新课标人教版九年级上册图形的旋转教案

合集下载

初中数学九年级上册第23章《图形的旋转》教案

初中数学九年级上册第23章《图形的旋转》教案

新人教版初中数学九年级上册第23章《图形的旋转》教案23.1图形的旋转(1)一、创设情境1.向学生展示有关的图片:(1)时钟上的秒针在不停的转动;(并介绍顺时针方向和逆时针方向)(2)大风车的转动;(3)飞速转动的电风扇叶片;(4)汽车上的括水器(5)由平面图形转动而产生的奇妙图案。

2、提出问题:这些情境中的转动现象,有什么共同特征?用课件展示图片并显示现实生活中部分物体的旋转现象学生观察图片学生思考,归纳它们的共同特征。

让学生再举一些类似的例子通过这些画面的展示让学生切身感受到我们身边除了平移、轴对称变换等图形变换之外,生产、生活中广泛存在着转动现象,从而产生对这种变换进一步探究的强烈欲望,为本节课探究问题作好铺垫。

初步感受转动的本质是绕着某一点,旋转一定的角度这两点,引导学生寻找、认识生活中的旋转现象,并揭示本节的研究课题-----图形的旋转。

二、自主探究1.建立旋转的概念请同学们尝试用自己的语言来描述上述图形的运动现象.2、给出旋转的定义:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角。

重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。

3、结合图形理解对应点、对应线段、对应角、旋转中心、旋转角的意义。

学生先独立尝试,再同学之间讨论交流、总结,在此过程中以培养学生的抽象概括能力,同时让学生体会到合作交流的必要性,教师及时观察学生的学习情况和学习进度,碰到学生中的普遍性问题,在进行适当的探讨后,利用谈话讨论的形式进行解决。

完成本节课的两个学习目标:①点明图形旋转中对应点、对应线段及对应角的概念;②让学生及时巩固并理解旋转及其相关概念,并为下面探究旋转的性质作好物质与精神上的准备。

三、尝试1、如图,△ABO绕点O旋转得到△CDO,则:学生独立思考并解答,学生讲解,相互评价。

及时巩固新知,使每个学生都有收获.应用点B的对应点是点_____;线段OB的对应线段是线段______;线段AB的对应线段是线段______;∠A的对应角是______;∠B的对应角是______;旋转中心是点______;旋转的角是______。

人教版数学九年级上册23.1.1《图形的旋转》教学设计

人教版数学九年级上册23.1.1《图形的旋转》教学设计

人教版数学九年级上册23.1.1《图形的旋转》教学设计一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第五章第二节的内容。

本节内容是在学生已经掌握了图形的平移、缩放、轴对称等基本变换的基础上进行学习的,是进一步培养学生的空间想象能力和抽象思维能力的重要内容。

图形旋转的概念和性质在日常生活和生产实践中有着广泛的应用,如地图的绘制、机械设计等。

通过本节课的学习,让学生了解图形的旋转概念,理解旋转的性质,学会用旋转来解决实际问题。

二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,对于图形的平移、缩放、轴对称等基本变换已经有了一定的了解。

但是,学生在学习过程中可能对旋转的概念和性质理解不深,不易掌握旋转的计算方法。

因此,在教学过程中,教师需要通过大量的实例和练习,帮助学生理解和掌握旋转的相关知识。

三. 教学目标1.知识与技能:使学生掌握图形旋转的概念,理解旋转的性质,学会用旋转来解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.教学重点:图形旋转的概念,旋转的性质。

2.教学难点:旋转的计算方法,旋转在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例和数学故事,引发学生的兴趣,激发学生的学习欲望。

