线性代数第一章知识点总结
线性代数第一章知识点总结
(1)
解向量
若 x 1 11 , x 2 21 , , x n n1 为(1)的解, 则 11 21 x 1 n1 称为方程组(1)的解向量, 它也就是向量方程 2) ( 的解.
解向量的性质 性质1 若x 1 , x 2 为( 2)的解, 则x 1 2 也
a1 j a1 j ( 2)设 a j , b j , ( j 1,2, , m ) a rj a rj a r 1, j 即向量 a j 添上一个分量后得到向 b j .若向量 量
1 向量的定义
定义
n个有次序的数 a 1 , a 2 , , a n 所组成的 数组称为n维向量.这n个数称为该向量的分量 ,
第i个数 a i 称为第i个分量.
分量全为实数的向量称为实向量. 分量全为复数的向量称为复向量.
n维向量写成列的形式 称为列向量, 即 , a1 a2 a an
若向量空间没有基 那么V的维数为 .0维向 , 0 量空间只含一个零向量 . O 若把向量空间V看作向量组, 则V的基就是
向量组的最大线性无关 ,V的维数就是向量组 组 的秩.
10 齐次线性方程组
向量方程
记齐次线性方程组 a 11 x 1 a 12 x 2 a 1n x n 0, a 21 x 1 a 22 x 2 a 2 n x n 0, a m 1 x 1 a m 2 x 2 a mn x n 0, 的系数矩阵和未知量为
件是矩阵A (a 1 , a 2 , , a m )的秩等于矩阵B (a 1 , a 2 , , a m , b )的秩.
考研线性代数知识点全面总结
《线性代数》复习提纲第一章、行列式(值,不是矩阵)1.行列式的定义:用2n 个元素ija 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ijM 、代数余子式ijj i ijM A+-=)1(定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n 阶行列式也可定义:nq q q n a aa⋯=∑21t211-D )(,t 为nq q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。
2、互换行列式两行或两列,行列式变号。
若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k 乘此行列式。
行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。
(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x,,。
线性代数知识点汇总1
第一章 矩阵矩阵的概念:n m A *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵)---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==(一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0) 转置:A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)( 方幂:2121k k k kA AA += 2121)(k k k k A A +=逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, 且B A=-1矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB ,但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A 。
A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵。
5、若A 可逆,则11--=A A逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
分块矩阵:加法,数乘,乘法都类似普通矩阵转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素初等变换:1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另一行(列) 初等变换不改变矩阵的可逆性,初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的矩阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r第二章 行列式N 阶行列式的值:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ行列式的性质:①行列式行列互换,其值不变。
线性代数知识点总结(第1、2章)
线性代数知识点总结(第1、2章)(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
(六)矩阵的运算12、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。
大一线性代数第一章知识点
大一线性代数第一章知识点线性代数是现代数学的一个重要分支,它研究向量空间和线性映射之间的关系。
在大一的线性代数课程中,第一章是介绍向量和矩阵的基本概念。
以下将对第一章的几个知识点进行论述。
一、向量的定义和性质在线性代数中,向量是一个有大小和方向的量。
它可以用一个有序的数组表示,每个数组元素代表向量在某个坐标轴上的分量。
向量有很多基本性质,包括加法、数乘、模长等。
其中,向量的加法和数乘是线性代数中最基本的运算。
向量的加法满足交换律和结合律,数乘满足结合律和分配律。
二、向量空间的定义和性质向量空间是指具有加法和数乘运算的集合,满足一定的公理。
在线性代数中,向量空间是向量运算的集合,它具有许多基本性质。
向量空间中的向量可以进行加法和数乘运算,并且满足一些规律,如交换律、结合律和分配律等。
三、矩阵的定义和性质矩阵是线性代数中另一个重要的概念。
它由若干行和列组成的矩形阵列。
矩阵可以表示为一个矩阵元素的矩阵,每个矩阵元素代表矩阵在某个位置上的值。
矩阵有许多基本性质,包括加法、数乘、乘法等。
矩阵的加法和数乘满足一些基本规律,如交换律和结合律。
矩阵的乘法是线性代数中比较复杂的运算,它是指将两个矩阵相乘得到一个新的矩阵,满足一定的规律。
四、矩阵的行列式和逆矩阵行列式是一个与矩阵相关的数值,它可以用来判断一个矩阵的特征。
对于一个n阶矩阵,它的行列式是一个数值,代表了矩阵的一些性质。
行列式有一些基本性质,如反演性、行列式的性质和行列式的计算方法等。
逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵。
只有非奇异矩阵才有逆矩阵,奇异矩阵没有逆矩阵。
矩阵的逆矩阵具有一些基本性质,如逆矩阵的性质和逆矩阵的计算方法等。
五、线性方程组的解法线性方程组是线性代数中的一个重要概念,它由一系列线性方程组成。
线性方程组的解是指使得方程组成立的未知数的值。
线性方程组的解法有很多种,包括高斯消元法、矩阵求逆法和向量法等。
高斯消元法是一种常用的解线性方程组的方法,它通过一系列消元和代入操作,将方程组转化为简化的阶梯形矩阵,进而求得方程组的解。
线性代数详细知识点
线性代数 第一章 行列式§1 二阶和三阶行列式一、二元一次线性方程组与二阶行列式结论:如果112212210a a a a -≠,则二元线性方程组 11112212112222a x a xb a x a x b +=⎧⎨+=⎩的解为122122*********b a a b x a a a a -=-,1121212112121a b b a x a b b a -=-。
