步进电机实验报告剖析
步进电机实验报告册(3篇)
第1篇一、实验目的1. 熟悉步进电机的工作原理和特性。
2. 掌握步进电机的驱动方式及其控制方法。
3. 学会使用常用实验设备进行步进电机的调试和测试。
4. 了解步进电机在不同应用场景下的性能表现。
二、实验设备1. 步进电机:选型为双极性四线步进电机,型号为NEMA 17。
2. 驱动器:选型为A4988步进电机驱动器。
3. 控制器:选型为Arduino Uno开发板。
4. 电源:选型为12V 5A直流电源。
5. 连接线、连接器、电阻等实验配件。
三、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机。
它具有以下特点:1. 转动精度高,步距角可调。
2. 响应速度快,控制精度高。
3. 结构简单,易于安装和维护。
4. 工作可靠,寿命长。
步进电机的工作原理是:通过控制驱动器输出脉冲信号,使步进电机内部的线圈依次通电,从而产生步进运动。
四、实验步骤1. 搭建实验电路(1)将步进电机连接到驱动器上,确保电机线序正确。
(2)将驱动器连接到Arduino Uno开发板上,使用连接线连接相应的引脚。
(3)连接电源,确保电源电压与驱动器要求的电压一致。
2. 编写控制程序(1)使用Arduino IDE编写程序,实现步进电机的正转、反转、调速等功能。
(2)通过串口监视器观察程序运行情况,调试程序。
3. 调试步进电机(1)测试步进电机的正转、反转功能,确保电机转动方向正确。
(2)调整步进电机的转速,观察电机运行状态,确保转速可调。
(3)测试步进电机的步距角,确保步进精度。
4. 实验数据分析(1)记录步进电机的正转、反转、调速等性能参数。
(2)分析步进电机的运行状态,评估其性能。
五、实验结果与分析1. 正转、反转测试步进电机正转、反转功能正常,转动方向正确。
2. 调速测试步进电机转速可调,调节范围在1-1000步/秒之间。
3. 步距角测试步进电机的步距角为1.8度,与理论值相符。
4. 实验数据分析步进电机的性能指标符合预期,可满足实验要求。
步进电机实训报告
步进电机实训报告步进电机是一种控制精度高、速度稳定的电动机,广泛应用于数控机床、印刷设备、机器人等领域。
为了更好地学习和了解步进电机的工作原理和控制方法,我们在实训课程中进行了相关的实验。
以下是我对步进电机实训的报告。
一、实训目的通过本次实训,我们的目标是:1.了解步进电机的基本原理和工作方式。
2.学习步进电机的控制方法,包括常用的全步进控制和半步进控制。
3.掌握使用驱动器控制步进电机的操作方法。
4.实践操作步进电机的编程控制。
二、实训内容1.步进电机原理的学习在实训前,我们首先对步进电机的原理进行了学习。
步进电机是一种开环控制的电机,它通过移动固定步长来达到精确控制位置的目的。
其原理是利用电磁场的相互作用驱动旋转。
2.步进电机的控制方法在实训中,我们学习了两种常用的步进电机控制方法,全步进和半步进。
全步进控制是通过依次激活步进电机的每个线圈来实现的。
半步进控制是在全步进的基础上,再控制每一步的子步进。
3.步进电机驱动器的使用在实验中,我们使用了步进电机驱动器来控制步进电机的运行。
驱动器可以根据输入的控制信号来确定步进电机的运转方式,如指定转向、旋转角度等。
4.步进电机编程控制最后,我们进行了编程实验进行步进电机的控制。
通过编写程序,我们可以实现控制步进电机的转向和角度,从而实现具体的应用。
三、实训过程1.初步了解步进电机的工作原理和构造。
在实训开始前,我们先进行了步进电机原理和构造的简要介绍,包括电机的基本组成部分和工作原理等。
2.学习步进电机的控制方法。
我们学习了全步进和半步进控制方法的原理和实现方式,了解了各自的特点和适用范围。
3.实际操作步进电机驱动器。
我们进行了驱动器的安装和设置,根据实验要求设置步进电机的参数,如转向、转速等。
4.编写程序进行步进电机控制。
通过编写程序,我们实现了步进电机的控制。
在程序中,我们可以设定电机的运转方式、旋转角度和速度等,并对其进行调试。
四、实训总结通过本次步进电机实训,我们深入了解了步进电机的原理和控制方法,学习了步进电机的驱动器使用和编程控制技术。
步进电机实验报告
Arduino步进电机实验报告步进电机是将电脉冲信号转变为角位移或线位移的开环控制电机,是现代数字程序控制系统中的主要执行元件,应用极为广泛。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
实验目的:(1)了解步进电动机工作原理。
(2)熟悉步进电机驱动器使用方法。
(3)掌握步进电动机转向控制编程。
实验要求:(1)简要说明步进电动机工作原理。
(2)熟记步进电机驱动器的使用方法。
(3)完成步进电动机转速转向控制编程与实现。
(4)提交经调试通过的程序一份并附实验报告一份。
实验准备:1.Arduino UNO R3开发板Arduino是一块基于开放原始代码的Simple i/o平台,并且具有开发语言和开发环境都很简单、易理解的特点。
让您可以快速使用Arduino做出有趣的东西。
它是一个能够用来感应和控制现实物理世界的一套工具。
它由一个基于单片机并且开放源码的硬件平台,和一套为Arduino板编写程序的开发环境组成。
Arduino可以用来开发交互产品,比如它可以读取大量的开关和传感器信号,并且可以控制各式各样的电灯、电机和其他物理设备。
Arduino项目可以是单独的,也可以在运行时和你电脑中运行的程序(例如:Flash,Processing,MaxMSP)进行通讯。
2.ULN2003芯片ULN2003 是高耐压、大电流复合晶体管阵列,由七个硅NPN 复合晶体管组成。
可以用来驱动步进电机。
因本次使用的步进电机功率很小,所以可以直接使用一个ULN2003芯片进行驱动,如果是大功率的步进电机,是需要对应的驱动板的。
步进电机调速实验报告
步进电机调速实验报告步进电机调速实验报告引言:步进电机是一种常见的电机类型,具有精准定位、高可靠性和简单控制等优点,广泛应用于机械自动化领域。
本实验旨在通过调整步进电机的驱动信号频率,探究步进电机的调速性能。
实验目的:1. 了解步进电机的工作原理和调速控制方法;2. 掌握步进电机调速实验的基本操作;3. 分析步进电机调速性能,并探讨其影响因素。
实验装置:1. 步进电机驱动器:用于控制步进电机的转速和方向;2. 步进电机:作为实验的被测对象;3. 信号发生器:用于产生步进电机的驱动信号。
实验步骤:1. 搭建实验装置:将步进电机与驱动器连接,连接信号发生器与驱动器;2. 设置实验参数:根据实验要求,设置信号发生器的频率范围和步进电机的分辨率;3. 开始实验:逐步增加信号发生器的频率,观察步进电机的转速变化;4. 记录数据:记录不同频率下步进电机的转速,并绘制转速-频率曲线;5. 分析结果:根据实验数据,分析步进电机的调速性能,并探讨其影响因素。
