第二节 蛋白质的分子结构
蛋白质的结构与功能教学大纲
蛋白质的结构与功能教学大纲掌握蛋白质的定义及生物学的重要性。
蛋白质是由许多氨基酸通过肽键联系起来的高分子含氮化合物。
蛋白质在体内分布广、含量高,是生物体重要组成成分;具有重要的生物学功能;在体内氧化可提供能量。
第一节蛋白质的分子组成一、蛋白质的元素组成掌握蛋白质元素组成的特点、平均含氮量。
各种蛋白质含氮量平均为16%。
由于体内的含氮物质以蛋白质为主,因此只要测定生物样品中的含氮量就可以推算出蛋白质的大约含量。
二、氨基酸掌握氨基酸的定义、通式。
熟悉氨基酸的理化性质及分类。
含有氨基及羧基的有机化合物都可以叫做氨基酸。
组成蛋白质的基本单位是氨基酸(AA),氨基酸具有两性解离的特性。
在某一pH溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点(pI)。
三、肽掌握肽键的概念,熟悉肽链、肽的概念,了解生物活性肽。
肽键是由氨基酸的α-羧基与相邻的另一AA的α-氨基脱水缩合形成的连接键。
氨基酸通过肽键相连形成多肽链。
肽链仅仅指一种结构,而不是化合物。
由许多氨基酸组成的肽链称为多肽链(polypeptide chain);由于组成多肽链的氨基酸已不是完整的氨基酸分子,因此,多肽链中的氨基酸被称为氨基酸残基。
氨基酸缩合成多肽链后,只在两端有自由的α-氨基和α-羧基,它们分别称为氨基末端(N-端)和羧基末端(C-端)。
肽是由氨基酸通过肽键缩合形成的化合物,具有一定的功能。
由两个氨基酸残基形成的肽叫二肽,三个氨基酸残基形成的肽称为三肽。
10个以内的氨基酸残基形成的肽叫寡肽;10个以上的氨基酸残基形成的肽叫多肽。
人体内存在许多具有生物活性的肽,有的仅是三肽,有的属于寡肽或多肽,在神经传导、代谢调节等方面起着重要作用。
如谷胱甘肽、多肽类激素及神经肽等。
四、蛋白质的分类了解蛋白质的分类。
根据蛋白质组成成分可分成单纯蛋白质和结合蛋白质。
根据形状分为纤维状蛋白和球状蛋白。
蛋白质的分子结构
20〜20 学年度第学期教师课时授课教案学科系:医学院授课教师:专业:临床科目:生物化学学科系系办主任签字: 年月日教研室主任签字:年月日第二章蛋白质的结构与功能第二节蛋白质的分子结构蛋白质功能主要由其结构所决定,一般分为基本结构和空间结构,基本结构又被称为一级结构,空间结构包括二、三、四级结构。
一、蛋白质分子的基本结构蛋白质的基本结构即一级结构,是指蛋白质分子中从N-端至C- 端的氨基酸的排列顺序。
蛋白质一级结构中主要的化学键是肽键,有些蛋白质还包括二硫键。
牛胰岛素是世界上第一个被确定一级结构的蛋白质(图25)牛胰岛素分子含A、B两条多肽链,A链由21个氨基酸组成,B链由30 个氨基酸组成,两条多肽链通过两对二硫键连接。
图2-5牛胰岛素的一级结构一级结构是蛋白质空间构象和生物学功能的基础。
蛋白质一级结构的阐明,对揭示某些疾病的发病机制和指导治疗有十分重要的意义。
二、蛋白质分子的空间结构蛋白质分子在一级结构的基础上,多肽链在空间进行折叠和盘曲,形成特有的空间结构。
(一)蛋白质的二级结构蛋白质的二级结构是指蛋白质分子中某一段多肽主链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,不涉及氨基酸残基侧链的构象。
蛋白质的二级结构以肽单元为结构基础,可形成的主要形式包括a -螺旋、B -折叠、B -转角和无规卷曲。
1.a -螺旋a -螺旋结构是蛋白质分子中较为常见的二级结构,是指多肽链以a -碳原子为转折点,以肽单元为单位,按顺时针方向围绕中心轴盘曲而成的右手螺旋(图2-6),肽单元平面与螺旋中心轴平行海3.6个氨基酸残基螺旋上升一圈,螺距为0.54mm;每个肽键的亚氨基氢(N-H与相邻第四个肽键的羰基氧(C= 0)形成氢键,氢键的方向与螺旋长轴基本平行。