2.探究式教学法:引导学生观察、操作、猜想、验证,培养学生的自主学习能力。

3.合作学习法:学生进行小组讨论和合作交流,提高学生的团队协作能力。

六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和性质。

2.教学素材:准备一些图形,如正方形、三角形等,用于讲解和练习。

3.计算器:为学生提供计算器,便于进行旋转的计算练习。

七. 教学过程1.导入(5分钟)教师通过一个有趣的数学故事引入本节课的内容,引发学生的兴趣。

2.呈现(10分钟)教师通过课件展示一些图形旋转的实例,如地球的自转、钟表的指针等,引导学生观察和思考。

新人教版九年级上《23.1图形的旋转》教案

新人教版九年级上《23.1图形的旋转》教案

23.1 图形的旋转教学目标1. 通过观察具体实例认识旋转,归纳旋转、旋转中心、旋转角和对应点的概念,并应用它们解决一些实际问题.2. 探索旋转的性质,会画出旋转后的图形.3. 理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.4. 掌握根据需要用旋转的知识设计出美丽的图案.应用已学的知识作图,设计出美丽的图案.教学重点1. 旋转、对应点的有关概念及其应用.2.用旋转的有关知识画图.教学难点发现“对应角到旋转中心的夹角相等”的性质.课时安排2课时.1 / 10教案A第1课时教学内容23.1 图形的旋转(1).教学目标1.通过观察具体实例认识旋转,归纳旋转、旋转中心、旋转角和对应点的概念,并应用它们解决一些实际问题.2.探索旋转的性质,会画出旋转后的图形.教学重点旋转、对应点的有关概念及其应用.教学难点发现“对应角到旋转中心的夹角相等”的性质.教学过程一、导入新课教师指导学生复习平移、轴对图形的概念及有关性质,导入新课的教学.二、新课教学1.观察实例得出旋转概念.我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.(1)请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?学生口答,教师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.(2)再看自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?思考:这些现象有什么共同特点?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.归纳:像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.2.通过类比试验探究旋转的性质探究:如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角2 / 10形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′)移开硬纸板.△A'B'C'是由△ABC绕点O旋转得到的.线段OA与OA′有什么关系?∠AOA′与∠BOB′有什么关系?△ABC与△A′B′C′的形状和大小有什么关系?教师让学生思考这些问题.必要时,可引导学生从以下问题中进行思考:(1)轴对称的性质中对应点之间有怎样的位置关系和数量关系?旋转呢?(2)旋转是一个图形围绕旋转中心旋转一定的角度,此时,图形上的点发生旋转了吗?它是如何旋转的?哪个角表示了旋转的角度?通过思考、讨论,归纳出旋转的性质:对应点到旋转中心的距离相等.对应点与旋转中心所连线段的夹角等于旋转角.旋转前、后的图形全等.3.通过实例画出旋转后的图形.例如下图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.分析:关键是确定△AD E三个顶点的对应点,即它们旋转后的位置.解:因为点A是旋转中心,所以它的对应点是它本身.正方形ABCD中,AD=AB,∠DAB =90°,所以旋转后点D与点B重合.设点E的对应点为点E′.因为旋转后的图形与旋转前的图形全等,所以∠ABE′=∠ADE=90°,BE′=DE.因此,在CB的延长线上取点E',使BE′=DE,则△ABE′为旋转后的图形(下图).三、巩固练习教材第59、61页练习.四、课堂小结本节课要掌握:1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.3.对应点到旋转中心的距离相等.4.对应点与旋转中心所连线段的夹角等于旋转角.5.旋转前、后的图形全等及其它们的应用.五、布置作业习题23.1 第1、2、3、4题.3 / 10第2课时教学内容23.1 图形的旋转(2).教学目标1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.2.掌握根据需要用旋转的知识设计出美丽的图案.应用已学的知识作图,设计出美丽的图案.3.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.教学重点用旋转的有关知识画图.教学难点根据需要设计美丽图案.教学过程一、导入新课1.学生活动:老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.二、新课教学1.在作图时,旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.下面就选择不同的旋转中心、不同的旋转角来进行研究.(1)旋转中心不变,改变旋转角,会出现不同的效果.4 / 10上图的两个旋转中,旋转中心不变.旋转角改变了,产生了不同的旋转效果.(2)旋转角不变,改变旋转中心,会出现不同的效果.上图的两个旋转中,旋转角不变.旋转中心改变了,产生了不同的旋转效果.2.设计美丽图案从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案(下图).三、巩固练习1.例如下图是菊花一叶和中心与圆圈,现以O为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,旋转长度为菊花的最长OA,按菊花叶的形状画出即可.解:(1)连结OA.(2)以O点为圆心,OA长为半径旋转45°,得A.(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A点.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.2.教材第62页练习.四、归纳小结本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案.2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点——线的端点、角的顶点、圆的圆心等.五、布置作业习题23.1 第5、6题.5 / 10教案B第1课时教学内容23.1 图形的旋转(1).教学目标1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.2.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.教学重点旋转及对应点的有关概念及其应用.教学难点从活生生的数学中抽出概念.教具准备小黑板、三角尺.教学过程一、导入新课学生活动:请同学们完成下面各题.1.将左图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如右图,已知△ABC和直线l,请你画出△ABC关于l对称图形△A′B′C′.教师指导学生复习平移的概念及有关性质.如何画一个图形关于一条直线(对称轴)的对称图形和它既有的一些性质.导入新课的教学.二、新课教学思考:如左图,钟表的指针在不停地转动,从3时到0时,时针转动了多少度?6 / 10如右图,风车风轮的每个叶片在风的吹动下转动到新的位置.以上这些现象有什么共同特点呢?我们可以把上面问题中的指针、叶片等看作平面图形.像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.例如,做左图中,时针在旋转,表盘的中心是旋转中心,旋转角是60°,时针的端点在3时的位置P与在5时的位置P′是对应点.下面我们来运用这些概念来解决一些问题.例 1 如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2 如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?教师点评:(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、B、C、D移到的位置是点E、F、G、H.强调:这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.三、巩固练习教材第59页练习1、2、3.四、课堂小结今天你学习了什么?有什么收获?五、布置作业习题23.1 第1、2、3题.7 / 10第2课时教学内容23.1 图形的旋转(2).教学目标1.理解对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.2.用操作几何、实验,探究图形的旋转的基本性质.3.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.应用已学的知识作图,设计出美丽的图案.教学重点图形的旋转的基本性质及其应用.教学难点运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、导入新课学生活动:老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、新课教学1.上面的解题过程中,能否得出什么结论,请回答下面的问题:(1)A、B、C、D、E、F到O点的距离是否相等?(2)对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA 是否相等?(3)旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OF A全等吗?点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.2.探究:如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′ )移开硬纸板.△A'B'C'是由△ABC绕点O旋转得到的.线段OA与OA′有什么关系?∠AOA′与∠BOB′有什么关系?△ABC与△A′B′C′的形状和大小有什么关系?8 / 10教师引导学生归纳旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.3.实例分析.例如右下图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD,(2)以CB为一边作∠BCE,使得∠BCE=∠ACD,(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点.(4)连结DB′.则△DB′C就是△ABC绕C点旋转后的图形.4.旋转图形.在作图时,旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.下面就选择不同的旋转中心、不同的旋转角来进行研究.(1)旋转中心不变,改变旋转角.画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.(2)旋转角不变,改变旋转中心.画出以下图,四边形ABCD分别为O1、O2为中心,旋转角都为30°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.三、巩固练习1.教材第61页练习1、2.9 / 102.教材第62页练习.四、归纳小结今天你学习了什么?有什么收获?五、布置作业习题23.1 第5、6题.10 / 10。

人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例

人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例
人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例
一、案例背景
本节课为人教版数学九年级上册第23章旋转23.1图形的旋转。旋转是几何中的基本变换之一,是学生在之前的学习过程中已经接触过的内容,但九年级的学习要求更深入、更系统地掌握旋转的性质和应用。通过本节课的学习,学生需要理解旋转的定义、掌握旋转的性质、了解旋转在实际生活中的应用。
(四)总结归纳
1.教师引导学生总结本节课所学内容,如旋转的定义、性质及应用等。
2.学生分享小组讨论的成果,让大家共同学习,提高理解程度。
3.教师对学生的总结进行点评,指出优点和不足,给予改进建议。
(五)作业小结
1.布置作业:设计一道有关旋转的实际问题,让学生运用所学知识解决。
2.要求学生在作业中运用旋转的性质,表述清晰、步骤简洁。
3.通过具体例子,讲解旋在实际生活中的应用,如设计图案、制作模型等。
4.强调旋转的性质,让学生理解旋转的本质,提高空间想象能力。
(三)学生小组讨论
1.布置讨论任务:以小组为单位,探讨图形旋转的性质,并举例说明。
2.引导学生运用合作交流的方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
2.引导学生运用讨论、交流、总结等方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如“我在学习中遇到了哪些问题?是如何解决的?”等,培养学生自我评价和反思的能力。
3.小组合作:本节课采用小组合作的学习方式,让学生在合作中探讨旋转的性质。这种方式培养了学生的合作意识和团队精神,提高了学生的沟通能力和协作能力。同时,小组合作也使得课堂氛围更加活跃,激发了学生的学习兴趣。

