+π4)1+tan 2(θ+π4)=35, ∴原式=45-35-1=-45.方法二 tan(π4+θ)=3,1+tan θ1-tan θ=3,解得tan θ=12,sin2θ-2cos 2θ=2sin θcos θ-2cos 2θsin 2θ+cos 2θ=2tan θ-2tan 2θ+1=-45. 17.在△ABC 中,已知A 、B 、C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.答案3解析 由已知B =60°,A +C =120°, ∴tan A 2+tan C 2+3tan A 2·tan C 2=tan A +C 2(1-tan A 2·tan C 2)+3tan A 2tan C 2 =3(1-tan A 2·tan C 2)+3tan A 2tan C 2 = 3.18.化简:2cos 4x -2cos 2x +122tan (π4-x )·sin 2(π4+x ).答案 12cos2x解析 原式=2cos 2x (cos 2x -1)+122tan (π4-x )sin 2(π4+x )=12-2cos2x sin2x2sin(π4-x)cos(π4-x)·sin2(π4+x)=12-12(sin2x)22cos(π4+x)sin(π4+x)·sin2(π4+x)=12cos22xsin(π2+2x)=12cos2x.19.已知0<α<π2,π2<β<π且tanα2=12,sin(α+β)=513.(1)分别求cosα与cosβ的值;(2)求tan α-β2的值.答案(1)cosα=35cosβ=-1665(2)-1123解析(1)cosα=cos2α2-sin2α2=cos2α2-sin2α2cos2α2+sin2α2=1-tan2α21+tan2α2=35,∵0<α<π2,∴sinα=45.∵α+β∈(π2,3π2),sin(α+β)=513,∴cos(α+β)=-12 13.∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=(-1213)·35+513·45=-1665.(2)∵2cos 2β2-1=cos β=-1665且β2∈(π4,π2), ∴cos β2=7130,∴sin β2=9130.∴tan β2=97.∴tan α-β2=tan α2-tan β21+tan α2tanβ2=-1123.1.已知450°<α<540°,则 12+1212+12cos2α的值是( )A .-sin α2B .cos α2C .sin α2D .-cos α2答案 A 解析 原式= 12+121+cos2α2=12-12cos α=|sin α2|.∵450°<α<540°,∴225°<α2<270°. ∴原式=-sin α2.2.已知sin 22α+sin2αcos α-cos2α=1,α∈(0,π2),则sin α=________. 答案 12解析 由已知得sin 22α+sin2αcos α-(2cos 2α-1)=1. ∴sin 22α+sin2αcos α-2cos 2α=0. ∴4sin 2αcos 2α+2sin α·cos 2α-2cos 2α=0.∴4sin 2α+2sin α-2=0. 解得sin α=12(负值舍去).3.已知cos(α+π6)-sin α=233,则sin(α-7π6)的值是________. 答案 23解析 ∵cos(α+π6)-sin α=32cos α-32sin α=233, ∴12cos α-32sin α=23,即cos(α+π3)=23. 又sin(α-7π6)=-sin(7π6-α)=sin(π6-α) =sin[π2-(α+π3)]=cos(α+π3)=23.4.已知角A 、B 、C 为△ABC 的三个内角,OM →=(sin B +cos B ,cos C ),ON →=(sin C ,sin B -cos B ),OM →·ON→=-15.(1)求tan2A 的值;(2)求2cos 2A2-3sin A -12sin (A +π4)的值.解析 (1)∵OM →·ON →=(sin B +cos B )sin C +cos C (sin B -cos B )=sin(B +C )-cos(B +C )=-15,∴sin A +cos A =-15.①两边平方并整理,得2sin A cos A =-2425. ∵-2425<0,∴A ∈(π2,π). ∴sin A -cos A =1-2sin A cos A =75.②联立①②,得sin A =35,cos A =-45,∴tan A =-34.∴tan2A=2tan A1-tan2A =-321-916=-247.(2)∵tan A=-3 4,∴2cos2A2-3sin A-12sin(A+π4)=cos A-3sin Acos A+sin A=1-3tan A1+tan A=1-3×(-34)1+(-34)=13.。
2014高考调研理科数学课时作业讲解_课时作业48
课时作业(四十八)1.下列命题中,正确的是 ( )A .若一个几何体的三视图是完全相同的,则这个几何体是正方体B .若一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体C .若一个几何体的三视图都是矩形,则这个几何体是长方体D .若一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台 答案 C解析 A 错,如球.B 错,如平放的圆柱.C 正确.D 错.如正四棱台.2.(2012·新课标全国)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 ( )A .6B .9C .12D .18答案 B解析 由三视图可推知,几何体的直观图如图所示,可知AB =6,CD =3,PC =3,CD 垂直平分AB ,且PC ⊥平面ACB ,故所求几何体的体积为13×(12×6×3)×3=9.3.(2011·新课标全国)在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为 ( )答案 D解析 根据分析,只能是选项D 中的视图.故选D.4.(2013·衡水调研)一个几何体的三视图如下图所示,则该几何体的体积为( )A .2B .1 C.23D.13答案 C解析 由三视图知,该几何体是一棱锥,其底面四边形的对角线互相垂直,且长都为2,棱锥高为1,所以,该几何体的体积为V =13×2×12×2×1=23.5.(2011·江西文)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为 ( )答案 D解析 被截去的四棱锥的三条可见侧棱中有两条为长方体的面对角线,它们在右侧面上的投影与右侧面(长方形)的两条边重合,另一条为体对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图,只有选项D 符合.6. 已知三棱锥的俯视图与侧视图如右图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( )答案 C解析 空间几何体的正视图和侧视图的“高平齐”,故正视图的高一定是2,正视图和俯视图“长对正”,故正视图的底面边长为2,根据侧视图中的直角说明这个空间几何体最前面的面垂直于底面,这个面遮住了后面的一个侧棱,综合以上可知,这个空间几何体的正视图可能是C.7.一个空间几何体的三视图如图所示,其主(正)视图是正三角形,边长为1,左(侧)视图是直角三角形,两直角边分别为32 和12,俯视图是等腰直角三角形,斜边为1,则此几何体的体积为 ( )A.32B.33C.312D.324答案 D解析 根据三视图可知此空间几何体为三棱锥,其底面面积为S =12×1×12=14,三棱锥的高为h =32,所以几何体的体积为V =13Sh =13×14×32=324.8.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是 ( )答案 A解析由作法规则可知O′A′=2,在原图形中OA=22,O′C′∥A′B′,OC∥AB,选A.9.已知一个几何体的三视图如图所示,则此几何体的组成为()A.上面为棱台,下面为棱柱B.上面为圆台,下面为棱柱C.上面为圆台,下面为圆柱D.上面为棱台,下面为圆柱答案 C10.如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是()答案 C解析选项A得到的几何体为正方体,其体积为1,故排除1;而选项B、D所得几何体的体积都与π有关,排除B、D;易知选项C符合.11.已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,那么该三棱锥的侧视图可能为()答案 B解析 这个空间几何体的直观图如图所示,由题知,这个空间几何体的侧视图的底面一边长是3,故其侧视图只可能是选项B 中的图形.12.在几何体①圆锥;②正方体;③圆柱;④球;⑤正四面体中,自身三视图完全一样的几何体的序号是________.答案 ②④解析 正方体的三视图都是正方形,球的三视图都是圆.13.下面是长方体积木堆成的几何体的三视图,此几何体共由________块积木堆成.答案 414.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.答案 22解析 ∵OE =(2)2-1=1,∴O ′E ′=12,E ′F =24.∴直观图A ′B ′C ′D ′的面积为S ′=12×(1+3)×24=22.15.已知一几何体的三视图如下,主视图和左视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是(写出所有正确结论的编号)________.①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体.答案 ①③④⑤解析 由三视图知,几何体是正四棱柱.所以从该几何体上任意选择4个顶点,它们所构成的几何图形只可能是:①③④⑤.16.(2012·辽宁)已知点P ,A ,B ,C ,D 是球O 表面上的点,P A ⊥平面ABCD ,四边形ABCD 是边长为23的正方形.若P A =26,则△OAB 的面积为________.答案 3 3解析 如图所示,∵P A ⊥平面ABCD ,∴P A ⊥AC .故可知PC 为球O 直径,则PC 的中点为O ,取AC 的中点为O ′,则OO ′=12P A = 6.又∵AC =(23)2+(23)2=26,P A =26,∴PC =(26)2+(26)2=4 3.∴球半径R =23,故OC =OA =OB =2 3.又∵AB =23,∴△OAB 为等边三角形.∴S △OAB =12×23×23×sin60°=3 3.17.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形(侧视图)的面积.解析 (1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的侧视图,如图.其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图正六边形对边间的距离,即BC =3a ,AD 是正棱锥的高,则AD =3a .所以该平面图形(侧视图)的面积为S =12×3a ×3a =32a 2.18.如图是某几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.解析 (1)该几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体.由P A 1=PD 1=2,A 1D 1=AD =2,可得P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=(22+42)(cm 2).所以几何体的体积V =23+12×(2)2×2=10(cm 3).1.(2012·安徽)若四面体ABCD 的三组对棱分别相等,即AB =CD ,AC =BD ,AD =BC ,则________(写出所有正确结论的编号).①四面体ABCD 每组对棱相互垂直;②四面体ABCD 每个面的面积相等;③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180°;④连接四面体ABCD 每组对棱中点的线段相互垂直平分;⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长. 答案 ②④⑤解析如图所示,四面体ABCD 中,AB =CD ,AC =BD ,AD =BC ,则△ABC ≌△CDA ≌△DCB ≌△BAD ,故②正确;∵△ABC ≌△CDA ≌△BAD ,∴∠BAD=∠ABC,∠CAD=∠ACB.∴∠BAC+∠CAD+∠BAD=∠BAC+∠ACB+∠ABC=180°,故③错;取AB,BC,CD,DA的中点M,N,P,Q,连接MN,NP,PQ,MQ,由此得,MN=QP=12AC,NP=MQ=12BD.