多谐振荡器双闪灯电路设计与制作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多谐振荡器双闪灯电路设计与制作
南昌理工学院张呈张海峰
我们主张,电子初学者要采用万能板焊接电子制作作品,因为这种电子制作方法,不仅能培养电子爱好者的焊接技术,还能提高他们识别电路图和分析原理图的能力,为日后维修、设计电子产品打下坚实的基础。
上一篇文章《电路模型设计与制作》我们重点介绍了电路模型的概念以及电流、电压、电阻、发光二极管、轻触开关等基本知识,并完成了电路模型的设计与制作,通过成功调试与测试产品参数,进一步掌握了电子基础知识。
本文将通过设计与制作多谐振荡器双闪灯,掌握识别与检测电阻、电容、二极管、三极管。掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。
一、多谐振荡器双闪灯电路功能介绍
图1 多谐振荡器双闪灯成品图
多谐振荡器双闪灯电路,来源于汽车的双闪灯电路,是经典的互推互挽电路,通电后LED1和LED2交替闪烁,也就是两个发光二极管轮流导通。
完成本作品的目的是为了掌握识别与检测电阻、电容、二极管、三极管。掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。。
该电路是一个典型的自激多谐振荡电路,电路设计简单、易懂、趣味性强、理论知识丰富,特别适合初学者制作。
二、原理图
图2 多谐振荡器双闪灯原理图
三、工作原理
本电路由电阻、电容、发光二极管、三极管构成典型的自激多谐振荡电路。在上篇文章中介绍了电阻、和发光二极管,本文只介绍电容和三极管。
1、电容器的识别
电容器,简称电容,用字母C表示,国际单位是法拉,简称法,用F表示,在实际应用中,电容器的电容量往往比1法拉小得多,常用较小的单位,如微法(μF)、皮法(pF)等,它们的关系是:
1法拉(F)=1000000微法(μF),1微法(μF)=1000000皮法(pF)。
本的套件中使用了2个10μF的电解电容,引脚长的为正,短的为负;旁边有一条白色的为负,另一引脚为正。电容上标有耐压值上25V,容量是10μF。
2、三极管的识别
三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件。其作用是把微弱信号放大成幅值较大的电信号, 也用作无触点开关,俗称开关管。套件中使用的是NPN型的三极管9013,当把有字的面向自己,引脚朝下,总左往右排列是发射极E,基极B,集电极C。如图3所示。
图3 三极管的引脚图
晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。
晶体三极管的三种工作状态:
(1)截止状态
当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
(2)放大状态
当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。
(3)饱和导通状态:
当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。
根据三极管工作时各个电极的电位高低,就能判别三极管的工作状态,因此,在电子产品调试过程中,用万用表测量三极管各脚的电压,从而判别三极管的工作情况和工作状态。
3、多谐振荡电路工作原理
自激多谐振荡器也叫无稳态电路,两管的集电极各有一个电容分别接到另一管子的基极,起到交流耦合作用,形成正反馈电路。
本电路即为无稳态多谐振荡电路,图2中两个三极V1、V2工作在饱和与截止两个状态之间交替变换工作,即V1饱和则V2截止,V1截止则V2饱和,二种状态周期性的互换,V1、V2的集电极输出波形似近方波。
当VCC接上瞬间,V1、V2分别由R2、R1获得正向偏压,同时C1、C2亦分别经D1、R3,D2、R4充电,如图4所示。
图4 当VCC通电瞬间
由于V1、V2的特性无法百分之百相同,假设某一三极管V1之电流增益比另一个三极管V2高,则V1会比V2先进入饱和状态,而当V1饱和时,C1由 VCC、R1、V1 CE构成放电回路放电。在V2 BE极形成反向偏压,即A点电压为负(大概-2V左右),促使V2截止V1导通。由于c、e极之间此时是通的,所以c极处电位接近于负极(我们的图中是接地,就是接近于0V),由于电容C1的耦合作用,V2基极电压接近于负极→不会产生基极电流,即Ib=0A→则V1 ec之间断开,同时C2经D2、R4及V1的BE极于短时间内完成充电至VCC,如图5所示。
图5 C1放电,C2充电回路
V1 导通、Q2截止的情形并不是稳定的,当C1放电完后,电容C1由VCC 经R1、V1CE极反向充电,当充到0.7V时,即A点电压大概为0.7V,此时V2获得偏压而进入饱和导通状态,C2由VCC经R2、V2CE极放电。同样地,造成V1 BE 反向偏压,V1截止,C1由VCC经D1、R1及V2B-E极于短时间充至VCC。
图6 C2放电,C1充电回路
同理,C2放完电后,电容C2由VCC经R3、V2CE极反向充电,当充到0.7V 时,即B点电压大概为0.7V,V1经R2获得偏压而导通,V2 截止。
如此反覆循环下去,所有两个LED交替闪烁。改变电阻R1、R2阻值或电容C1、C2的容量可以改LED闪烁的速度。
四、元件清单及实物图