2021重庆中考数学11题专题训练一

合集下载

2021年中考数学专题训练:平移与旋转(含答案)

2021年中考数学专题训练:平移与旋转(含答案)

2021中考数学专题训练:平移与旋转一、选择题1. 观察图,其中可以看成是由“基本图案”通过旋转形成的共有()A.1个B.2个C.3个D.4个2. 在平面直角坐标系中,点P(-4,2)向右平移7个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是()A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)3. 如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB 和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A. l1∶l2=1∶2,S1∶S2=1∶2B. l1∶l2=1∶4,S1∶S2=1∶2C. l1∶l2=1∶2,S1∶S2=1∶4D. l1∶l2=1∶4,S1∶S2=1∶44. 如图,在平面直角坐标系中,边长为2的正方形的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是()A.(-1,2)B.(1,4)C.(3,2)D.(-1,0)5. 如图,Rt△OCB的斜边在y轴上,OC=3,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B′,则点B的对应点B′的坐标是()A.(3,-1) B.(1,-3)C.(2,0) D.(3,0)6. 在平面直角坐标系中,点A的坐标为(1,3),以原点为中心,将点A顺时针旋转30°得到点A′,则点A′的坐标为()A.(3,1) B.(3,-1) C.(2,1) D.(0,2)7. 如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在A,B两处各安装了一个监控探头(走廊内所用探头的观测区域为圆心角最大可取到180°的扇形),图中的阴影部分是A处监控探头观测到的区域.要使整个艺术走廊都能被监控到,还需再安装一个监控探头,则安装的位置是()A. E处B. F处C. G处D. H处8. 如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°-αB.αC.180°-αD.2α二、填空题9. 在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A'B'C',各顶点仍在格点上,则其旋转角的度数是.10. 如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,点D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB 与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为cm.11. 如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为.12. 如图,在正方形网格中,格点△ABC绕某点顺时针旋转角α(0<α<180°)得到格点△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α=________°.13. 如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=________°.14. 问题背景:如图①,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图②,在△MNG中,MN=6,∠M=75°,MG=4.点O是△MNG 内一点,则点O到△MNG三个顶点的距离和的最小值是.三、解答题15. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2:(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.16. 如图,P为正方形ABCD内一点,若PA=a,PB=2a,PC=3a(a>0).(1)求∠APB的度数;(2)求正方形ABCD的面积.17. △ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,①求证:△BPE∽△CEQ;②当BP=2,CQ=918. 将一副三角尺按图①摆放,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=2 3.(1)求GC的长;(2)如图②,将△DEF绕点D顺时针旋转,使直角边DF经过点C,另一直角边DE与AC相交于点H,分别过点H,C作AB的垂线,垂足分别为M,N.通过观察,猜想MD与ND的数量关系,并验证你的猜想;(3)在(2)的条件下,将△DEF沿DB方向平移得到△D′E′F′,当D′E′恰好经过(1)中的点G时,请直接写出DD′的长度.2021中考数学专题训练:平移与旋转-答案一、选择题1. 【答案】D2. 【答案】A[解析] 点P(-4,2)向右平移7个单位长度得到点P1(3,2),点P1绕原点逆时针旋转90°得到点P2(-2,3).故选A.3. 【答案】A【解析】∵∠ABC=90°,AB=2,BC=1,∴勾股定理得,AC= 5.①当△ABC绕AB旋转时,则底面周长l1=2π×BC=2π,侧面积为S1=π×BC×AC =5π;②当△ABC绕BC旋转时,则底面周长l2=2π×AB=4π,侧面积为S2=π×AB×AC=25π,∴l1∶l2=2π∶4π=1∶2,S1∶S2=5π∶25π=1∶2.4. 【答案】C[解析]如图,由旋转得:CB'=CB=2,∠BCB'=90°,D,C,B'三点共线.∵四边形ABCD是正方形,且O是AB的中点,∴OB=1,∴B'(2+1,2),即B'(3,2),故选C.5. 【答案】A6. 【答案】A[解析] 如图,过点A作AE⊥y轴于点E,过点A′作A′F⊥x轴于点F,∴∠AEO=∠A′FO=90°.∵点A的坐标为(1,3),∴AE=1,OE=3,∴OA=2,∠AOE=30°,由旋转可知∠AOA′=30°,OA′=OA=2,∴∠A′OF=90°-30°-30°=30°,∴A′F=12OA′=1,OF=3,∴A′(3,1).故选A.7. 【答案】D【解析】根据题意可知,在A,B处安装监控探头后,E,F,G 处均有探查不到的区域,而探头放在E,F处时同样存在这样的问题,放在H处恰好不存在.8. 【答案】C[解析] 由题意可得∠CBD=α,∠C=∠EDB.∵∠EDB+∠ADB=180°,∴∠C+∠ADB=180°.由四边形的内角和定理,得∠CAD+∠CBD=180°.∴∠CAD=180°-∠CBD=180°-α.故选C.二、填空题9. 【答案】90°【解析】找到一组对应点A,A',分别与旋转中心连接起来,则∠AOA'为旋转角,为90°.10. 【答案】(10-2)[解析]∵∠BAC=90°,∠BAD=15°,∴∠DAF=75°.由旋转可知,△ADE为等腰直角三角形,∠ADF=45°,过点A作AM⊥DF于点M,∠F AM=∠DAF-∠DAM=75°-45°=30°,∴AM=AD=3,∴AF=AM=2.∵AC=AB=10,∴FC=AC-AF=10-2.11. 【答案】3[解析]∵DE=EF=AD=3,∠D=90°,∴AE2=AD2+DE2=18,∴AB=AE==3.12. 【答案】90[解析] 连接AA1,CC1,分别作AA1和CC1的垂直平分线,两直线相交于点D,则点D即为旋转中心,连接AD,A1D,则∠ADA1=α=90°.13. 【答案】20[解析] ∵AB=AB′,∠BAB′=40°,∴∠ABB′=70°.∵B′C′⊥AB,∴∠BB′C′=20°.14. 【答案】2[解析]由题意构造等边三角形MFN,等边三角形MHO,则△MFH≌△MNO,∴OM+ON+OG=HO+HF+OG,∴距离和最小值为FG=2.三、解答题15. 【答案】解:(1)正确图形如解图.(2)正确图形如解图.解图16. 【答案】解:(1)将△ABP绕点B顺时针旋转90°得到△CBQ,连接PQ,如图,则∠APB=∠BQC,PB⊥QB,PB=QB=2a,AP=QC=a,∴PQ=2 2a.在△PQC中,∵PC2=9a2,PQ2+QC2=9a2,∴PC2=PQ2+QC2,∴△PQC 为直角三角形且∠PQC =90°. ∵△PBQ 是等腰直角三角形, ∴∠BPQ =∠BQP =45°,故∠APB =∠CQB =90°+45°=135°. (2)连接AC.∵∠APQ =∠APB +∠BPQ =135°+45°=180°, ∴A ,P ,Q 三点在同一条直线上.在Rt △AQC 中,AC 2=AQ 2+QC 2=(a +2 2a)2+a 2=(10+4 2)a 2,∴正方形ABCD 的面积S =AB 2=AC22=(5+2 2)a 2.17. 【答案】(1)证明:∵△ABC 是等腰直角三角形, ∴AB =AC ,∠B =∠C =45°, 又∵AP =AQ , ∴BP =CQ ,∵E 是BC 的中点, ∴BE =EC .与△CQE 中,CQE (SAS);(2)①证明:∵∠BEF =∠C +∠CQE ,∠BEF =∠BEP +∠DEF , ∠C =∠DEF =45°, ∴∠CQE =∠BEP , ∵∠B =∠C ,∴△BPE ∽△CEQ ;BPE ∽△CEQ , BP ·CQ , 又∵BE =EC , ∴BE 2=BP ·CQ , ∵BP =2,CQ =9, ∴BE 2=2×9=18, ∴BE =32,∴BC =2BE =6 2.18. 【答案】13解:(1)在Rt△ABC中,∵∠B=60°,BC=2 3,∴AB=43,AC=6.∵DF垂直平分AB,∴AD=2 3.又∵∠DAG=30°,∴DG=2,AG=4,∴GC=AC-AG=6-4=2.(2)MD=ND.证明:∵D是AB的中点,∠ACB=90°,∴CD=DB=AD.又∵∠B=60°,∴△CDB是等边三角形,∴∠CDB=60°.∵CN⊥DB,∴ND=12DB.∵∠EDF=90°,∴∠EDA=180°-∠EDF-∠CDB=30°. 又∵∠A=30°,∴∠A=∠EDA,∴HA=HD.∵HM⊥AD,∴MD=12AD.又∵AD=DB,∴MD=ND.(3)连接DG,则DG⊥AD′.由(2)知∠A=∠EDA,由平移知∠E′D′A=∠EDA,∴∠A=∠E′D′A.∵D′E′恰好经过(1)中的点G(此时点D′与点B重合),∴D′G=AG,∴DD′=AD=2 3.。