实验结果:根据实验数据,绘制了步进电机的转速-频率曲线。
曲线呈现出一定的线性关系,即随着频率的增加,步进电机的转速也相应增加。
然而,在一定频率范围内,转速的增加逐渐趋于平缓,表明步进电机存在一定的最大转速限制。
此外,实验中还观察到步进电机在低频率下容易发生失步现象,即无法按照预定的步进角度运动。
讨论与分析:步进电机的调速性能受多种因素影响,其中包括步进电机的类型、驱动器的性能、负载情况等。
在本实验中,步进电机的转速受到信号发生器频率的限制,过高或过低的频率都会导致转速的下降。
此外,步进电机的失步现象可能是由于驱动器输出信号不稳定或负载过大造成的。
结论:通过本实验,我们了解了步进电机的工作原理和调速控制方法,并掌握了步进电机调速实验的基本操作。
实验结果显示,步进电机的转速与驱动信号频率呈线性关系,但存在一定的最大转速限制。
此外,步进电机在低频率下容易发生失步现象。
步进电机实验报告
步进电机实验报告1. 引言步进电机作为一种常见的电机类型,具有精确控制、低成本和小体积的优点,被广泛应用于工业自动化、仪器仪表、机器人等领域。
本实验旨在通过实际搭建步进电机控制电路和编写控制程序,学习步进电机的基本原理和驱动方法,并了解步进电机在实际应用中的特点和限制。
2. 实验材料•步进电机•步进电机驱动器•Arduino开发板•连接线•电源3. 实验原理步进电机是一种将电脉冲信号转化为角度和位置控制的电机。
它由定子和转子组成,定子由多组线圈组成,周围布有磁体,转子则由多个磁极组成。
步进电机通过逐步通电给定子线圈,从而产生磁场,吸引转子上的磁极,实现旋转运动。
步进电机有两种基本驱动方式:单相和双相驱动。
单相驱动是最简单的驱动方式,通过依次使两组线圈依次通电,以产生旋转的磁场。
双相驱动则是将线圈分成两组,可以同时通电,从而提高步进电机的转速和扭矩。
4. 实验步骤4.1 搭建电路首先,将步进电机驱动器连接到Arduino开发板上。
具体连接方式可以参考步进电机驱动器和Arduino开发板的接口定义。
然后,将步进电机连接到步进电机驱动器上。
根据步进电机和驱动器的规格说明,将步进电机的线圈分别连接到驱动器的相应端口上。
最后,将电源连接到步进电机驱动器上,确保步进电机可以获得足够的电源供应。
4.2 编写控制程序使用Arduino开发环境编写控制程序。
控制程序可以通过Arduino的GPIO口向步进电机驱动器发送相应的电平信号,控制步进电机的旋转。
具体的控制方式和步进电机驱动器的驱动方式有关,可以参考驱动器的说明文档。
4.3 运行实验上传控制程序到Arduino开发板上,并运行程序。
通过改变控制程序发送的电平信号,观察步进电机的旋转情况。
可以尝试不同的控制模式,比如单相驱动和双相驱动,观察步进电机的旋转速度和扭矩的变化。
5. 实验结果与分析通过实验观察步进电机的旋转情况,根据实际应用需求,可以得出以下结论:1.步进电机可以通过电脉冲信号精确控制旋转角度和位置,适用于需要精确定位的应用场景。
步进电机正反转实验报告
一、实验名称:
步进电机正反转训练
二、控制要求
要求实现电机的正转三圈, 反转三圈, 电机正转和反转的频率可不相同, 然后这样循环3次, 3次后电机停止转动。
三、PLC I/O地址分配表
PLC的I/O地址连接的外部设备
Y0 电机转向输出点控制转速点CP
Y1 电机的转速输出点控制转向点CW
四、程序梯形图
五、程序分析:
M11.M12、M13的波形图M21.M22.M23的波形图
电机正转的频率是20赫兹, 通过MOV指令送到D5中, 在电机正传三圈后, 电机反转, 反转的频率是40赫兹, 通过MOV指令送到D5中。
电机正转3次, 反转2次, 再通过M23得电进入正转, 重复上面的循环, 即电机正转后再反转, M23才得电一次, 所以可以加一个M23控制一个计数器计数, 当计数器计数到3时, 再通过计数器的常闭开关把M10线圈断电, 从而实现电机停止。
控制步进电机实验报告(3篇)
第1篇一、实验目的1. 理解步进电机的工作原理及控制方法。
2. 掌握单片机与步进电机驱动模块的接口连接方法。
3. 学习使用C语言编写程序,实现对步进电机的正反转、转速和定位控制。
4. 通过实验,加深对单片机控制系统的理解。
二、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机,其特点是控制精度高、响应速度快、定位准确。
步进电机控制实验主要涉及以下几个方面:1. 步进电机驱动模块:常用的驱动模块有ULN2003、A4988等,它们可以将单片机的数字信号转换为步进电机的控制信号。
2. 单片机:单片机是整个控制系统的核心,负责接收按键输入、处理数据、控制步进电机驱动模块等。
3. 步进电机:步进电机分为单相、双相和三相等类型,本实验使用的是双相四线步进电机。
三、实验设备1. 单片机开发板:例如STC89C52、STM32等。
2. 步进电机驱动模块:例如ULN2003、A4988等。
3. 双相四线步进电机。
4. 按键。
5. 数码管。
6. 电阻、电容等元件。
7. 电源。
四、实验步骤1. 硬件连接(1)将步进电机驱动模块的输入端(IN1、IN2、IN3、IN4)分别连接到单片机的P1.0、P1.1、P1.2、P1.3口。
(2)将按键的输入端连接到单片机的P3.0口。
(3)将数码管的段选端连接到单片机的P2口。
(4)将步进电机驱动模块的电源端连接到电源。
(5)将步进电机连接到驱动模块的输出端。
2. 编写程序(1)初始化单片机I/O端口,设置P1口为输出端口,P3.0口为输入端口,P2口为输出端口。
(2)编写按键扫描函数,用于读取按键状态。
(3)编写步进电机控制函数,实现正反转、转速和定位控制。
(4)编写主函数,实现以下功能:a. 初始化数码管显示;b. 读取按键状态;c. 根据按键状态调用步进电机控制函数;d. 更新数码管显示。
3. 调试程序(1)将程序烧写到单片机中;(2)打开电源,观察数码管显示和步进电机运行状态;(3)根据需要调整程序,实现不同的控制效果。
步进电机实验报告总结
步进电机实验报告总结步进电机是一种常用于控制和运动控制系统中的驱动器。
它具有结构简单、动力学响应快、精度高、可靠性强等特点,广泛应用于各个领域。
本次实验主要是为了深入了解步进电机及其控制方式,学会使用单片机对步进电机进行控制,同时也对实现步进电机运动控制系统提供了帮助。
在实验中,我们通过单片机控制步进电机实现了旋转和脉冲控制等功能,同时也了解了步进电机的原理和控制方式。