九年级上册《图形的旋转》教案范文

九年级上册《图形的旋转》教案范文

九年级上册《图形的旋转》教案范文一、教学目标:知识与技能:让学生理解旋转的定义,掌握旋转变换的性质和规律,能够运用旋转变换解决实际问题。

过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和创新能力。

情感态度与价值观:激发学生对几何图形的兴趣,培养学生的合作意识,使学生感受到数学与生活实际的联系。

二、教学重点与难点:重点:旋转变换的定义及其性质。

难点:旋转变换在实际问题中的应用。

三、教学过程:1. 导入新课:利用多媒体展示生活中常见的旋转现象,如车轮转动、风扇旋转等,引导学生关注旋转变换在现实生活中的应用。

2. 探究新知:(1)引导学生观察、分析旋转现象,总结旋转变换的定义。

(2)讲解旋转变换的性质和规律,如旋转变换不改变图形的大小和形状,只改变图形的位置。

(3)通过实例演示,让学生理解旋转变换在实际问题中的应用。

3. 巩固练习:(1)设计一些有关旋转变换的练习题,让学生独立完成,检验对旋转变换的理解和掌握程度。

(2)引导学生运用旋转变换解决实际问题,如计算旋转后的图形面积、位置等。

四、课堂小结:本节课通过观察、操作、思考、交流等活动,使学生掌握了旋转变换的定义、性质和规律,并能够运用旋转变换解决实际问题。

培养了学生的空间想象能力、逻辑思维能力和创新能力。

五、课后作业:1. 完成练习册中有关旋转变换的练习题。

2. 结合生活实际,找一些旋转变换的应用实例,下节课分享给大家。

六、教学反思:1. 强调旋转变换的定义和性质,让学生清晰地理解旋转变换的概念。

2. 注重培养学生的空间想象能力,通过直观的演示和实例,帮助学生建立旋转变换的形象。

3. 鼓励学生积极参与课堂讨论,提高学生的逻辑思维能力和创新能力。

4. 关注学生的个体差异,针对不同程度的学生给予适当的指导和支持。

七、教学评价:本节课结束后,对学生进行旋转变换的知识点测试,了解学生对旋转变换的掌握程度。

观察学生在课堂上的表现,如参与程度、思考能力和合作意识等,全面评价学生的学习效果。

人教版九年级数学上册优秀教学案例:23.1图形的旋转

人教版九年级数学上册优秀教学案例:23.1图形的旋转
2.练习作业:检查学生完成作业的质量,巩固学生对旋转性质的掌握;
3.小组讨论:评价学生在团队合作中的表现,培养学生的团队合作精神。
二、教学目标
(一)知识与技能
1.理解旋转的定义及性质,掌握旋转变换的方法。
2.能够运用旋转变换解决实际问题,提高解决问题的能力。
3.培养学生的空间想象能力,提高学生对几何图形的认识和理解。
2.讨论问题:每组选择一个实际问题,运用旋转变换解决,讨论解决问题的方法和过程。
3.讨论成果分享:各小组代表汇报本组讨论成果,分享解决问题的方法,促进学生之间的交流与合作。
(四)总结归纳
1.教师总结:教师对旋转变换的性质及应用进行总结,强调重点和难点,帮助学生形成知识体系。
2.学生归纳:让学生归纳总结本节课所学内容,加深对旋转变换性质的理解和记忆。
3.教师评价:教师对学生的学习过程和成果进行评价,给予肯定和鼓励,激发学生的学习兴趣和自信心。
作为一名特级教师,我深知教学策略的重要性。在教学过程中,我将根据学生的实际情况,灵活运用情景创设、问题导向、小组合作和反思与评价等教学策略,激发学生的学习兴趣,培养学生的思维能力、团队合作精神和解决问题的能力。同时,我将以学生为主体,关注每一个学生的成长,尊重学生的个性差异,激发学生的潜能,让每个学生都能在学习中感受到快乐和成就感。通过科学合理的教学策略,引导学生积极参与课堂活动,提高学生的学习效果,为学生的可持续发展奠定基础。
3.结合实际例子,让学生感受数学与生活的紧密联系;
4.采用小组合作、讨论交流的方式,培Βιβλιοθήκη 学生的团队合作精神。教学过程:
1.导入新课:以生活中常见的旋转现象为例,如旋转门、风车等,引导学生思考旋转的定义及性质;
2.自主学习:让学生通过阅读教材,了解旋转的基本性质;

人教版数学九年级上册教学设计23.1《图形的旋转》

人教版数学九年级上册教学设计23.1《图形的旋转》

人教版数学九年级上册教学设计23.1《图形的旋转》一. 教材分析《图形的旋转》是人教版数学九年级上册第23.1节的内容,本节课主要让学生了解图形的旋转概念,掌握图形旋转的性质和运用。

通过本节课的学习,学生能够理解图形旋转的定义,掌握旋转中心、旋转方向和旋转角等基本概念,并能够运用旋转性质解决实际问题。

二. 学情分析学生在之前的学习中已经掌握了图形的平移、翻转等变换知识,具备一定的几何图形基础。

但图形旋转与平移、翻转存在一定的区别,学生可能对旋转概念和性质的理解存在一定的困难。

因此,在教学过程中,教师需要通过具体实例和实际操作,帮助学生理解和掌握图形旋转的性质。

三. 教学目标1.知识与技能:学生能够理解图形旋转的概念,掌握图形旋转的性质,并能够运用旋转性质解决实际问题。

2.过程与方法:学生通过观察、操作、思考等活动,培养空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生感受数学与生活的紧密联系,增强学习数学的兴趣和信心。

四. 教学重难点1.重点:图形旋转的概念和性质。

2.难点:图形旋转的性质运用。

五. 教学方法1.情境教学法:通过生活实例和实际操作,引发学生对图形旋转的思考,提高学生的学习兴趣。

2.问题驱动法:教师提出问题,引导学生思考和探索,培养学生的问题解决能力。

3.合作学习法:学生分组讨论和操作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和操作过程。

2.学具:准备一些图形卡片和模型,供学生操作和观察。

3.教学视频:准备一些关于图形旋转的实际操作视频,供学生观看和分析。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生关注图形旋转,激发学生的学习兴趣。

2.呈现(10分钟)教师通过课件呈现图形旋转的实例,引导学生观察和思考,引出图形旋转的概念。

同时,教师讲解图形旋转的性质,如旋转中心、旋转方向和旋转角等。

九年级数学上册 23.1 图形的旋转教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案

九年级数学上册 23.1 图形的旋转教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案

23.1 图形的旋转教学目标知识与技能 1.了解旋转及其旋转中心和旋转角的概念.2.了解旋转对应点的概念及应用它们解决一些实际问题. 过程与方法1、通过观察具体实例认识旋转,探索它的基本性质.2、了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.情感与态度培养学生学习数学的技能与兴趣。

教学要点教学重点观察具体实例认识旋转,探索它的基本性质.教学难点图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.教学内容设计意图知识准备:(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其他的吗?自学指导教师点拨:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它有哪些性质.(3)什么叫轴对称图形.。