肽链中所有肽键的亚氨基氢和羰基氧都可形成氢键,是维持a -螺旋结构稳定的主要作用力。
2. B -折叠B -折叠也称为B -片层,多肽链充分伸展,每个肽单兀以C为旋转点,依次折叠成锯齿状结构,氨基酸残基的侧链基团交替位于锯齿状结构的上下方(图2-7)。
生化蛋白质复习笔记
第四章蛋白质化学蛋白质是生命的物质基础,存在于所有的细胞及细胞的所有部位。
所有的生命活动都离不开蛋白质。
第一节蛋白质的分子组成蛋白质结构复杂,它的结构单位——氨基酸很简单。
所有的蛋白质都是由20种氨基酸合成的,区别只是蛋白质分子中每一种氨基酸的含量及其连接关系各不相同。
一、一、氨基酸的结构氨基酸是由C、H、O、N等主要元素组成的含氨基的有机酸。
用于合成蛋白质的20种氨基酸称为标准氨基酸。
标准氨基酸都是α-氨基酸,它们有一个氨基和一个羧基结合在α-碳原子上,区别在于其R基团的结构、大小、电荷以及对氨基酸水溶性的影响。
在标准氨基酸中,除了甘氨酸之外,其他氨基酸的α-碳原子都结合了4个不同的原子或基团:羧基、氨基、R基团和一个氢原子(甘氨酸的R基团是一个氢原子)。
所以α-碳原子是手性碳原子,氨基酸是手性分子。
天然蛋白质中的氨基酸为L-构型,甘氨酸不含手性碳原子,但我们习惯上还是称它L-氨基酸。
苏氨酸、异亮氨酸各含两个手性碳原子。
其余标准氨基酸只含一个手性碳原子。
二、氨基酸的分类根据R基团的结构可以分为脂肪族、芳香族、杂环氨基酸;根据R基团的酸碱性可以分为酸性、碱性、中性氨基酸;根据人体内能否自己合成可以分为必需、非必需氨基酸;根据分解产物的进一步转化可以分为生糖、生酮、生糖兼生酮氨基酸;根据是否用于合成蛋白质(或有无遗传密码)可以分为标准(或编码)、非标准(或非编码)氨基酸。
(一)含非极性疏水R基团的氨基酸这类氨基酸的侧链是非极性疏水的。
其中包括丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甘氨酸、甲硫氨酸(蛋氨酸)、脯氨酸。
(二)含极性不带电荷R基团的氨基酸这类氨基酸包括丝氨酸、苏氨酸、半胱氨酸、天冬酰胺、谷氨酰胺、酪氨酸,其侧链具亲水性,可与水形成氢键(半胱氨酸除外),所以与非极性氨基酸相比,较易溶于水。
(三)碱性氨基酸pH7.0时侧链带正电荷的氨基酸包括赖氨酸、精氨酸、组氨酸——含咪唑基。
(四)酸性氨基酸包括天冬氨酸、谷氨酸四、氨基酸的理化性质(一)两性电离与等电点所有的氨基酸都含有氨基,可以结合质子而带正电荷;又含有羧基,可以给出质子而带负电荷,氨基酸的这种电离特性称为两性电离。
1教学设计-蛋白质的分子结构
《蛋白质的分子结构》教学设计一、教材分析本节课是生物化学第二章第二节蛋白质分子结构的内容。
它是在学生学完氨基酸、肽、稳定蛋白质分子的作用力的知识后,转入难度较大的蛋白质分子结构的学习。
蛋白质是学生接触到的第一个生物大分子,部分学过生物的同学对蛋白质的了解也只是基础知识。
学生没有建立起蛋白质分子结构的概念。
因此本堂课蛋白质的分子结构是本章节的重点内容。
它与前面所学的氨基酸、肽等内容联系紧密:也为今后学习酶、理解其它生物大分子的结构奠定基础。
二、教学目标【知识目标】①掌握蛋白质的一级、二级、三级、四级结构的概念及其作用力②掌握蛋白质二级结构的基本类型和结构特点。
③理解蛋白质结构与功能的关系。
【能力目标】通过观察、总结、推理等手段,培养学生的观察思考、归纳总结和创造思维能力。
【情感目标】通过发现问題、解決问题的过程,培养学生的探素精神。
使学生完成由感性认识到理性认识的过程,促进学生形成正确的世界观。
三、教学重点与难点蛋白质的分子结构属于微观世界,是看不见、摸不着的,通过展示图片,动画讲解来帮助学生理解,仍要学生发主观能动性,所以本节课的重点是蛋白的一级结构、二级结构,难点是白质的空间结构。