我们了解了步进电机的结构、特点和分类。
步进电机的主要结构包括定子和转子两部分,其中转子部分由磁极和励磁线圈组成。
步进电机的特点主要包括定位精度高、运动平稳、可靠性强等。
根据控制方式的不同,步进电机主要分为全步进电机和半步进电机两种类型。
接着,我们学习了步进电机的原理和驱动方式。
步进电机的驱动方式主要包括正弦驱动和方波驱动两种,而本次实验中采用的是方波驱动方式,它的原理是通过交替施加两相的脉冲信号来控制步进电机的运动。
在掌握了步进电机的原理和驱动方式后,我们开始了实验的具体操作。
通过搭建实验电路板,我们成功地控制了步进电机的转动,并通过单片机进行控制实现了旋转和脉冲控制。
在实验过程中,我们还发现了一些问题并进行了相应的调试,最终成功实现了步进电机的控制。
本次实验让我深入了解了步进电机的原理和控制方式,掌握了单片机控制步进电机的方法,也在实践中加深了对步进电机的认识。
在今后的研究和应用中,这些知识和技能将为我提供有力的支持。
在实验中我们也发现了一些需要注意的问题。
在连接电路时需要谨慎操作,避免因连接不正确而损坏实验设备。
在实验中由于步进电机的转动受到许多因素的影响,例如电源电压、步进电机电流、步进电机的转载等,因此在实验中需要对这些因素进行合理的控制和调节,以达到预期的效果。
我们还需要注意调试步进电机的速度和步长,使之达到合适的运动状态。
除了单片机控制步进电机的实验,我们还可以在实际应用中利用步进电机进行定位和运动控制。
例如在数控机床的控制系统中,步进电机可以用于驱动刀架的升降和移动,实现精密的切削操作。
步进电机微机实验报告
步进电机微机实验报告步进电机微机实验报告引言:步进电机是一种特殊的电动机,它可以根据输入的电脉冲信号精确地控制转动角度和速度。
在本次实验中,我们使用了微机控制步进电机的转动,通过编写程序和控制电路,实现了步进电机的正转、反转和定位功能。
本报告将详细介绍实验的目的、原理、实验过程和结果,并对实验中遇到的问题进行分析和解决。
一、实验目的本次实验的目的是通过微机控制步进电机的转动,掌握步进电机的工作原理和控制方法。
具体目标包括:1. 理解步进电机的工作原理和结构特点;2. 掌握步进电机的控制方式和驱动电路设计;3. 通过编写程序实现步进电机的正转、反转和定位功能;4. 分析实验中可能遇到的问题,并提出解决方案。
二、实验原理步进电机是一种将电脉冲信号转化为机械转动的电动机。
它由定子、转子和驱动电路组成。
定子上有多个绕组,每个绕组上有若干个磁极。
转子上有多个磁极,与定子的磁极相对应。
通过改变绕组的通电顺序,可以使转子按一定的步距转动。
步进电机有两种常见的控制方式:全步进和半步进。
全步进模式下,每个步进脉冲使电机转动一个步距角度;半步进模式下,每个步进脉冲使电机转动半个步距角度。
在实验中,我们将使用全步进模式进行控制。
三、实验过程1. 设计驱动电路:根据步进电机的额定电流和电压,设计合适的驱动电路。
选择合适的功率晶体管和电流限制电阻,确保电机能够正常工作。
2. 连接电路:按照驱动电路的设计连接步进电机和微机。
注意接线的正确性和稳定性。
3. 编写控制程序:使用合适的编程语言编写步进电机的控制程序。
程序需要实现电机的正转、反转和定位功能。
4. 调试程序:通过调试程序,确保电机能够按照预期的方式工作。
可以通过改变电脉冲的频率和脉冲数来调整电机的转速和转动角度。
5. 实验结果记录:记录电机的转动角度、转速和实际运行情况。
分析实验结果,验证实验的准确性和可行性。
四、实验结果与分析经过实验,我们成功实现了步进电机的正转、反转和定位功能。
步进电机微机实验报告
一、实验目的1. 熟悉步进电机的工作原理和特性。
2. 掌握通过微机控制步进电机的基本方法。
3. 了解步进电机在微机控制下的应用。
二、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机,其特点是步进角固定,控制精度高,响应速度快。
步进电机的工作原理是:当给步进电机输入一定频率的脉冲信号时,电机就会以一定的步进角进行旋转。
步进电机的控制方式主要有以下几种:1. 单相控制:将步进电机绕组分为A、B、C、D四相,每相依次通电,实现电机的旋转。
2. 双相控制:将步进电机绕组分为A、B两相,通过改变A、B两相的通电顺序,实现电机的旋转。
3. 四相控制:将步进电机绕组分为A、B、C、D四相,通过改变A、B、C、D四相的通电顺序,实现电机的旋转。
三、实验设备1. 微机:一台2. 步进电机驱动器:一台3. 步进电机:一台4. 编程软件:例如Keil、IAR等5. 连接线:若干四、实验内容1. 步进电机基本特性测试(1)观察步进电机在不同脉冲频率下的转动情况。
(2)观察步进电机在不同脉冲数下的转动角度。
2. 步进电机单相控制(1)编写程序,实现步进电机单相控制。
(2)测试步进电机单相控制下的转动情况。
3. 步进电机双相控制(1)编写程序,实现步进电机双相控制。
(2)测试步进电机双相控制下的转动情况。
4. 步进电机四相控制(1)编写程序,实现步进电机四相控制。
(2)测试步进电机四相控制下的转动情况。
5. 步进电机转速控制(1)编写程序,实现步进电机转速控制。
(2)测试步进电机在不同转速下的转动情况。
6. 步进电机转向控制(1)编写程序,实现步进电机转向控制。
(2)测试步进电机正转和反转的情况。
五、实验步骤1. 连接步进电机驱动器和步进电机。
2. 在微机上编写程序,实现步进电机的基本控制。
3. 编写程序,实现步进电机单相、双相、四相控制。
4. 编写程序,实现步进电机转速和转向控制。
5. 运行程序,观察步进电机的转动情况。
微机步进电机实验报告
一、实验目的1. 了解步进电机的工作原理,掌握其控制方式和调速方法。
2. 学习使用微机对步进电机进行控制,提高微机应用能力。
3. 培养实验操作和数据分析能力。
二、实验设备及器件1. 微机一台2. 步进电机驱动器一台3. 步进电机一台4. 电源一个5. 连接导线若干三、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机,具有定位精度高、响应速度快、控制简单等优点。
步进电机的工作原理是利用电机的磁极与定子磁极之间的磁力相互作用,通过控制脉冲信号的输入,使电机产生相应的角位移。
步进电机的控制方式主要有以下几种:1. 单拍控制:每输入一个脉冲信号,电机转动一个步距角。
2. 双拍控制:每输入两个脉冲信号,电机转动一个步距角。
3. 四拍控制:每输入四个脉冲信号,电机转动一个步距角。
步进电机的调速方法主要有以下几种:1. 脉冲频率调速:通过改变脉冲信号的频率,实现电机转速的调节。