∵BD=AC,∴MN=QP=MQ=NP.∴四边形MNPQ为菱形.∴对角线相互垂直平分,故④正确,①错误;而⑤正确,如AB,AC,AD 可作为△ABC的三边.2.(2010·北京)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如图所示,则该几何体的俯视图为()答案 C解析结合正视图和侧视图可知,该空间几何体如图所示,故其俯视图为选项C中的图形.3. (2011·山东文)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是()A.3 B.2C.1 D.0答案 A解析把直三棱柱的一个侧面放在水平面上,当这个直三棱柱的底面三角形的高等于放在水平面上的侧面的宽度就可以使得这个三棱柱的正视图和俯视图符合要求,故命题①是真命题;把一个正四棱柱的一个侧面放置在水平面上即可满足要求,故命题②是真命题;只要把圆柱侧面的一条母线放置在水平面即符合要求,故命题③是真命题.4.一个简单几何体的主视图、左视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是() A.①②B.②③C.③④D.①④答案 B解析根据画三视图的规则“长对正,高平齐,宽相等”可知,几何体的俯视图不可能是圆和正方形.5.(2013·杭州模拟)如图,下列四个几何体中,它们各自的三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是()A.①②B.①③C .②③D .①④答案 C 6.某几何体的正视图与侧视图如图所示,若该几何体的体积为13,则该几何体的俯视图可以是 ( )答案 D解析 通过分析正视图和侧视图,结合该几何体的体积为13,可知该几何体的底面积应为1,因此符合底面积为1的选项仅有D 选项,故该几何体为一个四棱锥,其俯视图为D.7.(2012·合肥调研)已知某一几何体的主视图与左视图如图所示,则在下列图形中,可以是该几何体的俯视图的图形为 ( )A .①②③⑤B .②③④⑤C .①②④⑤D .①②③④答案 D解析 因几何体的主视图和左视图一样,所以易判断出其俯视图可能为①②③④.8.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的,现用一个平面去截这个几何体,若这个平面垂直于圆柱底面所在的平面,则所截得的图形可能是下图中的________.(把所有可能的图的序号都填上)答案 ①③9.已知某几何体的俯视图是如图所示的矩形,主视图(或称正视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .解析 由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V -ABCD .(1)V =13×(8×6)×4=64;(2)该四棱锥有两个侧面VAD ,VBC 是全等的等腰三角形,且BC 边上的高为h 1=42+(82)2=4 2.另两个侧面VAB ,VCD 也是全等的等腰三角形,AB 边上的高为h 2=42+(62)2=5,因此S 侧=2(12×6×42+12×8×5)=40+24 2.10.已知正三棱锥V -ABC 的主视图、左视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出左视图的面积.解析 (1)如右图所示.(2)根据三视图间的关系可得BC =23, ∴左视图中VA =42-(23×32×23)2=2 3.∴S △VBC =12×23×23=6.。
2014高考调研理科数学课时作业讲解_课时作业78
课时作业(七十八)1.如图为一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为()A.2π B.1πC.12D.1-2π答案 D解析S扇形=14πR2=π,S△=12×2×2=2,S阴影=S扇形-S△=π-2.由几何概型概率公式得黄豆落在阴影部分的概率P=π-2π=1-2π.2.在集合{(x,y)|0≤x≤5,0≤y≤4}内任取一个元素,能使不等式x5+y2-1≤0成立的概率为()A.14 B.34C.13 D.23答案 A解析集合{(x,y)|0≤x≤5,0≤y≤4}在直角坐标系中表示的区域是一个由直线x=0,x=5,y=0,y=4所围成的长为5、宽为4的矩形,而不等式x5+y2-1≤0和集合{(x,y)|0≤x≤5,0≤y≤4}表示区域的公共部分是以5为底、2为高的一个直角三角形,由几何概型公式可以求得概率为12×5×25×4=14.3.(2012·福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.14 B.15C.16D.17答案 C解析 阴影部分的面积为16,故所求的概率P =阴影部分的面积正方形OABC 的面积=16,故选C.4.已知函数f (x )=x 2+bx +c ,其中0≤b ≤4,0≤c ≤4,记函数f (x )满足条件⎩⎨⎧f (2)≤12,f (-2)≤4为事件A ,则事件A 发生的概率为 ( )A.14B.58C.12D.38答案 C 解析由题意知,事件A 所对应的线性约束条件为⎩⎨⎧0≤b ≤4,0≤c ≤4,4+2b +c ≤12,4-2b +c ≤4,其对应的可行域如图中阴影部分所示,所以事件A 的概率P (A )=S △OAD S 正方形OABC=12,选C.5.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12C.π6 D .1-π6答案 B解析 正方体的体积为2×2×2=8,以O 为球心,1为半径且在正方体内部的半球的体积为12×43πr 3=12×4π3×13=2π3,则点P 到点O 的距离小于或等于1的概率为2π38=π12,故点P 到点O 的距离大于1的概率为1-π12.6.(2013·滨州一模)在区域⎩⎨⎧x +y -2≤0,x -y +2≥0,y ≥0内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( )A.π2 B.π8 C.π6 D.π4答案 D解析 区域为△ABC 内部(含边界),则概率为P =S 半圆S △ABC= π212×22×2=π4,故选D.7.平面上有一组平行线,且相邻平行线间的距离为3 cm ,把一枚半径为1 cm 的硬币任意平掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( )A.14B.13C.12D.23答案 B 解析如图所示,这是长度型几何概型问题,当硬币中心落在阴影区域时,硬币不与任何一条平行线相碰,故所求概率为P =13.8.(2013·沧州七校联考)用一平面截一半径为5的球面得到一个圆,则此圆面积小于9π的概率是( )A.45B.15C.13D.12答案 B 解析如图,此问题属几何概型,球的直径为10,用一平面截该球面,所得的圆面积大于等于9π的概率为P (A )=810=45.∴所截得圆的面积小于9π的概率为P (A )=1-45=15.9.已知实数a 满足-3<a <4,函数f (x )=lg(x 2+ax +1)的值域为R 的概率为P 1,定义域为R 的概率为P 2,则( )A .P 1>P 2B .P 1=P 2C .P 1<P 2D .P 1与P 2的大小不确定答案 C解析 若f (x )的值域为R ,则Δ1=a 2-4≥0,得a ≤-2或a ≥2. 故P 1=-2-(-3)4-(-3)+4-24-(-3)=37.若f (x )的定义域为R ,则Δ2=a 2-4<0,得-2<a <2. 故P 2=47.∴P 1<P 2. 10.(2013·茂名第一次模拟)已知一颗粒子等可能地落入如图所示的四边形ABCD 内的任意位置,如果通过大量的试验发现粒子落入△BCD 内的频率稳定在25附近,那么点A 和点C 到直线BD 的距离之比约为________.答案 32解析 由几何概型的概率计算公式,得粒子落在△ABD 与△CBD 中的概率之比等于△ABD 与△CBD 的面积之比,而△ABD 与△CBD 的面积之比又等于点A 和点C 到直线BD 的距离之比,所以点A 和点C 到直线BD 的距离之比约为3525=32,故填32.11.函数f (x )=x 2-x -2,x ∈[-5,5],那么任取一点x 0使f (x 0)≤0的概率为________.答案 0.3解析 如图,在[-5,5]上函数的图像与x 轴交于两点(-1,0),(2,0),而x 0∈[-1,2],那么f (x 0)≤0.所以P =区间[-1,2]的长度区间[-5,5]的长度=310=0.3.12.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.(1)如果甲船和乙船的停泊的时间都是4小时,求它们中的任何一条船不需要等待码头空出的概率;(2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.解析 (1)设甲、乙两船到达时间分别为x 、y ,则0≤x <24,0≤y <24且y -x >4或y -x <-4.作出区域⎩⎨⎧0≤x <24,0≤y <24,y -x <4或y -x <-4.设“两船无需等待码头空出”为事件A ,则P (A )=2×12×20×2024×24=2536.(2)当甲船的停泊时间为4小时,两船不需等待码头空出,则满足x -y >2或y -x >4,设在上述条件时“两船不需等待码头空出”为事件B ,画出区域⎩⎨⎧0≤x <24,0≤y <24,y -x >4或x -y >2.P (B )=12×20×20+12×22×2224×24=442576=221288.13.已知关于x 的一元二次函数f (x )=ax 2-4bx +1.(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎨⎧x +y -8≤0,x >0,y >0内随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解析 (1)∵函数f (x )=ax 2-4bx +1的图像的对称轴为x =2ba , 要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数, 当且仅当a >0且2ba ≤1,即2b ≤a . 若a =1,则b =-1; 若a =2,则b =-1,1; 若a =3,则b =-1,1.∴事件包含基本事件的个数是1+2+2=5. ∴所求事件的概率为515=13.(2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为构成所求事件的区域为三角形部分.由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标为(163,83).∴所求事件的概率为P =12×8×8312×8×8=13.14.(2013·广东深圳)已知复数z =x +y i(x ,y ∈R )在复平面上对应的点为M . (1)设集合P ={-4,-3,-2,0},Q ={0,1,2},从集合P 中随机抽取一个数作为x ,从集合Q 中随机抽取一个数作为y ,求复数z 为纯虚数的概率;(2)设x ∈[0,3],y ∈[0,4],求点M 落在不等式组:⎩⎨⎧x +2y -3≤0,x ≥0,y ≥0所表示的平面区域内的概率.解析 (1)记“复数z 为纯虚数”为事件A .∵组成复数z 的所有情况共有12个:-4,-4+i ,-4+2i ,-3,-3+i ,-3+2i ,-2,-2+i ,-2+2i,0,i,2i ,且每种情况出现的可能性相等,属于古典概型, 其中事件A 包含的基本事件共2个:i,2i , ∴所求事件的概率为P (A )=212=16.(2)依条件可知,点M 均匀地分布在平面区域{(x ,y )|⎩⎨⎧0≤x ≤3,0≤y ≤4}内,属于几何概型.该平面区域的图形为右图中矩形OABC 围成的区域,面积为S =3×4=12.而所求事件构成的平面区域为线x +2y -3=0与x 轴、y 轴的交点分别为A (3,0)、D (0,32),∴三角形OAD 的面积为S 1=12×3×32=94. ∴所求事件的概率为P =S 1S =9412=316.15.(2013·山东济南一模)已知向量a =(2,1),b =(x ,y ). (1)若x ∈{-1,0,1,2},y ∈{-1,0,1},求向量a ∥b 的概率; (2)若x ∈[-1,2],y ∈[-1,1],求向量a ,b 的夹角是钝角的概率.解析 (1)设“a ∥b ”为事件A ,由a ∥b ,得x =2y .基本事件有:(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1).共包含12个基本事件;其中A ={(0,0),(2,1)},包含2个基本事件. 故P (A )=212=16.(2)设“a ,b 的夹角是钝角”为事件B ,由a ,b 的夹角是钝角,可得a ·b <0,即2x +y <0,且x ≠2.