定义:设11122122,,,a a a a ,记11221221a a a a -为11122122a a a a 。
称11122122a a a a 为二阶行列式有了行列式的符号,二元线性方程组的求解公式可以改写为112222111122122b a b a x a a a a =,111122211122122a b a b x a a a a =二、三阶行列式与三元一次线性方程组定义:111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++---定理:如果1112132122233132330a a a D a a a a a a =≠,则***123(,,)x x x 是下面的三元线性方程组的解111122133121122223323113223333a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩当且仅当*1x =112132222333233/b a a b a a D b a a ,*2x =111132122331333/a b a a b a D a b a ,*3x =111212122231323/a a b a a b D a a b 其中111213212223313233a a a a a a a a a 为系数行列式。
线性代数知识点总结
第一章 线性方程组的解1.线性方程组的定义、齐次与非齐次方程组2.方程组的线性组合:3.初等变换:4.用消元法解方程组5.矩阵的定义与表示方法实矩阵、复矩阵、方阵、行/列向量、零矩阵等概念。
注意:不同阶数的零矩阵不等。
6.系数矩阵与增广矩阵7.通解与特解:8.线性方程组求解的一般过程:一般线性方程组Ax=B,把增广矩阵进行初等行变换,化成行最简形。
解的讨论:上边是解的自由未知量形式,其中,x r+1, x r+2,….,x n 称为自由向量。
还可以表示成参数形式:或表示成向量形式:9.数域:第二章向量空间2.1线性相关与线性无关1.n维向量的定义、实向量、复向量、零向量2.向量空间:3.n维向量的运算:加法、数乘、负向量、减法、内积、向量范数、单位化、向量间的夹角、向量的正交4.线性组合6.线性相关与线性无关:一条很重要的性质:7.线性相关性判定定理:2.2 向量组的秩1.极大线性无关组与秩的定义:2.用初等变换求向量组的秩和极大无关组:注意:如果只求矩阵的秩,不需要求矩阵的哪几行(列)线性无关,那么行、列变换都可以,因为矩阵行秩=列秩。
但求向量组的秩和极大无关组,只能做一种变换。
3.向量组的等价:等价三公理:反身性、对称性、传递性(但逆命题不一定成立,秩相等的向量组不一定等价)2.3 基1.向量空间定义:若V 是向量空间,则V 必含有零向量2.子空间(向量空间属于线性空间,对子空间的定义请看2.5节:线性空间)3.等价向量组生成相同的向量空间4.向量组生成的向量空间可由其任何一个极大无关组生成5.基与向量组的维数(看2,5节)6.只含零向量的向量空间,维数为0 注意:两个不同概念:7.设V 是由n 维向量构成的r 维向量空间,则: (1)V 的任意r+1个向量必定线性相关(2)V 的基是向量组的一个极大无关组,从而dimV=V 秩(3)V 中任意r 个线性无关向量都可作为V 的一个基(4)V 可由基α1,α2,…, αr 所生成,即 V=L (α1,α2,…, αr ) (5) (6)(7)(8)(9)8.9.基变换与过渡矩阵(见2.5节)2.4 线性方程组解的结构1.解空间定义齐次方程组的若干个解向量的任意线性组合仍是此线性方程组的解向量2.解空间的维数Ax=b的通解可表示为:2.5 线性空间1.线性空间的定义(8个条件)说明:凡满足以上8条规律的加法和乘数运算,称为线性运算。
线性代数知识点总结
线性代数知识点总结第一章 行列式一要点1、二阶、三阶行列式2、全排列和逆序数;奇偶排列可以不介绍对换及有关定理;n 阶行列式的定义3、行列式的性质4、n 阶行列式ij a D =;元素ij a 的余子式和代数余子式;行列式按行列展开定理5、克莱姆法则二基本要求1、理解n 阶行列式的定义2、掌握n 阶行列式的性质3、会用定义判定行列式中项的符号4、理解和掌握行列式按行列展开的计算方法;即+11j i A a +22j i A a ⎩⎨⎧≠==+j i j i D A a jn in 0 +j i A a 1122i j a A +⎩⎨⎧≠==+j i j i D A a nj ni0 5、会用行列式的性质简化行列式的计算;并掌握几个基本方法:归化为上三角或下三角行列式;各行列元素之和等于同一个常数的行列式;利用展开式计算6、掌握应用克莱姆法则的条件及结论会用克莱姆法则解低阶的线性方程组7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件第二章 矩阵一要点1、矩阵的概念n m ⨯矩阵n m ij a A ⨯=)(是一个矩阵表..当n m =时;称A 为n 阶矩阵;此时由A 的元素按原来排列的形式构成的n 阶行列式;称为矩阵A 的行列式;记为A .注:矩阵和行列式是两个完全不同的两个概念..2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法1矩阵的乘法不满足交换律和消去律;两个非零矩阵相乘可能是零矩阵..如果两矩阵A 与B 相乘;有BA AB =;则称矩阵A 与B 可换..注:矩阵乘积不一定符合交换2方阵的幂:对于n 阶矩阵A 及自然数k ;个k k A A A A ⋅⋅= 规定I A =0;其中I 为单位阵 .3 设多项式函数k k k k a a a a ++++=--λλλλϕ1110)( ;A 为方阵;矩阵A 的多项式I a A a A a A a A k k k k ++++=--1110)( ϕ;其中I 为单位阵..4n 阶矩阵A 和B ;则B A AB =.5n 阶矩阵A ;则A A nλλ=4、分块矩阵及其运算5、逆矩阵:可逆矩阵若矩阵A 可逆;则其逆矩阵是唯一的;矩阵A 的伴随矩阵记为*A ; E A A A AA ==**矩阵可逆的充要条件;逆矩阵的性质..6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵..7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩8、矩阵的等价二要求1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等2、了解几种特殊的矩阵及其性质3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时;会用伴随矩阵求逆矩阵5、了解分块矩阵及其运算的方法1在对矩阵的分法符合分块矩阵运算规则的条件下;其分块矩阵的运算在形式上与不分块矩阵的运算是一致的..2特殊分法的分块矩阵的乘法;例如n m A ⨯;l n B ⨯;将矩阵B 分块为) (21l b b b B =;其中j b l j 2, ,1=是矩阵B 的第j 列;则=AB ) (21l b b b A ) (21l Ab Ab Ab =又如将n 阶矩阵P 分块为) (21n p p p P =;其中j p n j 2, ,1=是矩阵P 的第j 列.