四、教学方法根据本节课的内容及学生的实际水平,我采取启发式学法。
作为理解蛋白质功能的重要理论,蛋白质的结构是一个极其抽象的知识。
对于学生米说,蛋白质的创设一种氛国,引导学生进入积极思考的学习状态就很重要了。
而启发式教学就重在教师的启发,创设问题情景,以此调动学生内在的认知需求,激发学生的探究蛋白质结构的兴趣。
五、教学手段充分发挥电脑多媒体的辅助教学作用。
多媒体以图片、动画等多种形式强化对学生感观的刺激,加强教学的直观性,増强学生的感性认识,提高学习兴趣,使学生在主动获取知识的过程中完成重点、难点的学习,从面完成教学日标。
六、教学过程五、板书设计第二节蛋白质的分子结构一、蛋白质的分子结构(一)蛋白质的一级结构(二)蛋白质的空间结构1、蛋白质的二级结构(1)α-螺旋(2)β-折叠(3)β-转角(4)无规则卷曲2、蛋白质的三级结构3、蛋白质的四级结构二、蛋白质结构与功能的关系(一)蛋白质一级结构与功能的关系(二)蛋白质空间结构与功能的关系。
第二节蛋白质的结构与功能
第二章蛋白质的结构与功能蛋白质(protein)是生命的物质基础。
种类繁多,人体含蛋白质种类在10万种以上。
是生物体含量最丰硕的生物大分子,约占人体固体成份的45%,细胞干重的70%。
几乎所有的器官都含有蛋白质,并各自具有其特殊的结构,因此决定了蛋白质功能的多样性。
第一节蛋白质的分子组成(protein composition and construction )一、蛋白质的元素组成蛋白质的元素要紧有碳(50%~55%)、氢(6%~7%)、氧(19%~24%)、氮(13%~19%)。
大部份蛋白质还含有硫,有的还含有少量的磷或铁、锰、锌、铜、钴、钼,个别还含有碘。
蛋白质元素组成特点:含氮量很接近,平均为16%。
1g氮相当于6.25g蛋白质。
测定诞生物样品的含氮量可按下式计算出其蛋白质大致含量:100g样品中蛋白质含量(g%)=每克样品中含氮克数××100二、蛋白质的大体组成单位——氨基酸(the basic unit of protein composition——amino acid)氨基酸(amino acid)是组成蛋白质的大体单位。
(一)氨基酸的命名(略)(二)氨基酸的结构特点自然界中的氨基酸有300余种,组成人体蛋白质的氨基酸仅有20种。
都有相应的遗传密码,故又称为编码氨基酸。
氨基酸的结构通式可用下式表示(R为氨基酸侧链):尽管各类氨基酸结构各不相同,但都具有如下特点:1.组成蛋白质的氨基酸都是α-氨基酸。
即氨基均连在α-碳原子上。
脯氨酸为α-亚氨基酸。
2.除甘氨酸外,其余氨基酸的α-碳原子是不对称碳原子,有两种不同的构型,即L型和D型。
组成人体蛋白质的氨基酸都是L型,即L-α-氨基酸。
L-α-氨基酸 D-α-氨基酸(三)氨基酸的分类氨基酸的按侧链的结构和理化性质可分为4类:非极性侧链氨基酸:甘氨酸(Gly),丙氨酸(Ala),缬氨酸,亮氨酸,异亮氨酸,丙氨酸,脯氨酸(Pro);侧链为烃基、吲哚环或甲硫基等非极性疏水集团。
蛋白质的结构与功能(5)
二、蛋白质的一级结构
蛋白质多肽链中氨基酸残基的组成及其排列顺序称为蛋白质的 一级结构(primary structure)。从化学本质上讲,是指蛋白质中 氨基酸间的共价连接与顺序。各种蛋白质所含氨基酸的数目不同、 氨基酸的组成和各种氨基酸的比例也不相同,所以生物界中各种蛋 白质的一级结构是千差万别的。蛋白质的一级结构是由遗传基因决 定的,不同的生物有不同的基因组成,编码各自的蛋白质,表现出 的生物性状和功能是不相同的。从生物进化的角度看,所有的生物 都是同源的。所以,存在于不同种类生物体内的同种蛋白质其一级 结构必然存在相似之处.而且生物的亲缘关系越近,其蛋白质一级 结构就越相似。例如,从单细胞真核生物酵母到植物、低等动物、 高等动物乃至人类,都存在一种在体内起电子传递构作比较, 在所有的氨基酸残基中只有35个是相目的。而人与猴的比较,两者 仅差1个氨基酸残基。