Ω=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎨⎧ -1≤x ≤2,-1≤y ≤1, B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎨⎧ -1≤x ≤2,-1≤y ≤1,2x +y <0,x ≠2y作出可行域, 可得P (B )=μB μΩ=12×(12+32)×23×2=13.1.扇形AOB 的半径为1,圆心角为90°.点C 、D 、E 将弧AB 等分成四份.连接OC ,OD ,OE ,从图中所有的扇形中随机取出一个,面积恰为π8的概率是( )A.310B.15C.25D.12答案 A解析 依题意得知,图中共有10个不同的扇形,分别为扇形AOB 、AOC 、AOD 、AOE 、EOB 、EOC 、EOD 、DOC 、DOB 、COB ,其中面积恰为π8的扇形(即相应圆心角恰为π4的扇形)共有3个(即扇形AOD 、EOC 、BOD ),因此所求的概率等于310,选A.2.对于非负实数a ,在区间[0,10]上任取一个数a ,使得不等式2x 2-ax +8≥0在(0,+∞)上恒成立的概率为________.答案 45解析 要使2x 2-ax +8≥0在(0,+∞)上恒成立,只需ax ≤2x 2+8,即a ≤2x +8x 在(0,+∞)上恒成立.又2x +8x ≥216=8,当且仅当x =2时等号成立,故只需a ≤8,因此0≤a ≤8.由几何概型的概率计算公式可知所求概率为8-010-0=45. 3.袋中有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个,现从袋中随机取1个小球,取到标号为2的小球的概率为12.(1)求n 的值;(2)从袋中不放回随机抽取两个小球①记第一次抽出的小球标号为a ,第二次抽出的小球标号为b ,记事件A 表示“a +b =2”的概率,求A 发生的概率;②在区间[0,2]内任取两个实数x ,y ,求事件“x 2+y 2>(a -b )2”恒成立的概率.解析(1)由题意可知:n1+1+n=12,解得n=2.(2)①两次不放回抽取小球的所有基本事件总数为:(0,1),(0,21),(0,22),(1,21),(1,22),(21,22),(1,0),(21,0),(22,0),(21,1),(22,1),(22,21)共12个,事件A包含的基本事件为:(0,21),(0,22),(21,0),(22,0)共4个,∴P(A)=412=13.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面上的点,则全部结果所构成区域Ω={(x,y)|0≤x≤2,0≤y≤2,x、y∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,x、y∈Ω},P(B)=S BSΩ=2×2-π2×2=1-π4.。
【步步高】2014届高三数学一轮13.1算法初步课时检测理(含解析)北师大版
13.1算法初步一、选择题1 •执行下面的程序框图,如果输入的N是6,那么输出的p是().A. 120 B • 720 C • 1 440 D • 5 040解析由题意得,p= 1 X 1= 1, k = 1v 6; k = 1+ 1 = 2, p= 1 x 2 = 2, k = 2v 6; k = 2 + 1= 3, P= 2 X 3= 6, k = 3 V 6; k = 3+ 1= 4, p = 6 X 4= 24, k= 4v 6;k= 4 + 1 = 5, p= 24x 5 = 120, k= 5V6; k = 5+ 1 = 6, p= 120x 6 = 720,k= 6不小于6,故输出p= 720.答案B2 •下面程序运行的结果是()A. 5,8 B • 8,5 C • 8,13 D • 5,13解析此程序先将A的值赋给X,再将B的值赋给A,再将X+ A的值赋给B,即将原来的A 与B的和赋给B,最后A的值是原来B的值8,而B的值是两数之和13.答案C3.如右框图,当X1= 6, X2= 9,p= 8.5 时,X3等于().A. 7 B • 8(MJ 熾芈p/C. 10 D . 11解析| X1 —X2| = 3 , | X2 - X3| = | X3—9| ,故当| X1 - X2| V | X2- X3|,即3V | X3 —9| 时,p= X1;X2X 2+ X 3 9 + X 3p = 2 = 2~ =8.5,…X 3 = 8.答案 B4•下面的程序框图给出了计算数列 {◎}的前8项和S 的算法,算法执行完毕后,输出的 SA. 8B. 63C. 92D. 129解析程序框图是计算 S = 1 + 2 + 4+ 7 + 11+ 16+ 22 + 29= 92 ,•••输出的S 为92,故选C. 答案 C15~2,与P = 8.5不符; 当| X 1 — X 2| > | X 2— X 3| , 即 3 > | X — 9|A.—3 B C.1 1解析 由框图可知 i = 0, S = 2宀 i = 1, S = 3T i = 2, S = — i = 3,S =- 3f = 4, S = 2,循环终止,输出 S,故最终输出的 S 值为2.答案 D6 C. 5 D.___ i i i i4 1^2 + 2 X 3 + 3 X 4 + 4^5 + 5^611111 1 5 一丰一 一 一丰一 一 —=1一 一=一 4〒4 56= 6= 6'答案 D7•某程序框图如图所示,现输入如下四个函数,其中可以输出的函数是( )•/输人瞬数川三//输出幫数冷)/结束2A. f (x ) = x 1B. f (x )=-xC. f (x ) = In x + 2x — 6D. f (x ) = sin x解析 第一个判断框的目的是判断输入的函数是否为奇函数, 第二个判断框的目的是判断输入的函数是否存在零点•结合选项知,函数 f (x ) = sin x 为奇函数,且存在零点.答案 D6 •如果执行下面的框图,输入 N= 5,则输出的数等于(解析据框图可得11112〒2 3/输人*~二、填空题&运行如图所示的程序,输出的结果是 _____________a = 1b = 2 a = a + b PRINT a END解析本题主要考查算法知识,由于a = 1,b = 2,a = a +b = 1 + 2= 3.答案39•如图所示的程序框图中,若10•按上图所示的程序框图运算,若输出 k = 2,则输入x 的取值范围是 _____________ • 解析 第一次运行 x = 2x + 1, k = 1,第二次运行 x = 2(2x + 1) + 1, k = 2,此时要输出, 的值要同时满足 2x + K 115,且2(2x + 1) + 1>115,解得28<x < 57. 答案(28,57]11.某地区有荒山 2 200亩,从2009年开始每年年初在荒山上植树造林,第一年植树 亩,以后每年比上一年多植树50亩•如图,某同学设计了一个程序框图计算到哪一年可以将荒山全部绿化(假定所植树全部成活),则框图应填上的条件是 ______________P = 0.8,则输出的n = ___________答案 4100丽n=2009|~T[i-T能出n/「鈿:解析据题意要将全部荒山 2 200亩全部绿化,故判断框处应填入S> 2 200?答案S> 2 200?12•下面程序表达的是求函数________ 的值.INPUT 5=订IF x>0 THENy=:iELSEIF x=0 THENy=0ELSEy= —IEND IFEND IFPRINT yEND解析根据所给的程序语句可知,这是条件语句输入x后,随着x取不同的值输出的y的结果也不相同,故所求的是一个分段函数'1 (x> 0),y=』0 ( x= 0),的值.〔-1 ( x v 0)卩(x> 0)答案y=S0 ( x = 0)〔-1 ( x v 0)三、解答题x + 2(x>0),13 .设计计算f (x)=仁|x + 2( x v 0)的函数值的算法.解析算法:第一步:给出 x ;第二步:若x >0,则f (x ) = x + 2,否则进行第三步; 第三步:f (x ) = x 2+ 2.14.设计求1 + 3 + 5+ 7 +…+ 31的算法,并画出相应的程序框图. 解析第一步:S = 0; 第二步:i = 1; 第三步:S= S + i ; 第四步:i = i + 2 ;第五步:若i 不大于31,返回执行第三步,否则执行第六步; 第六步:输出S 值.程序框图如图.第一步:令 S = 0, i = 1 ;第二步:若i < 2 011成立,则执行第三步; 否则,输出S ,结束算法; 第三步:1S= S+ i (i +1);第四步:i = i + 1,返回第二步.程序框图: 法一1 1 1 1 X 2+ 2X 3+3 X 41 2 011 X 2 012的值,并画出程序框图.解析 算法如下:15•设计算法求 …+16•甲、乙两位同学为解决数列求和问题,试图编写一程序, 如图1和如图2.(1)根据图1和图2,试判断甲、乙两位同学编写的算法框图输出的结果是否一致?当 时分别求它们输出的结果;⑵若希望通过对图2虚框中某一步(或几步)的修改来实现“求首项为 2,公比为3的等比 数列的前n项和”,请你给出修改后虚框部分的算法框图. 解析 (1)图1中程序的功能是求 2 + 4+ 6+ &••+ 2n的和,当 n = 20 时,S = 2 + 4+ 6 + …+ 40 = 420.图1 图2 两人各自编写的算法框图分别n = 20图2中程序功能是求2+ 4+ 6+-+ 2n的和,当n= 20时,S= 2+ 4+ 6+-+ 40= 420.所以甲、乙两位同学编写的程序输出的结果是一致的.(2)修改后部分算法框图如右图1=1+ 1。
2014高考调研理科数学课时作业讲解_课时作业9
课时作业(九)1.下列等式36a 3=2a ;3-2=6(-2)2;-342=4(-3)4×2中一定成立的有( )A .0个B .1个C .2个D .3个答案 A 解析 36a 3=36a ≠2a ;3-2=-32<0,6(-2)2=622=32>0,∴3-2≠6(-2)2;-342<0,4(-3)4×2>0,∴-342≠4(-3)4×2. 2.下列函数中值域为正实数的是( )A .y =-5xB .y =(13)1-x C .y = (12)x-1D .y =1-2x答案 B解析 ∵1-x ∈R ,y =(13)x 的值域是正实数, ∴y =(13)1-x 的值域是正实数.3.已知函数f (x )=a x (a >0且a ≠1)在区间[-2,2]上的最大值不大于2,则函数g (a )=log 2a 的值域是( )A .(-∞,-12)∪(0,12] B .[-12,0)∪(0,12] C .[-12,12]D .[-12,0)∪[12,+∞) 答案 B解析 ①当a >1时,a 2≤2⇒1<a ≤2;②当0<a <1时,a -2≤2⇒22≤a <1,则g (a )=log 2a 的值域为g (a )∈[-12,0)∪(0,12],故选B.4.函数y =0.3|x |(x ∈R )的值域是( )A .R +B .{y |y ≤1}C .{y |y ≥1}D .{y |0<y ≤1}答案 D解析 y =0.3|x |∈(0,1],故选D.5.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )等于( )A .5B .7C .9D .11答案 B解析 ∵f (x )=2x +2-x ,f (a )=3,∴2a +2-a =3.∴f (2a )=22a +2-2a =(2a +2-a )2-2=9-2=7.6.已知函数y =4x -3×2x +3,当其值域为[1,7]时,x 的取值范围是 ( ) A .[2,4] B .(-∞,0] C .(0,1]∪[2,4] D .(-∞,0]∪[1,2] 答案 D解析 y =(2x )2-3×2x +3=(2x -32)2+34∈[1,7], ∴(2x -32)2∈[14,254].∴2x -32∈[-52,-12]∪[12,52].∴2x ∈[-1,1]∪[2,4],∴x ∈(-∞,0]∪[1,2].7.设函数y =x 3与y =(12)x -2的图像的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 答案 B解析 如图所示.由1<x <2,可知1<x 3<8; -1<x -2<0,1<(12)x -2<2. 8.若函数f (x )=(a +1e x -1)cos x 是奇函数,则常数a 的值等于 ( )A .-1B .1C .-12 D.12答案 D9.函数y =的部分图像大致是如图所示的四个图像的一个,根据你的判断,a 可能的取值是( )A.12B.32 C .2 D .4答案 D解析 函数为偶函数,排除①②,又函数值恒为正值,则排除④,故图像只能是③,再根据图像先增后减的特征可知2a -3>1,即a >2,符合条件的只有D 选项,故选D.10.(2013·哈师大附中)已知函数f (x )是定义在R 上的奇函数,其最小正周期为3,当x ∈(-32,0)时,f (x )=-(12)1+x ,则f (2 011)+f (2 013)=( )A .1B .2C .