2021年九年级中考数学 专题训练:全等三角形(含答案)

2021年九年级中考数学 专题训练:全等三角形(含答案)

2021 中考数学专题训练:全等三角形一、选择题1. 下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙2. 如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能..判定△ABE△△ACD()A. ∠B=△CB. AD=AEC. BD=CED. BE=CD3. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+cB.b+cC.a-b+cD.a+b-c4. 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC△△DEC,不能添加的一组条件是()A.BC=EC,△B=△E B.BC=EC,AC=DCC .BC =DC ,△A =△D D .△B =△E ,△A =△D5. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A .0.5B .1C .1.5D .26. 如图,已知点A ,B ,C ,D 在同一条直线上,△AEC ≌△DFB.如果AD=37 cm ,BC=15 cm ,那么AB 的长为 ( )A .10 cmB .11 cmC .12 cmD .13 cm7. 如图,AB ⊥BC ,BE ⊥AC ,垂足分别为B ,E ,∠1=∠2,AD=AB ,则下列结论正确的是( )A .∠1=∠EFDB .BE=EC C .BF=CD D .FD ∥BC8. 如图为6个边长相等的正方形的组合图形,则△1+△2+△3等于( )A .90°B .120C .135°D .150°9. 如图,点G 在AB 的延长线上,△GBC ,△BAC 的平分线相交于点F ,BE △CF于点H .若△AFB =40°,则△BCF 的度数为( )A .40°B .50°C .55°D .60°10. 如图,∠AOB =120°,OP平分△AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( ) A . 1个 B . 2个 C . 3个 D . 3个以上二、填空题11. 如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 交于点H ,请你添加一个适当条件:________,使△AEH△△CEB.12. 如图,已知点B ,C ,F ,E 在同一直线上,△1=△2,△A =△D ,要使△ABC△△DEF ,还需添加一个条件,这个条件可以是____________(只需写出一个).13. 如图,在△ABC中,△C =90°,△CAB =50°,按以下步骤作图:△以点A 为圆心,小于AC 的长为半径画弧,分别交AB ,AC 于点E ,F ;△分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;△作射线AG ,交BC 边于点D ,则△ADC 的度数为________.14. 如图,已知AC=FE,BC=DE,点A,D,B,F在同一直线上,要使△ABC△△FDE,还需添加一个..条件,这个条件可以是__________(填一个即可).15. (2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.16. 如图,在△ABC中,△C=90°,AC=BC,AD是△BAC的平分线,DE△AB,垂足为E.若△DBE的周长为20,则AB=________.17. 如图所示,已知AD△BC,则△1=△2,理由是________________;又知AD =CB,AC为公共边,则△ADC△△CBA,理由是______,则△DCA=△BAC,理由是__________________,则AB△DC,理由是________________________________.18. 如图,P是△ABC外的一点,PD△AB交BA的延长线于点D,PE△AC于点E,PF△BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,△BAC=64°,则△BPC的度数为________.三、解答题19. 如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.20. 如图,AD△BC,AB△BC于点B,连接AC,过点D作DE△AC于点E,过点B作BF△AC于点F.(1)若△ABF=63°,求△ADE的度数;DE=BF+EF.21. 如图△,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,△1=△2=△BAC.若△ABC的面积为15,求△ABE与△CDF 的面积之和.2021 中考数学 专题训练:全等三角形-答案一、选择题1. 【答案】B [解析]依据SAS 全等判定可得乙三角形与△ABC 全等;依据AAS 全等判定可得丙三角形与△ABC 全等,不能判定甲三角形与△ABC 全等.故选B .2. 【答案】D【解析】A.当∠B =∠C 时,在△ABE 与△ACD 中,⎩⎨⎧∠A =∠AAB =AC ∠B =∠C,∴△ABE ≌△ACD (ASA);B.当AD =AE 时,在△ABE 与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);C.当BD =CE 时,∵AB =AC ,∴AD =AE ,在△ABE与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);D.当BE =CD 时,在△ABE与△ACD 中,有AB =AC ,BE =BD ,∠A =∠A ,只满足两边及一对角对应相等的两个三角形不一定全等.故选D.3. 【答案】D [解析]∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD , ∴∠CED=∠AFB=90°,∠A=∠C , 又∵AB=CD ,∴△CED ≌△AFB,∴AF=CE=a ,DE=BF=b ,DF=DE -EF=b -c , ∴AD=AF +DF=a +b -c ,故选D .4. 【答案】C5. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .6. 【答案】B[解析] ∵△AEC ≌△DFB ,∴AC=DB.∴AC -BC=DB -BC ,即AB=CD. ∵AD=37 cm ,BC=15 cm , ∴AB==11(cm).7. 【答案】D[解析] 在△AFD 和△AFB 中,∴△AFD ≌△AFB. ∴∠ADF=∠ABF . ∵AB ⊥BC ,BE ⊥AC , ∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°. ∴∠ADF=∠ABF=∠C. ∴FD ∥BC.8. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.9. 【答案】B[解析] 如图,过点F 分别作FZ△AE 于点Z ,FY△CB 于点Y ,FW△AB于点W.△AF平分△BAC,FZ△AE,FW△AB,△FZ=FW.同理FW=FY.△FZ=FY.又△FZ△AE,FY△CB,△△FCZ=△FCY.由△AFB=40°,易得△ACB=80°.△△ZCY=100°.△△BCF=50°.10. 【答案】D【解析】如解图,①当OM1=2时,点N1与点O重合,△PMN 是等边三角形;②当ON2=2时,点M2与点O重合,△PMN是等边三角形;③当点M3,N3分别是OM1,ON2的中点时,△PMN是等边三角形;④当取∠M1PM4=∠OPN4时,易证△M1PM4≌△OPN4(SAS),∴PM4=PN4,又∵∠M4PN4=60°,∴△PMN是等边三角形,此时点M,N有无数个,综上所述,故选D.二、填空题11. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.12. 【答案】AB=DE(答案不唯一)13. 【答案】65°14. 【答案】答案不唯一,如∠C=∠E或AB=FD等15. 【答案】70【解析】∵∠ABC=90°,AB=AC,∴∠CBF=180°–∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,AB CBAE CF=⎧⎨=⎩,∴Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为:70.16. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB=AE+EB =AB.17. 【答案】两直线平行,内错角相等SAS全等三角形的对应角相等内错角相等,两直线平行18. 【答案】32°[解析] △PD=PE=PF,PD△AB交BA的延长线于点D,PE△AC 于点E,PF△BC交BC的延长线于点F,△CP平分△ACF,BP平分△ABC.△△PCF=12△ACF,△PBF=12△ABC.△△BPC=△PCF-△PBF=12(△ACF-△ABC)=12△BAC=32°.三、解答题19. 【答案】证明:(1)在△ABC与△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,即AC平分∠BAD.(2)由(1)知∠BAE=∠DAE.在△BAE与△DAE中,∴△BAE≌△DAE(SAS),∴BE=DE.20. 【答案】解:(1)△AD△BC,AB△BC,△△ABC=△BAD=90°.△DE△AC,BF△AC,△△BFA=△AED=90°.△△ABF+△BAF=△BAF+△DAE=90°.△△DAE =△ABF =63°.△△ADE =27°.(2)证明:由(1)得△DAE =△ABF ,△AED =△BFA =90°.在△DAE 和△ABF 中,⎩⎨⎧△DAE =△ABF ,△AED =△BFA ,AD =BA ,△△DAE△△ABF(AAS). △AE =BF ,DE =AF.△DE =AF =AE +EF =BF +EF.21. 【答案】△△1=△2=△BAC ,且△1=△BAE +△ABE ,△2=△CAF +△ACF ,△BAC =△BAE +△CAF ,△△BAE =△ACF ,△ABE =△CAF.在△ABE 和△CAF 中,⎩⎨⎧△BAE =△ACF ,AB =CA ,△ABE =△CAF ,△△ABE△△CAF(ASA). △S △ABE =S △CAF .△S △ABE +S △CDF =S △CAF +S △CDF =S △ACD . △CD =2BD ,△ABC 的面积为15, △S △ACD =10. △S △ABE +S △CDF =10.。