教师点拨:旋转角指对应点与旋转中心的连线的夹角.自学教材第59页内容,思考和完成教材上的练习.观察:让学生看转动的钟表和风车等.(1)上面情景中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间轴旋转)(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化)问题:①从3时到5时,时针转动了多少度?(60°)②风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(90°)③以上现象有什么共同特点?(物体绕固定点旋转)思考:在数学中如何定义旋转?知识探究把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个教师点拨(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.教师点拨:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S△OEE′=S△ODD′,那么只要说明△OEE′≌△ODD′教师点拨: 1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心距离相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同且大小相等,即全等.分别移到什么位置?例2 如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点A;旋转的度数是45°.活动2 跟踪训练两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.预习导学2:自学指导自学教材第60页内容,并完成教材第61页练习.教师用几何画板演示请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)′、OB与OB′、OC与OC′有什么关系?2.∠AOA′、∠BOB′、∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?知识探究(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.活动1 小组讨论例3 如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形. 关键是确定△ADE三个顶点的对应点的位置.例4 已知线段AB和点O,画出AB绕点O逆时针旋转100°后的图形.∠AOC=100°在OC上截取OA′∠BOD=100°在OD上截取OB′′B′.线段A′B′就是线段AB绕点O 按逆时针方向旋转100°后的对应线段.教师点拨:作图应满足三要素:旋转中心、旋转角、旋转方向.活动2 跟踪训练1.如图,AD=DC=BC,∠ADC=∠DCB=90°,BP=BQ,∠PBQ=90°.①此图能否旋转某一部分得到一个正方形?②若能,指出由哪一部分旋转而得到的?并说明理由. ③它的旋转角多大?并指出它们的对应点.解:①能. ②由△BCQ绕△ABP≌△△QCB可绕B点旋转与△ABP重合,从而得到正方形ABCD.③90°.点C对应点A,点Q对应点P.2.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形. 解:(1)连接CD,(2)以CB为一边作∠BCE,使得∠BCE=∠ACD,(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点.(4)连结DB′,则△DB′C就是△ABC绕C点旋转后的图形.教师点拨:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.解:∵四边形ABCD、四边形AKLM是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM 为旋转角且为90°.∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的.∴BK=DM.教师点拨:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.活动3 课堂小结1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.3.本节课要掌握:(1)旋转的基本性质.(2)旋转变换与平移、轴对称两种变换有哪些共性与区别.。

九年级数学上册 23.1图形的旋转精品教案 人教新课标版

九年级数学上册 23.1图形的旋转精品教案 人教新课标版

作课类别课题23.1图形的旋转课型新授教学媒体多媒体教学目标知识技能1.掌握旋转地有关概念,理解旋转变换也是图形的一种基本变换.2.经历探索图形旋转特征的过程,体验和感受图形旋转的主要特征,理解图形旋转的基本性质.3.根据旋转地性质作出任一图形的旋转图形,并能根据所学旋转知识设计出美丽图案.过程方法1.通过观察、实际操作,理解旋转地性质,了解旋转作图的步骤及关键.2.通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、动手能力、观察能力以及与他人合作交流的能力.情感态度经过对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感;通过小组合作交流活动,培养学生合作学习的意识和研究探索的精神.教学重点旋转的有关概念和旋转的基本性质教学难点探索旋转的基本性质教学过程设计教学程序及教学内容师生行为设计意图一、导语:在实际生活中,有许多能转动的物体,如风车、水车、风力发电机、飞机的螺旋桨、时钟的指针、游乐场的大转盘等,它们有许多的奥秘,这些奥秘与旋转紧密相关,从这节课开始就来学习图形旋转知识.二、探究新知活动1. 创设情境导入新课1、手工制作:制作一个小风车.2、欣赏日常生活中部分物体的旋转现象.问题:在这些运动中有哪些共同特征?活动2.演示导学形成概念1.观察:时钟上分针的运动.问题:时钟上分针的转动是绕哪一个点转动?沿着什么方向转动?从5分到15分转动了多少角度.2.动手做一做:在一张半透明的薄纸与另一张纸片之间垫上一张复写纸,在薄纸上画ΔABC,并在ΔABC外面找一点0,再用一枚图钉在0处穿过.将薄纸绕点0旋转一个角度,再次把ΔABC复印在纸片上,并记成ΔA´B´C´.在纸片上分别连接0A、0B、0C、0A´、0B´、0C´.问题:(1)根据所画的图形,用直尺量出OA与OA´、OB与OB´、OC´的大小;用量角器量出∠AOA´、∠BOB´、∠COC´的度数,观察这三个角的大小,并指出旋转中心,旋转角.(2)说出其中的对应点,对应角和对应线段.(3)旋转后图形的形状和大小是否发生教师举例,学生想象,并尝试举例学生制作后,思考教师提出的问题,教师指导学生观察实例,试着描述出旋转的定义.学生在观察后,回答问题,然后教师讲解:把一个图形绕着某一个点O转动一个角度的图形变换叫做旋转,点O叫旋转中心,转动的角叫旋转角.学生在老师的指导下,动手操作,循序渐进探究旋转的基本性质,即演示→观察→猜想→讨论→归纳.并完成老师交给的任务.学生交流讨论并归纳出旋转的性质:(1)对应点到旋转中从生活实际出发,引入本章通过小制作,图形欣赏,导入主题,调动学生的主观能动性,激发好奇心和求知欲.通过观察,使学生形象、直观地理解旋转的有关概念通过学生亲自动手做,逐步感知旋转地基本性质变化.活动3.举例应用加深认识1、如图,E是正方形ABCD中CD边上任意一点,以点A 为中心,把ΔADE顺时针旋转90°,画出旋转后的图形.三、课堂训练1、P56页练习2、补充:图形:线段、角、圆、梯形、正方形、菱形中绕一定点转动一定角度(小于360°)能与原图形重合的图形有()A、2个B、3个C、4个D、5个3、P58页练习4、P59页练习5.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?6.如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?7.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.四、小结归纳1.本节课你有什么收获?2.本节课内容和前面学习过的什么知识可以归为一类?五、作业设计复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做;学有余力的学生,要求模仿编拟课堂上出现的一些补充题目进行重复练习.补充作业:如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?心的距离相等.(2)对应点与旋转中心所连结的线段的夹角等于旋转角.(3)旋转前、后的图形全等.学生独立思考,小组交流,尝试完成,教师及时关注学生完成情况,并给予点评.学生独立完成,教师巡视检查学生交流获得的知识和感受,教师聆听,并与学生交流.通过例题讲解,让学生加深对新知识的理解,培养学生分析问题和解决问题的能使学生巩固提高并了解学生掌握情况,通过练习,让学生再次明确旋转的主要因素,从而让学生对知识加深理解,形成能力,实现本课的知识目标.通过小结,概括出本节课的知识与方法.体验探究过程中的感受.并纳入知识系统板书设计课题旋转定义旋转的基本性质例题分析归纳。