-1D .-2答案 A解析 由已知,得f (2 011)+f (2 013)=f (670×3+1)+f (671×3)=f (1)+f (0)=-f (-1)=1.11.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________.答案 (-2,-1)∪(1,2)解析 函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则0<a 2-1<1,解得1<a <2或-2<a <-1.12.函数y =a x -2 009+2 010(a >0且a ≠1)的图像恒过定点________. 答案 (2 009,2 011)13.已知函数f (x )=a x +b (a >0且a ≠1)的图像如图所示,则a +b 的值是________.答案 -2解析 ∵⎩⎨⎧ a 2+b =0,a 0+b =-3,∴⎩⎨⎧a =2,b =-4.∴a +b =-2.答案解析 由y =2x 是增函数,∴;由是增函数,∴,即有.15.若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.答案 [2,+∞)解析f (1)=a 2=19,a =13,f (x )=⎩⎪⎨⎪⎧(13)2x -4, x ≥2,(13)4-2x,x <2.∴单调递减区间为[2,+∞).16.已知实数a 、b 满足等式(12)a =(13)b,下列五个关系式①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b ,哪些不可能成立? 答案 ③④解析 在同一坐标系内,作出函数y =(12)x 和y =(13)x 的图像(如图)如图:a >b >0时,(12)a =(13)b 可能成立. a <b <0时,(12)a =(13)b 可能成立.a =b =0时,(12)a =(13)b 显然成立. 0<a <b 时,显然(12)a >(13)b . b <a <0时,显然(12)a <(13)b .综上可知:①②⑤可能成立,③④不可能成立.17.是否存在实数a ,使函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上的最大值是14?答案 a =3或a =13解析 令t =a x ,则y =t 2+2t -1. (1)当a >1时,∵x ∈[-1,1], ∴a x ∈[1a ,a ],即t ∈[1a ,a ].∴y =t 2+2t -1=(t +1)2-2在[1a ,a ]上是增函数(对称轴t =-1<1a ).∴当t =a 时,y max =(a +1)2-2=14. ∴a =3或a =-5.∵a >1,∴a =3. (2)当0<a <1时,t ∈[a ,1a ].∵y =(t +1)2-2在[a ,1a ]上是增函数, ∴y max =(1a +1)2-2=14.∴a =13或a =-15.∵0<a <1,∴a =13. 综上,a =3或a =13. 18.已知函数f (x )=-2x2x +1.(1)用定义证明函数f (x )在(-∞,+∞)上为减函数; (2)若x ∈[1,2],求函数f (x )的值域;(3)若g (x )=a2+f (x ),且当x ∈[1,2]时g (x )≥0恒成立,求实数a 的取值范围.解析 (1)设x 1<x 2,则f (x 1)-f (x 2)=∴f (x 1)-f (x 2)>0即f (x 1)>f (x 2). ∴f (x )在(-∞,+∞)上为减函数. (2)∵f (x )在(-∞,+∞)上为减函数, ∴f (x )的值域为[-45,-23].(3)当x ∈[1,2]时,g (x )∈[a 2-45,a 2-23]. ∵g (x )≥0在x ∈[1,2]上恒成立, ∴a 2-45≥0,∴a ≥85. 19.已知f (x )=aa 2-1(a x -a -x )(a >0且a ≠1).(1)判断f(x)的奇偶性;(2)讨论f(x)的单调性;(3)当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.答案(1)奇函数(2)在R上是增函数(3)(-∞,-1] 解析(1)函数定义域为R,关于原点对称.又因为f(-x)=aa2-1(a-x-a x)=-f(x),所以f(x)为奇函数.(2)当a>1时,a2-1>0,y=a x为增函数,y=a-x为减函数,从而y=a x-a-x 为增函数.所以f(x)为增函数.当0<a<1时,a2-1<0.y=a x为减函数,y=a-x为增函数,从而y=a x-a-x为减函数.所以f(x)为增函数.故当a>0,且a≠1时,f(x)在定义域内单调递增.(3)由(2)知f(x)在R上是增函数,所以在区间[-1,1]上为增函数.所以f(-1)≤f(x)≤f(1).所以f(x)min=f(-1)=aa2-1(a-1-a)=aa2-1·1-a2a=-1.所以要使f(x)≥b在[-1,1]上恒成立,则只需b≤-1.故b的取值范围是(-∞,-1].1.函数y=4-2x的定义域是() A.(0,2]B.(-∞,2]C.(2,+∞) D.[1,+∞)答案 B解析由4-2x≥0,得x≤2.2.(2010·重庆)函数y=16-4x的值域是() A.[0,+∞) B.[0,4]C .[0,4)D .(0,4)答案 C3.集合A ={(x ,y )|y =a },集合B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个子集,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .R答案 B4.已知函数f (x )=⎩⎨⎧x -1,x >0,2-|x |+1,x ≤0.若关于x 的方程f (x )+2x -k =0有且只有两个不同的实根,则实数k 的取值范围为( )A .(-1,2]B .(-∞,1]∪(2,+∞)C .(0,1]D .[1,+∞)答案 A解析 在同一坐标系中作出y =f (x )和y =-2x +k 的图像,数形结合即可. 5.若0<a <1,0<b <1,且<1,则x 的取值范围是________.答案 (3,4)解析 log b (x -3)>0,∴0<x -3<1,∴3<x <4.6.若函数y =2-x +1+m 的图像不经过第一象限,则m 的取值范围是________. 答案 m ≤-27.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f (12)+f (1)+f (32)+f (2)+f (52)=______.答案2解析 由题意知f (x )为奇函数且为周期函数,周期为2. ∴f (32)=f (-12)=-f (12),f (52)=f (12),f (2)=f (0).∴所求为f (12)+f (1)=-1+1= 2.8.已知a =5-12,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.答案 m <n 解析 ∵0<5-12<1,∴指数函数f (x )=a x在定义域内为减函数,又由f (m )>f (n ),∴结合图像得m <n .9.对于函数f (x )=a -22x+1(a ∈R ),是否存在实数a 使函数f (x )为奇函数?若存在求出a 的值,若不存在请说明理由.解析 若f (x )为奇函数,则f (-x )=-f (x ). ∵a -22-x+1=-a +22x +1, ∴2a =22x +1+22-x +1=22x +1+2·2x 1+2x =2(1+2x)2x +1=2.∴a =1.10.函数f (x )=lg 1+2x +4x a3在x ∈(-∞,1]上有意义,求实数a 的取值范围.解析 由题意可知,x ≤1时,1+2x +4x a3>0,即1+2x +4x a >0.∴a >-[(14)x +(12)x ]在x ∈(-∞,1]上恒成立. ∵(14)x 、(12)x 均为减函数, ∴-[(14)x +(12)x ]为增函数. ∴当x ≤1时,-[(14)x +(12)x ]≤-34. ∴a 的取值范围为(-34,+∞).11.(2011·上海理)已知函数f (x )=a ·2x +b ·3x ,其中a ,b 满足a ·b ≠0. (1)若a ·b >0,判断函数f (x )的单调性;(2)若a ·b <0,求f (x +1)>f (x )时的x 的取值范围. 解析 (1)当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2,∴f (x 1)-f (x 2)<0,∴函数f (x )在R 上是增函数. 当a <0,b <0时,同理,函数f (x )在R 上是减函数. (2)f (x +1)-f (x )=a ·2x +2b ·3x >0.当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b ,则x >log 1.5⎝ ⎛⎭⎪⎫-a 2b ;当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b ,则x <log 1.5⎝ ⎛⎭⎪⎫-a 2b .。
2014高考调研理科数学课时作业讲解_课时作业20
课时作业(二十)1.下列命题为真命题的是()A.角α=kπ+π3(k∈Z)是第一象限角B.若sinα=sin π7,则α=π7C.-300°角与60°角的终边相同D.若A={α|α=2kπ,k∈Z},B={α|α=4kπ,k∈Z},则A=B答案 C2.与-463°终边相同的角的集合是() A.{α|α=k·360°+463°,k∈Z}B.{α|α=k·360°+103°,k∈Z}C.{α|α=k·360°+257°,k∈Z}D.{α|α=k·360°-257°,k∈Z}答案 C解析显然当k=-2时,k·360°+257°=-463°,故选C.3.若600°角的终边上有一点P(-4,a),则a的值为() A.43B.-4 3C.±4 3 D. 3答案 B解析tan600°=tan(360°+240°)=tan240°=tan(180°+60°)=tan60°=3=a-4,∴a=-4 3.4.sin 2·cos 3·tan 4的值() A.小于0 B.大于0C.等于0 D.不存在答案 A解析∵π2<2<3<π<4<3π2,∴sin2>0,cos3<0,tan4>0.∴sin2·cos3·tan4<0,∴选A.5.已知弧度数为2的圆心角所对的弦长为2,则这个圆心角所对的弧长是() A.2 B.2sin1C.2sin1D.sin2答案 C解析∵2R sin1=2,∴R=1sin1,l=|α|R=2sin1,故选C.6.在△ABC中,若sin A·cos B·tan C<0,则△ABC的形状是() A.锐角三角形B.钝角三角形C.直角三角形D.不能确定答案 B解析∵△ABC中每个角都在(0,π)内,∴sin A>0.∵sin A·cos B·tan C<0,∴cos B·tan C<0.若B,C同为锐角,则cos B·tan C>0.∴B,C中必定有一个钝角.∴△ABC是钝角三角形.故选B.7.已知点P(sin 3π4,cos3π4)落在角θ的终边上,且θ∈[0,2π),则θ的值为()A.π4 B.3π4C.5π4 D.7π4答案 D解析由sin 3π4>0,cos3π4<0知角θ在第四象限,∵tanθ=cos3π4sin3π4=-1,θ∈[0,2π),∴θ=7π4.8.(2013·临沂模拟)若A、B是锐角△ABC的两个内角,则点P(cos B-sin A,sin B-cos A)在() A.第一象限B.第二象限C.第三象限D.第四象限答案 B解析∵A、B是锐角△ABC的两个内角,∴A+B>90°,即A>90°-B.∴sin A>sin(90°-B)=cos B,cos A<cos(90°-B)=sin B.∴cos B-sin A<0,sin B-cos A>0.∴点P在第二象限.故选B.9.下列三角函数值结果为正的是() A.cos100°B.sin700°C.tan(-2π3) D.sin(-9π4)答案 C解析100°为第二象限角,cos100°<0;700°=2×360°-20°,为第四象限角,∴sin700°<0;-2π3为第三象限角,tan(-2π3)>0;-9π4=-2π-π4为第四象限角.∴sin(-9π4)<0.10.若π4<θ<π2,则下列不等式成立的是()A.sinθ>cosθ>tanθB.cosθ>tanθ>sinθC.sinθ>tanθ>cosθD.tanθ>sinθ>cosθ答案 D解析∵π4<θ<π2,∴tanθ>1,sinθ-cosθ=2sin(θ-π4).∵π4<θ<π2,0<θ-π4<π4,∴sin(θ-π4)>0,∴sinθ>cosθ.11.给出四个命题①若α∈(0,π2),则sinα<α;②若α为第一象限角,则sinα+cosα>1;③若α、β为第一象限角且α>β,则sinα>sinβ;④cos2>0.以上命题为真命题的有________.答案①②12.