2021年中考数学专题训练 全等三角形(含答案)

2021年中考数学专题训练 全等三角形(含答案)

2021中考数学专题训练全等三角形一、选择题1. 如图,要用“SAS”证明△ABC≌△ADE,若已知AB=AD,AC=AE,则还需添加条件()A.∠B=∠D B.∠C=∠EC.∠1=∠2 D.∠3=∠42. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°3. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+cB.b+cC.a-b+cD.a+b-c4. 如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24B.30C.36D.425. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=EDB.∠A=∠DEF,AC=EDC.AC=ED,AB=EFD.∠A=∠DEF,BC=FD6. 如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,BC =7,BD=4,则点D到AB的距离是()A.3 B.4C.5 D.77. 已知△ABC的六个元素,下列甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.只有乙B.只有丙C.甲和乙D.乙和丙8. (2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC 于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为A.2+2B.23+C.32+D.3二、填空题9. 已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是.10. 如图,已知AC=EC,∠ACB=∠ECD,要直接利用“AAS”判定△ABC≌△EDC,应添加的条件是__________.11. 已知△ABC的三边长分别为6,7,10,△DEF的三边长分别为6,3x-2,2x-1.若这两个三角形全等,则x的值为.12. 如图,要测量河岸相对两点A,B之间的距离,从B点沿与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续向前走50米到D处,在D 处转90°沿DE方向再走17米到达E处,这时A,C,E三点在同一直线上,则A,B之间的距离为________米.13. 如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB 的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是________.14. 如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q是线段AC与射线AX上的两个动点,且AB=PQ,当AP=________时,△ABC与△APQ全等.三、解答题15. 如图,沿AC方向开山修路,为了加快施工进度,要在山的另一面同时施工,工人师傅在AC上取一点B,在小山外取一点D,连接BD并延长,使DF=BD,过点F作AB的平行线FM,连接MD并延长,在延长线上取一点E,使DE=DM,在点E开工就能使A,C,E三点成一条直线,你知道其中的道理吗?16. 如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,上,求证:DE=DF.17. 如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l异侧,测得AB =DE ,AC =DF ,BF =EC. (1)求证:△ABC ≌△DEF ;(2)指出图中所有平行的线段,并说明理由.18. 如图,P是∠AOB 内部的一点,PE ⊥OA ,PF ⊥OB ,垂足分别为E ,F ,且PE =PF .Q 是射线OP 上的任意一点,QM ⊥OA ,QN ⊥OB ,垂足分别为M ,N ,则QM 与QN 相等吗?请证明你的结论.2021中考数学 专题训练 全等三角形-答案一、选择题1. 【答案】C[解析] 还需添加条件∠1=∠2.理由:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠DAE. 在△ABC 和△ADE 中,⎩⎨⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS).2. 【答案】C[解析] ∵点P 在OC 上,PM ⊥OA ,PN ⊥OB ,PM =PN ,∴OC 是∠AOB 的平分线.∵∠BOC=30°,∴∠AOB=60°.3. 【答案】D[解析]∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠CED=∠AFB=90°,∠A=∠C,又∵AB=CD,∴△CED≌△AFB,∴AF=CE=a,DE=BF=b,DF=DE-EF=b-c,∴AD=AF+DF=a+b-c,故选D.4. 【答案】B[解析]过点D作DH⊥AB交BA的延长线于H.∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=AB·DH+BC·CD=×6×4+×9×4=30.5. 【答案】C[解析] A.添加BC=FD,AC=ED,可利用“SAS”判定△ABC≌△EFD;B.添加∠A=∠DEF,AC=ED,可利用“ASA”判定△ABC≌△EFD;C.添加AC=ED,AB=EF,不能判定△ABC≌△EFD;D.添加∠A=∠DEF,BC=FD,可利用“AAS”判定△ABC≌△EFD.6. 【答案】A7. 【答案】D8. 【答案】A【解析】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CF=DF=1,∴CD=22=2,DF CF∴A .二、填空题9. 【答案】SSS [解析]由作图可得OM=ON ,MC=NC ,而OC=OC , ∴根据“SSS”可判定△MOC ≌△NOC.10. 【答案】∠B =∠D11. 【答案】4[解析] ∵△ABC 的三边长分别为6,7,10,△DEF 的三边长分别为6,3x-2,2x-1,这两个三角形全等,∴3x-2=10,2x-1=7,解得x=4;还可以是3x-2=7,2x-1=10,这种情况不成立.12. 【答案】17[解析] 在△ABC 和△EDC 中,⎩⎨⎧∠ABC =∠EDC =90°,BC =DC ,∠ACB =∠ECD , ∴△ABC ≌△EDC(ASA). ∴AB =ED =17米.13. 【答案】2[解析] ∵CF ∥AB ,∴∠A =∠FCE.在△ADE 和△CFE 中,⎩⎨⎧∠A =∠FCE ,∠AED =∠CEF ,DE =FE ,∴△ADE ≌△CFE(AAS). ∴AD =CF =3.∴BD =AB -AD =5-3=2.14. 【答案】5或10 [解析] ∵AX ⊥AC ,∴∠PAQ =90°.∴∠C =∠PAQ =90°.分两种情况:①当AP =BC =5时, 在Rt △ABC 和Rt △QPA 中,⎩⎨⎧AB =QP ,BC =PA ,∴Rt △ABC ≌Rt △QPA(HL); ②当AP =CA =10时,在Rt △ABC 和Rt △PQA 中,⎩⎨⎧AB =PQ ,AC =PA ,∴Rt △ABC ≌Rt △PQA(HL).综上所述,当AP =5或10时,△ABC 与△APQ 全等.三、解答题15. 【答案】解:在△BDE 和△FDM 中,⎩⎨⎧BD =FD ,∠BDE =∠FDM ,DE =DM ,∴△BDE ≌△FDM(SAS). ∴∠BEM =∠FME.∴BE ∥MF. 又∵AB ∥MF ,∴A ,C ,E 三点在一条直线上.16. 【答案】证明:连接CD ,如解图,(1分)∵ △ABC 是直角三角形,AC =BC ,D 是AB 的中点, ∴ CD =BD ,∠CDB =90°, ∴∠CDE +∠CDF =90°,∠CDF +∠BDF =90°, ∴∠CDE =∠BDF ,(7分) 在△CDE 和△BDF 中,⎩⎨⎧∠ECD =∠BCD =BD∠CDE =∠BDF, ∴ △CDE ≌△BDF(ASA ),(9分) ∴ DE =DF.(10分)17. 【答案】(1)证明:∵BF =EC ,∴BF +FC =EC +CF ,即BC =EF.(3分) 在△ABC 与△DEF 中,⎩⎨⎧BC =EF AB =DE AC =DF, ∴△ABC ≌△DEF(SSS ).(5分) (2)解:AB ∥DE ,AC ∥DF.(7分) 理由如下:∵△ABC ≌△DEF ,∴∠ABC =∠DEF ,∠ACB =∠DFE , ∴AB ∥DE ,AC ∥DF.(9分)18. 【答案】解:QM =QN.证明:∵PE ⊥OA ,PF ⊥OB ,PE =PF , ∴OP 是∠AOB 的平分线.又∵Q 是射线OP 上的任意一点,QM ⊥OA ,QN ⊥OB ,∴QM =QN.。

专题11 圆(第01期)-2021年中考数学试题分项版解析汇编(原卷版)

专题11 圆(第01期)-2021年中考数学试题分项版解析汇编(原卷版)

专题11 圆一、选择题1.(2021浙江衢州第10题)运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB =10,CD =6,EF =8。