人教版九年级数学上册图形的旋转(第一课时)教学设计

人教版九年级数学上册图形的旋转(第一课时)教学设计

23.1图形的旋转(第一课时)一、教学内容旋转的概念、旋转的性质二、教学目标知识与技能:通过观察具体实例认识旋转,探索其基本性质。

过程与方法:在发现探索过程中完成对旋转这一图形变换从直观到抽象,从感性认识到理性认识的转变,发展学生的观察、分析、归纳、抽象、概括能力。

情感态度与价值观:学生在经历了实验探究,知识应用及内化等数学活动中,体验数学的具体,生动,灵活性,调动学生学习数学的主动性.三、重难点重点:1、理解旋转的基本概念2、探索旋转的性质.难点:找准旋转变换关系及性质的形成。

四、教学过程设计(一)创设情境、引入新课1、介绍风车2、欣赏风车师生活动:教师展示旋转的风车图片,学生欣赏,并回忆小学曾经知道的旋转。

设计意图:通过转动的风车,引入本节课的研究对象。

(二)师生互动,探求新知1、观察转动的风车得出旋转的概念问题1:观察转动的风车实例:思考这些转动的风车有什么共同特点?师生活动:展示转动的风车图片,学生观察并思考,教师引导学生进行归纳图形旋转的定义。

在师生共同得出旋转定义后,教师射线OA绕着点O旋转到OB的位置为例,介绍图形旋转的相关概念“旋转中心”、“旋转角”、“旋转方向”设计意图:让学生从具体的实例中发现旋转现象,抽象出旋转的本质属性,即将“生活中的旋转”抽象为“数学中的旋转”让学生理解数学概念,同时发展抽象概括能力。

2、再次观察旋转的风车强调旋转的三要素问题:仔细观察两个旋转的风车有哪些异同点?师生活动:展示两个旋转方向、旋转角度都不同的风车,抛出问题,学生观察思考,寻找异同点。

设计意图:帮助学生巩固对旋转概念的认识,使学生初步感受决定旋转的三要素的重要性,缺少任何一条都会导致旋转的结果有所不同。

3、观看学生表演,强调图形旋转的三要素的重要性表演:(1)逆时针旋转900;(2)绕着肩关节旋转600;(3)绕着肘关节顺时针旋转。

师生活动:教师提出要求,两名同学表演,其他同学说明为什么表演的结果确不同。

新人教版九年级上册数学《23.1图形的旋转》教案

新人教版九年级上册数学《23.1图形的旋转》教案
c.旋转的运用:解决实际问题,如物体运动、图案设计等;
d.探索旋转对称图形的特点及其性质;
e.学会使用旋转变换工具,如量角器、圆规等。
3.教学目标:
a.理解并掌握旋转的定义及性质;
b.能够运用旋转解决实际问题;
c.培养学生的空间想象能力和动手操作能力。
二、核心素养目标
新人教版九年级上册数学《23.1图形的旋转》核心素养目标:
3.逻辑思维:运用旋转性质进行问题分析,培养学生的逻辑推理能力,使其能够准确、有序地解决问题。
4.数学应用:将旋转知识应用于解决实际问题,提高学生的数学应用能力和创新意识,增强其对数学学科的实际运用价值认识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,ቤተ መጻሕፍቲ ባይዱ天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”(如旋转门、风车等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指在平面上,将一个图形绕着某一点按一定角度进行旋转。它是几何变换中的一种,具有重要的实际应用价值。
2.案例分析:接下来,我们来看一个具体的案例。通过分析旋转门的工作原理,了解图形旋转在实际中的应用,以及它如何帮助我们解决问题。
1.培养学生的空间观念:通过观察、操作、探索,使学生理解旋转的内涵,感知旋转在现实生活中的应用,发展空间想象力;
2.提高学生的几何直观能力:借助旋转变换,培养学生对几何图形的观察、分析、判断及推理能力;
3.增强学生的逻辑思维能力:运用旋转性质解决问题,锻炼学生逻辑思维,提高解决问题的能力;

人教版数学九年级上册图形的旋转教学设计(通用7篇)

人教版数学九年级上册图形的旋转教学设计(通用7篇)

人教版数学九年级上册图形的旋转教学设计(通用7篇)人教版数学九年级上册图形的旋转教学设计(通用7篇)作为一无名无私奉献的教育工作者,常常要写一份优秀的教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。

那么问题来了,教学设计应该怎么写?下面是小编精心整理的人教版数学九年级上册图形的旋转教学设计,希望能够帮助到大家。

数学九年级上册图形的旋转教学设计篇1教学目标:1、通过实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。

2、能在方格纸上将简单图形旋转90°。

教学重难点:能在方格纸上将简单图形旋转90°。

教学器具:多媒体教学系统,卡纸,小三角形,90度扇形。

教学课时:1课时。

教学过程:一、回忆旧知识、导入新课教师:同学们,你们喜欢看大风车这个节目吗?老师带来(风车),你们喜欢玩吗?(教师前后拉动,使得风车依次顺时针,逆时针的旋转)提问:同学们,风车有时向这边转,有时向那边转,这两个方向我们在三年级的时候叫做什么呢?(顺时针方向,逆时针方向)(课件展示顺时针,逆时针旋转的图片)设问:我们看到风车旋转的时候非常漂亮,那如果我们用一些图形来旋转的话,情况又会怎样呢?(图形器材展示出来)这节课我们就来学习:图形的旋转(板书)二、创设情景,进入新课内容在生活中,有各种美丽的图案,但其中有很多图案是由简单的图形经过平移或旋转获得。

今天,老师给同学们带来了一些,请欣赏!(课件展示图片)教师:这些图片有什么特点呢?(由一个图形经过旋转变化而成的)学生:漂亮,正方形,旋转等等。

教师:取出一个大图形,其中的一小部分放在黑板方格子上。

你们看看,这个小图形怎样才可以变成上面的大图形呢?学生:观察,讨论,回答。

教师:进行旋转,逐步展示简单图形经过旋转后形成复杂图案的过程。

当然,每一次的旋转,都要学生说说是什么图形绕着哪一点旋转的?旋转的角度是多少?学生:0点,90度┈┈教师:(课件展示两个图形各形成两个大图形的过程。

人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计

人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计

人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计一. 教材分析人教版九年级数学上册《23.1图形的旋转(第1课时)》这一章节主要介绍了图形的旋转性质及其在实际问题中的应用。

通过本节课的学习,学生能够理解图形旋转的定义,掌握图形旋转的性质,并能够运用旋转性质解决一些实际问题。

本节课的内容是学生进一步学习图形变换的基础,对于培养学生的空间想象能力和解决问题的能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的数学基础,对一些基本的数学概念和运算规则有一定的了解。

但是,对于图形旋转这一概念,学生可能较为陌生,因此需要在教学中给予充分的引导和解释。

此外,学生可能对于实际问题中的应用方面存在一定的困难,因此需要通过具体的例子和练习来帮助学生理解和掌握。

三. 教学目标1.知识与技能目标:学生能够理解图形旋转的定义和性质,并能够运用旋转性质解决一些实际问题。

2.过程与方法目标:通过观察和操作,学生能够培养空间想象能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,对图形变换产生兴趣,并能够自主学习和探索。