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n P λλλ 0 0 00 0 00 0 0 21 ) (21n p p p = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ 0 0 00 0 00 0 0 21) (2211n n p p p λλλ = 3设对角分块矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=SS A A A A 2211 ;),2,1(s P A PP =均为方阵; A 可逆的充要条件是PP A 均可逆;s P ,2,1=;且⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----11221111 ss A A A A6、理解和掌握矩阵的初等变换和初等矩阵及其有关理论;掌握矩阵的初等变换;化矩阵为行最简形;会用初等变换求矩阵的秩、求逆矩阵7、理解矩阵的秩的概念以及初等变换不改变矩阵的秩等有关理论8、若矩阵A 经过有限次初等变换得到矩阵B ;则称矩阵A 和矩阵B 等价;记为B A ≅. n m ⨯矩阵A 和B 等价当且仅当)()(B r A r =;在等价意义下的标准型:若r A r =)(;则r D A ≅;⎥⎦⎤⎢⎣⎡=000 r r I D ;r I 为r 阶单位矩阵.. 因此n 阶矩阵A 可逆的充要条件为n I A ≅..第三章 线性方程组一要点1、n 维向量;向量的线性运算及其有关运算律记所有n 维向量的集合为n R ;n R 中定义了n 维向量的线性运算;则称nR 为 n 维向量空间..2、向量间的线性关系1线性组合与线性表示;线性表示的判定2线性相关与线性无关;向量组的线性相关与无关的判定3、向量组的等价;向量组的秩;向量组的极大无关组及其求法;向量组的秩及其求法 1设有两个向量组,1α,2αs α )(A,1β,2βt β )(B向量组)(A 和)(B 可以相互表示;称向量组)(A 和)(B 等价..向量组的等价具有传递性..2一个向量组的极大无关组不是惟一的;但其所含向量的个数相同;那么这个相同的个数定义为向量组的秩..4、矩阵的秩与向量组的秩的关系5、线性方程组的求解1线性方程组的消元解法2线性方程组解的存在性和唯一性的判定3线性方程组解的结构4齐次线性方程的基础解系与全部解的求法5非齐次方程组解的求法二要求1、理解n 维向量的概念;掌握向量的线性运算及有关的运算律2、掌握向量的线性组合、线性表示、线性相关、线性无关等概念3、掌握线性表示、线性相关、线性无关的有关定理4、理解并掌握向量组的等价极大无关组、向量组的秩等概念;及极大无关组、向量组秩的求法5、掌握线性方程组的矩阵形式、向量形式的表示方法6、会用消元法解线性方程组7、理解并掌握齐次方程组有非零解的充分条件及其判别方法8、理解并掌握齐次方程组的基础解系、全部解的概念及其求法9、理解非齐次方程组与其导出组解的关系;掌握非齐次方程组的求解方法第四章 矩阵的特征值与特征向量一要点1、矩阵的特征值与特征向量的定义;特征方程、特征值与特征向量的求法与性质2、相似矩阵的定义、性质;矩阵可对角化的条件3、实对称矩阵的特征值和特征向量向量内积的定义及其性质;正交向量组;施密特正交化方法;正交矩阵;实对称矩阵的特征值与特征向量的性质;实对称矩阵的对角化二要求1、理解矩阵的特征值、特征向量的概念及有关性质2、掌握特征值与特征向量的求法3、理解并掌握相似矩阵的概念与性质4、掌握判断矩阵与对角矩阵相似的条件及对角化的方法5、会将实对称矩阵正交相似变换化为对角矩阵..第五章二次型一要点1、二次型与对称矩阵:二次型的定义;二次型与对称矩阵的对应关系2、二次型与对称矩阵的标准形配方法;初等变换法;正交变换法;合同矩阵;二次型及对称矩阵的标准形与规范形 3、二次型与对称矩阵的有定性二次型与对称矩阵的正定、负定、半正定、半负定二要求1、理解并掌握二次型的定义及其矩阵的表示方法..2、会用三种非退化线性替换:即配方法、初等变换法、正交变换法化二次型为标准形及规范型3、掌握二次型的正定、负定、半正定、半负定的定义;会判定二次型的正定性..。
线性代数-第一章总结
第一章 行列式线性方程组的求解是线性代数的一个重要课题。
行列式是由研究线性方程组产生的,它是一个重要的数学工具,它在数学及其他学科中都有着广泛的应用。
本章的教学基本要求:了解行列式的定义和性质,掌握利用行列式的性质及按行(列)展开定理计算行列式的方法,会计算简单的n 阶行列式。
理解和掌握克拉默(Cramer )法则。
本章的重点及难点:利用行列式的性质及按行(列)展开定理计算行列式的值,主要是三阶、四阶行列式的计算;利用克拉默法则求解线性方程组。
§ 1 二阶、三阶行列式一、内容提要 1.二阶行列式的定义2112221122211211a a a a a a a a -= 其中ij a 称为行列式的元素,ij a 的两个下标表示该元素在行列式中的位置,第一个下标称为行标,表明该元素位于第i 行;第二个下标称为列标,表明该元素位于第j 列。
二阶行列式中,等式右端的表达式又称为行列式的展开式,二阶行列式的展开式可以用所谓对角线法则得到,即:2111 a a -+2212a a =21122211a a a a -其中,实线上两个元素的乘积带正号,虚线上两个元素的乘积带负号,所得两项的代数和就是二阶行列式的展开式。
2.三阶行列式的定义333231232221131211a a a a a a a a a 322311332112312213322113312312332211a a a a a a a a a a a a a a a a a a ---++= 三阶行列式的展开式也可以用对角线法则得到,三阶行列式的对角线法则如下图所示:+- 333231232221131211a a a a a a a a a其中每一条实线上三个元素的乘积带正号,每一条虚线上三个元素的乘积带负号,所得六项的代数和就是三阶行列式的展开式。
二、例题分析例1 求解二元线性方程组⎩⎨⎧=+=+342232121x x x x解: 由于系数行列式 4123=D 0101243≠=⨯-⨯= 2324243221=⨯-⨯==D , 7123331232=⨯-⨯==D 所以方程组有唯一解为: 2.011==D Dx , 7.022==DD x 。
线性代数矩阵行列式向量知识点总结
线性代数第一章:行列式1.排列:任意两数字先大后小为一个逆序;一组无序数组逆序个数为奇数就是奇排列;反之为偶排列。
且一个数组任意两个数字调换,则奇偶调换。
排列决定行列式某一项的正负,若行标按标准次序,则列标的逆序数是奇数此项为负。
n n np p p p p p r a a a D ....)1(21)2121...(-∑=,每一项是n 个元素的乘积,每个元素取自不同的行不同的列。
行列式展开共有n!项,一半正,一半负。
注意:λλλλnD ....21=为矩阵的特征值2.nnnnnna a a a a a a a a ...... (221122211211)= 11,212)1(11,22111211..)1(................n n n n n n n na a a a a a a a a ----=3.行列式的性质:(1)行列式与其转置行列式值相等;(所以行的性质也是列的性质)(2)交换两行对应元素,行列式值变号。
(3)任意两行对应元素相等,成比例行列式值为0。
(4)例:nx yx nc ya dm bx dc b a nm c yx a dm c bx a nd m c yb x a +++=+++++=++++(5)把某行的k 倍加到另一行对应元素,行列式值不变。
4.余子式ij M :去掉第i 行第j 列剩下的元素构成行列式的值。
代数余子式ij j i ij M A +-=)1(5.定理,行列式某行的代数余子式×另一行的对应元素值为0。
6.范德蒙德行列式)....)...()()()...()((.........................1. (1112242311312113121)12232221321x x x x x x x x x x x x x x x x x x x x x x x x n n n nn n n nn ------==---- 例:240)32)(12)(13)(12)(13)(11(842149112311111184212793111111111=--+-+-----=----=----7.,00,0()0)in n i n n D A X b x D DA X D R n D n ⨯⨯==≠=≠==<。
线性代数 第一章(知识点汇总)