则图中阴影部分的面积是( )A. π225B. π10C. π424+D. π524+2.(2021浙江宁波第9题)如图,在Rt ABC △中,90A ∠°,22BC ,以BC 的中点O 为圆心分别与AB ,AC 相切于D ,E 两点,则DE 的长为( )A.4B.2C.D.23.(2021重庆A 卷第9题)如图,矩形ABCD 的边AB =1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A .24π- B .324π- C .28π- D .328π- 4.(2021广西贵港第9题)如图,,,,A B C D 是O 上的四个点,B 是AC 的中点,M 是半径OD 上任意一点,若40BDC ∠= ,则AMB ∠的度数不可能是( )A.45B.60 C. 75D.855.(2021贵州如故经9题)如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD 的长为()A.65B.85C.75D.2356.(2021湖北武汉第9题)已知一个三角形的三边长分别为5,7,8.则其内切圆的半径为()A.32B.32C.3D.237.(2021江苏无锡第9题)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD 都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.5D.28.(2021甘肃兰州第4题)如图,在O⊙中,AB BC,点D在O⊙上,25CDB∠°,则AOB∠( )A.45°B.50°C.55°D.60°9.(2021甘肃兰州第2题)如图,正方形ABCD 内接于半径为2的O ⊙,则图中阴影部分的面积为( )A.1B.2C.1D.210.(2021贵州黔东南州第5题)如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A =15°,半径为2,则弦CD 的长为( )A .2B .﹣1C .2D .411. (2021贵州黔东南州第8题)如图,正方形ABCD 中,E 为AB 中点,FE ⊥AB ,AF =2AE ,FC 交BD 于O ,则∠DOC 的度数为( )A .60°B .67.5°C .75°D .54°12.(2021山东烟台第9题)如图,□ABCD 中,070=∠B ,6=BC ,以AD 为直径的⊙O 交CD 于点E ,则弧DE 的长为( )A .π31B .π32 C. π67 D .π34 13.(2021四川泸州第6题)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .若AB =8,AE =1,则弦CD 的长是( )A.7B.27 C .6 D .814.(2021四川自贡第10题)AB 是⊙O 的直径,P A 切⊙O 于点A ,PO 交⊙O 于点C ;连接BC ,若∠P =40°,则∠B 等于( )A .20°B .25°C .30°D .40°15.(2021新疆建设兵团第9题)如图,⊙O 的半径OD 垂直于弦AB ,垂足为点C ,连接AO 并延长交⊙O 于点E ,连接BE ,CE .若AB =8,CD =2,则△BCE 的面积为( )A .12B .15C .16D .1816.(2021江苏徐州第6题)如图,点,,A B C ,在⊙O 上,72AOB ∠=,则ACB ∠=( )A .28B .54 C.18 D .36二、填空题1.(2021浙江衢州第15题)如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线343+-=x y 上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是__________2.(2021山东德州第17题)某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(,F G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,根据设计要求,若45EOF ∠= ,则此窗户的透光率(透光区域与矩形窗面的面枳的比值)为 ..3.(2021重庆A 卷第15题)如图,BC 是⊙O 的直径,点A 在圆上,连接AO ,AC ,∠AOB =64°,则∠ACB = .4.(2021甘肃庆阳第14题)如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C = °.5. (2021甘肃庆阳第17题)如图,在△ABC 中,∠ACB =90°,AC =1,AB =2,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则弧CD 的长等于 .(结果保留π)6.(2021广西贵港第17题)如图,在扇形OAB 中,C 是OA 的中点,,CD OA CD ⊥ 与AB 交于点D ,以O 为圆心,OC 的长为半径作CE 交OB 于点E ,若4,120OA AOB =∠=,则图中阴影部分的面积为 .(结果保留π)7.(2021湖南怀化第14题)如图,O ⊙的半径为2,点A ,B 在O ⊙上,90AOB ∠°,则阴影部分的面积为 .8. (2021湖南怀化第16题)如图,在菱形ABCD 中,120ABC ∠°,10cm AB ,点P 是这个菱形内部或边上的一点,若以,,P B C 为顶点的三角形是等腰三角形,则P ,A (P ,A 两点不重合)两点间的最短距离为 cm .9.(2021江苏无锡第17题)如图,已知矩形ABCD 中,AB =3,AD =2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1和半圆O 2,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF =2(EF 与AB 在圆心O 1和O 2的同侧),则由AE ,EF ,FB ,AB 所围成图形(图中阴影部分)的面积等于 .10.(2021江苏盐城第14题)如图,将⊙O 沿弦AB 折叠,点C 在AmB 上,点D 在AB 上,若∠ACB =70°,则∠ADB = °.11.(2021山东烟台第18题)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB .已知6=OA ,取OA 的中点C ,过点C 作OA CD ⊥交弧AB 于点D ,点F 是弧AB 上一点,若将扇形BOD 沿OD 翻折,点B 恰好与点F 重合.用剪刀沿着线段FA DF BD ,,依次剪下,则剪下的纸片(形状同阴影图形)面积之和为 .12.(2021四川宜宾第15题)如图,⊙O 的内接正五边形ABCDE 的对角线AD 与BE 相交于点G ,AE =2,则EG的长是.13.(2021四川宜宾第17题)如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=433,则AD=.14.(2021江苏徐州第15题)正六边形的每个内角等于.15. (2021江苏徐州第16题)如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为,2D AB BC==,则AOB∠=.16.(2021浙江嘉兴第13题)如图,小明自制一块乒乓球拍,正面是半径为8cm的O,90ABm=︒,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为.三、解答题1.(2021浙江衢州第19题)如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。

专题09 三角形(第01期)-2021年中考数学试题分项版解析汇编(原卷版)

专题09 三角形(第01期)-2021年中考数学试题分项版解析汇编(原卷版)

专题09 三角形一、选择题1.(2021重庆A 卷第8题)若△ABC ~△DEF ,相似比为3:2,则对应高的比为( )A .3:2B .3:5C .9:4D .4:92. (2021重庆A 卷第11题)如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为40°,若DE =3米,CE =2米,CE 平行于江面AB ,迎水坡BC 的坡度i =1:0.75,坡长BC =10米,则此时AB 的长约为( )(参考数据:sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84).A .5.1米B .6.3米C .7.1米D .9.2米3.(2021甘肃庆阳第6题)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为( )A .115°B .120°C .135°D .145°4. (2021甘肃庆阳第8题) 已知a ,b ,c 是△ABC 的三条边长,化简|a +b -c |-|c -a -b |的结果为( )A .2a +2b -2cB .2a +2bC .2cD .05.(2021广西贵港第11题)如图,在Rt ABC ∆中,90ACB ∠= ,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,P 是''A B 的中点,连接PM ,若230BC BAC =∠=,,则线段PM 的最大值是 ( ).A .4B .3 C.2 D .16.(2021湖北武汉第10题)如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C . 6D .77.(2021江苏无锡第10题)如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .75 8.(2021甘肃兰州第3题)如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡与水平地面夹角的正切值等于( )A.513B.1213C.512D.13129. (2021甘肃兰州第13题)如图,小明为了测量一凉亭的高度AB (顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶DE (0.5DE BC 米,,,A B C 三点共线),把一面镜子水平放置在平台上的点G 处,测得15CG 米,然后沿直线CG 后退到点E 处,这时恰好在镜子里看到凉亭的顶端A ,测得3CG 米,小明身高 1.6EF 米,则凉亭的高度AB 约为( )A.8.5米B.9米C.9.5米D.10米10.(2021贵州黔东南州第2题)如图,∠ACD =120°,∠B =20°,则∠A 的度数是( )A .120°B .90°C .100°D .30°11.(2021山东烟台第12题)如图,数学实践活动小组要测量学校附近楼房CD 的高度,在水平底面A 处安置侧倾器得楼房CD 顶部点D 的仰角为045,向前走20米到达'A 处,测得点D 的仰角为05.67.已知侧倾器AB 的高度为1.6米,则楼房CD 的高度约为( )(结果精确到0.1米,414.12≈)A .14.34米B .1.34米 C.7.35米 D .74.35米12.(2021四川泸州第10题)已知三角形的三边长分别为a 、b 、c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S =()()()p p a p b p c ---,其中p =2a b c++;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S =2222221()22a b c a b +--,若一个三角形的三边长分别为2,3,4,则其面积是( )A.3158B. 3154C. 3152D. 15213.(2021浙江嘉兴第2题)长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( )A .4B .5C .6D .9 二、填空题1.(2021浙江宁波第16题)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知500AB 米,则这名滑雪运动员的高度下降了 米.(参考数据:sin340.56°≈,cos340.83°≈,tan340.67°≈)2.(2021甘肃庆阳第16题)如图,一张三角形纸片ABC ,∠C =90°,AC =8cm ,BC =6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .3.(2021广西贵港第16题)如图,点P 在等边ABC ∆的内部,且6,8,10PC PA PB ===,将线段PC 绕点C 顺时针旋转60得到'P C ,连接'AP ,则sin 'PAP ∠的值为 .4.(2021贵州安顺第13题)三角形三边长分别为3,4,5,那么最长边上的中线长等于 .5.(2021湖北武汉第15题)如图△ABC 中,AB =AC ,∠BAC =120°,∠DAE =60°,BD =5,CE =8,则DE 的长为 .6.(2021湖南怀化第15题)如图,AC DC,BC EC,请你添加一个适当的条件:,使得ABC DEC△≌△.7.(2021江苏无锡第18题)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D 都在格点处,AB与CD相交于O,则tan∠BOD的值等于.8.(2021江苏盐城第12题)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.9.(2021甘肃兰州第17题)如图,四边形ABCD与四边形EFGH相似,位似中心点是O,35OE OA ,则FGBC.10.(2021贵州黔东南州第12题)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件 使得△ABC ≌△DEF .12. (2021山东烟台第16题)如图,在平面直角坐标系中,每个小方格的边长均为1.AOB ∆与''OB A ∆是以原点O 为位似中心的位似图形,且相似比为2:3,点B A ,都在格点上,则点'B 的坐标是 .13.(2021四川泸州第16题)在△ABC 中,已知BD 和CE 分别是边AC 、AB 上的中线,且BD ⊥CE ,垂足为O .若OD =2cm ,OE =4cm ,则线段AO 的长度为 cm .14.(2021四川自贡第14题)在△ABC 中,MN ∥BC 分别交AB ,AC 于点M ,N ;若AM =1,MB =2,BC =3,则MN 的长为 .15.(2021新疆建设兵团第15题)如图,在四边形ABCD 中,AB =AD ,CB =CD ,对角线AC ,BD 相交于点O ,下列结论中:①∠ABC =∠ADC ;②AC 与BD 相互平分;③AC ,BD 分别平分四边形ABCD 的两组对角;④四边形ABCD 的面积S =12AC •B D .正确的是 (填写所有正确结论的序号)16.(2021江苏徐州第13题)ABC ∆中,点,D E 分别是,AB AC 的中点,7DE =,则BC = .17. (2021江苏徐州第18题)如图,已知1OB =,以OB 为直角边作等腰直角三角形1A BO .再以1OA 为直角边作等腰直角三角形21A AO ,如此下去,则线段n OA 的长度为 .18.(2021浙江嘉兴第15题)如图,把n 个边长为1的正方形拼接成一排,求得1tan 1BAC ∠=,21tan 3BA C ∠=,31tan 7BA C ∠=,计算4tan BA C ∠= ,……按此规律,写出tan n BA C ∠= (用含n 的代数式表示).三、解答题1.(2021浙江衢州第23题)问题背景如图1,在正方形A BCD 的内部,作∠DAE =∠ABF =∠BCG =∠CDH ,根据三角形全等的条件,易得△DAE ≌△ABF ≌△BCG ≌△CDH ,从而得到四边形EFGH 是正方形。