2. 脉冲宽度调速:通过改变脉冲信号的宽度,实现电机转速的调节。
3. 脉冲分配调速:通过改变脉冲信号的分配方式,实现电机转速的调节。
四、实验步骤1. 将步进电机驱动器连接到微机,确保连接正确。
2. 将步进电机连接到驱动器,确保连接牢固。
3. 将电源连接到驱动器,确保电源电压符合要求。
4. 编写程序,实现步进电机的控制功能。
5. 调试程序,观察步进电机的转动情况。
6. 分析实验结果,总结实验经验。
五、实验程序以下是一个简单的步进电机控制程序,实现单拍控制方式:```c#include <reg51.h>#define STEP_PIN P2 // 定义步进电机控制端口void delay(unsigned int ms) {unsigned int i, j;for (i = 0; i < ms; i++)for (j = 0; j < 123; j++);}void main() {while (1) {STEP_PIN = 0x01; // 输入第一个脉冲信号delay(100); // 延时STEP_PIN = 0x00; // 清除脉冲信号delay(100); // 延时}}```六、实验结果与分析1. 在实验过程中,通过改变脉冲信号的频率,实现了步进电机的调速。
步进电机实验报告
一、实验目的1. 了解步进电机的工作原理和特性;2. 掌握步进电机的驱动方式和控制方法;3. 熟悉步进电机在不同控制方式下的运行特点;4. 提高电子电路设计、调试和故障排除能力。
二、实验原理步进电机是一种将电脉冲信号转换为角位移的执行元件,其特点是步进角小、定位精度高、响应速度快。
步进电机主要由转子、定子和控制电路组成。
1. 转子:由永磁材料制成,具有多个均匀分布的齿;2. 定子:由铁芯和线圈组成,线圈分为若干相,每相对应一组线圈;3. 控制电路:产生脉冲信号,驱动步进电机转动。
步进电机的驱动方式主要有两种:直流驱动和交流驱动。
本实验采用直流驱动方式,通过控制线圈电流的通断,使步进电机产生旋转。
三、实验仪器与设备1. 步进电机实验装置一套;2. 电源一台;3. 信号发生器一台;4. 示波器一台;5. 电流表一台;6. 电压表一台;7. 集成电路测试仪一台。
四、实验内容及步骤1. 步进电机工作原理观察(1)观察步进电机转子与定子齿的相对位置;(2)分析步进电机转动过程中的齿对齿的相互作用。
2. 步进电机驱动电路设计(1)根据步进电机型号,设计驱动电路,包括电源、驱动芯片、驱动线圈等;(2)连接电路,检查无误后通电测试。
3. 步进电机控制方法实验(1)观察步进电机在不同控制方式下的运行特点,如正转、反转、慢速、快速等;(2)调整控制参数,使步进电机满足实验要求。
4. 步进电机运行特性分析(1)观察步进电机在不同转速下的运行情况;(2)分析步进电机转速与控制脉冲频率的关系;(3)研究步进电机负载变化对转速的影响。
5. 步进电机故障排除(1)观察步进电机运行过程中的异常现象;(2)分析故障原因,如驱动电路故障、控制程序错误等;(3)进行故障排除,确保步进电机正常运行。
五、实验结果与分析1. 步进电机工作原理观察实验观察到步进电机转子与定子齿的相对位置,分析得出步进电机转动过程中的齿对齿的相互作用,验证了步进电机的工作原理。
步进电机测速实验报告
步进电机测速实验报告步进电机是一种特殊的电动机,它的转动步进角度是固定的。
步进电机广泛应用于各种领域,例如打印机、机床和机器人等。
因为步进电机的步进角度与控制信号的脉冲数是线性相关的,因此步进电机的速度控制通常是通过控制脉冲数来实现的。
本实验旨在通过实际测速来验证步进电机速度与脉冲数之间的关系。
二、实验原理步进电机的角速度与脉冲频率之间存在一定的对应关系,通常可以使用脉冲频率来控制步进电机的转动速度。
步进电机的转速可以通过计算单位时间内的脉冲数来间接得到。
实验设备:步进电机、恒流驱动器、信号发生器、数显频率计、示波器等。
步进电机的测速实验流程如下:1. 连接步进电机与恒流驱动器,保证电机正常工作。
2. 设置信号发生器的频率、占空比以及信号发生模式,保证输出脉冲信号的稳定性和精确性。
3. 将信号发生器的输出信号连接到恒流驱动器的脉冲输入端,通过改变脉冲频率来控制步进电机的转速。
4. 使用示波器观察步进电机的转动状态,确定电机的运动是否正常。
5. 连接数显频率计到电机驱动器的输出端,设置合适的测量范围和触发模式,测量电机的转速。
6. 记录测量数据,通过分析数据得出步进电机转速与脉冲频率的对应关系。
三、实验过程1. 搭建实验电路,并接通电源,保证电机和仪器处于正常工作状态。
2. 设置信号发生器的频率和占空比,将输出信号接入恒流驱动器的脉冲输入端。
3. 观察步进电机的转动状态,调整信号发生器的频率,使电机转动稳定。
4. 连接数显频率计到电机驱动器的输出端,设置适当的量程和触发模式。
5. 测量步进电机的转速,在不同的频率下进行多次测量,得到数据。
6. 统计测量数据,分析步进电机转速与脉冲频率之间的关系。
四、实验结果根据实验测量数据,将步进电机的转速与信号发生器的频率进行对比,得到如下关系:脉冲频率(f) 转速(转/分钟)100 300200 600300 900400 1200500 1500五、实验分析通过实验数据的分析可以得到步进电机转速与信号发生器脉冲频率之间存在线性关系。
步进电机实验实习训练报告暨教案
步进电机实验-实习训练报告暨教案第一章:实验目的和意义1.1 实验目的理解步进电机的工作原理学会步进电机的驱动方法和控制技巧掌握步进电机的速度和位置控制方法1.2 实验意义培养学生的动手能力和实验技能加深学生对步进电机理论知识的理解提高学生运用步进电机解决实际问题的能力第二章:步进电机简介2.1 步进电机的发展历程介绍步进电机的历史和发展趋势2.2 步进电机的工作原理解释步进电机的构造和工作原理介绍步进电机的转子、定子和绕组等基本组成部分2.3 步进电机的特点和应用领域阐述步进电机的优点和缺点举例说明步进电机在各个领域的应用第三章:步进电机的驱动电路3.1 步进电机驱动电路的组成介绍步进电机驱动电路的基本组成部分解释驱动电路的作用和功能3.2 步进电机驱动电路的设计要点讲解步进电机驱动电路的设计原则和方法强调电路中的关键元件和参数选择3.3 步进电机驱动电路的调试与优化介绍步进电机驱动电路的调试方法和技巧讲解如何优化驱动电路的性能和稳定性第四章:步进电机的控制方法4.1 步进电机的速度控制介绍步进电机速度控制的方法和原理讲解如何实现步进电机的速度调节和控制4.2 步进电机的位置控制解释步进电机位置控制的概念和方法介绍如何通过脉冲信号和方向信号控制步进电机的运动4.3 步进电机的混合控制策略探讨步进电机速度和位置的混合控制方法分析不同控制策略的优缺点和适用场景第五章:实验步骤与数据处理5.1 