第一章 行列式1.2排列及其逆序数定义1.1 由n 个不同的数1,2,··· ,n 排成的一个有序数组,称为一个n 级全排列,简称n 级排列。
定义1.2 在一个n 级排列n i i i 21中,如果有某个较大的数t i 排在较小的数s i 的前面,即)(t s i i s t >>时,就称t i 与s i 构成了一个逆序。
一个排列的逆序总数称为这个排列的逆序数。
记为)(21n i i i t 。
定义1.3 逆序数为奇数的排列为奇排列,逆序数为偶数的排列为偶排列。
规定逆序数为零的排列为偶排列。
定义1.4 在一个排列n t s i i i i 1中,如果互换两个数s i 和t i 的位置,其他的数位置不变,由此得到一个新的排列n s t i i i i 1。
这种变换称为一个对换,记为对换),t s i i (。
定理1.1 任意一个排列经过一次对换后,其奇偶性发生改变。
定理1.2 在全体)1(>n n 级排列中,奇排列与偶排列各占一半。
1.3 n 阶行列式的定义定义1.5 由2n 个元素ij a 组成的符号nnn n nna a a a a a a a a 212222111211称为n 阶行列式。
n 阶行列式的值定义为所有取自不同行不同列的n 个元素的乘积项nj n j j a a a 2121的代数和,即∑-==nn n j j j nj j j j j j t nnn n nn a a a a a a a a a a a a D 21212121)(212222111211)1(其中)(21n j j j t 为排列n j j j 21的逆序数,和式是对自然数1,2,··· ,n 的所有可能的n 级排列n j j j 21所对应的乘积项求代数和。
在n 阶行列式D 中,横排为行,纵排为列。
),,2,1(n i a ij =称为行列式第i 行,第j 列的元素。
线性代数各章要点整理
第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。
重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。
(若不知A可逆,仅知A≠0结论不一定成立。
最完整的线代基础知识点
最完整的线代基础知识点第1章行列式1.1 n阶行列式1.1.1 二阶、三阶行列式起源:发现规律了,继续~从上述推倒可以看出,行列式说白了就是对方程求解的简化过程。
后续的所有变换也都是基于此的。
了解到根源了,就不难理解了。
知识点:(所有的知识其实都是不成体系的,体系都是人为归纳的,其实知识就是一个一个的点而已)1.对角线法则这个法则只能用在二阶和三阶,高阶有另外的算法,后面会介绍到,耐心往下看吧。
以后看到二三阶可以直接用这个算哦。
2.行列式应用(克莱姆法则)法则啥的就是别人先发现了,就是一个规律。
不用理解,直接记住。
(因为本来就是一个现象)小技巧:再算d1d2d3的时候默念一下d1换1(列)d2换2(列)d3换3(列)。
1.1.2 排列既逆序数起源:逆序数为奇数,为奇排列,偶数为偶排列。
知识点:1.任一排列经过对换后,必改变其奇偶性。
2.所有n阶排列中,奇排列与偶排列个数相同,各有n!/2个。
1.1.3 n阶行列式知识点:1.计算方法前面说了,n阶有其他方法,这个就是其中之一不过比较笨重难算一点。
只要看懂这个式子,这节就ok啦,看不懂的可以评论问我。
2.对角行列式对角行列式等于其对角元素的连乘,再加上一个逆序数。
因为除了去取对角之外但凡取到其他位置上的0,就会让这项变成0。
上三角行列式和下三角行列式与对角行列式类似,不能取0。
好题:1.对行列式中数字的选取规则理解如果不用分块矩阵的话,直接从定义出发,三行用两个书,必有一行选不到非零数。
1.2 行列式的性质知识点:1.行列式与它的转置行列式相同,即行与列为完全等价的。
2.互换行列式的两行或两列,行列式值变号3.若行列式有两行或两列元素相同则其行列式的值为04.行列式的某一行中所有元素都乘以k,等于用k数乘行列式5.如果行列式中某一行的元素都为0,则其值为06.若行列式有两列或两行元素成比例,则其为07.若两个行列式除了一行外相同,则可以相合。
相同的行不变,不同的行相加。
线性代数知识点归纳
线性代数复习要点第一部分 行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算1.行列式的计算:① (定义法)1212121112121222()1212()n nnn n j j j nj j nj j j j n n nna a a a a a D a a a a a a τ==-∑1②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.④ 若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1⑤ 关于副对角线:(1)211212112111()n n nnn n n n n n n a O a a a a a a a Oa O ---*==-1⑥ 范德蒙德行列式:()1222212111112n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111⑦ a b -型公式:1[(1)]()n a b bbb a bba nb a b b b ab b b ba-=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法.(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算.⑩ (数学归纳法)2. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;3. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值.4. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-第二部分 矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵方程的求解1. 矩阵的定义 由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭称为m n ⨯矩阵.记作:()ij m n A a ⨯=或m n A ⨯✍ 同型矩阵:两个矩阵的行数相等、列数也相等. ✍ 矩阵相等: 两个矩阵同型,且对应元素相等. ✍ 矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数λ与矩阵A 的乘积记作A λ 或A λ,规定为()ij A a λλ=.c. 矩阵与矩阵相乘:设()ij m s A a ⨯=, ()ij s n B b ⨯=,则()ij m n C AB c ⨯==,其中注:矩阵乘法不满足:交换律、消去律, 即公式00AB BAAB A ==⇒=或B=0不成立.a.分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭b. 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; c. 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. d. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. ④ 方阵的幂的性质:mn m n AA A +=, ()()m n mn A A =⑤ 矩阵的转置:把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作TA . a. 对称矩阵和反对称矩阵: A 是对称矩阵T A =.A 是反对称矩阵T A =-.b. 