2021年九年级中考数学 专题训练:多边形与平行四边形(含答案)

2021年九年级中考数学 专题训练:多边形与平行四边形(含答案)

2021中考数学 专题训练:多边形与平行四边形一、选择题1. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或92. 如图,四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD=2,点P 在四边形ABCD 的边上.若P 到BD 的距离为32,则点P 的个数为( ) A. 1 B. 2 C. 3 D. 43. 一个正多边形的每个外角不可能等于()A .30°B .50°C .40°D .60°4. (2020·泰安)如图,四边形ABCD 是一张平行四边形纸片,其高AG ﹦2cm ,底边BC ﹦6cm ,∠B ﹦45°,沿虚线EF 将纸片剪成两个全等的梯形.若∠BEF ﹦30°,则AF 的长为( )A .1cmB .63 cm C .(2 3 —3)cm D .(2— 3 )cmA BCDEFG5. 如图,ABCD 中,AB=2,AD=4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是A .EH=HGB .四边形EFGH 是平行四边形C .AC ⊥BDD.△ABO的面积是△EFO的面积的2倍6. (2020·潍坊)如图,点E是□ABCD的边AD上的一点,且12DEAE=,连接BE并延长交CD的延长线于点F,若3,4DE DF==,则□ABCD的周长为()FEDCBA A.21 B. 28 C. 34 D. 42 7. (2020·海南)如图,在□ABCD中,AB=10,AD=15,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,若BG=8,则△CEF的周长为( ) A.16 B.17 C.24 D.25 8. 如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为A.135B.125C.195D.165二、填空题9. 如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件,使四边形ABCD是平行四边形.10. 如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S▱AEPH=.11. 如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为________.12. 如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的大小为________.13. 如图,在ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为__________.14. 如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=________°.15. (2020·黔东南州)以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为.16. 如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若O E=3,则菱形的周长为__________.三、解答题17. 如图,△ABC是正三角形,剪去三个边长均不相等的小正三角形(即△ADN,△BEF,△CGM)后,得到一个六边形DEFGMN.(1)六边形DEFGMN的每个内角是多少度?为什么?(2)六边形DEFGMN是正六边形吗?为什么?18. (2020·重庆B卷)如图,在平行四边形ABCD中,AE,CF分别平分∠BAD 和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.19. 如图①,在平行四边形ABCD中,连接BD,AD=6cm,BD=8cm,∠DBC =90°,现将△AEF沿BD的方向匀速平移,速度为2cm/s,同时,点G从点D 出发,沿DC的方向匀速移动,速度为2cm/s.当△AEF停止移动时,点G也停止运动,连接AD,AG,EG,过点E作EH⊥CD于点H,如图②所示,设△AEF 的移动时间为t(s)(0<t<4).(1)当t=1时,求EH的长度;(2)若EG⊥AG,求证:EG2=AE·HG;(3)设△AGD的面积为y(cm2),当t为何值时,y可取得最大值,并求y的最大值.20. 如图,在平面直角坐标系中,四边形OABC是平行四边形.直线l经过O、C两点,点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从O 出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O —C—B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点C的坐标为____________,直线l的解析式为____________;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.(3)试求题(2)中当t为何值时,S的值最大?最大值是多少?2021中考数学专题训练:多边形与平行四边形-答案一、选择题1. 【答案】D【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n,则180°(n-2)=1080°,得出n=8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.2. 【答案】B 【解析】本题考查了直角三角形中的点到直线的距离. 解题思路:如解图,分别过点A 和C 作AE ⊥BD 于E ,CF ⊥BD 于F.⎭⎬⎫∠BAD =90° AB =AD ⇒⎭⎪⎬⎪⎫∠ADB =45° AD =22⇒AE=2>32⇒AB 、AD 上各有一点到BD 的距离为32.同理,得CF =1<32⇒AB 、AD 上没有点到BD 的距离为32.3. 【答案】B[解析] 设正多边形的边数为n ,则当30°n =360°时,n =12,故A可能;当50°n =360°时,n =365,不是整数,故B 不可能;当40°n =360°时,n =9,故C 可能;当60°n =360°时,n =6,故D 可能.4. 【答案】D【解析】本题考查了图形全等的概念、平行四边形的性质以及解直角三角形,过点F 作FH ⊥BC ,垂足为H.E CFHA B DG设AF=x ,因为四边形ABCD 是一张平行四边形纸片,所以AD=BC.因为沿虚线EF 将纸片剪成两个全等的梯形,所以BE=DF ,所以AF=EC=x .因为AG 是BC 边上的高,FH ⊥BC ,所以GH=AF=x .因为∠B=45°,AG=2,所以BG=2,则HE=6-2-2x =4-2x . 因为tan ∠BEF=HF HE ,所以HE=tan HFBEF ∠3=2 3 ,则4-2x =2 3 ,解得x =2- 3 ,因此本题选D .5. 【答案】B【解析】∵E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,在ABCD 中,A B=2,AD=4, ∴EH=12AD=2,HG=1122CD =AB=1,∴EH≠HG ,故选项A 错误; ∵E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点, ∴EH=1122AD BC FG ==, ∴四边形EFGH 是平行四边形,故选项B 正确;由题目中的条件,无法判断AC 和BD 是否垂直,故选项C 错误; ∵点E 、F 分别为OA 和OB 的中点,∴EF=12AB ,EF ∥AB ,∴△OEF ∽△OAB ,∴214AEF OABS EF SAB ⎛⎫== ⎪⎝⎭, 即△ABO 的面积是△EFO 的面积的4倍,故选项D 错误, 故选B .6. 【答案】B【解析】利用平行四边形、相似的有关性质解决问题.∵12DE AE =,DE=3,∴AE=6.∵四边形ABCD 是平行四边形,∴AD=BC,AB=CD,AB ∥CD,∴△DEF ∽△AEB, ∴DE DFAE AB =,又DF=4,∵AB=8,∴□ABCD 的周长为28.故选B.7. 【答案】A 【解析】 在R t △ABG 中,AG6.∵四边形ABCD 是平行四边形,AE 平分∠BAD ,∴∠BAE =∠ADE =∠AEB ,∴AB =BE ,则CE =BC -BE =15-10=5.又∵BG ⊥AE ,∴AE =2AG =12,则△ABE 的周长为32.∵AB ∥DF ,∴△ABE ∽△CFE ,∴△ABE 的周长:△CEF 的周长=BE :CE =2:1,∴△CEF 的周长为16.8. 【答案】A【解析】正方形ABCD 中,∵BC=4, ∴BC=CD=AD=4,∠BCE=∠CDF=90°, ∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE 和△CDF 中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CDF(SAS),∴∠CBE=∠DCF , ∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE , cos ∠CBE=cos ∠ECG=BC CGBE CE=, ∴453CG =,CG=125,∴GF=CF ﹣CG=5﹣125=135, 故选A .二、填空题9. 【答案】答案不唯一,如AD ∥BC 或AB=CD 或∠A +∠B=180°等10. 【答案】4[解析]由“平行四边形的对角线把平行四边形分成两个全等的三角形”可推出▱AEPH 的面积等于▱PGCF 的面积. ∵CG=2BG ,∴BG ∶BC=1∶3,BG ∶PF=1∶2. ∵△BPG ∽△BDC ,且相似比为1∶3, ∴S △BDC =9S △BPG =9.∵△BPG ∽△PDF ,且相似比为1∶2, ∴S △PDF =4S △BPG =4. ∴S ▱AEPH =S ▱PGCF =9-1-4=4.11. 【答案】110°【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.12. 【答案】36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.13. 【答案】21° 【解析】设∠ADE=x , ∵AE=EF ,∠ADF=90°,∴∠DAE=∠ADE=x ,DE=12AF=AE=EF , ∵AE=EF=CD ,∴DE=CD , ∴∠DCE=∠DEC=2x ,∵四边形ABCD 是平行四边形,∴AD ∥BC , ∴∠DAE=∠BCA=x ,∴∠DCE=∠BCD ﹣∠BCA=63°﹣x ,∴2x=63°﹣x ,解得x=21°,即∠ADE=21°; 故答案为:21°.14. 【答案】75【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.15. 【答案】(2,﹣1)【解析】∵▱ABCD 是中心对称图形,它的对角线交点O 为原点,点A (﹣2,1)与点C 成中心对称,∴点C 的纵、横坐标与点A 的互为相反数.∴点C 的坐标为(2,﹣1).16. 【答案】24【解析】∵四边形ABCD 是菱形, ∴AB=BC=CD=AD ,BO=DO , ∵点E 是BC 的中点, ∴OE 是△BCD 的中位线, ∴CD=2OE=2×3=6,∴菱形ABCD 的周长=4×6=24; 故答案为:24.三、解答题17. 【答案】解:(1)六边形DEFGMN 的各个内角都是120°. 理由:∵△ADN ,△BEF ,△CGM 都是正三角形,∴它们的每个内角都是60°,即六边形DEFGMN 的每个外角都是60°. ∴六边形DEFGMN 的每个内角都是120°.(2)六边形DEFGMN 不是正六边形.理由:∵三个小正三角形(即△ADN ,△BEF ,△CGM)的边长均不相等, ∴DN ,EF ,GM 均不相等. ∴六边形DEFGMN 不是正六边形.18. 【答案】(1)解: ∵CF 平分∠BCD ,∴∠BCD =2∠BCF .∵∠BCF =60°,∴∠BCD =2×60°=120°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°. ∴∠ABC =180°-120°=60°.(2)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∠BAD =∠DCB .∴∠ABE =∠CDF .∵AE ,CF 分别平分∠BAD 和∠DCB ,∴∠BAE =12∠BAD =12∠DCB =∠DCF .在△ABE 和△CDF 中,∵∠ABE =∠CDF ,AB =CD ,∠BAE =∠DCF , ∴△ABE ≌△CDF . ∴BE =DF .19. 【答案】(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,又∠DBC =90°, ∴∠ADB =90°,又AD =6cm ,BD =8cm ,由勾股定理得,AB =AD 2+BD 2=10cm , 当t =1时,EB =2cm , 则DE =8-2=6cm , ∵EH ⊥CD ,∠DBC =90°, ∴△DEH ∽△DCB , ∴DE DC =EH BC ,即610=EH 6, 解得EH =3.6cm ; (2)∵∠CDB =∠AEF , ∴AE ∥CD ,∴∠AEG =∠EGH ,又EG ⊥AG ,EH ⊥CD , ∴△AGE ∽△EHG , ∴EG HG =AE EG , ∴EG 2=AE ·HG ;(3)由(1)得,△DEH ∽△DCB ,∴DE CD =EH BC ,即8-2t 10=EH 6, 解得,EH =24-6t 5,∴y =12×DG ×EH =-6t 2+24t 5=-65t 2+245t =-65(t -2)2+245, ∴当t =2时,y 的最大值为245.20. 【答案】(1)点C 的坐标为(3,4),直线l 的解析式为43y x =. (2)①当M 在OC 上,Q 在AB 上时,502t <≤. 在Rt △OPM 中,OP =t ,4tan 3OMP ∠=,所以43PM t =. 在Rt △AQE 中,AQ =2t ,3cos 5QAE ∠=,所以65AE t =. 于是618855PE t t t =+-=+.因此212162153S PE PM t t =⋅=+. ②当M 在OC 上,Q 在BC 上时,532t <≤. 因为25BQ t =-,所以11(25)163PF t t t =---=-.因此2132223S PF PM t t =⋅=-+. ③当M 、Q 相遇时,根据P 、Q 的路程和2115t t +=+,解得163t =. 因此当M 、Q 都在BC 上,相遇前,1633t <≤,PM =4,162163MQ t t t =--=-. 所以16322S MQ PM t =⋅=-+.图2 图3 图4(3)①当502t <≤时,222162160(20)153153S t t t =+=+-. 因为抛物线开口向上,在对称轴右侧,S 随t 的增大而增大,所以当52t =时,S 最大,最大值为856. ②当532t <≤时,2232812822()339S t t t =-+=--+. 因为抛物线开口向下,所以当83t =时,S 最大,最大值为1289.③当1633t <≤时,16322S MQ PM t =⋅=-+. 因为S 随t 的增大而减小,所以当3t =时,S 最大,最大值为14. 综上所述,当83t =时,S 最大,最大值为1289. 考点伸展第(2)题中,M 、Q 从相遇到运动结束,S 关于t 的函数关系式是怎样的? 此时161332t <≤, 216316MQ t t t =+-=-.因此16322S MQ PM t =⋅=-. 图5。

2021年 中考数学 专题训练:与圆有关的性质(含答案)

2021年 中考数学 专题训练:与圆有关的性质(含答案)