与异硫氰酸苯酯反应 氨基酸中的α-氨基可以 与异硫氰酸苯酯(PITC)反应,
产生相应的苯氨基硫甲酰氨基酸(简称PTC-氨基 酸),在无水酸中,PTC-氨基酸环化变为苯硫乙 内酰脲(简称PTH)。
蛋白质多肽链N-末端氨基酸的α-氨基也可与PITC 起上述反应,生成PTC-蛋白质,经酸液部分水解, 释放出末端的PTH氨基酸和比原来少了一个
•以胰岛素为例说明蛋白质一级结构。胰岛
素是第一个被阐明一级结构的蛋白质,是 1953年被Sanger提出,并因此于1958年被授 予获诺贝尔奖,牛胰岛素是我国科学家1965 年完成的第一个人工合成天然蛋白质。它由 51个氨基酸组成,分子量5734,A和B两条肽 链通过两对二硫键连接起来, A链中有21个 氨基酸,B链中有30个氨基酸,A链本身6位 和11位上的两个半胱氨酸通过二硫键相连形 成链内小环。牛胰岛素的一级结构如下:
蛋白质主要结构以及功能含举例
蛋白质的主要结构以及功能含举例
25
(2) 肽 1) 氨基酸通过肽键相连的化合物, 蛋白质不完全水解的产物。 2) 氨基酸残基 (amino acid residues) 3) N-末端(H)与C末端(OH) 4) 多肽(>10肽)、寡肽(<10肽)、 开链肽与环肽
蛋白质的主要结构以及功能含举例
27
蛋白质的主要结构以及功能含举例
23
R1 NH2 CH
COOH
R2 H2N CH COOH
肽链氨基端
R1 O
NH2 CH C N
N-/H
肽键
H
肽
R2
肽链羧基端
CH COOH
C-/OH
蛋白质的主要结构以及功能含举例
24
肽键平面
➢ 单键,部分双键性质 ➢ 连接肽键两端的C=O、 N-H 和 2 个 Cα 共 6 个 原 子 的空间位置处在一个相对 接近的平面上 ➢ 相邻2个氨基酸的R侧链 形成反式结构
2
二、蛋白质的氨基酸组成 1、构件分子( building block molecule):
L-结构以及功能含举例
3
(α-氨基)NH2
COO (α-羧基)
H
C
R(侧链/侧基)
H
L,α-氨基酸
蛋白质的主要结构以及功能含举例
4
2、参与蛋白质组成的氨基酸20种 受遗传密码控制,无种族特异性
蛋白质的主要结构以及功能含举例
第二节 蛋白质的分子组成 一、元素组成和分子量
1.主要元素:C、H、O、N 稀有元素:P、Fe、Zn、Mn、I 等
2.特点:N含量恒定,平均16% 100克蛋白质中含 16克N。 1克N=6.25 克蛋白质
第二节蛋白质的结构
末 端 氨 基 酸 测 定
N
O O2N
R
O
CH C
HN CH C NO2 DNP 衍生物
N- 端氨基酸 R
O + 氨基酸
H2O
O2N
HN CH C OH NO2 DNP- 氨基酸
Sanger试剂(DNFB)标记N末端
② 丹磺酰氯法
• 在碱性条件下,丹磺酰氯(二甲氨基萘磺酰氯)可以 与N-端氨基酸的游离氨基作用,得到丹磺酰-氨基酸。 • 此法的优点是丹磺酰-氨基酸有很强的荧光性质,检 测灵敏度可以达到110-9mol。DNS氨基酸直接鉴定
●
在多肽链中连续的出现带同种电荷的极性氨基酸,α-螺旋就不稳定。
●
在多肽链中只要出现pro,α-螺旋就被中断,产生一个弯曲 (bend)或结节(kink)。
●
Gly的R基太小,难以形成α-螺旋所需的两面角,所以和Pro一样 也是螺旋的最大破坏者。
●
肽链中连续出现带庞大侧链的氨基酸如Ile,由于空间位阻,也难 以形成α-螺旋。
除了上面这种典型的α-螺旋外,还有一些不典型的α-螺 旋,所以规定了有关螺旋的写法,用“nS”来表示,n为螺
旋上升一圈氨基酸的残基数。S为氢键封闭环内的原子数,
典型的α-螺旋用3.613表示,非典型的α-螺旋有3.010, 4.416 (π螺旋)等。