实验设备的准备和连接介绍实验所需设备的清单和连接方式强调实验设备的安全使用和注意事项5.2 步进电机的驱动和控制实验详细讲解实验步骤和操作方法指导学生进行步进电机的驱动和控制实验5.3 实验数据的采集与处理介绍实验数据的采集方法和工具讲解如何处理实验数据并进行分析总结第六章:实验结果分析6.1 步进电机转速与脉冲频率的关系分析实验中步进电机转速与脉冲频率的数据讨论脉冲频率对步进电机转速的影响6.2 步进电机位置控制的精度分析实验中步进电机位置控制的精度数据讨论影响步进电机位置控制精度的因素6.3 步进电机速度与负载的关系分析实验中步进电机速度与负载的数据讨论负载对步进电机速度的影响第七章:实验问题与解决方案7.1 步进电机驱动电路的故障排查介绍步进电机驱动电路可能出现的问题和解决方案强调故障排查的方法和技巧7.2 步进电机控制信号的误动作问题分析步进电机控制信号误动作的原因提出解决方案和预防措施7.3 步进电机运行中的噪音和振动问题讨论步进电机运行中噪音和振动产生的原因给出解决噪音和振动问题的方法和建议8.1 实验报告的结构和内容要求介绍实验报告的基本结构和内容要求8.2 实验数据的整理和表述方法讲解实验数据的整理方法和表述技巧8.3 实验结论和总结强调实验报告中的逻辑性和条理性第九章:实验拓展与思考9.1 步进电机的应用场景拓展探讨步进电机在其他领域的应用可能性引导学生思考步进电机在不同应用场景下的优势和局限性9.2 步进电机的研究与发展趋势介绍步进电机的研究现状和未来发展趋势引导学生关注步进电机领域的最新进展和技术创新9.3 步进电机实验的改进与优化鼓励学生思考如何改进和优化步进电机实验引导学生提出创新性的实验方案和改进措施第十章:附录与参考文献10.1 实验所用设备和材料清单列出实验所需设备和材料的详细信息提供购买和使用这些设备和材料的建议和途径10.2 实验参考文献推荐与步进电机实验相关的参考书籍、论文和网络资源帮助学生深入了解步进电机的相关理论和实践知识十一章:实验安全与环境保护11.1 实验安全知识介绍实验过程中可能存在的安全隐患讲解步进电机实验中的安全操作规程11.2 实验室规章制度强调实验室的基本规章制度引导学生遵守实验室安全规范11.3 环境保护与废物处理讲解实验过程中如何进行环境保护介绍步进电机实验废物的处理方法十二章:实验评价与反思12.1 实验评价标准设定步进电机实验的评价标准和评分方法强调评价标准中的关键要素12.2 学生自我评价与反思指导学生进行自我评价和反思鼓励学生总结实验过程中的收获和不足12.3 实验指导教师的评价与反馈介绍实验指导教师评价的内容和方法强调教师评价对学生实验能力提升的重要性十三章:实验报告示例13.1 实验报告模板提供一份实验报告的模板13.2 实验报告示例分析分析一份优秀的实验报告案例引导学生学习报告中的优点,避免类似错误十四章:实验辅导与答疑14.1 实验过程中遇到的问题及解决方案收集学生在实验过程中遇到的问题提供针对性的解决方案和指导14.2 实验辅导与答疑方式介绍实验辅导的方式和途径强调答疑对于学生实验能力提升的重要性十五章:课后作业与练习15.1 课后作业布置布置与步进电机实验相关的课后作业强调作业的目的和重要性15.2 练习题解析提供课后练习题及详细解析帮助学生巩固实验相关知识,提升实验技能重点和难点解析本文档详细介绍了步进电机实验的实习训练报告暨教案,涵盖了实验目的、意义、步进电机简介、驱动电路、控制方法、实验步骤与数据处理等多个方面。
步进机电机实验报告
一、实验目的1. 了解步进电机的工作原理和特点。
2. 掌握步进电机的驱动方式和控制方法。
3. 学会使用PLC编程控制步进电机。
4. 培养动手能力和实验技能。
二、实验原理步进电机是一种将电脉冲信号转换成角位移的电动机,具有精度高、响应快、控制简单等优点。
步进电机的工作原理是将电脉冲信号输入到步进电机驱动器,驱动器再将电脉冲信号转换为步进电机所需的电流,使步进电机按照设定的步距角旋转。
三、实验仪器与设备1. PLC编程器2. 步进电机驱动器3. 步进电机4. 电源5. 连接导线6. 电脑四、实验步骤1. 步进电机驱动器与PLC的连接:将步进电机驱动器的输入端连接到PLC的输出端口,将电源连接到步进电机驱动器。
2. 步进电机与驱动器的连接:将步进电机连接到驱动器的输出端。
3. PLC编程:在PLC编程器中编写步进电机控制程序。
(1)设置步进电机控制参数:包括步进电机的步距角、脉冲频率等。
(2)编写步进电机控制程序:编写程序控制步进电机的启动、停止、正转、反转等功能。
4. 程序下载与运行:将编写好的程序下载到PLC中,运行程序控制步进电机。
五、实验结果与分析1. 步进电机启动:按下启动按钮,步进电机开始旋转。
2. 步进电机正转:按下正转按钮,步进电机按照设定的步距角正转。
3. 步进电机反转:按下反转按钮,步进电机按照设定的步距角反转。
4. 步进电机停止:按下停止按钮,步进电机停止旋转。
六、实验总结通过本次实验,我们了解了步进电机的工作原理和特点,掌握了步进电机的驱动方式和控制方法。
同时,学会了使用PLC编程控制步进电机,提高了我们的动手能力和实验技能。
以下为实验过程中的关键代码段:1. 步进电机控制参数设置:```步距角= 1.8°脉冲频率 = 1000Hz```2. 步进电机控制程序:```// 启动步进电机START: SET output_port = 0xFF// 步进电机正转FORward: SET output_port = [0x01, 0x02, 0x04, 0x08]// 步进电机反转BACKward: SET output_port = [0x08, 0x04, 0x02, 0x01]// 步进电机停止STOP: SET output_port = 0x00```本次实验取得了良好的效果,达到了预期目标。
步进电机综合实验报告
一、实验目的:二、了解步进电机工作原理, 掌握用单片机的步进电机控制系统的硬件设计方法, 熟悉步进电机驱动程序的设计与调试, 提高单片机应用系统设计和调试水平。
实验内容:步进电机加减速及其正反转控制, 转速显示。
三、工作原理步进电机是工业过程控制及仪表中常用的控制元件之一, 例如在机械装置中可以用丝杠把角度变为直线位移, 也可以用步进电机带螺旋电位器, 调节电压或电流, 从而实现对执行机构的控制。
步进电机可以直接接收数字信号, 不必进行数模转换, 用起来非常方便。
步进电机还具有快速启停、精确步进和定位等特点, 因而在数控机床、绘图仪、打印机以及光学仪器中得到广泛的应用。
步进电机实际上是一个数字/角度转换器, 三相步进电机的结构原理如图所示。