2021 中考数学专题训练:与圆有关的性质一、选择题1. 如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°2. 已知⊙O的半径为5 cm,P是⊙O内一点,则OP的长可能是()A.4 cm B.5 cm C.6 cm D.7 cm3. 下列语句中不正确的有()①过圆上一点可以作圆中最长的弦无数条;②长度相等的弧是等弧;③圆上的点到圆心的距离都相等;④在同圆或等圆中,优弧一定比劣弧长.A.1个B.2个C.3个D.4个4. 如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°5. 2019·赤峰如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A .30°B .40°C .50°D .60°6. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .5B .4C .13D .4.87. 下列说法:①矩形的四个顶点在同一个圆上;②菱形的四个顶点在同一个圆上;③平行四边形的四个顶点在同一个圆上.其中正确的有( )链接听P37例3归纳总结 A .0个 B .1个 C .2个 D .3个8. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°9. (2019•镇江)如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于A .55︒B .60︒C .65︒D .70︒10. 2019·天水如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°二、填空题11.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.12. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为.︵13. 如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC 上一点,则∠D=________.14. 如图,AB为⊙O的直径,CD⊥AB.若AB=10,CD=8,则圆心O到弦CD 的距离为________.15. 如图所示,OB ,OC 是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.16. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.17. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题19.如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥B C.20.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=10,求⊙O的半径.21. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,∠=∠.AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA(1)求证:AC是⊙O的切线;(2)若23==,求阴影部分的面积.CE AE2021 中考数学专题训练:与圆有关的性质-答案一、选择题1. 【答案】A2. 【答案】A3. 【答案】B[解析] ①②不正确.4. 【答案】A[解析]连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°-∠C=70°.∵=,∴∠CAB=∠DAB=35°.∵AB 是直径,∴∠ACB=90°, ∴∠ABC=90°-∠CAB=55°,故选A .5. 【答案】D6. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =-=-=,∵OD AC ⊥,∴142CD AD AC ===, 在Rt CBD △中,2246213BD =+=.故选C .7. 【答案】B[解析] 矩形的两条对角线的交点到矩形的四个顶点的距离相等,故它的四个顶点在以对角线的交点为圆心、对角线长的一半为半径的圆上.8. 【答案】B9. 【答案】A【解析】如图,连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°–∠C=70°, ∵DC CB =,∴∠CAB=12∠DAB=35°, ∵AB 是直径,∴∠ACB=90°,∴∠ABC=90°–∠CAB=55°,故选A .10. 【答案】C二、填空题11.【答案】50°【解析】∵AT 是⊙O 的切线,AB 是⊙O 的直径,∴∠BAT =90°,在Rt △BAT 中,∵∠ABT =40°,∴∠ATB =50°.12. 【答案】52°[解析]∵圆内接四边形对角互补,∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.13. 【答案】40°【解析】AC 是⊙O 的直径⇒∠ABC =90°⇒⎭⎪⎬⎪⎫ ∠A =90°-50°=40°∠A 和∠D 都是BC ︵所对的圆周角 ⇒∠D =∠A =40°. 14. 【答案】315. 【答案】50 [解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.16. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.17. 【答案】65[解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.18. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A作直径AD,连接BD,则∠ABD=90°,∴∠C=∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题19. 【答案】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵MP为⊙O的切线,∴∠PMO=90°,∵MP∥AC,∴∠P=∠CAB,∴∠MOP=∠B,故MO∥BC.20. 【答案】(1)证明:如解图,连接DO,∴∠BOD=2∠BCD=∠A,(2分)解图又∵∠DEA=∠CBA,∴∠DEA+∠DOE=∠CAB+∠CBA,又∵∠ACB=90°,∴∠ODE=∠ACB=90°,(5分)∴OD⊥DE,又∵OD是⊙O的半径,∴DE与⊙O相切.(7分)(2)解:如解图,连接BD,可得△FBD ∽△DBO , ∴BD BO =DF OD =BF BD ,(8分)∴BD =DF =10,∴OB =5,(10分)即⊙O 的半径为5.21. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒, ∵OA OE =,∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠, ∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE == ∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠, ∴2AEO EAC ∠=∠, ∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠, ∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒, ∴OAE △是等边三角形, ∴OA AE =,60EOA ∠=︒,∴OA =∴260π2π360=AOE S ⋅⨯=扇形,在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π。