一些一条长的多肽链先折叠成几个相对独立的区域再缔合成三级结构要比直接折叠成三级结构更合从功能的角度耒看酶蛋白的活性中心往往位于结构域之间因为连接各个结构域的常常是一条松散的肽链使结构域在空间上摆动比较自由容易形成适合底物结合的空间
第二节 蛋白质的结构
一、蛋白质概念
蛋白质(protein)是由许多氨基酸 (amino acids)通过肽键(peptide bond)相连 形成的高分子含氮化合物。 蛋白质(protein)是源自希腊字proteios , 意思就是primary。
《生物化学与分子生物学》(人卫第八版)-第一章蛋白质的结构与功能归纳总结
第一章蛋白质·蛋白质(protein)是由许多氨基酸(amino acids)通过肽键(prpide bond)相连形成的高分子含氮化合物。
·具有复杂空间结构的蛋白质不仅是生物体的重要结构物质之一,而且承担着各种生物学功能,其动态功能包括:化学催化反应、免疫反应、血液凝固、物质代谢调控、基因表达调控和肌收缩等;就其结构功能而言,蛋白质提供结缔组织和骨的基质、形成组织形态等。
·显而易见,普遍存在于生物界的蛋白质是生物体的重要组成成分和生命活动的基本物质基础,也是生物体中含量最丰富的生物大分子(biomacromolecule)·蛋白质是生物体重要组成成分。
分布广:所有器官、组织都含有蛋白质;细胞的各个部分都含有蛋白质含量高:蛋白质是细胞内最丰富的有机分子,占人体干重的45%,某些组织含量更高,例如:脾、肺及横纹肌等高达80%。
·蛋白质具有重要的生物学功能。
1)作为生物催化剂(酶)2)代谢调节作用3)免疫保护作用4)物质的转运和存储5)运动和支持作用6)参与细胞间信息传递·氧化功能第一节蛋白质的分子组成(The Molecular Structure of Protein)1.组成元素:C(50%-55%)、H(6%-7%)、O(19%-24%)、N(13%-19%)、S(0-4%)。
有些但被指含少量磷、硒或金属元素铁、铜、锌、锰、钴、钼,个别还含碘。
2.各蛋白质含氮量接近,平均为16%。
100g样品中蛋白质的含量(g%)=每克样品含氮克数*6.25*100,即每克样品含氮克数除以16%。
凯氏定氮法:在有催化剂的条件下,用浓硫酸消化样品将有机氮都转化为无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量的硼酸液吸收,再以标准盐酸滴定,就可计算出样品中的氮量。
此法是经典的蛋白质定量方法。
一、氨基酸——组成蛋白质的基本单位存在于自然界的氨基酸有300余种,但组成人体蛋白质的氨基酸仅有20种,且均属L-氨基酸(甘氨酸除外),手性,具有旋光性(甘氨酸除外,甘氨酸R基团为-H)。
《生物化学》第二章
2.β-折叠
形式
4.无规卷曲
多肽链中,两段以上折叠成锯齿状的肽链, 通过氢键相连而成的平行片层状结构称为β折叠或β-片层。
无规卷曲是指肽链中没有确定规律性的构象, 不能被归入明确的二级结构,本身也具有一 定的稳定性。
- 20 -
第二节 蛋白质的分子结构
二、蛋白质的空间结构
α-螺旋
α-螺旋的主链呈螺旋上升,每3.6个氨基酸残基 上升一圈,相当于0.54 nm。
另外,虽然亚基具有独立的三级结构,但单独存在时无生物活性。例如,血红蛋白(上图)由四个 亚基组成,每个亚基在含氧量高的地方均能结合一分子的氧,在含氧量低时,释放所结合的氧。但任何 一个亚基单独存在时,只能结合氧,不能释放氧,不具有血红蛋白的运氧作用。
- 27 -
第二节 蛋白质的分子结构
二、蛋白质的空间结构
蛋白质的一级结构决定了蛋白质的二级、三级等高级结构。 蛋白质一级结构的阐明,对揭示某些疾病的发病机制、指导疾病治疗有十分重要的意义。
?
蛋白质的空间结构是如何形成的??