若θ角的终边与8π5的终边相同,则在[0,2π]内终边与θ4角的终边相同的角是________.答案25π,910π,75π,1910π解析由已知θ=2kπ+8π5(k∈Z).∴θ4=kπ2+2π5(k∈Z).由0≤kπ2+2π5≤2π,得-45≤k≤165.∵k∈Z,∴k=0,1,2,3.∴θ4依次为25π,910π,75π,1910π.13.若角α的终边上有一点P(-4,a),且sinα·cosα=34,则a的值为________.答案-43或-43 3解析方法一依题意可知角α的终边在第三象限,点P(-4,a)在其终边上且sinα·cosα=34,易得tanα=3或33,则a=-43或-433.方法二∵sinα·cosα=34>0,∴sinα·cosα同号.∴角α在第三象限,即P(-4,a)在第三象限,∴a<0.根据三角函数的定义a16+a2·-416+a2=34,解得a=-43或a=-43 3.14.如果θ是第二象限角,且cos θ2-sin θ2=1-sinθ,那么θ2所在象限为第________象限.答案三解析∵cos θ2-sinθ2=1-sinθ=|cosθ2-sinθ2|,∴cos θ2≥sinθ2,∴2kπ-3π4≤θ2≤2kπ+π4,k∈Z.又∵2kπ+π2<θ<2kπ+π,k∈Z,∴kπ+π4<θ2<kπ+π2,∴2kπ+5π4<θ2<2kπ+3π2.故θ2为第三象限角.15.若0<α<β<π2,则下列不等式正确的是________.①sinα+sinβ<α+β②α+sinβ<sinα+β③α·sinα<β·sinβ④β·sinα<α·sinβ答案①②③解析由已知得sinα<α,sinβ<β,0<sinα<sinβ,因此sinα+sinβ<α+β,即选项①正确.α·sinα<β·sinβ,即选项③正确.构造函数f(x)=x-sin x(其中x>0),则f′(x)=1-cos x≥0,因此函数f(x)=x-sin x在(0,+∞)上是增函数,当0<α<β<π2时,有f(α)<f(β),即α-sinα<β-sinβ,α+sinβ<sinα+β,选项②正确.对于选项D,当α=π6,β=π3时,β·sinα=π6>π6·32=α·sinβ,选项④不正确.16.扇形的中心角为120°,则此扇形的面积与其内切圆的面积之比为________.答案7+439解析设内切圆的半径为r,扇形半径为R,则(R-r)sin60°=r.∴R=(1+23)r.∴S扇形S圆=12·2π3R2πr2=13(Rr)2=13(1+23)2=7+439.17.(教材习题改编)若α的终边落在x+y=0上,求出在[-360°,360°]之间的所有角α.答案 -225°,-45°,135°,315°解析 若角α终边落在Ⅱ象限,∴{α|α=3π4+2k π,k ∈Z }. 若角α的终边落在Ⅳ象限内,∴{α|α=7π4+2k π,k ∈Z }. ∴α终边落在x +y =0上角的集合为{α|α=3π4+2k π,k ∈Z }∪{α|α=7π4+2k π,k ∈Z } ={α|α=3π4+k π,k ∈Z }.令-360°≤135°+k ·180°≤360°,∴k ={-2,-1,0,1}. ∴相应的角-225°,-45°,135°,315°.18.在直角坐标系xOy 中,若角α的始边为x 轴的非负半轴,终边为射线l :y =22x (x ≥0).求sin(α+π6)的值.答案1+266解析 由射线l 的方程为y =22x ,可得sin α=223,cos α=13. 故sin(α+π6)=223×32+13×12=1+266.1.已知θ是第一象限的角,且|sin θ2|=-sin θ2,则θ2是 ( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案 C解析 θ是第一象限的角,∴2k π<θ <π2+2k π(k ∈Z ). ∴k π<θ2<π4+k π(k ∈Z ).当k =2n (n ∈Z )时,2n π<θ2<π4+2n π(n ∈Z ),θ2是第一象限的角;当k =2n +1(n ∈Z )时, π+2n π<θ2<5π4+2n π(n ∈Z ),θ2是第三象限的角; 又⎪⎪⎪⎪⎪⎪sin θ2=-sin θ2,所以sin θ2≤0. 在θ2是第一象限角和第三象限角中只有第三象限角满足sin θ2≤0.故选C. 2.已知-360°≤β<0°且β与α=70°的终边关于直线y =x 对称,则β=________.答案 -340°3.已知tan θ<0,且角θ终边上一点为(-1,y ),且cos θ=-12,则y =________. 答案3解析 ∵cos θ=-12<0,tan θ<0, ∴θ为第二象限角,则y >0. ∴由-11+y 2=-12,得y = 3. 4.表盘上零点时,时针与分针重合,再次重合时时针和分针各转过了多少弧度?答案 分针转过了-24π11弧度,时针转过了-2π11弧度 解析 设经过t 小时两针再重合,∵分针每小时转-2π弧度,时针每小时转-π6弧度, ∴-π6t -2π=-2πt ,解得t =1211.∴分针转过了-24π11弧度,时针转过了-2π11弧度.5.已知角α的顶点在原点,始边为x 轴的非负半轴.若角α终边经过点P (-3,y ),且sin α=34y (y ≠0),试判断角α所在的象限,并求cos α和tan α的值. 解析 依题意,P 到原点O 的距离为|PO |=(-3)2+y 2, ∴sin α=y r =y 3+y 2=34y .∵y ≠0,∴9+3y 2=16,∴y 2=73,y =±213. ∴点P 在第二或第三象限.当P 在第二象限时,y =213,cos α=x r =-34,tan α=-73.当P 在第三象限时,y =-213,cos α=x r =-34,tan α=736.点P 为圆x 2+y 2=4与x 轴正半轴的交点,将点P 沿圆周顺时针旋转至点P ′,当转过的弧长为2π3时,求点P ′的坐标.答案 P ′(1,-3)解析 点P 所转过的角POP ′的弧度数为α=-2π32=-π3.又|OP ′|=2, ∴点P ′的横坐标x =2· cos(-π3)=1,纵坐标y =2·sin(-π3)=-3,∴P ′(1,-3).7.(1)如果点P (sin θcos θ,2cos θ)位于第三象限,试判断角θ所在的象限. (2)若θ是第二象限角,试判断sin (cos θ)cos (sin2θ)的符号是什么?思路 (1)由点P 所在的象限,可知sin θ、cos θ的符号,进而判断θ所在的象限.(2)由θ可判断cos θ,sin2θ的范围,把cos θ,sin2θ看作一个角,再判断sin(cos θ),cos(sin2θ)的符号.解析 (1)因为点P (sin θcos θ,2cos θ)位于第三象限, 所以sin θcos θ<0,2cos θ<0,即⎩⎨⎧sin θ>0,cos θ<0.所以θ为第二象限角. (2)∵2k π+π2<θ<2k π+π(k ∈Z ),∴-1<cos θ<0,4k π+π<2θ<4k π+2π,-1≤sin2θ<0. ∴sin(cos θ)<0,cos(sin2θ)>0.sin c osθcos s in2θ<0.∴sin c osθcos s in2θ的符号是负号.∴。
2014高考调研理科数学课时作业讲解_课时作业37
课时作业(三十七)1.已知数列的前n 项和为S n =an -1(a 为不为零的实数),则此数列( ) A .一定是等差数列 B .一定是等比数列C .或是等差数列或是等比数列D .既不可能是等差数列,也不可能是等比数列 答案 C解析 b n =S n -S n -1=an -a (n -1)=a .2.已知数列{a n }满足a 1=0,a n +1=a n +2n ,则a 2 013等于 ( )A .2 013×2 014B .2 012×2 013C .2 011×2 012D .2 013×2 013答案 B解析 累加法易知选B.3.已知数列{x n }满足x 1=1,x 2=23,且1x n -1+1x n +1=2x n (n ≥2),则x n 等于( )A .(23)n -1 B .(23)n C.n +12 D.2n +1答案 D 解析 由关系式易知⎩⎨⎧⎭⎬⎫1x n 为首项为1x 1=1,d =12的等差数列,1x n=n +12,所以x n =2n +1.4.在正整数列{a n }中,已知a 1=2,且点(a n ,a n -1)在直线x -2y =0上,则其前n 项和S n 等于( )A .2n -1B .2n +1-2C .2n2- 2 D .2n +22- 2答案 B解析 点坐标代入直线方程易知数列{a n }为首项a 1=2,q =2的等比数列,所以S n =2(2n -1)2-1=2n +1-2.5.已知数列{a n }中a 1=1,a n =12a n -1+1(n ≥2),则a n = ( )A .2-(12)n -1 B .(12)n -1-2 C .2-2n -1 D .2n -1答案 A解析 设a n +c =12(a n -1+c ),易得c =-2,所以a n -2=(a 1-2)(12)n -1=-(12)n-1,所以选A.6.若数列{a n }的前n 项和为S n =32a n -3,则这个数列的通项公式a n =( ) A .2(n 2+n +1) B .2·3n C .3·2n D .3n +1答案 B解析 a n =S n -S n -1,可知选B.7.在数列{a n }中,a 1=1,当n ≥2时,有a n =3a n -1+2,则a n =________. 答案 2·3n -1-1解析 设a n +t =3(a n -1+t ),则a n =3a n -1+2t .∴t =1,于是a n +1=3(a n -1+1).∴{a n +1}是以a 1+1=2为首项,以3为公比的等比数列.∴a n =2·3n -1-1.8.(2013·宁波一中)在数列{a n }中,a 1=2,a n =2a n -1+2n +1(n ≥2),则a n =________.答案 (2n -1)·2n .解析 ∵a 1=2,a n =2a n -1+2n +1(n ≥2),∴a n 2n =a n -12n -1+2.令b n =a n2n ,则b n -b n -1=2(n ≥2),b 1=1.∴b n =1+(n -1)·2=2n -1,则a n =(2n -1)·2n .9.若数列{a n }满足a 1=1,a n +1=2n a n ,则数列{a n }的通项公式a n =________. 答案 2n (n -1)2解析 由于a n +1a n =2n ,故a 2a 1=21,a 3a 2=22,…,a n a n -1=2n -1,将这n -1个等式叠乘,得a na 1=21+2+…+(n -1)=2n (n -1)2,故a n =2n (n -1)2.10.已知{a n }满足a 1=1,且a n +1=a n3a n +1(n ∈N *),则数列{a n }的通项公式为________.答案 a n =13n -2解析 由已知,可得当n ≥1时,a n +1=a n3a n +1.两边取倒数,得1a n +1=3a n +1a n =1a n +3.即1a n +1-1a n =3,所以{1a n }是一个首项为1a 1=1,公差为3的等差数列. 则其通项公式为1a n=1a 1+(n -1)×d =1+(n -1)×3=3n -2.所以数列{a n }的通项公式为a n =13n -2.11.设数列{a n }的前n 项和为S n .已知a 1=a ,a n +1=S n +3n ,n ∈N *.设b n =S n -3n ,求数列{b n }的通项公式.解析 依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n+1=2(S n -3n ).因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *. 12.数列{a n }的前n 项和为S n ,且a 1=a ,S n +1=2S n +n +1,n ∈N *,求数列{a n }的通项公式.解析 由S n +1=2S n +n +1,① 得S n =2S n -1+(n -1)+1(n ≥2). ②①-②,得S n +1-S n =2(S n -S n -1)+n -(n -1). 故a n +1=2a n +1.(n ≥2)又a n +1+1=2(a n +1),所以a n +1+1a n +1=2(n ≥2).故数列{a n +1}是从第2项起,以a 2+1为首项,公比为2的等比数列.又S 2=2S 1+1+1,a 1=a ,所以a 2=a +2.故a n =(a +3)·2n -2-1(n ≥2). 又a 1=a 不满足a n =(a +3)·2n -2-1, 所以a n =⎩⎨⎧ a ,(a +3)·2n -2-1,n =1,n ≥2.13.在数列{a n }中,a 1=5,a n =2a n -1+2n -1(n ≥2,n ∈N *),求数列{a n }的通项公式.解析 ∵a 1=5,a n =2a n -1+2n -1(n ≥2,n ∈N *), ∴a n 2n =a n -12n -1+(1-12n ).