中考数学大几何专题训练

中考数学大几何专题训练

【中考大几何专题训练】一.解答题(共60小题)1.(2021•重庆)在等边△ABC中,AB=6,BD⊥AC,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.(1)将线段EF绕点E逆时针旋转60°得到线段EG,连接FG.①如图1,当点E与点B重合,且GF的延长线过点C时,连接DG,求线段DG的长;②如图2,点E不与点A,B重合,GF的延长线交BC边于点H,连接EH,求证:BE+BH =BF;(2)如图3,当点E为AB中点时,点M为BE中点,点N在边AC上,且DN=2NC,点F从BD中点Q沿射线QD运动,将线段EF绕点E顺时针旋转60°得到线段EP,连接FP,当NP +MP最小时,直接写出△DPN的面积.第1页(共59页)2.(2021•重庆)在△ABC中,AB=AC,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE的位置,使得∠DAE+∠BAC=180°.(1)如图1,当∠BAC=90°时,连接BE,交AC于点F.若BE平分∠ABC,BD=2,求AF的长;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想;的值.(3)如图3,在(2)的条件下,连接DG,CE.若∠BAC=120°,当BD>CD,∠AEC=150°时,请直接写出第2页(共59页)3.(2020•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF =AD;(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.第3页(共59页)4.△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.第4页(共59页)5.(2021•渝中区校级开学)在△ABC中,AB=AC=6,∠BAC=90°,AD⊥BC于点D,E为线段AD上的一点,AE:DE=2:1,以AE为直角边在直线AD右侧构造等腰Rt△AEF,使∠EAF=90°,连接CE,G为CE的中点.(1)如图1,EF与AC交于点H,连接GH,求线段GH的长度.(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α且45°<α<135°,H为线段EF的中点,连接DG,HG,猜想∠DGH的大小是否为定值,并证明你的结论;(3)如图3,连接BG,将△AEF绕点A逆时针旋转,在旋转过程中,请直接写出BG长度的最大值.第5页(共59页)6.(2021春•沙坪坝区校级月考)如图1,在等腰Rt△ABC中,∠ACB=90°,AC=BC,D为BC上一点,DE⊥AB于点E,连接AD,F为AD中点,连接CF并延长交AB于点G,连接EF.(1)当∠DAB=30°,BE=2时,求DC的值;(2)如图2,当BE:AG=3:4时,试判断AG2、GE2、CD2之间的数量关系,并说明理由;(3)如图3,在等腰Rt△ABC中,∠ACB=90°,若AB=4,M是AB中点,连接CM,三角形内有一点P到点M的距离是1,连接BP,将BP绕点P逆时针旋转90°得到PN,当线段AN长度取最大值时,设直线PN与直线BC的交点为H ,请直接写出的值.第6页(共59页)7.(2021•北碚区校级模拟)如图,Rt△ABC中,AB=BC=2,将△ABC绕点C顺时针旋转,旋转角为α,A、B的对应点分别为D、E.连接BE并延长,与AD交于点F.(1)如图1,若α=60°,连接AE,求AE长度;(2)如图2,求证:BF=DF+CF;(3)如图3,在射线AB上分别取点H、G(H、G不重合),使得BG=BH=1,在△ABC 旋转过程中,当FG﹣FH的值最大时,直接写出△AFG 的面积.第7页(共59页)8.(2020秋•九龙坡区校级期末)△ABC为等边三角形,CD⊥AB于点D,点E为边BC上一点,点F为线段CD上一点,连接EF,且CE=EF.(1)如图1,若AB=4,CE =,连接BF,G为BF的中点,连接DG,求线段DG的长;(2)如图2,将△CEF绕点C逆时针方向旋转一定的角度得到△CMN,连接BN,点H为BN的中点,连接AH、HM,求证:AH =HM;(3)如图3,在(2)问的条件下,线段HM与线段CN交于点P,连接AM,交线段CN于点Q,当CQ=2PN=a时,请直接用含a的式子表示PQ 的长.第8页(共59页)9.(2021春•渝中区校级月考)如图,在正方形ABCD中,点P为CB延长线上一点,连接AP.(1)如图1,以CD为边向内作等边△CDF,延长DF恰好交CB延长线于点P,若AB=4,求tan∠PAB的值;(2)如图2,若∠APB=60°,以CD为边向外作等边△CDF,连接AF,DE平分∠ADC交AF于点E,连接PE、CE.证明:PA+PC =PE;(3)如图3,若∠APB=45°,AB=2,点E为正方形内一点,连接AE,CE,DE,PE,当AE+DE+EC取最小值时,直接写出PE2的值.第9页(共59页)10.(2021春•江北区期中)已知△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合).在AD右侧,以AD为边作菱形ADEF,使∠.DAF=60°,连接CF(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出∠AFC,∠DAC,∠ABC之间存在的数量关系,并写出证明过程;(3)如图3,当点D在边CB的延长线上时,且点A,F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC,∠DAC,∠ABC 之间存在的等量关系.第10页(共59页)11.(2021春•沙坪坝区校级月考)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC中点,点E是AC边上一动点,连接DE,在DE左侧作Rt△DEF,满足∠DFE=90°,DF=EF,连接AF并延长,交BC于点G.(1)如图1,若AB=4,AE=1,求DE的长;(2)如图2,在点E的运动过程中,猜想AF与FG存在的数量关系,并证明你的结论;(3)如图3,在点E的运动过程中,将AF绕点F逆时针旋转90°,得到A′F,连接A'B,A'D,若AB=4,请直接写出当A'B +A′D取得最小值时,△A′DF的面积.第11页(共59页)12.在Rt△ABC中,∠ABC=90°,BA=BC,点D为边AC上一动点.(1)如图1,若DC=6,∠ABD=15°,求BD的长;(2)如图2,以BD直角边作Rt△BDE,使得BD=BE,连接AE,点F为AE中点,请猜想BF、AD、DE之间的关系,并说明理由;的最小值.(3)如图3,若AB=4,当点D在运动过程中,点G为射线BC上一点,满足CD =BG,求AG +DG第12页(共59页)13.(2020秋•沙坪坝区校级期末)如图,在菱形ABCD中,分别过点B作BC的垂线,过点D作CD的垂线交于点E.