- 18 -
第二节 蛋白质的分子结构
二、蛋白质的空间结构
蛋白质的二级结构
蛋白质的二级结构(secondary structure)是指多肽链中有规则重复的构象, 这些构象由主链原子形成,不涉及侧链部分的构象。
-7-
第一节
蛋白质的分子组成 二、蛋白质的基本结构单位——氨基酸
除甘氨酸外,其他氨基酸的α-碳原子均为手性碳 原子,有L-型和D-型两个旋光异构体。组成天然氨基 酸的氨基酸均为L-型,因此人体内的氨基酸均为L-α-氨 基酸,其结构式如右图所示。
-8-
第一节
蛋白质的分子组成 二、蛋白质的基本结构单位——氨基酸
生物化学(1)
第四章蛋白质化学第一节蛋白质的分子组成1、蛋白质的元素组成有哪些特点?已知生物样品含氮量怎样计算生物样品蛋白质含量?第二节蛋白质的分子结构1、蛋白质的分子结构包括哪些?2、蛋白质分子中氨基酸之间的连接方式是什么?何谓肽键?3、蛋白质多肽链的方向是怎样的?4、何谓蛋白质的一级结构、二级结构、三级结构和四级结构?5、蛋白质二级结构有哪些基本形式?6、维系蛋白质各级结构的化学键分别是什么?第四节蛋白质的理化性质1、蛋白质的最大紫外吸收峰是多少?2、什么是蛋白质的等电点?当溶液PH小于、等于、大于PI时,蛋白质在溶液中分别带何种电荷?3、蛋白质在水溶液中的稳定因素是什么?4、蛋白质变性的实质是什么?蛋白质变性后理化性质有哪些改变?蛋白质变性的应用第五章核酸化学第一节核酸的分子组成1、核酸分为哪两大类?2、核酸的基本组成单位是什么?3、核苷酸的基本组成成分有哪些?第二节核酸的分子结构1、核酸分子中核苷酸的连接方式是什么?何谓核酸的一级结构?2、DNA双螺旋结构的要点有哪些?Chargaff法则有哪些?第三节核酸的理化性质6、何谓Tm?DNA分子中的G-C含量或A-T含量与Tm有何关系?7、何谓DNA变性?DNA变性的实质是什么?核酸变性后有什么特征?8、核酸的最大紫外吸收峰是多少?第六章酶第一节酶的分子组成与活性中心1、全酶的组成成分有哪些?各组成成分的作用是什么?2、何谓酶的活性中心?酶活性中心内有哪两种必需基团?第二节酶促反应的特点和机制1、酶与一般催化剂的不同点有哪些?2、酶具有高效性的机制是什么?第三节酶促反应动力学1、影响酶促反应速度的因素有哪些?2、何谓Km?有何意义?3、酶的抑制作用包括哪几类?4、磺胺类药物的作用机制?5、什么叫竞争性抑制作用及非竞争性抑制作用?动力学参数有何变化?各有什么主要特点?6、反竞争性抑制作用的动力学参数有何变化?7、高温及低温影响酶活性的机制分别是什么?8、激活剂的定义?唾液淀粉酶的非必需激活剂是什么?第四节酶的调节1、酶原的定义及其无活性的根本原因。
第二节蛋白质的共价结构
作业:
什么叫氨基酸的等电点?
现有含Asp、Arg、Ala的待测样品, 若在pH为6.8的缓冲系统中电泳,按下图 标出各氨基酸的名称,并说明之。
-
+
试述蛋白质多肽链的氨基酸排列顺序 测定的一般步骤。
一个七肽,其氨基酸组成是:Lys 、
Pro、Arg、Phe、Ala、Tyr、Ser ; 未经糜蛋白酶处理,与DNFB反应, 不产生α-DNP-氨基酸,经糜蛋白酶处 理后,断裂成两个肽段(Ala、Tyr、 Ser 和Lys、Pro、Arg、Phe),两肽 分别与DNFB反应,产生DNP- Ser和 DNP- Lys;此七肽与胰蛋白酶反应, 生成两个肽段( Pro、Arg 和Lys、 Phe、Ala、Tyr、Ser 。问此七肽的一 级结构?
R n-1O
Rn O
HN CH C HN CH C OH
N-端氨基酸
C-端氨基酸
H+
RO
Rn O
NH2NH2H2N CH C NHNH2 +H2N CH C OH
氨基酸酰肼
C-端氨基酸
羧肽酶法
羧肽酶是一种肽链外切酶,它能从多肽链的 C-端逐个的水解。根据不同的反应时间测出 酶水解所释放出的氨基酸种类和数量,从而 知道蛋白质的C-末端残基顺序。
B法水解得到三个小肽: B1 Ala-Phe-Gly-Lys B2 Asn-Tyr-Arg B3 Tyr- His-Val
9.确定原多肽链中二硫键的位置。
一般采用胃蛋白酶处理没有断开二硫 键的多肽链,(切点多,二硫键稳定)
再利用双向电泳技术分离出各个肽段, 用过甲酸处理后,将每个肽段进行组 成及顺序分析,
多肽链断裂法:酶解法和化学法