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑥ 伴随矩阵: ()1121112222*12n Tn ij nnnn A A A A A A AA A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. **AAA A A E ==,1*n A A -=, 11A A --=.分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B BB A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭2. 逆矩阵的求法 方阵A 可逆 0A ≠.①伴随矩阵法 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号② 初等变换法 1()()A E E A -−−−−→初等行变换③ 分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭④1231111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 3211111213a a a a a a -⎛⎫⎛⎫⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤ 配方法或者待定系数法 (逆矩阵的定义1AB BA E A B -==⇒=)3.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零. 当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时, 4. 初等变换与初等矩阵 对换变换、倍乘变换、倍加(或消法)变换?矩阵的初等变换和初等矩阵的关系:✍ 对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; ✍ 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A . 注意: 初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵. 5.关于A 矩阵秩的描述:①、()=r A r ,A 中有r 阶子式不为0,1+r 阶子式 (存在的话) 全部为0; ②、()<r A r ,A 的r 阶子式全部为0; ③、()≥r A r ,A 中存在r 阶子式不为0;矩阵的秩的性质:① ()A O r A ≠⇔≥1; ()0A O r A =⇔=;0≤()m n r A ⨯≤min(,)m n② ()()()TTr A r A r A A ==③ ()()r kA r A k =≠ 其中0④ ()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤ ()r AB ≤{}min(),()r A r B⑥ 若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===; 即:可逆矩阵不影响矩阵的秩.⑦ 若()()()m n Ax r AB r B r A n AB O B O A AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩ 在矩阵乘法中有右消去律.⑧ ()rr E O E O r A r A A OO O O ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型. ⑨ ()r A B ±≤()()r A r B +, {}max(),()r A r B ≤(,)r A B ≤()()r A r B +⑩ ()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭, ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭求矩阵的秩:定义法和行阶梯形阵方法 6 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)第三部分 线性方程组1. 向量组的线性表示2. 向量组的线性相关性3. 向量组的秩4. 向量空间5.线性方程组的解的判定6. 线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系) (2)非齐次线性方程组的解的结构(通解) 1.线性表示:对于给定向量组12,,,,n βααα,若存在一组数12,,,n k k k 使得1122n n k k k βααα=+++,则称β是12,,,n ααα的线性组合,或称称β可由12,,,n ααα的线性表示.线性表示的判别定理:β可由12,,,n ααα的线性表示由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++= ⎪⎨⎪⎪+++=⎩有解 ②、1112111212222212⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭n n m m mn m m a a a x b a a a x b Ax a a a x b β③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)2. 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b bb c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i i A c β= ,(,,)i s =1,2⇔i β为i Ax c =的解 ⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,A 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔11112212121122222211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩3. 线性相关性判别方法:法1法2法3 推论线性相关性判别法(归纳)线性相关性的性质①零向量是任何向量的线性组合,零向量与任何同维实向量正交. ②单个零向量线性相关;单个非零向量线性无关.③部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一4. 最大无关组相关知识向量组的秩 向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r ααα矩阵等价 A 经过有限次初等变换化为B . 向量组等价 12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示.记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅① 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.② 矩阵的初等变换不改变矩阵的秩,且不改变行(列)向量间的线性关系③ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .④ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;⑤ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑥ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑦ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑧ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关; 5. 