四. 教学重难点1.重点:图形旋转的定义和性质。

2.难点:图形旋转在实际问题中的应用。

五. 教学方法1.引导法:通过提问和解释,引导学生思考和探索图形旋转的性质。

2.实例教学法:通过具体的例子和练习,帮助学生理解和掌握图形旋转的应用。

3.小组合作学习:学生分组进行讨论和练习,培养学生的合作和沟通能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示图形旋转的定义和性质,以及一些实际问题的例子。

2.练习题:准备一些与图形旋转相关的练习题,用于巩固学生对知识的理解和应用能力。

3.教学工具:准备一些教具,如图形模板和旋钮,用于直观地展示图形旋转的过程。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾之前学习过的图形成交和平移的知识,为新课的学习做好铺垫。

人教版数学九年级上册23.1《图形的旋转》教学设计

人教版数学九年级上册23.1《图形的旋转》教学设计

人教版数学九年级上册23.1《图形的旋转》教学设计一. 教材分析人教版数学九年级上册23.1《图形的旋转》是本册教材的重要内容,主要让学生理解旋转的性质,学会用旋转来解决实际问题。

本节内容是在学生已经掌握了图形的平移、轴对称等知识的基础上进行学习的,为学生提供了丰富的现实背景和广阔的思考空间。

二. 学情分析九年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于图形的平移、轴对称等知识有了较为深入的理解。

但是,对于图形的旋转,部分学生可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生逐步理解和掌握。

三. 教学目标1.让学生理解旋转的性质,掌握旋转的定义和特点。

2.培养学生用旋转解决实际问题的能力。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.旋转的定义和性质。

2.用旋转解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究旋转的性质。

2.采用实例分析法,让学生通过观察、分析实际问题,理解旋转的应用。

3.采用合作学习法,让学生在小组讨论中,共同解决问题,提高解决问题的能力。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备一些实际问题,用于引导学生用旋转解决。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生观察并思考:什么是旋转?旋转有哪些特点?2.呈现(10分钟)教师通过课件展示旋转的定义和性质,让学生初步理解旋转的概念。

同时,教师可以通过一些实例,如将一个正方形绕某一点旋转90度,让学生观察旋转前后的变化,进一步理解旋转的性质。

3.操练(10分钟)教师提出一些有关旋转的问题,让学生动手操作,如:将一个正方形绕某一点旋转90度,求旋转后的位置。

通过操作,让学生加深对旋转的理解。

4.巩固(10分钟)教师给出一些实际问题,让学生用旋转的知识解决,如:一个木块从平面上的一个点出发,绕某一点旋转,求木块旋转到一定位置时的坐标。

人教版九年级上册23.1图形的旋转课程设计

人教版九年级上册23.1图形的旋转课程设计

人教版九年级上册23.1图形的旋转课程设计一、教学目标1.理解图形的旋转概念,能够准确描述图形的旋转方式和旋转中心;2.掌握图形旋转的基本操作方法,能够进行简单的图形旋转计算和绘制;3.培养学生的空间想象能力,提高几何思维和绘图技能。

二、教学重难点1.确定旋转中心和旋转角度的方法;2.理解旋转对称的性质和应用;3.掌握图形旋转的运用技巧。

三、教学准备1.教师:准备板书、PPT、笔记本电脑、投影仪等教学工具;2.学生:准备学习资料、笔和尺子等绘图工具。

四、教学过程1. 导入环节首先,教师可以通过展示一些生活中常见的旋转图形,引导学生思考图形旋转的概念和意义。

鼓励学生谈一下自己对图形旋转的理解和看法。

2. 讲授基础知识首先,教师介绍旋转的定义和标志,然后引导学生理解旋转对称的性质和应用,比如对称图形的旋转等价于原图形的旋转等。

为了使学生掌握旋转的基本操作方法,教师还应该详细介绍以下概念:•旋转中心:旋转变换的中心点,可以是固定点也可以是动点,通常表示为O。

•旋转角度:旋转变换的角度度数,表示为θ。

•旋转方向:顺时针或逆时针。

3. 练习思考教师可以提供一些有关图形旋转的实例和例题,引导学生通过观察和比较找出旋转中心和旋转角度,然后利用基本公式进行计算和绘图。

例如,给定一个三角形ABC,其中A(1,1),B(4,2),C(3,5),以点C为旋转中心,旋转45度,并画出旋转后的图形。

教师应该鼓励学生自己思考,并引导学生从图形的对称性、长度和角度等方面入手,找出有关旋转的规律,建立直观的概念。

4. 综合实践教师可以设计一些复合型的综合实践题,考查学生灵活运用旋转知识解决实际问题的能力。

如:•已知一个正方形的顶点为A(-2,2),将正方形绕该顶点逆时针旋转90度后,再将图形中心移到距原点3个单位处,求新图形的顶点坐标。

教师可以引导学生通过细致的计算和绘图,逐步推导出问题的解决方法,从而培养学生的独立思考和实际应用能力。

人教版九年级上册23.1图形的旋转教学设计

人教版九年级上册23.1图形的旋转教学设计

人教版九年级上册23.1图形的旋转教学设计1. 教学目标•了解图形的旋转概念与性质。

•掌握图形顺时针、逆时针旋转的方法与规律。

•认识旋转成像及其特点。

2. 教学准备•课件、PPT或黑板。

•图形卡片或手绘图形。

•透明纸、透镜等教具。

3. 教学过程3.1 导入(5分钟)通过展示一些有趣的旋转图片或引入一个旋转问题,引起学生兴趣。

例如,一只青蛙在往哪个方向跳跃?3.2 概念讲解(20分钟)引入向量的旋转概念,解释顺时针旋转与逆时针旋转的概念。

然后,简要介绍一形的旋转,如旋转角度、旋转方向和旋转中心等概念。

通过实际动手操作,使学生可以更好地理解旋转相应的规律和方法。

3.3 讲解重点/难点(30分钟)教师从以下几个方面进行讲解:3.3.1 旋转方法•顺时针/逆时针旋转:将旋转方向作为参照系,右侧的方向为顺时针,左侧的方向为逆时针。

•旋转角度:旋转所转过角度,角度单位为度。

•旋转中心:旋转点会围绕旋转中心旋转,可以是任意一点。

选择不同的旋转中心将会产生不同的旋转结果。

•旋转轴:旋转围绕的轴线,可以是直线,也可以是平面上的任意一条轴线。

3.3.2 旋转规律•相邻两个旋转是可嵌套的,旋转结果将会叠加。

•旋转角度为360度时,图形仍处于原来的位置不变。

•同一条旋转轴旋转不同的角度,结果一定是相似的。

3.4 案例演示与练习(30分钟)引导学生用透明纸实现图形的旋转,让学生自由选择旋转中心、旋转轴和旋转角度,从而掌握图形旋转的方法和规律,或者通过分组为学生分发手绘图形进行实际操作,达到学习旋转成像的目的。