令b n =a n2n ,b n -b n -1=1-12n ⇒b n -b 1=2n -32+12n ,则 b n =(n +1)+12n .∴数列{a n }的通项公式a n =(n +1)·2n +1.14.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),求{a n }的通项公式.解析 ∵a n +1=a 1+2a 2+3a 3+…+(n -1)a n -1+na n , ∴两式相减得a n +1-a n =na n (n ≥2),则a n +1a n =n +1(n ≥2).∴a 3a 2=3,a 4a 3=4,…,a n a n -1=n .注意到a 2=a 1=1,∴a 2a 1=1,由“累乘法”,得a na 1=1·3·4…n =n !2(n ≥2). ∴{a n }的通项公式a n =⎩⎪⎨⎪⎧1(n =1),n !2(n ≥2).15.已知数列{a n }中,a 1=12,点(n,2a n +1-a n )在直线y =x 上,其中n =1,2,3,…. (1)令b n =a n +1-a n -1,求证:数列{b n }是等比数列; (2)求数列{a n }的通项.解析 (1)∵点(n,2a n +1-a n )在直线y =x 上, ∴2a n +1-a n =n ,∴a n +1=a n 2+n2.∴b n +1=a n +2-a n +1-1=(12a n +1+n +12)-a n +1-1 =-a n +12+n 2-12. 但2a n +1-a n =n ,∴b n +1=-a n +12+2a n +1-a n 2-12=12(a n +1-a n-1)=12b n ,∴数列{b n }是等比数列.(2)∵2a 2-a 1=1,a 1=12,∴a 2=34.则数列{b n }的首项b 1=-34,故 b n =-34·(12)n -1⇒a n +1-a n -1=-3·(12)n +1⇒a n +1-a n =1-3·(12)n +1. 以下用“叠加法”得a n =32n +n -2.16.数列{a n }的前n 项和为S n ,且S n =n (n +1)(n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足:a n =b 13+1+b 232+1+b 333+1+…+b n3n +1,求数列{b n }的通项公式.解析 (1)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n (n +1)-(n -1)n =2n ,知a 1=2满足该式,∴数列{a n }的通项公式为a n =2n . (2)∵a n =b 13+1+b 232+1+b 333+1+…+b n3n +1(n ≥1), ① ∴a n +1=b 13+1+b 232+1+b 333+1+…+b n3n +1+b n +13n +1+1.②②-①,得b n +13n +1+1=a n +1-a n =2,b n +1=2(3n +1+1). 故b n =2(3n +1)(n ∈N *).17.{a n }为通项公式为a n =2n -1,且a n =b 12+b 222+b 323+…+b n2n .求{b n }前n 项和.解析n≥2时,a n-1=b12+b222+…+b n-12n-1,∴a n-a n-1=b n2n=2,∴b n=2n+1(n≥2).而b1=2,不适合上式.∴当n=1时,S1=b1=2.当n≥2时,S n=2+23+24+…+2n+1=2n+2-6. n=1时,S1适合上式.∴S n=2n+2-6.。
2014年高考理科数学试题全国大纲卷逐题详解-(纯word解析版)
2014年高考理科数学试题全国大纲卷逐题详解 (纯word 解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.【2014年全国大纲卷(01)】设103iz i=+,则z 的共轭复数为( )A .13i -+B .13i --C .13i +D .13i -【答案】D 【解析】∵z==,∴.故选:D【2014年全国大纲卷(02)】设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N =( )A .(0,4]B .[0,4)C .[1,0)-D .(1,0]-【答案】B【解析】由x 2﹣3x ﹣4<0,得﹣1<x <4.∴M={x|x 2﹣3x ﹣4<0}={x|﹣1<x <4},又N={x|0≤x ≤5},∴M ∩N={x|﹣1<x <4}∩{x|0≤x ≤5}=[0,4).故选:B【2014年全国大纲卷(03)】设0sin 33a =,0cos55b =,0tan 35c =,则( )A .a b c >>B .b c a >>C .c b a >>D .c a b >>【答案】C【解析】由诱导公式可得b=cos55°=cos (90°﹣35°)=sin35°, 由正弦函数的单调性可知b >a ,而c=tan35°=>sin35°=b ,∴c >b >a 故选:C【2014年全国大纲卷(04)】若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( )A .2B .2C .1D .2【答案】B【解析】由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b 2=2,则||=,故选:B【2014年全国大纲卷(05)】有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种 B .70种 C .75种 D .150种【答案】C【解析】根据题意,先从6名男医生中选2人,有C 62=15种选法,再从5名女医生中选出1人,有C 51=5种选法, 则不同的选法共有15×5=75种;故选C【2014年全国大纲卷(06)】已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43,则C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 【答案】A【解析】∵△AF 1B 的周长为4,∴4a=4,∴a=,∵离心率为,∴c=1,∴b==,∴椭圆C 的方程为+=1.故选:A【2014年全国大纲卷(07)】曲线1x y xe -=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1【答案】C【解析】函数的导数为f ′(x )=e x ﹣1+xe x ﹣1=(1+x )e x ﹣1,当x=1时,f ′(1)=2,即曲线y=xe x ﹣1在点(1,1)处切线的斜率k=f ′(1)=2,故选:C【2014年全国大纲卷(08)】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π【答案】A【解析】设球的半径为R ,则∵棱锥的高为4,底面边长为2, ∴R 2=(4﹣R )2+()2,∴R=,∴球的表面积为4π•()2=.故选:A【2014年全国大纲卷(09)】已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若12||2||F A F A =,则21cos AF F ∠=( ) A .14 B .13C .2D .2【答案】A【解析】∵双曲线C 的离心率为2,∴e=,即c=2a ,点A 在双曲线上,则|F 1A|﹣|F 2A|=2a ,又|F 1A|=2|F 2A|,∴解得|F 1A|=4a ,|F 2A|=2a ,||F 1F 2|=2c ,则由余弦定理得cos ∠AF 2F 1===,故选:A【2014年全国大纲卷(10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .3【答案】C【解析】∵等比数列{a n }中a 4=2,a 5=5,∴a 4•a 5=2×5=10,∴数列{lga n }的前8项和S=lga 1+lga 2+…+lga 8=lg (a 1•a 2…a 8)=lg (a 4•a 5)4=4lg (a 4•a 5)=4lg10=4故选:C【2014年全国大纲卷(11)】已知二面角l αβ--为060,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,0135ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14 B .24 C .3 D .12【答案】B【解析】如图,过A 点做AE ⊥l ,使BE ⊥β,垂足为E ,过点A 做AF ∥CD ,过点E 做EF ⊥AE ,连接BF ,∵AB ⊥l ,∴∠BAE=60°,又∠ACD=135°,∴∠EAF=45°,在Rt △BEA 中,设AE=a ,则AB=2a ,BE=a ,在Rt △AEF 中,则EF=a ,AF=a ,在Rt △BEF 中,则BF=2a , ∴异面直线AB 与CD 所成的角即是∠BAF ,∴cos ∠BAF===.【2014年全国大纲卷(12)】函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =--【答案】D【解析】设P (x ,y )为y=f (x )的反函数图象上的任意一点,则P 关于y=x 的对称点P ′(y ,x )一点在y=f (x )的图象上,又∵函数y=f (x )的图象与函数y=g (x )的图象关于直线x+y=0对称,∴P ′(y ,x )关于直线x+y=0的对称点P ″(﹣x ,﹣y )在y=g (x )图象上, ∴必有﹣y=g (﹣x ),即y=﹣g (﹣x )∴y=f (x )的反函数为:y=﹣g (﹣x )第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 【2014年全国大纲卷(13)】8()x y y x-的展开式中22x y 的系数为 . 【答案】70 【解析】的展开式的通项公式为 T r+1=•(﹣1)r••=•(﹣1)r••,令 8﹣=﹣4=2,求得 r=4,故展开式中x 2y 2的系数为 =70,故答案为:70【2014年全国大纲卷(14)】设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .【答案】5【解析】由约束条件作出可行域如图,联立,解得C (1,1).化目标函数z=x+4y 为直线方程的斜截式,得.由图可知,当直线过C 点时,直线在y 轴上的截距最大,z 最大.此时z max =1+4×1=5.故答案为:5【2014年全国大纲卷(15)】直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .【答案】【解析】设l 1与l 2的夹角为2θ,由于l 1与l 2的交点A (1,3)在圆的外部,且点A 与圆心O 之间的距离为OA==,圆的半径为r=,∴sin θ==,∴cos θ=,tan θ==,∴tan2θ===,故答案为:【2014年全国大纲卷(16)】若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 .【答案】(﹣∞,2]【解析】由f (x )=cos2x+asinx=﹣2sin 2x+asinx+1,令t=sinx ,则原函数化为y=﹣2t 2+at+1.∵x ∈(,)时f (x )为减函数,则y=﹣2t 2+at+1在t ∈(,1)上为减函数,∵y=﹣2t 2+at+1的图象开口向下,且对称轴方程为t=. ∴,解得:a ≤2.∴a 的取值范围是(﹣∞,2].故答案为:(﹣∞,2]三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 【2014年全国大纲卷(17)】(本小题满分10分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 2cos a C c A =,1tan 3A =,求B.解:根据正弦定理,由3cos 2cos 3sin cos 2sin cos a C c A A C C A =⇒=sin sin 323tan 2tan cos cos A CA C A C⇒⨯=⨯⇒= 因为1tan 3A =,所以1132tan tan 32C C ⨯=⇒=所以11tan tan 32tan()1111tan tan 132A C A C A C +++===--⨯ 因为0A C π<+<,所以4A C π+=由三角形的内角和可得344B πππ=-=.