线性方程组理论Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭1(1)解得判别定理 (2)线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪+++=⇔+++=⎪⎪+++=⇔+++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解 (3) 判断12,,,s ηηη是Ax ο=的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数. (4) 求非齐次线性方程组Ax = b 的通解的步骤 (5)其他性质一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,s ξξξ是Ax ο=的一个解⇒1,,,,s ξξξη*线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同)⇔()()A r r A r B B ⎛⎫== ⎪⎝⎭, 且有结果: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P );矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ).第四部分 方阵的特征值及特征向量1. 施密特正交化过程2. 特征值、特征向量的性质及计算3. 矩阵的相似对角化,尤其是对称阵的相似对角化1.✍n 个n 维线性无关的向量,两两正交,每个向量长度为1.✍),,Tn a 与),Tn b 的内积1(,)ni i n n i a b a b αβ===++∑✍(,)0αβ=. 记为:αβ⊥④),,Tn a 的长度221(,)ni n i a a ααα====++∑⑤(,1ααα==. 即长度为1的向量.2. 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 线性性:1212(,)(,)(,)ααβαβαβ+=+3. ✍ 设A 是一个n 阶方阵, 若存在数λ和n 维非零列向量x , 使得 Ax x λ=,则称λ是方阵A 的一个特征值,x 为方阵A 的对应于特征值λ的一个特征向量. ✍0E A λ-=(或0A E λ-=).✍()E A λϕλ-=(或()A E λϕλ-=).④ ()ϕλ是矩阵A 的特征多项式⇒()A O ϕ=⑤12n A λλλ= 1ni A λ=∑tr ,A tr 称为矩阵A ⑥ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素. ⑦ 若0A =,则λ=0为A 的特征值,且Ax ο=的基础解系即为属于λ=0的线性无关的特征向量.⑧ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭、21122()n n A a b a b a b A =+++,从而A 的特征值为:11122n n A a b a b a b λ==+++tr , 23n λλλ====0.○注()12,,,Tn a a a 为A 各行的公比,()12,,,n b b b 为A 各列的公比.⑨ 若A 的全部特征值12,,,n λλλ,()f A 是多项式,则:① 若A 满足()f A O=⇒A 的任何一个特征值必满足()i f λ=0②()f A 的全部特征值为12(),(),,()n f f f λλλ;12()()()()n f A f f f λλλ=.⑩ A 与TA 有相同的特征值,但特征向量不一定相同. 4. 特征值与特征向量的求法 (1) 写出矩阵A 的特征方程0A E λ-=,求出特征值i λ.(2) 根据()0i A E x λ-=得到 A 对应于特征值i λ的特征向量. 设()0i A E x λ-=的基础解系为 12,,,in r ξξξ- 其中()i i r r A E λ=-.则A 对应于特征值i λ的全部特征向量为1122,i i n r n r k k k ξξξ--+++其中12,,,i n r k k k -为任意不全为零的数.5. ✍1P AP B -= (P 为可逆矩阵) ✍1P AP B -= (P 为正交矩阵)✍A 与对角阵Λ相似.(称Λ是A6. 相似矩阵的性质: ①E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.○注α是A 关于0λ的特征向量,1P α-是B 关于0λ的特征向量.②A B =tr tr ③A B = 从而,A B 同时可逆或不可逆④ ()()r A r B =⑤若A 与B 相似, 则A 的多项式()f A 与B 的多项式()f A 相似. 7. 矩阵对角化的判定方法① n 阶矩阵A 可对角化 (即相似于对角阵) 的充分必要条件是A 有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1PAP -为对角阵,主对角线上的元素为A 的特征值.设i α为对应于i λ的线性无关的特征向量,则有:121n P AP λλλ-⎛⎫⎪⎪= ⎪ ⎪⎝⎭. ② A 可相似对角化⇔()i i n r E A k λ--=,其中i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量.○注:当iλ=0为A 的重的特征值时,A 可相似对角化⇔i λ的重数()n r A =-=Ax ο=基础解系的个数.③ 若n 阶矩阵A 有n 个互异的特征值⇒A 可相似对角化.8. 实对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 不同特征值对应的特征向量必定正交;○注:对于普通方阵,不同特征值对应的特征向量线性无关; ③ 一定有n 个线性无关的特征向量. 若A 有重的特征值,该特征值i λ的重数=()i n r E A λ--; ④ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形; ⑤ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; ⑥ 两个实对称矩阵相似⇔有相同的特征值. 9. 正交矩阵 TAAE =正交矩阵的性质:① 1TAA -=;② TT AAA A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.10. 11. 施密特正交规范化 123,,ααα线性无关,单位化:111βηβ=222βηβ=333βηβ=技巧:取正交的基础解系,跳过施密特正交化。
线性代数第一章总结