3.5 总结与归纳(15分钟)对本节课学习内容进行总结,并且通过相应的习题练习锻炼学生的思维能力。

4. 课堂作业完成教师分配的习题并对整个过程进行总结。

5. 教学反思本节课的主要内容是图形的旋转,着重从旋转概念、方法、规律以及旋转成像四个方面进行讲解,先通过引入开篇引起学生兴趣;再通过实际动手操作来使学生更好地理解旋转相应的规律和方法;然后对本节课学习内容进行总结,并且通过相应的习题练习锻炼学生的思维能力。

九年级数学上册23.1图形的旋转教案(新版)新人教版

九年级数学上册23.1图形的旋转教案(新版)新人教版
学法指导
自学互帮导学法
教 学 过 程
教学内容
教师活动
学生活动
效果预测(可能出现的问题)
补救措施
修改意见
展示生活中美丽图案
2、观察图案形成过程
出示结果
图片欣赏
再次观察图形形成过程
怎样用圆规画出这个六花瓣图?
随堂练习
小结
作业
出示幻灯片2、3
出示幻灯片4
出示幻灯片5、6
出示幻灯片7-15
出示幻灯片16-17
出示幻灯片18-22
学生欣赏
独立思考,小组讨论
看自己想的与结果是否一样,小组讨论
学生动手操作,小组一起完成
小组成员共同完成
板书设计
参考书目及思
图形的旋转
课 题
23.图形的旋转
课时
2课时
课 型
新授课
修改意见
教学目标
1.通过观察具体实例认识旋转,理解旋转的基本涵义;
2.探索旋转的基本性质;
⒊利用旋转的性质解决数学问题
教学重点
图形的旋转相关概念,及旋转性质。
教学难点
图形旋转的性质。
学情分析
学生已经学习了平移轴、对称这些图形变换的基础知识,也能够简单的运用,但还欠缺对知识的系统化和灵活运用还要进一步加强知识的运用能力。

人教版数学九年级上册图形的旋转教学设计教案

人教版数学九年级上册图形的旋转教学设计教案

课题 23.1 图形的旋转(第1课时)教材:人教版《数学》九年级上册教学目标:一、知识技术:通过观察具体实例熟悉旋转,经历探索,发现旋转的性质.二、数学思考:在发现、探讨的进程中完成对旋转这一图形转变从直观到抽象、从感性熟悉到理论熟悉的转变,发展学生直观想象能力,分析、归纳、抽象归纳的思维能力.3、解决问题:在了解图形旋转的特征,并进一步应用所掌握的这些特征进行旋转转变的学习进程中,让学生从数学的角度熟悉现实生活中的现象,增强数学的应用意识.4、情感态度:学生在经历了实验探讨、知识应用等数学活动中,体验数学的具体、生动、灵活,调动学生学习数学的主动性.教学重点:探索归纳图形旋转的特征,并能按照这些特征作出旋转后的几何图形.教学难点:对图形进行旋转变换教学进程:一、创设情境,导入新课[师]同窗们都见过电扇吧,电扇在接通电源后就不断地转动.像这样,能够转动的物体有很多,下面就请同窗们欣赏老师带来的一组图片并回答问题:以上这些现象有什么一路特点?教师演示课件[我欣赏、我发现]钟表的指针、飞机的螺旋桨、风车的叶片(学生观察、思考、回答问题,一路特点是物体绕定点转动)二、师生互动,探求新知(一)旋转的概念[师]同窗们观察得很仔细,咱们把这样的转动叫做旋转,这节课咱们一路来探讨——图形的旋转(板书课题)[师]在数学中,如何概念旋转呢?哪位同窗能用自己的语言把风车叶片转动的进程描述出来吗?(学生思考、讨论,教师巡视,引导学生归纳出旋转的概念)旋转的概念:在平面内,把一个图形绕着一个定点沿某个方向转动一个角度的图形变换叫做旋转.这个定点叫旋转中心,转动的角叫旋转角.以螺旋桨为例加以解释,并通过几个练习(P63)巩固概念(详见课件)(二)旋转的大体性质[师]通过适才的欣赏,咱们发现了旋转的一路特点.那通过旋转变换后的图形与原图形有什么关系呢?让咱们一路动手实践来探索这个问题吧!教师演示课件[我实践,我探讨]问题:见P63探讨(学生分小组进行数学实验,教师参与到学生当中交流、讨论,并鼓励学生可否找到其余线段,角的相等关系)[生]……[师]适才很多同窗都说出了自己的想法,我想无论结果如何,我和同窗们都超级感激你们,因为我以为:当你把自己的想法暴露给大家的时候,无论是对的仍是错的,你对班级的贡献是一样的.[师]适才咱们通过实践探讨得出的三个结论,就是旋转的大体性质,请同窗们阅读P 63的归纳.三、自主探讨,合作交流 1.请你判断下列一组图形变换属于旋转变换的是( )(学生讨论、交流,老师点评,并适时的对学生进行爱国主义思想教育) 2.请你思考右图可以看做是一个菱形通过 次旋转取得的. 旋转中心是 ,旋转角的度数是 . [发散、拓展思维]上图还可以看做是由图形 通过 次旋转取得的,旋转角的度数是还可以由图形 通过 次旋转取得的,旋转角的度数是A 升国旗过程 (课件演示)BCDO还可以由图形通过次旋转取得的,旋转角的度数是也可以由图形通过次旋转取得的,旋转角的度数是四、应用新知,体验成功(一)按要求作出简单平面图形经旋转变换后的图形.例:如图,在方格纸上作出“小旗子”绕0点按顺时针方向旋转90°后的图案,并简述理由.(学生讨论,老师点评,指出关键是肯定O、A、B、C四个点的对应点,即它们旋转后的位置).[师]这面旗子是结构简单的平面图形,在方格纸上大家能画出它绕定点旋转后的图形,那么在没有方格纸的情况下,可否画出简单平面图形旋转后的图形呢?请同窗们完成下面这道题:P64例(学生独立思考、分析、解答问题.教师应重点关注:①学生在画出图形后,可否准确地运用旋转的大体性质表达出作图的理论依据;②学生中作图的不同方式.)(二)欣赏旋转在现实生活中的应用[师]通过适才的学习,咱们对旋转有了更深刻的理解,下面就让咱们一道去寻觅它在现实生活中的应用吧!教师演示课件[生活中的旋转]水车、辘轳、压水井、电扇、汽车的方向盘、风力发电机.[师]通过咱们的寻觅,旋转在咱们身旁无处不在.无论在农村,仍是城市;无论是在古代,仍是现今社会,旋转为咱们的生活和经济建设发挥了庞大的作用!五、课堂小结,深化目标[师]通过今天的学习,你有什么收获?有何感想?在学生自行归纳总结的基础上,教师从以下几个方面进行点拔: ①知道了旋转的概念. ②明白了旋转的大体性质.③学会了按要求作出简单平面图形旋转后的图形.④肯定学生在课堂中合作交流意识和良好的反思习惯,在此后的学习中要继续发扬.六、布置作业,温习巩固. 一、必做题P 66第1和4题. 二、思考题一天,小明在做剪纸拼图游戏时,无心中,他把如图所示的两个边长都是1的正方形纸片叠在一路,且点E 是正方形ABCD 的中心.他把正方形EFGH 绕着点E 转动,……小明思考这样一个问题:在正方形EFGH 绕点E 转动时,两张纸片的重叠部份面积是不是必然会维持不变呢?你能帮忙小明解答这一问题吗?若以为维持不变,求出它的值;不然,请简要说明理由.BGHGH教学设计说明本节课是九年级上册第二十三章“23.1 图形的旋转”的第一课时.在此之前,学生已经学习了轴对称、平移两种图形变换,对图形变换已具有必然的熟悉,通过本节课的学习,学生对图形变换的熟悉会更完整.美国数学教育家波利亚指出:“学习任何东西,最好的途径是自己去发现”,为了有效地学习,学生应在教师设计的实验情境中,尽可能多地自己去发现学习的知识、方式.所以本节课的教学以观察、分析现实生活中的实例为切入点,以探讨活动为主线设计了一系列的数学活动.让学生通过具体实验熟悉旋转,通过动手进行数学实验探索旋转的大体性质,通过解决实际问题,数学问题掌握旋转变换中对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等、旋转前、后的图形全等的性质.增强学生应用数学的意识.关于例题和练习的安排是依照由易到难、由简到繁的学习心理和熟悉规律进程设计的,便于学生循序渐进地掌握知识.问题的选取都很切近生活,使学生们都有亲切感,都能踊跃参与数学活动,进一步提高学习数学的信心,同时注重培育学生合作交流的意识和良好反思习惯.为了充分发挥学生的主体作用,激发学习的兴趣,教学时均采用动手实践、自主探讨和合作交流的方式,向学生提供充分从事数学活动的机缘,营造良好的课堂气氛,激活学生的思维,帮忙学生熟悉自我,成立信心.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的旋转
唐娟
一、教学目标
(1)了解生活中旋转现象的广泛存在;
(2)掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换;
(3)会找出旋转前后图形中的对应点、对应线段、对应角、旋转中心、旋转角;
(4)理解图形的旋转变换是由旋转中心、旋转角和旋转方向所决定的,探索和发现旋转后图形上的每一点都绕着旋转中心转动了相同的角度,但图形的形状和大小都没有变化;
二、重点与难点
本节课的重点是旋转的有关概念及性质。