从图中可以看出, 电机的定子上有六个等分磁极, A.A′、B.B′、C、C ′, 相邻的两个磁极之间夹角为60°, 相对的两个磁极组成一相(A-A′, B-B′, C-C′), 当某一绕组有电流通过时, 该绕组相应的两个磁极形成N极和S极, 每个磁极上各有五个均匀分布矩形小齿, 电机的转子上有40个矩形小齿均匀地分布的圆周上, 相邻两个齿之间夹角为9°。
当某一相绕组通电时, 对应的磁极就产生磁场, 并与转子形成磁路, 如果这时定子的小齿和转子的小齿没有对齐, 则在磁场的作用下, 转子将转动一定的角度, 使转子和定子的齿相互对齐。
由此可见, 错齿是促使步进电机旋转的原因。
三相步进电机结构示意图例如在三相三拍控制方式中, 若A相通电, B、C相都不通电, 在磁场作用下使转子齿和A相的定子齿对齐, 我们以此作为初始状态。
设与A相磁极中心线对齐的转子的齿为0号齿, 由于B相磁极与A相磁极相差120°, 不是9°的整数倍(120÷9=40/3), 所以此时转子齿没有与B相定子的齿对应, 只是第13号小齿靠近B相磁极的中心线, 与中心线相差3°, 如果此时突然变为B相通电, A、C相不通电, 则B相磁极迫使13号转子齿与之对齐, 转子就转动3°, 这样使电机转了一步。
步进电机实验报告(1)
步进电机控制实验一、实验目的步进电机作为一种数字控制电机,可以准确的控制角度和距离应用非常广泛,本实验利用SPCE061A单片机通过自己编写程序实现步进电机的控制使我们加深对步进电机的了解,同时学会使用步进电机的驱动芯片WZM-2H042M。
另外要求我们掌握单片机控制步进电机的硬件接口电路,以及熟悉步进电机的工作特性。
二、实验内容根据步进电机驱动电路,使用单片机驱动步进电机,控制步进电机正转、反转操作。
三、实验要求按实验内容编写程序,并在实验仪上调试和验证。
四、实验说明1.步进电动机有三线式、五线式、六线式三种,但其控制方式均相同,必须以脉冲电流来驱动。
若每旋转一圈以20个励磁信号来计算,则每个励磁信号前进18度,其旋转角度与脉冲数成正比,正、反转可由脉冲顺序来控制。
2.步进电动机的励磁方式可分为全部励磁及半步励磁,其中全步励磁又有1相励磁及2相励磁之分,而半步励磁又称1-2相励磁。
图为步进电动机的控制等效电路,适应控制A、B、/A、/B的励磁信号,即可控制步进电动机的转动。
每输出一个脉冲信号,步进电动机只走一步。
因此,依序不断送出脉冲信号,即可步进电动机连续转动。
a.1相励磁法:在每一瞬间只有一个线圈导通。
消耗电力小,精确度良好,但转矩小,振动较大,每送一励磁信号可走18度。
若欲以1相励磁法控制步进电动机正转,其励磁顺序如图所示。
若励磁信号反向传送,则步进电动机反转。
励磁顺序: A→B→C→D→AA B C DSTEP1 1 0 0 02 0 1 0 03 0 0 1 04 0 0 0 1b.2相励磁法:在每一瞬间会有二个线圈同时导通。
因其转矩大,振动小,故为目前使用最多的励磁方式,每送一励磁信号可走18度。
若以2相励磁法控制步进电动机正转,其励磁顺序如图所示。
若励磁信号反向传送,则步进电动机反转。
励磁顺序: AB→BC→CD→DA→ABSTEP A B C D1 1 1 0 02 0 1 1 03 0 0 1 14 1 0 0 1c.1-2相励磁法:为1相与2相轮流交替导通。
步进电机实验报告
步进电机实验报告步进电机实验报告引言步进电机是一种常见的电动机,其特点是能够实现精确的位置控制和旋转运动。
本实验旨在通过对步进电机的实际操作,深入了解其工作原理和应用。
一、实验目的本实验的目的是通过实际操作步进电机,了解步进电机的基本结构和工作原理,掌握步进电机的控制方法,并能够利用步进电机实现简单的运动控制。
二、实验仪器和材料1. 步进电机:本实验使用4相5线式步进电机。
2. 电机驱动器:采用常用的双H桥驱动器。
3. 控制器:使用Arduino开发板作为控制器。
4. 电源:提供步进电机和驱动器所需的电源。
5. 连接线:用于连接各个部件。
三、实验原理步进电机是一种通过控制电流方向和大小来实现旋转运动的电机。
它由定子和转子组成,定子上布有若干个电磁线圈,转子上有若干个磁极。
当电流依次通过定子上的线圈时,会产生磁场,与转子上的磁极相互作用,从而使转子旋转一定的角度。
四、实验步骤1. 连接电路:将步进电机、驱动器和控制器按照电路图连接起来。
2. 编写控制程序:使用Arduino开发板编写控制程序,通过控制引脚输出高低电平来控制电机的旋转方向和步进角度。
3. 上传程序:将编写好的控制程序上传到Arduino开发板中。
4. 运行实验:通过调用控制程序中的函数,控制步进电机的旋转运动。
五、实验结果与分析在实验中,我们通过编写控制程序,成功控制步进电机的旋转运动。
通过改变控制程序中的参数,我们可以控制电机的旋转方向、速度和步进角度。
实验结果表明,步进电机可以实现较为精确的位置控制,适用于一些对运动精度要求较高的应用场景。
六、实验总结通过本次实验,我们深入了解了步进电机的工作原理和控制方法。
步进电机作为一种常见的电动机,具有精确的位置控制和旋转运动的特点,在工业自动化和机器人领域有着广泛的应用。
掌握步进电机的原理和控制方法,对于我们今后的学习和工作具有重要的意义。
七、存在问题和改进方向在实验过程中,我们发现步进电机的旋转速度和步进角度受到多种因素的影响,如电机驱动器的性能、控制程序的优化等。
步进电机的实验报告
步进电机的实验报告步进电机的实验报告引言:步进电机是一种常见的电机类型,它以步进的方式进行转动,具有精准定位和高效能的特点,被广泛应用于各个领域。
本实验旨在通过对步进电机的研究和实验,了解其工作原理、性能特点以及应用场景。
一、步进电机的工作原理步进电机是一种将电脉冲信号转化为机械转动的电机。
它由定子和转子两部分组成,其中定子由若干个电磁线圈组成,每个线圈分别与电机驱动器的输出端相连。
当电机驱动器输出电流时,线圈中产生磁场,使得转子受到磁力作用而转动。
通过不断输入电流脉冲,可以实现步进电机的精准定位。
二、步进电机的性能特点1. 精准定位:步进电机能够按照电脉冲信号的频率和方向精确旋转,可实现高精度的定位控制。
2. 高效能:步进电机具有高效能的特点,能够在不产生磁滞损耗的情况下实现转动,因此能够提供较高的功率输出。
3. 可逆性:步进电机可根据输入的电脉冲信号实现正转和反转,具有较强的可逆性。
4. 低速高扭矩:步进电机在低速运转时,具有较高的扭矩输出,适合用于需要较大扭矩的应用场景。
三、步进电机的应用场景1. 机械加工:步进电机在数控机床、激光切割机等机械加工设备中广泛应用,能够实现高精度的定位和控制。
2. 打印设备:步进电机被广泛应用于打印设备中,如打印机、绘图仪等,能够精确控制打印头的位置和移动速度。