酶解法: 胰蛋白酶,糜蛋白酶,胃蛋白酶,嗜热菌蛋白 酶,羧肽酶和氨肽酶 化学法:可获得较大的肽段 溴化氰水解法,它能选择性地切割由甲硫氨酸 的羧基所形成的肽键。
《生物化学与分子生物学》(人卫第八版)-第一章蛋白质的结构与功能归纳总结
第一章蛋白质·蛋白质(protein)就是由许多氨基酸(amino acids)通过肽键(prpide bond)相连形成得高分子含氮化合物。
·具有复杂空间结构得蛋白质不仅就是生物体得重要结构物质之一,而且承担着各种生物学功能,其动态功能包括:化学催化反应、免疫反应、血液凝固、物质代谢调控、基因表达调控与肌收缩等;就其结构功能而言,蛋白质提供结缔组织与骨得基质、形成组织形态等。
·显而易见,普遍存在于生物界得蛋白质就是生物体得重要组成成分与生命活动得基本物质基础,也就是生物体中含量最丰富得生物大分子(biomacromolecule)·蛋白质就是生物体重要组成成分。
分布广:所有器官、组织都含有蛋白质;细胞得各个部分都含有蛋白质含量高:蛋白质就是细胞内最丰富得有机分子,占人体干重得45%,某些组织含量更高,例如:脾、肺及横纹肌等高达80%。
·蛋白质具有重要得生物学功能。
1)作为生物催化剂(酶)2)代谢调节作用3)免疫保护作用4)物质得转运与存储5)运动与支持作用6)参与细胞间信息传递·氧化功能第一节蛋白质得分子组成(The Molecular Structure of Protein)1、组成元素:C(50%-55%)、H(6%-7%)、O(19%-24%)、N(13%-19%)、S(0-4%)。
有些但被指含少量磷、硒或金属元素铁、铜、锌、锰、钴、钼,个别还含碘。
2、各蛋白质含氮量接近,平均为16%。
100g样品中蛋白质得含量(g%)=每克样品含氮克数*6、25*100,即每克样品含氮克数除以16%。
凯氏定氮法:在有催化剂得条件下,用浓硫酸消化样品将有机氮都转化为无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量得硼酸液吸收,再以标准盐酸滴定,就可计算出样品中得氮量。
此法就是经典得蛋白质定量方法。
一、氨基酸——组成蛋白质得基本单位存在于自然界得氨基酸有300余种,但组成人体蛋白质得氨基酸仅有20种,且均属L-氨基酸(甘氨酸除外),手性,具有旋光性(甘氨酸除外,甘氨酸R基团为-H)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
胰岛素
由51个氨基酸残基组成,分为A、B两条链。
A链21个氨基酸残基,B链30个氨基酸残基。
A、B两条链之间通过两个二硫键联结在一起,A链
另有一个链内二硫键。
一级结构是蛋白质空间结构和特异生物学功能的基
础,但并不是决定蛋白质空间结构的唯一因素
二、蛋白质的二级结构
1、定义:
指多肽链主链骨架原子的空间相对位置,不涉及 氨基酸残基侧链的构象。
蛋白。
球状蛋白的三级结构很密实,大部分的水分子从
球形蛋白的核心中被排出,这使得极性基团间以及
非极性基团间的相互用成为可能。
例子1——胰岛素分子的三级结构
例2——溶菌酶分子的三级结构
例3——磷酸丙糖异构酶和丙酮酸激酶的三级结构
四、蛋白质的四级结构
许多蛋白质是由两个或两个以上独立的球状
蛋白质通过非共价键结合成的多聚体,称为寡聚
-螺旋
左、右手螺旋
(3) 每个肽键的羰基氧与远 在第四个氨基酸氨基上的氢 形成氢键(共形成n-4个氢键), 所有肽键都能参与链内氢键 的形成,氢键的方向与中心 轴大致平行, 是稳定螺旋的主 要作用力 3.6 (S
13
N)
(4) Pro的N上缺少H,不能形 成氢键,经常出现在-螺旋的 端头,它改变多肽链的方向并 终止螺旋
离子键
范德华力
稳定蛋白质三维结构的作用力
a b e c
c
d
d
a
a 离子键
b 氢键
c 疏水作用
e 二硫键
d 范德华力
氢键对维持二级结构特别重要 疏水作用对维持三级结构特别重要
这些非共价键以量取胜,它们不仅稳定了
蛋白质的三维结构,对蛋白质的功能也有重要 影响作用
维持蛋白质三级结构稳定的因素
蛋白质的分子结构
一级结构 ——基本结构 蛋白质的 分子结构 二级结构 三级结构 四级结构 空间结构
一、蛋白质的一级结构
1.定义:
蛋白质的一级结构是指蛋白质多肽链中氨基酸 的排列顺序,一级结构的主要连接键是肽键, 通常将二硫键也归属于一级结构