【2014年全国大纲卷(18)】(本小题满分12分)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 解:(1)设等差数列{}n a 的公差为d ,而110a =,从而有10(1)n a n d =+- 若0d =,10n S n =,此时4n S S ≤不成立若0d >,数列{}n a 是一个单调递增数列,n S 随着n 的增大而增大,也不满足4n S S ≤ 当0d <时,数列{}n a 是一个单调递减数列,要使4n S S ≤,则须满足540a a ≤⎧⎨≥⎩即1040105103032d d d +≤⎧⇒-≤≤-⎨+≥⎩,又因为21a a d =+为整数,所以d Z ∈,所以3d =- 此时103(1)133n a n n =--=-(2)由(1)可得1111111()(133)(103)(313)(310)3133103n n n b a a n n n n n n +====-⨯------ 所以111111111(())(())()31073743133103n T n n =---+---++-⨯--1111111111(()()())()31077431331031031010(310)n n n n n ---+---++-=--=-----.【2014年全国大纲卷(19)】(本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B 的距离为3,求二面角1A AB C --的大小.解:法一:(1)因为1A D ⊥平面ABC ,1A D ⊆平面11AAC C ,故平面11AAC C ⊥平面ABC .又BC AC ⊥,所以BC ⊥平面11AAC C .连结1AC .因为侧面11AAC C 为菱形,故11AC AC ⊥.由三垂线定理得11AC A B ⊥.(2)BC ⊥平面11AAC C ,BC ⊆平面11BCC B ,故平面11AAC C ⊥平面11BCC B . 作11A E CC ⊥,E 为垂足,则1A E ⊥平面11BCC B .又直线1A A 平面11BCC B ,因而1A E 为直线1A A 与平面11BCC B 的距离,13A E =.因为1A C 为11A CC ∠的平分线,故113A D A E ==.作DF AB ⊥,F 为垂足,连结1A F .由三垂线定理得1A F AB ⊥,故1A FD ∠为二面角1A ABC --的平面角. 由22111AD AA A D =-=得D 为C A 中点,15=25AC BC DF AB ⨯⨯=,11tan 15A D A FD DF ∠==. 所以二面角1A AB C --的大小为arc tan 15。
2014年高考理科数学试题全国新课标Ⅰ逐题详解-(纯word解析版)
2014年高考理科数学试题全国新课标Ⅰ逐题详解 (纯word 解析版)第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
【2014年全国新课标Ⅰ(理01)】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】:A【解析】:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A..【2014年全国新课标Ⅰ(理02)】32(1)(1)i i +-=A .1i +B .1i -C .1i -+D .1i --【答案】:D【解析】:∵32(1)(1)i i +-=2(1)12i i i i +=---,选D..【2014年全国新课标Ⅰ(理03)】设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数 C .|()f x |()g x 是奇函数B .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数【答案】:B【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是 偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选B.【2014年全国新课标Ⅰ(理04)】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【答案】:A【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y x =,即0x -=,则点F 到C 的一条渐近线的距离d =,选A. .【2014年全国新课标Ⅰ(理05)】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.【2014年全国新课标Ⅰ(理06)】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为【答案】:B【解析】:如图:过M 作MD ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x xOM PM OP =g g cos sin x x =1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. .【2014年全国新课标Ⅰ(理07)】执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M =. 选D.【2014年全国新课标Ⅰ(理08)】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B【2014年全国新课标Ⅰ(理09)】不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.【2014年全国新课标Ⅰ(理10)】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =u u u r u u u r ,则||QF =A .72 B .52C .3D .2【答案】:C【解析】:过Q 作QM ⊥直线L 于M ,∵4FP FQ =u u u r u u u r∴34PQ PF =,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM ==【2014年全国新课标Ⅰ(理11)】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】:B【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。
【高中数学】【高考调研】高中数学 课时作业13 新人教A版选修22
课时作业(十三)一、选择题1.函数f(x)=x 2在区间⎣⎢⎡⎦⎥⎤i -1n,i n 上( )A .f(x)的值变化很小B .f(x)的值变化很小C .f(x)的值不变化D .当n 很大时,f(x)的值变化很小答案 D2.当n 很小时,函数f(x)=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值可以用( )近似代替( )A .f(1n) B .f(2n) C .f(i n)D .f(0)答案 C3.在求由x =a ,x =b(a<b),y =f(x)(f(x)≥0)及y =0围成的曲边梯形的面积S 时,在区间[a ,b]上等间隔地插入n -1个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的个数是( )①n 个小曲边梯形的面积和等于S ; ②n 个小曲边梯形的面积和小于S ; ③n 个小曲边梯形的面积和大于S ;④n 个小曲边梯形的面积和与S 之间的大小关系无法确定.A .1B .2C .3D .4答案 A4.将区间[a ,b]n 等分,则自左向右第i(其中i =1,2,…,n)个区间应该是( )A .⎣⎢⎡⎦⎥⎤i n ,i +1n B .⎣⎢⎡⎦⎥⎤i -1n ,i n C .⎣⎢⎡⎦⎥⎤a +b -a n i ,a +b -an i +1D .⎣⎢⎡⎦⎥⎤a +b -a n i -1,a +b -a n i 答案 D5.已知自由落体的速度为v =gt ,则落体从t =0到t =t 0所走过的路程为( )A .13gt 20 B .gt 20 C .12gt 20D .14gt 20答案 C 6.直线x =a ,x =b(a<b),y =0和曲线y =f(x)(f(x)>0)所围成的曲边梯形的面积S =( )A .∑i =1nf (ξi )·1nB .limn→∞∑i =1nf (ξ1)·1n C .∑i =1n f (ξi )·b -anD .limn→∞∑i =1nb -an·f(ξi ) 答案 D7.已知直线l :y =ax +b 和曲线C :y =ax 2+b ,则由直线l 和曲线C 所围成的平面图形(图中阴影部分)只可能是( )答案 A 二、填空题8.设f(x)的图像在[a ,b]上是连续不间断的,若将[a ,b]n 等分,在第i 个小区间上任取ξi ,则第i 个小曲边形的面积可近似地写为________.答案b -an·f(ξi ) 9.计算抛物线y =x 2与直线x =1,y =0所围成的曲边梯形的面积时,若取f(x)在区间⎣⎢⎡⎦⎥⎤i -1n,i n (i =1,2,…,n)上的值近似地等于右端点i n 处的函数值f(i n ),则曲边梯形的面积S 的过剩近似值为________.答案 13(1+1n )(1+12n)10.下列图形中,阴影所表示的曲边梯形的面积等于13的是________.答案 ①③④11.汽车以速度v 作匀速直线运动时,经过时间t 所行驶的路程s =vt.如果汽车作匀变速直线运动,在时刻t 的速度为v(t)=t 2+2(单位:km /h ).若该汽车在1≤t≤2这段时间行驶的路程可用一个平面图形的面积来表示,则围成该图形的直线和曲线分别是________.答案 t =1,t =2,v =0,v =t 2+2 三、解答题12.求直线x =2,y =0和曲线y =x 2所围成的曲边梯形的面积.解析 (1)分割:把区间[0,2]等分成n 个小区间,第i 个小区间的长度为2n ,过各分点作x 轴的垂线,把曲边梯形分割成n 个小曲边梯形.(2)以直代曲:当n 很大时,区间长度很小,小曲边梯形近似于小矩形,第i 个小矩形的高度用f(2in)代替(i =1,2,…,n).(3)求和:各矩形面积之和S n =∑i =1nf(2i n )Δx=∑i =1n(2i n )22n=8n 3(12+22+…+n 2)=8n 3·n n +12n +16=83(1+1n )(1+12n). (4)逼近:当n 趋向于+∞时,S n 趋向于83,所以曲边梯形的面积S =83.13.某汽车在公路上变速行驶,行驶的速度与时间t 满足v(t)=t 2+2(km /h ),计算这辆汽车在时间段1≤t≤2内行驶的路程.解析 将区间[1,2]等分成n 个小区间,每i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n ,其长度为Δt=1n. 当n 很大时,以v(1+i -1n )为第i 个小区间上的行驶速度,并以各小区间上的路程之和S n 近似代替总路程S.则S n =∑i =1nf(1+i -1n )·1n=1n ∑i =1n ⎣⎢⎡⎦⎥⎤1+i -1n 2+2=1n ∑i =1n ⎣⎢⎡⎦⎥⎤i -12n2+2i -1n +3 =1n ⎩⎨⎧3n +1n 2[02+12+22+…+n -12]+⎭⎬⎫1n [0+2+4+6+…+2n -1] =3+n -12n -16n2+n -1n.S =lim n→∞S n =lim n→∞⎣⎢⎡⎦⎥⎤3+n -12n -16n2+n -1n =133. ∴这段时间行驶的路程为133km .高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(十三)1.(2013·绍兴调研卷)函数f(x)=e x+3x的零点个数是() A.0B.1C.2 D.3答案 B答案由已知得f′(x)=e x+3>0,所以f(x)在R上单调递增,又f(-1)=e-1-3<0,f(1)=e+3>0,因此f(x)的零点个数是1,选B.2.若函数f(x)=2ax2-x-1在(0,1)内恰有一个零点,则a的取值范围是() A.(-1,1) B.[1,+∞)C.(1,+∞) D.(2,+∞)答案 C解析当a=0时,函数的零点是x=-1.当a≠0时,若Δ>0,f(0)·f(1)<0,则a>1.若Δ=0,即a=-18,函数的零点是x=-2,故选C.3.(2011·陕西文)方程|x|=cos x在(-∞,+∞)内() A.没有根B.有且仅有一个根C.有且仅有两个根D.有无穷多个根答案 C解析求解方程|x|=cos x在(-∞,+∞)内根的个数问题,可转化为求解函数f(x)=|x|和g(x)=cos x在(-∞,+∞)内的交点个数问题.f(x)=|x|和g(x)=cos x的图像如图所示.显然有两交点,即原方程有且仅有两个根.4.下列函数中在区间[1,2]上一定有零点的是() A.f(x)=3x2-4x+5 B.f(x)=x3-5x-5C.f(x)=mx2-3x+6 D.f(x)=e x+3x-6答案 D解析 对选项D ,∵f (1)=e -3<0,f (2)=e 2>0, ∴f (1)f (2)<0.5.若函数f (x )=x 3-3x +a 有3个不同的零点,则实数a 的取值范围是 ( ) A .(-2,2) B .