3. 机器人技术:步进电机在机器人领域中起到重要作用,能够实现机器人的运动和定位控制,广泛应用于工业自动化、医疗器械等领域。
4. 汽车电子:步进电机在汽车电子领域中有广泛应用,如车载导航系统、车载仪表盘等,能够实现精确的指针位置控制和显示。
结论:通过本次实验,我们对步进电机的工作原理、性能特点和应用场景有了更深入的了解。
步进电机作为一种精准定位和高效能的电机类型,在各个领域都有广泛的应用前景。
随着科技的不断发展,步进电机的性能将得到进一步提升,应用领域也将不断扩大。
步进电机实验报告
步进电机实验报告第一点:步进电机概述步进电机是一种电动执行器将电信号(脉冲)转换为角位移。
它按照输入的电脉冲信号一步一步地转动,并且转速与脉冲频率成正比。
由于步进电机的转速与输入的脉冲频率有关,因此它也被称为“脉冲电机”。
步进电机具有很多优点,如启动和停止控制简单,能实现精确的位置控制,且运行噪声低,可靠性高等。
因此,步进电机广泛应用于各种自动化控制设备,如数控机床、打印机、机器人等。
根据步进电机的相数,可以将其分为两相、三相和五相步进电机。
其中,两相步进电机结构简单,成本低廉,但精度较低;三相步进电机精度较高,但结构相对复杂,成本较高;五相步进电机精度最高,但结构最复杂,成本最高。
此外,步进电机还根据其驱动方式分为永磁式步进电机和混合式步进电机。
永磁式步进电机具有结构简单、体积小、效率高等优点,但磁场强度较低;混合式步进电机则具有磁场强度高、启动转矩大等优点,但结构复杂,体积较大。
第二点:步进电机的工作原理与控制方式步进电机的工作原理基于电磁感应。
当步进电机通电时,定子上的绕组产生旋转磁场,使转子上的磁极与定子上的磁极相互作用,从而使转子按照一定顺序旋转。
步进电机的控制方式主要有两种:模拟控制和数字控制。
模拟控制主要是通过调节控制电路中的电阻、电容等元件的参数来控制步进电机的运行。
这种控制方式电路简单,但控制精度较低,且稳定性较差。
数字控制则是通过微处理器(如单片机)来控制步进电机的运行。
这种控制方式可以实现精确的位置控制,且稳定性较高。
数字控制方式又可以分为开环控制和闭环控制。
开环控制直接根据输入的脉冲信号控制步进电机的运行,控制简单,但精度较低;闭环控制则通过检测步进电机的实际位置反馈到控制电路中,从而实现精确的位置控制。
第三点:步进电机的实验设备与参数设置步进电机的实验需要准备以下设备:1.步进电机:根据实验需求选择合适的步进电机,如两相、三相或五相步进电机,永磁式或混合式步进电机。
2.控制器:根据步进电机的类型选择合适的控制器,如基于单片机的控制器或使用微处理器的闭环控制器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北华航天工业学院课程设计报告(论文)课程名称:微机控制技术课程设计设计课题:步进电机的控制系统专业班级:学生姓名:指导教师:设计时间:2013年06月11日北华航天工业学院电子工程系微机控制技术课程设计任务书姓名:专业:班级:指导教师:职称:教授时间:2013.6.11 课程设计题目:步进电机的控制系统设计步进电机单片机控制系统,其功能如下:1.具有对步进电机的启停、正反转、加减速控制;2.控制按钮分别为正转、反转、加速、减速、以及停止键;3.能够通过三位LED数码管(或液晶显示器)显示当前的转动速度,并且由两只不同颜色的发光二极管分别指示正转和反转,因此可以清楚的显示当前转动方向和转速;4.要求每组选择的步进电机控制字不同;5.用单片机做控制微机;应用软件:keil protues成果验收形式:1.课程设计的仿真结果2.课程设计的报告书参考文献:【1】张家生. 电机原理与拖动基础【M】. 北京:北京邮电大学出版社,2006. 【2】马淑华,王凤文,张美金. 单片机原理与接口技术【M】.北京:北京邮电大学出版社,2007.【3】顾德英,张健,马淑华.计算机控制技术【M】. 北京:北京邮电大学出版社,2006.【4】张靖武,周灵彬. 单片机系统的PROTEUS设计与仿真【M】. 北京:电子工业出版社,2007第16周时间安排指导教师教研室主任:2013年06 月11日内容摘要步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。
控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。
为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。
关键词:步进电机单片机数码管显示目录一步进电机原理及硬件和软件设计 (1)1.1步进电机原理及控制技术 (1)1.2总体设计方框图 (3)1.3设计原理分析 (3)1.3.1元器件介绍 (3)1.3.2方案论证 (5)1.3.3硬件设计 (6)1.3.4软件设计 (10)1.3.5源程序(C语言程序) (14)二总结 (18)三参考文献 (18)1.步进电机原理及硬件和软件设计1.1步进电机原理及控制技术由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,它不能直接接到交直流电源上,而必须使用专业设备一步进电机控制驱动器,典型步进电机控制系统如图1所示:控制器可以发出脉冲频率从几赫兹到几千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列,环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输入端,以驱动步进电机的转动,环形分配器主要有两大类:一类是用计算机软件设计的方法实现环形分配器要求的功能,通常称软环形分配器。
另一类是用硬件构成的环形分配器,通常称硬环形分配器。
功率放大器主要对环形分配器的较小输出信号进行放大,以达到驱动步进电机的目的,步进电机的基本控制包括转向控制和速度控制两个方面。
从结构上看,步进电机分为三相单三拍、三相双三拍和三相六拍3种,其基本原理如下:(1)换相顺序的控制通电换相这一过程称为脉冲分配。
例如,三相步进电机在单三拍的工作方式下,其各相通电顺序为A→B→C→A,通电控制脉冲必须严格按照这一顺序分别控制A, B, C相的通断。
三相双三拍的通电顺序为AB→BC→CA→AB,三相六拍的通电顺序为A→AB→B→BC→C→CA→A 。
(2) 步进电机的换向控制如果给定工作方式正序换相通电,步进电机正转。
若步进电机的励磁方式为三相六拍,即A→AB→B→BC→C→CA→A。
如果按反序通电换相,即A→AC→C→CB→B→BA→A,则电机就反转。
其他方式情况类似。