2.结构特点:
蛋白质的序列具有方向性,一般书写顺序是 从N-端到C-端, 其主要作用是决定蛋白质分 子的高级结构和功能
蛋白。寡聚蛋白中的每个独立的球状蛋白质称为
亚基,亚基一般由一条肽链构成,也称为单体。
蛋白质的四级结构是指亚基的种类、数量以及各
个亚基在寡聚蛋白质中的空间排布和亚基间的相
互作用。
蛋白质的四级结构
四级结构的特点:
亚基单独存在时无生物活性,只有相互聚合成特
定构象时才具有完整的生物活性
亚基之间以非共价键结合,容易彼此解离
-螺旋
-折叠片
刚性较强
刚性较强
多
多
有
有
- 转角等
无规卷曲
柔性较强
柔性较强
少
少
没有
没有
蛋白质二级结构总结
三、蛋白质的三级结构
概念:
蛋白质分子中所有原子(包括主链和侧链) 在三维空间的排列分布,又称为空间结构、三 维结构、构象
维持三级结构的作用力
二硫键 —— 共价键 疏水作用
氢键 非共价键(次级键)
大多数寡聚蛋白质分子的亚基的排列是对称的,
对称性是四级结构蛋白质最重要的性质之一
血红蛋白的四级结构
蛋白质的分类
1.根据组成: 简单蛋白和结合蛋白
(1) 单纯蛋白质 仅由氨基酸组成,不含其他成 分,例如:核糖核酸酶、胰岛素。
(2) 结合蛋白质 除了蛋白质部分外,还有非蛋 白质成分(辅基、配基)例如:血红蛋白。
(4) 无规卷曲oil)
概念:
没有确定规律性的肽键构象
特点:
常见于球状蛋白质分子中,在其它类型二级结构肽 段之间起连接作用,有利于整条肽链盘曲折叠。酶的功能 部位常常处于这种构象区域。
H2N
COOH
β-转角 β-折叠
α-螺旋
无规卷曲
核糖核酸酶分子中的二级结构
多肽链折叠的规则方式
二级结构 刚性/柔性 氢键数 目 重复结构 形状
维持β-折叠结构稳定性的力 —— 氢键
由一条链上的羰基和另一条链上的氨基之
间形成,即氢键是在链与链之间形成的。
(a)平行式
(b)反平行式
(3) -转角 三、蛋白质的二级结构 概念: 肽链出现180回折的转角处结构称为- 转角 结构特点: 第一个残基的C=O与第四个残基的N-H形成氢 键,常见于连接反平行β-折叠片的端头(如Gly与 Pro),多位于球状蛋白质分子表面,约占全部残基 的四分之一
O C N H
T yr H C CH2
O C N H
Asp H C CH2
O C N H
Gln H C COO
-
C CH2 OH
N- 端
CH2 C- 端 CH2 CONH2
CH3 CH3 肽键 OH
CO 2H
主链骨架原子:N-C-C
2.根据分子的形状:
( 1 )球状蛋白质――分子对称性佳,外形接近球 状或椭球状,溶解度较好,能结晶。 Eg. 血红蛋 白、血清球蛋白。 ( 2 )纤维状蛋白质――对称性差,分子类似细棒 或纤维。
可溶性纤维状蛋白质――肌球蛋白。 不溶性纤维状蛋白质――胶原、弹性蛋白。
3. 根据蛋白质的功能分;
亲水区: 亲水区多位于分子表面, 故球
形蛋白质水溶性较好
疏水核: 疏水区多位于分子内部, 往往
是与辅酶/基或底物结合的位点
蛋白质三级结构的其它特点: 蛋白质的三级结构 许多在一级结构上相差很远的氨基酸碱基在三 级结构上相距很近。 三级结构是蛋白质发挥生物活性所必须的。
所有具有高度生物学活性的蛋白质几乎都是球状
2、基本类型: -螺旋、-折叠、-转角、无规结构
3、稳定二级结构的作用力:氢键
(1) -螺旋 结构要点: (1) 肽键平面为单位,以-碳原子为转 折盘旋形成右手螺旋,螺旋的每圈有 3.6个氨基酸,螺旋间距离为0.54nm, 每个残基沿轴旋转100,上升0.15nm
(2) 主链原子构成螺旋的主体,侧链在 其外部,直径约为0.5nm
(1) 活性蛋白 按生理作用不同又可分为: 酶、激 素、抗体、收缩蛋白、运输蛋白等。
(2)非活性蛋白 担任生物的保护或支持作用的蛋 白,但本身不具有生物活性的物质。例如:贮存 蛋白(清蛋白、酪蛋白等),结构蛋白(角蛋白、 弹性蛋白胶原等)等等。
Ser H H3N
+
O C N H
Val H C CH
(2)-折叠 β- 折叠是由两条或多条伸展的多肽链靠氢键联结而 成的锯齿状片状结构。
侧链基团与Cα间的键几乎垂直于折叠平面,R基团 交替地分布于片层平面两侧。 β-折叠分平行式和反平行式,后者更为稳定。
N端在同一端。 氨基酸之间沿轴 相距0.3