nnP 二阶与三阶行列式二阶三 阶:333231232221131211a a a a a a a a a D =,0≠,3332323222131211a a b a a b a a b D =,3333123221131112a b a a b a a b a D =.3323122221112113b a a b a a b a a D =,11D D x =,22D Dx =.33D D x =注意:对角线法则只适用于二阶与三阶行列式全排列与对换排列:定义:把n 个不同的元素排成一列,叫做这n 个元素的全排列(或排列). 个不同的元素的所有排列的种数,通常用 表示.逆序:对于n 个不同的元素,先规定各元素之间有一个标准次序,在这n 个元素的任一排列中,当某一对元素的先后次序与标准次序 不同时,就说它构成一个逆序逆序数: 一个排列中所有逆序的总数称为此排列的逆序数.逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列.对换:在排列中,将任意两个元素对调,其余元素不动,这种做出新排列的连11a 12a 22a 12a 主对角线 副对角线 .2221121122111122a a a a b a b a D D x ==⎩⎨⎧=+=+.,22221211212111b x a x a b x a x a .2112a a -,2221121122212111a a a a a b a b DD x ==2211a a =⎪⎩⎪⎨⎧=++=++=++;,,333323213123232221211313212111b x a x a x a b x a x a x a b x a x a x a2n nnn n n a a a a a a a 32122211100000续叫做对换,将相邻的两个元素对换,叫做相邻对换定理1 一个排列中的任意两个元素对换,排列改变奇偶性. 当a<b 时,对换后,a 的逆序数增加1,b 的逆序数不变 当a>b 时,对换后,a 的逆序数不变,b 的逆序数增加1 推论:奇排列调成标准排列的对换次数为奇数,偶排列调成标准排列的对换次数为偶数. n 个自然数所有排列中,奇偶排列各占一半n 阶行列式的定义由个数组成的n 阶行列式等于所有取自不同行不同列的n 个元素的乘积的代数和n 阶行列式共有n !项,每项都是位于不同行、不同列的n 个元素的乘积,正负号由下标排列的逆序数决定.∑npnp p a a a ...1-2211t)().det(a 简记作ij ;21n λλλ =.2211nn a a a =nλλλ 21()().12121n n n λλλ --=.2211nn a a a =为这个排列的逆序数.的一个排列,,,,为自然数其中t n p p p n 2121nλλλ21的元素.称为行列式数)det(ij ij a a nnn na a a a a a 00022211211∴行列式的性质性质1:行列式与它的转置行列式相等说明:行列式中行与列具有同等的地位,因此行列式的性质凡是对行成立的对列也同样成立.性质2:互换行列式的两行(列),行列式变号.推论:如果行列式有两行(列)完全相同,则此行列式为零.性质3:行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式推论:行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面.性质4:行列式中如果有两行(列)元素成比例,则此行列式为零 性质5:若行列式的某一列(行)的元素都是两数之和.性质6:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.任何n 阶行列式总能利用运算j i kr r +化为三角行列式行列式按行(列)展开余子式:在n 阶行列式中,把元素j i a 所在的第i 行和第j 列划去后,留下来的n -1阶行列式叫做元素ij a 的余子式,记作ij M叫做元素 的代数余子式引理:一个n 阶行列式,如果其中第i 行所有元素除ij a 外都为零,那么这行列式等于ij a 与它的代数余子式的乘积,即 定理2:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即推论:行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即ij a (),记ij ji ij M A +-=1ijij A a D =...)5,4,3,2,1i 2211=+++=(in in i i i i A a A a A a D .,02211j i A a A a A a jn in j i j i ≠=+++ ...)5,4,3,2,1(...a 2211=+++=j A a A a A D nj nj j j j jnn -2关于代数余子式的重要性质⎩⎨⎧≠===∑=;,0,,1j i j i D D A a ij nk kj ki 当当δ⎩⎨⎧≠===∑=;,0,,1j i j i D D A a ij nk jk ik 当当δ⎩⎨⎧≠==.,0,1j i j i ij 当,当其中δ计算(证明)行列式(1) 用定义计算(证明)(注:如果一个n 阶行列式中等于零的元素比还多,则此行列式必等于零)(是从一般项入手,将行标按标准顺序排列,讨论列标的所有可能取到的值,并注意每一项的符号,这是用定义计算行列式的一般方法.) (2) 利用范德蒙行列式计算利用范德蒙行列式计算行列式,应根据范德蒙行列式的特点,需要利用行列式的性质(如提取公因子、调换各行(列)的次序等)将此行列式化成范德蒙行列式,然后根据范德蒙行列式计算出结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d 1
d2
d
r
,
0
0
即为所求非齐次线性方程组的一个特解.
向量aT (a1 , a2 , , an)的负向量记作 aT ,且 aT (a1 , a2 , , an).
2 向量的线性运算
向量加法 设 aT (a1 , a2 , , an),bT (b1 , b2 , , bn),定义
向量aT 与bT 的加法为: aT bT (a1 b1 , a2 b2 , , an bn) 向量减法定义为 aT bT (a1 b1 , a2 b2 , , an bn)
c1,n c2,n
1 cr,r 1 , 2 cr,r 1 , , nr c组成 n r阶 单位矩阵,于是得齐次线性方程组的一个基础解系
c1,r 1 c2,r1
c1,r 2 c2,r2
定理 (1)若向量组A : a1 , a2 , , am 线性相关,则向 量组B : a1 , a2 , , am , am1也线性相关.反言之,若 向 量 组B线 性 无 关, 则 向 量 组A也 线 性 无 关.
(2)设 a
j
a1 j , b j arj
a1 j
a
a rj
r 1,
6 向量组的秩
定义 设有向量组A,如果在A中能选出r个向量a1 , a2 , ,ar ,满足
(1)向量组 A0 : a1 , a2 , , ar 线性无关; (2)向量组A中任意r 1个向量(如果A中有r 1 个向量的话)都线性相关, 那么称向量组 A0 是向量组A的一个最大线性 无关向量组(简称最大无关组);最大无关组所含向 量个数r称为向量组A的秩.
Ax b
(4)
解向量 向量方程 (4)的解就是方程组 (3)的解向量.
解向量的性质
性质1 若x 1 , x 2为(4)的解,则x 1 2
为对应的齐次线性方程组
Ax O
(5)
的解.
性质2 若x 是方程(4)的解, x 是方程(5)的
解,则x 也是方程(4)的解.
12 线性方程组的解法
j
,
(
j
1,2,
,m)
即向量a j 添上一个分量后得到向量 b j .若向量
组A : a1 , a2 , , am 线性无关,则向量组B : b1 , b2 , , bm 也线性无关.反言之,若向量组B线性相关, 则向量组A也线性相关.
(3)m个n维向量组成的向量组,当维数n小于
向量个数m时一定线性相关.
0 0 1 cr,r 1 cr,n ;
0
0
0
0
0
0 0 0 0 0
第二步: 将第r 1, r 2, n列前r个分量反
号,于是得 1 , 2 , , nr的第1,2, , r个分量,即
c1,r 1 c2,r1
c1,r 2 c2,r2
aT a1 , a2 , , an
向量的相等 设 aT (a1 , a2 , , an), bT (b1 , b2 , , bn)
则aT bT ai bi (i 1,2, , n) 零向量
分量全为0的向量称为零向量. aT O ai 0(i 1,2, , n) aT O ai中至少有一个不为0,(i 1,2, , n) 负向量
数乘向量
数k与向量aT 的乘积, 称为向量的数量乘法 简 称 数 乘 向 量, 定 义 为
k aT (k a1, k a2 , , k an) 向量加法和数乘向量运算称为向量的线性运 算,满足下列八条运算规则:
(1)加法交换律 ; (2)加法结合律 ( ) ( ); (3)对任一个向量 ,有 O ;
V , R,则a V .