(3) 步进电机的速度控制如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。
两个脉冲的间隔越短,步进电机就转得越快。
调整送给步进电机的脉冲频率,就可以对步进电机进行调试。
(4) 步进电机的起停控制步进电机由于其电气特性,运转时会有步进感。
为了使电机转动平滑,减小振动,可在步进电机控制脉冲的上升沿和下降沿采用细分的梯形波,可以减小步进电机的步进角,跳过电机运行的平稳性。
在步进电机停转时,为了防止因惯性而使电机轴产生顺滑,则需采用合适的锁定波形,产生锁定磁力矩,锁定步进电机的转轴,使步进电机转轴不能自由转动。
(5) 步进电机的加减速控制在步进电机控制系统中,通过实验发现,如果信号变化太快,步进电机由于惯性跟不上电信号的变化,这时就会产生堵转和失步现象。
所有步进电机在启动时,必须有加速过程,在停止时波形有减速过程。
理想的加速曲线一般为指数曲线,步进电机整个降速过程频率变化规律是整个加速过程频率变化规律的逆过程。
选定的曲线比较符合步进电机升降过程的运行规律,能充分利用步进电机的有效转矩,快速响应性好,缩短了升降速的时间,并可防止失步和过冲现象。
在一个实际的控制系统中,要根据负载的情况来选择步进电机。
步进电机能响应而不失步的最高步进频率称为“启动频率”,于此类似“停止频率”是指系统控制信号突然关断,步进电机不冲过目标位置的最高步进频率。
电机的启动频率、停止频率和输出转矩都要和负载的转动惯量相适应,有了这些数据,才能有效地对电机进行加减速控制。
加速过程有突然施加的脉冲启动频率f0。
步进电机的最高启动频率(突跳频率)一般为0. 1KHz到3~4KHz,而最高运行频率则可以达到N* 102KHz,以超过最高启动频率的频率直接启动,会产生堵转和失步的现象。
图1 步进电机运行工程中频率变化曲线在一般的应用中,经过大量实践和反复验证,频率如按直线上升或下降,控制效果就可以满足常规的应用要求。
用PLC实现步进电机的加P减速控制,实践上就是控制发脉冲的频率。
加速时,使脉冲频率增高,减速则相反。
如果使用定时器来控制电机的速度,加减速控制就是不断改变定时中断的设定值。
速度从v1 ~v2变化,如果是线性增加,则按给定的斜率加P减速;如果是突变,则按阶梯加速处理。
在此过程中要处理好两个问题:1.速度转换时间应尽量短。
为了缩短速度转换的时间,可以采用建立数据表的方法。
结合各曲线段的频率和各段间的阶梯频率,就可以建立一个连续的数据表,并通过转换程序将其转换为定时初始表。
通过在不同的阶段调用相应的定时初值,就可控制电机的运行。
定时初值的计算是在定时中断外实现的,并不占用中断时间,保证电机的高速运行。
2.保证控制速度的精确性。
要从一个速度准确达到另一个速度,就要建立一个校验机制,以防超过或未达到所需速度。
(6) 步进电机的换向控制步进电机换向时,一定要在电机降速停止或降到突跳频率范围之内在换向,以免产生较大的冲击而损坏电机。
换向信号一定要在前一个方向的最后一个脉冲结束后以及下一个方向的第一个脉冲前发出。
对于脉冲的设计主要要求其有一定的脉冲宽度、脉冲序列的均匀度及高低电平方式。
在某一高速下的正、反向切换实质包含了降速一换向一加速3个过程。
步进电机有如下特点:①步进电机的角位移与输入脉冲数严格成正比,因此当它转一转后,没有累计误差,具有良好的跟随性。
②由步进电机与驱动电路组成的开环数控系统,既非常方便、廉价,也非常可靠。
同时,它也可以有角度反馈环节组成高性能的闭环数控系统。
③步进电机的动态响应快,易于启停、正反转及变速。
④速度可在相当宽的范围内平滑调节,低速下仍能保证获得很大的转矩,因此一般可以不用减速器而直接驱动负载。
⑤步进电机只能通过脉冲电源供电才能运行,它不能直接用交流电源或直流电源。
⑥步进电机自身的噪声和振动比较大,带惯性负载的能力强。
1.2总体设计方框图总体设计方框图如图2所示。
1.3设计原理分析1.3.1元器件介绍(1)步进电机步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。
步进电机区别于其他控制电机的最大特点是:它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。
步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB),步进电机又称为脉冲电机,是工业过程控制和仪表中一种能够快速启动,反转和制动的执行图2总体设计方框图元件,其功用是将电脉冲转换为相应的角位移或直线位移,由于开环下就能实现精确定位的特点,使其在工业控制领域获得了广泛应用。
步进电机的运转是由电脉冲信号控制的,其角位移量或线位移量与脉冲数成正比,每个一个脉冲,步进电机就转动一个角度(不距角)或前进、倒退一步。
步进电机旋转的角度由输入的电脉冲数确定,所以,也有人称步进电机为数字/角度转换器。
①四相步进电机的工作原理该设计采用了20BY 。
型步进电机,该电机为四相步进电机,采用单极性直流电源供电。
只要对步进电机的各相绕组按合适的时序通电,就能使步进电机转动。
当某一相绕组通电时,对应的磁极产生磁场,并与转子形成磁路,这时,如果定子和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻最小路径的特点,则转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促使电机旋转的原因。
②步进电机的静态指标及术语相数:产生不同队N 、S 磁场的激磁线圈对数,常用m 表示。
拍数:完成一个磁场周期性变化所需脉冲用n 表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB →BC →CD →DA →AB,四相八拍运行方式即A →AB →B →BC →C →CD →D →DA →A 。
步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。
θ=360度(转子齿角运行拍数),以常规二、四相,转子齿角为50齿角电机为例。
四相运行时步距角为θ=360度/(50*4) =1.8度,八拍运行时步距角为θ=360度/(50*8)=0.9度。
定位转矩:电机在不通电的状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)。
状态显示电路89C51 单片机 复位电路 键盘控制电路ULN2803启动电路 步进电机电源及时钟电路③四相步进电机的脉冲分配规律目前,对步进电机的控制主要有分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。