难点是概念的形成过程与性质的探究过程。

三.教学过程
(一)创设情景,引入新知
现代教学认为,在正式进行发现过程前要让学生对探索的目标,意义认识得十分明确,并从内心产生巨大的动力,做好探索的物质和精神准备.
情景创设:(用课件显示现实生活中部分物体的旋转现象)
通过这些画面的展示
(1)切身感受到我们身边除了平移、轴对称变换之外,生活中还广泛存在着
转动现象,从而产生对这种变换进一步探究的强烈欲望;
(2)为本节课探究问题作好铺垫。

情景问题:这些情景中的转动现象,有什么共同特征?
(二)探索新知,形成概念
1.建立旋转的概念
(1)试一试,请同学们尝试用自己的语言来描述以下旋转.
观察了上面图形的运动后,引导学生进入本课第一个学习目标:图形旋转的概念;
(本环节学生先独立尝试,再同学之间讨论交流、总结,在此过程中以培养学生的抽象概括能力,同时让学生体会到合作交流的必要性,随后,给出旋转的
定义:)
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角。

重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。

2.应用旋转的概念解决问题:
(本环节教学中,教师及时观察学生的学习情况和学习进度,碰到学生中的普遍性问题,在进行适当的探讨后,利用谈话讨论的形式进行解决。

)
(三)实践操作,再探新知
做一做:
如图,在硬纸板上,挖出一个三角形A’B’C’,再挖一个小洞O作为旋转中心,硬纸板下面放一张白纸。

先在纸上描出这个挖掉的三角形图案(△A’B’C’),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△ABC),移开硬纸板。

问题:请指出旋转中心和各对应点,哪一个角是旋转角?
1.从我们看到的旋转现象以及你所完成的实验中,你认为旋转主要因素是什么?
2.在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?
量一量线段OA与线段OA’的关系怎样,线段OB和OB’,OC和OC’呢?AB与A’B’呢?
3.你能通过度量角的方法得出旋转角度吗?你准备度量哪个角?
(本环节让学生在独立思考的基础上,再进行小组合作交流,利用度量等方法发现规律。

教师提供给学生动态的旋转图形,进行指导并参与讨论交流,而后归纳出旋转的特征。

)
1.旋转前后的图形全等;
2.对应点到旋转中心的距离相等;
3.对应点与旋转中心所连线段的夹角等于旋转角。

(四)巩固新知,形成技能
根据学生的具体情况,遵循“循序渐进”的原则,层层递进,逐步形成技能。

(五)回顾反思,深化提高
利用提问、解说形式,师生共同进行小结。

学生小结:自主小结和交流知识学习的收获,过程经历的感受,数学思想的感悟,学习方法的体会等,或提出疑问进行讨论;
教师小结:帮助学生整理所学知识,引导学生进一步体会探究学习的过程
和方法,领会数学的思想。

(六)分层作业,促进发展
最后布置作业,结合学生的实际水平,为了更好的因材施教,我准备了两部分作业:必做题和探究题。

教学设计说明
我按以下思路设计本课:
以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认知规律。

教学过程突出以下构想:
(1)创设情景,引人入胜
首先播放一组生活中熟悉的体现运动变化的画面,激发学生的求知欲,为新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。

(2)过程凸现,紧扣重点
旋转概念的形成过程及旋转性质得到的过程是本节的重点,所以本节突出概念形成过程和性质探究过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。

同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。

引导学生从运动、变化的角度看问题,向学生渗透辨证唯物主义观点。

(3)动态显现,化难为易
教学活动中有声、有色、有动感的画面,不仅叩开学生思维之门,也打开了他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主动的、轻松愉快的获得新知。

(4)例子展现,多方渗透
为了使抽象的概念具体化,通俗易懂,本节列举了大量生活中的例子,培养学生的发散思维,也增强学生用数学的意识。

相关文档
最新文档