[-2,2] C .(-∞,1) D .(1,+∞)答案 A解析 只需f (-1)f (1)<0,即(a +2)(a -2)<0, 故a ∈(-2,2).6.设函数f (x )=13x -ln x (x >0),则y =f (x ) ( )A .在区间(1e ,1),(1,e)内均有零点 B .在区间(1e ,1),(1,e)内均无零点C .在区间(1e ,1)内有零点,在区间(1,e)内无零点 D .在区间(1e ,1)内无零点,在区间(1,e)内有零点 答案 D解析 由题意,得f (1e )·f (1)>0且f (1)·f (e)<0,又f ′(x )=13-1x ,当0<x <3时,f ′(x )<0,f (x )在(0,3)上单调递减.7.函数f (x )=⎩⎨⎧ln x -x 2+2x (x >0),2x +1 (x ≤0)的零点个数为( )A .0B .1C .2D .3答案 D解析 依题意,在考虑x >0时可以画出y =ln x 与y =x 2-2x 的图像,可知两个函数的图像有两个交点,当x ≤0时,函数f (x )=2x +1与x 轴只有一个交点,所以函数f (x )有3个零点.故选D.8.已知函数f (x )=(13)x -log 2x ,若实数x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)( )A .恒为负值B .等于0C .恒为正值D .不大于0答案 C解析 因为f (x )=(13)x -log 2x 在其定义域(0,+∞)上单调递减,而f (x 0)=0,所以f (x 1)>f (x 0)=0.9.已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 1<x 3<x 2D .x 3<x 2<x 1答案 A解析 令函数f (x )=x +2x =0,因为2x 恒大于零,所以要使得x +2x =0,x 必须小于零,即x 1小于零;令g (x )=x +ln x =0,要使得ln x 有意义,则x 必须大于零,又x +ln x =0,所以ln x <0,解得0<x <1,即0<x 2<1;令h (x )=x -x -1=0,得x =x +1>1,即x 3>1,从而可知x 1<x 2<x 3.10.已知x 0是函数f (x )=2x+11-x的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0答案 B 解析 设g (x )=11-x ,由于函数g (x )=11-x =-1x -1在(1,+∞)上单调递增,函数h (x )=2x 在(1,+∞)上单调递增,故函数f (x )=h (x )+g (x )在(1,+∞)上单调递增,所以函数f (x )在(1,+∞)上只有唯一的零点x 0,且在(1,x 0)上f (x 1)<0,在(x 0,+∞)上f (x 2)>0,故选B.11.若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是( )A .(-12,14) B .(-14,12) C .(14,12)D .[14,12]答案 C解析 由零点存在定理知⎩⎨⎧f (-1)f (0)<0,f (1)f (2)<0⇒14<m <12.故选C.12.设a ,b ,c 分别是函数f (x )=(12)x -log 2x ,g (x )=2x -log 12x ,h (x )=(12)x -log 12x 的零点,则a ,b ,c 的大小关系是( )A .b <c <aB .a <b <cC .b <a <cD .c <b <a答案 A解析 在同一坐标系中作出函数y =(12)x 、y =2x 、y =log 12x 、y =log 2x 的图像(如图),则有x A >1>x C >x B ,即b <c <1<a ,故选A.13.如果函数f (x )=ax +b (a ≠0)有一个零点是2,那么函数g (x )=bx 2-ax 的零点是________.答案 0,-12解析 由已知条件2a +b =0,即b =-2a . g (x )=-2ax 2-ax =-2ax (x +12), 则g (x )的零点是x =0,x =-12.14.(2011·辽宁文)已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是________.答案 (-∞,2ln2-2]解析 由原函数有零点,可将问题转化为方程e x -2x +a =0有解问题,即方程a =2x -e x 有解.令函数g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln2,所以g (x )在(-∞,ln2)上是增函数,在(ln2,+∞)上是减函数,所以g (x )的最大值为g (ln2)=2ln2-2.因此,a 的取值范围就是函数g (x )的值域,所以,a ∈(-∞,2ln2-2].15.若f (x )=⎩⎨⎧x 2-x -1,x ≥2或x ≤-1,1, -1<x <2,则函数g (x )=f (x )-x 的零点为________.答案 1+2,1解析 求函数g (x )=f (x )-x 的零点,即求f (x )=x 的根, ∴⎩⎨⎧ x ≥2或x ≤-1,x 2-x -1=x 或⎩⎨⎧-1<x <2,1=x . 解得x =1+2或x =1. ∴g (x )的零点为1+2,1.16.(2013·衡水调研)设f (x )=⎩⎨⎧x 2-4x +6,x ≥0,2x +4,x <0,若存在互异的三个实数x 1,x 2,x 3,使f (x 1)=f (x 2)=f (x 3),则x 1+x 2+x 3的取值范围是________.答案 (3,4)解析 设x 1<0,x 2、x 3>0, 则由x 2-4x +6=(x -2)2+2可知 x 2+x 3=4,又由2x +4>2, 得-1<x 1<0. ∴3<x 1+x 2+x 3<4.17.(2011·山东)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图像在区间[0,6]上与x 轴的交点的个数为________.答案 7解析 当0≤x <2时,令f (x )=x 3-x =0, 得x =0或x =1,∵f (x +2)=f (x ), ∴y =f (x )在[0,6)上有6个零点. 又f (6)=f (3×2)=f (0)=0,∴f (x )在[0,6]上的与x 轴的交点个数为7.18.已知函数f (x )=4x +m ·2x +1仅有一个零点,求m 的取值范围,并求出零点.答案 m =-2,零点是x =0解析 方法一 令2x =t ,则t >0,则g (t )=t 2+mt +1=0 仅有一正根,而g (0)=1>0,故⎩⎪⎨⎪⎧Δ=m 2-4=0,-m2>0.∴m =-2.方法二 令2x =t ,则t >0.原函数的零点,即方程t 2+mt +1=0的根. ∴t 2+1=-mt .∴-m =t 2+1t =t +1t (t >0). 有一个零点,即方程只有一根. ∵t +1t ≥2(当且仅当t =1t 即t =1时), ∴-m =2即m =-2时,只有一根.注:方法一侧重二次函数,方法二侧重于分离参数.1.(2012·辽宁)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos(πx )|,则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为( )A .5B .6C .7D .8答案 B解析 ∵f (-x )=f (x ),f (x )=f (2-x ),∴f (-x )=f (2-x ),∴f (x )的周期为2.如图画出f (x )与g (x )的图像,它们共有6个交点,故h (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为6.故选B.2.函数f(x)=mx2-2x+1有且仅有一个正实数的零点,则实数m的取值范围是() A.(-∞,1] B.(-∞,0]∪{1}C.(-∞,0)∪(0,1] D.(-∞,1)答案 B思路函数中的二次项系数是个参数,先要对其分类讨论,再结合一次函数、二次函数的图像列不等式解决.解析当m=0时,x=12为函数的零点;当m≠0时,若Δ=0,即m=1时,x=1是函数唯一的零点,若Δ≠0,显然函数x=0不是函数的零点,这样函数有且仅有一个正实数零点等价于方程mx2-2x+1=0有一个正根和一个负根,即mf(0)<0,即m<0.故选B.3.已知定义在R上的函数f(x)=(x2-3x+2)·g(x)+3x-4,其中函数y=g(x)的图像是一条连续曲线,则方程f(x)=0在下面哪个范围内必有实数根() A.(0,1) B.(1,2)C.(2,3) D.(3,4)答案 B解析f(x)=(x2-3x+2)·g(x)+3x-4=(x-1)(x-2)·g(x)+3x-4,故f(1)=-1<0,f(2)=2>0.故选B.点评根据y=g(x)图像的连续性可以推知函数f(x)的图像也是连续的,函数零点定理适用的条件是函数的图像必须是连续不断的曲线,一般地,函数图像在其连续不断的定义域上的图像是连续不断的.4.已知函数f(x)=2x+x,g(x)=log2x+x,h(x)=log2x-2的零点依次为a、b、c,则()A.a<b<c B.c<b<aC.c<a<b D.b<a<c答案 A解析 在同一平面直角坐标系中分别画出函数y =2x 、y =-x 、y =log 2x 的图像,结合函数y =2x 与y =-x 的图像可知其交点横坐标小于0,即a <0;结合函数y =log 2x 与y =-x 的图像可知其交点横坐标大于0且小于1,即0<b <1;令log 2x -2=0,得x =4,即c =4.因此有a <b <c ,选A.5.不论m 取任何实数值,方程|x 2-3x +2|=m (x -32)的实根个数都是 ( )A .1B .3C .2D .不确定答案 C解析 图像如图,y =|x 2-3x +2|与y =m (x -32),y =m (x -32)恒过(32,0)且有斜率,如图可知有两个交点,则方程|x 2-3x +2|=m (x -32)的实数解有2个,故选C.6.(2013·陕西五校)已知f (x )=⎝ ⎛⎭⎪⎫13x -log 2x ,实数a 、b 、c 满足f (a )f (b )f (c )<0,且0<a <b <c ,若实数x 0是函数f (x )的一个零点,则下列不等式中,不可能成立的是( )A .x 0<aB .x 0>bC .x 0<cD .x 0>c答案 D解析 易知f (x )在(0,+∞)上是减函数,f (x 0)=0,若x 0>c ,则f (a )>f (b )>f (c )>0,则f (a )·f (b )·f (c )>0,与题意不符.7.(2013·南宁)偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=-x +1,则关于x 的方程f (x )=⎝ ⎛⎭⎪⎫12x ,在x ∈[0,3]上解的个数是________.答案 38.(2013·西城)已知函数f (x )=其中c >0.那么f (x )的零点是________.若f (x )的值域是⎣⎢⎡⎦⎥⎤-14,2,则c 的取值范围是________.答案 -1或0;(0,4]解析 画出函数y =f (x )图像如图.令=0(0≤x ≤c )⇒x =0.令x 2+x =0(-2≤x <0)⇒x =-1. 故f (x )的零点是-1或0.由图易知若f (x )的值域是⎣⎢⎡⎦⎥⎤-14,2,则≤2⇒c ≤4.又c >0,∴0<c ≤4.9.(2013·深圳调研)已知符号函数sgn(x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=sgn(ln x )-ln x 的零点个数为________.答案 3解析f (x )=⎩⎨⎧1-ln x ,x >1,0,x =1,-1-ln x ,0<x <1.法一 画图;法二 各段分别等于0.10.已知函数f (x )=a x +x -2x +1,(a >1),判断函数f (x )零点的个数.答案 1个 解析设f1(x)=a x(a>1),f2(x)=-x-2x+1,则f(x)=0的解即为f1(x)=f2(x)的解,即为函数f1(x)与f2(x)图像交点的横坐标.在同一坐标系中,作出函数f1(x)=a x(a>1)与f2(x)=-x-2x+1=3x+1-1的图像(如图所示).两函数图像有且只有一个交点,即方程f(x)=0有且只有一个根.11.求函数f(x)=x3-2x2-x+2的零点,并画出它的大致图像.解析将f(x)=x3-2x2-x+2分解因式求出零点.∵f(x)=x3-2x2-x+2=x2(x-2)-(x-2)=(x-2)(x2-1)=(x-2)(x-1)(x+1),∴f(x)=x3-2x2-x+2的零点为-1,1,2.三个零点将x轴分成四个区间:(-∞,-1],(-1,1),[1,2],(2,+∞),∵f(0)=2>0,∴函数f(x)=x3-2x2-x+2的大致图像如图所示.。