8 子空间
定义 设有向量空间V 1及V 2 ,若V 1 V 2 ,就称V 1 是V 2的子空间.
9 基与维数
定义 设V为向量空间,如果r个向量a1 , a2 , , ar V ,且满足
(1) a1 , a2 , , ar 线性无关; (2)V中任一向量都可由a1 , a2 , , ar 线性表示, 那么,向量组a1 , , ar 就称为向量空间V的一个基, r称为向量空间V的维数, 并称V为r维向量空间.
1 0 0 c1,r 1 c1,n d 1 0 1 0 c2,r1 c2,n d 2
0 0 1 cr,r1 cr,n d r ,
0
0
0
0
0
0
0 0 0 0 0 0
将上述矩阵中最后一列的前 r个分量依次作为
特解的第 1,2, , r个分量,其余 n r个分量全部取 零,于是得
c1,n c2,n
1
cr,r 1
1
,
2
cr, 0
r
2
,
, nr
cr 0
,
n
.
0 1
0
0
0
1
(2)求非齐次线性方程组的特解
若非齐次线性方程组Ax b的秩R( A) R(B) r,而方程组中未知数的个数为n,那么对 增广矩阵B进行初等行变换, 使其成为行最简形 矩阵.
(4)对任一个向量 ,存在负向量 ,有 ( ) O;
(5) 1 ; (6)数乘结合律 k(l ) (kl);
(7)数乘分配律 k( ) k k ; (8)数乘分配律 (k l) k l .
其中 , ,为n维向量,1, k, l为数,O为零向量.
除了上述八条运算规则,显然还有以下性质:
定理 矩阵的秩等于它的列向量组的秩,也等于 它的行向量组的秩.
定理 设向量组B能由向量组A线性表示,则向量 组B的秩不大于向量组A的秩.
推论1 等价的向量组的秩相等.
推论2 设 C mn Ams Bsn ,则 R(C ) R( A), R(C ) R(B).
推论3(最大无关组的等价定义) 设向量组 B是向量组 A 的部分组,若向量组
定理 向量b能由向量组A线性表示的充分必要条 件是矩阵A (a1 , a2 , , am)的秩等于矩阵B (a1 , a2 , , am , b)的秩.
定义 设有两个向量组A : a1 , a2 , , am 及B : b1 , b2 , , bs ,若B组中的每个向量都能由向量组A 线 性 表 示, 则 称 向 量 组B能 由 向 量 组A线 性 表 示. 若 向 量 组A与 向 量 组B能 相 互 线 性 表 示, 则 称 这 两个向量组等价.
(1') 0 O, kO O(其中0为数零, k为任意数); (2')若k O,则或者k 0,或者 O; (3')向量方程 x 有唯一解x .
3 线性组合
若干个同维数的列(行)向量所组成的集合 叫做向量组. 定义 给定向量组A : a1 , a2 , , am ,对于任何一组 实数 k1 , k 2 , , k m ,向量
定义 解空间S的基称为方程组(1)的基础解系.
11 非齐次线性方程组
向量方程 非齐次线性方程组
a11 x1 a12 x2 a1n xn b1 ,
a21 x1 a22 x2 a2n xn b2 ,
(3)
am1 x1 am2 x2 amn xn bm ,
可写为向量方程
(1)求齐次线性方程组的基础解系
若齐次线性方程组Ax O的秩R( A) r,而方 程组中未知数的个数为n,那么方程组的一个基础
解系含线性无关的n r个解向量,不妨设为 1 , 2 , , nr ,可按下面步骤进行:
第一步:对系数矩阵 A 进行初等行变换,使其 变成行最简形矩阵
1 0 0 c1,r 1 c1,n 0 1 0 c2,r1 c2,n
是(2)的解.
性质2 若x 1为(2)的解, k为实数,则x k 1也是
(2)的解.
定义 设S为方程组(1)的全体解向量所组成的集
合, 则集合S对向量的线性运算封闭, 所以集合S 是一个向量空间, 称为齐次线性方程组(1)的解空 间.
定理 n元齐次线性方程组Amn x O的全体解所 构成的集合S是一个向量空间,当系数矩阵的秩 R( Amn) r时, 解空间S的维数为n r.
k1a1 k2a2 km am 称为向量组A的一个线性组合, k1 , k 2 , , k m 称为 这个线性组合的系数.
4 线性表示
定义 给定向量组A : a1 , a2 , , am 和向量b,如果 存在一组实数k1 , k 2 , , k m , 使
b k1a1 k2a2 km am , 则向量b是向量组A的线性组合, 这时称向量b能 由向量组A线性表示.
B 线性无关,且向量组 A能由向量组 B 线性表示, 则向量组 B是向量组 A的一个最大无关组.
7 向量空间
定义 设V为n维向量的集合,如果集合V非空,且 集合V对于加法及数乘两种运算封闭,那么就称集 合V为向量空间.
所谓封闭,是指在集合V中可以进行加法及 数乘两种运算: 若a V , b V ,则a b V ;若a
(1)
am1 x1 am2 x2 amn xn 0,
的系数矩阵和未知量为
解向量
若 x1 11 , x2 21 , , xn n1为(1)的解,则
11
x
1
21
n1
称为方程组(1)的解向量,它也就是向量方程(2)
的解.
解向量的性质
性质1 若x 1 , x 2为(2)的解,则x 1 2 也
5 线性相关
定义 给定向量组A : a1 , a2 , , am ,如果存在不全 为零的数k1, k2 , , km ,使
k1 a1 k 2 a2 k m am 0, 则称向量组A是线性相关的, 否则称它线性无关. 定理 向量组a1 , a2 , , am 线性相关的充分必要 条件是它所构成的矩阵A (a1 , a2 , , am)的秩小 于向量个数m;向量组线性无关的充分必要条件 是R( A) m.