(1)如图1,若∠ABC=45°,连接AE,BD,求证:AE=BD;(2)如图2,若∠ABC=60°,点F是DE延长线上的一点,点G为EB延长线上的一点,且EF=BG.连接BF、DG,DG交FB的延长线于点H,连接AH.试猜想线段AH、BH、HD的数量关系并证明你的结论.(3)如图3,在(2)的条件下,在AH上取一点P,使得HP=2AP,已知Q为直线ED上一点,连接BQ,连接QP,当BQ+QP最小时,直接写出的值.第13页(共59页)14.(2021春•霞浦县期末)已知等腰Rt△ABC和等腰Rt△AEF中,∠ACB=∠AFE=90°,AC=BC,AF=EF,连接BE,点Q为线段BE的中点.(1)如图1,当点E在线段AC上,点F在线段AB上时,连接CQ,若AC=8,EF=2,求线段CQ的长度.(2)如图2,B、A、E三点不在同一条直线上,连接CE,且点F正好落在线段CE上时,连接CQ、FQ,求证:CQ=FQ.(3)如图3,AC=8,AE=4,以BE为斜边,在BE的右侧作等腰Rt△BEP,在边CB上取一点M,使得MB=2,连接PM、PQ,当PM的长最大时,请直接写出此时PQ2的值.第14页(共59页)15.(2020秋•北碚区校级期末)如图1,△ABC与△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,CE的延长线与BD交点P,CP与BA相交于点F,现将△ADE绕点A旋转.(1)如图1,求证:BP⊥CP;(2)如图2,若AF=BF,猜想BP与CP的数量关系,并证明你猜想的结论;(3)若AC =DE=2,在将△ADE绕点A旋转的过程中,请直接写出点P运动路径的长度.第15页(共59页)16.(2020秋•南岸区期末)已知,矩形ABCD,点E在AB的延长线上,AG⊥CE,垂足为G.(1)如图1,若AB=AD,求证:AG=CG +BG;之间又存在怎样的数量关系?请写出你的结论,并证明你的结论.(2)如图2,若AB:AD =,则AG,CG,BG第16页(共59页)17.(2021•禹州市一模)(1)如图1.在Rt△ACB中,∠ACB=90°,CA=8,BC=6,点D、E分别在边CA,CB上,且CD=3,CE=4,连接AE,BD,F为AE的中点,连接CF交BD于点G,则线段CG所在直线与线段BD所在直线的位置关系是.(提示:延长CF到点M,使FM=CF,连接AM)(2)将△DCE绕点C逆时针旋转至图2所示位置时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将△DCE绕点C逆时针在平面内旋转,在旋转过程中,当B,D,E三点在同一条直线上时,CF的长为.第17页(共59页)18.(2021•大渡口区模拟)将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF.(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.第18页(共59页)19.在△ABC和△BDE中,∠BDE=∠BAC=90°,AB=AC,DB=DE,BC=2BE,点F为EC中点,连接DF、AF,△DBE绕着点B顺时针旋转.(1)如图1,BE旋转到BC边上时,若BD=,求AF的长;(2)当△DBE旋转到图2位置时,求证:AF=DF;(3)如图3,△DBE绕着点B顺时针旋转,其中BD =,当AF最小时,直接写出△ADE的面积.第19页(共59页)20.(2021•九龙坡区校级模拟)在△ABC和△AEF中,∠AFE=∠ABC=90°,∠AEF=∠ACB=30°,AE =AC,连接EC,点G是EC中点,将△AEF 绕点A顺时针旋转.(1)如图1,若E恰好在线段AC上,AB=2,连接FG,求FG的长度;(2)如图2,若点F恰好落在射线CE上,连接BG,证明:GB=AB+GC;(3)如图3,若AB=3,在△AEF旋转过程中,当GB ﹣GC最大时,直接写出直线AB,AC,BG所围成三角形的面积.第20页(共59页)21.(2021春•北碚区校级月考)在等腰Rt△ABC中,∠BAC=90°,AB=AC,延长BA至点D,延长AC至点E,使得BD=AE,DH交BC于点F,过点B作BH⊥BA交DF延长线于点H,连接DE、EH.(1)如图1,若AD=BH,EH=2,DH=2,求点H到DE的距离;(2)如图2,若点F为BC的中点,连接EF,求证:EH=EC+HB;(3)如图3,若AB=2,点N、F分别为线段AC、BC上的点,满足BF =CN,连接FN,将△CFN绕点F顺时针旋转90°,点N旋转后的对应点为点M,连接AM,直接写出AM的最小值.第21页(共59页)22.(2021•渝中区校级自主招生)如图,在△ABC与△DEF中,∠ACB=∠EDF=90°,BC=AC,ED=FD,点D在AB上.(1)如图1,若点F在AC的延长线上,连接AE,探究线段AF、AE、AD之间的数量关系,并证明你的结论;(2)如图2,若点D与点A重合,且AC=3,DE=4,将△DEF绕点D旋转,连接BF,点G为BF的中点,连接CG,在旋转的过程中,求CG+BG的最小值;(3)如图3,若点D为AB的中点,连接BF、CE交于点M,CE交AB于点N,且BC:DE:ME=7:9:10,请直接写出的值.第22页(共59页)23.(2021春•渝中区校级月考)已知△ABC和△DCE中,AB=AC,DC=DE,BF=EF,点B,C,E都在同一直线上,且△ABC和△DCE在该直线同侧.(1)如图①,若∠BAC=∠CDE=90°,请猜想线段AF与DF之间的数量关系和位置关系,并证明你的猜想;(2)如图②,若∠BAC=60°,∠CDE=120°,请直接写出线段AF与DF之间的数量关系和位置关系;(3)如图③,若∠BAC=α,∠CDE=180°﹣α,且BC>CE,请直接写出线段AF与DF之间的数量关系和位置关系(用含α的式子表示).第23页(共59页)24.(2019春•成都期末)等腰直角三角形OAB中,∠OAB=90°,OA=AB,点D为OA中点,DC⊥OB,垂足为C,连接BD,点M为线段BD中点,.连接AM、CM,如图①(2)将图①中的△OCD绕点O逆时针旋转90°,连接BD,点M为线段BD中点,连接AM、CM、OM,如图②.①求证:AM=CM,AM⊥CM;②若AB=4,求△AOM的面积.第24页(共59页)25.(2021春•渝北区校级月考)在平行四边形ABCD中,对角线AC,BD交于点O,将过点A的直线l绕点A旋转,交射线CD于点E,BF⊥l于点F,DG⊥l于点G,连接OF,OG(1)如图①,当点E与点C重合时,请直接写出线段OF、OG的数量关系;(2)如图②,当点E在线段CD上时,OF与OG有什么数量关系?请说明你的结论;(3)如图③,当点E在线段CD的延长线上时,OF与OG有什么数量关系?请说明你的结论.第25页(共59页)26.(2021•万州区模拟)如图,点B,C,D在同一条直线上,△BCF和△ACD都是等腰直角三角形.连接AB,DF,延长DF交AB于点E.(1)如图1,若AD=BD,DE是△ABD的平分线,BC=1,求CD的长度;(2)如图2,连接CE,求证:DE =CE+AE;(3)如图3,改变△BCF的大小,始终保持点F在线段AC上(点F与点A,C不重合).将ED绕点E顺时针旋转90°得到EP.取AD的中点O,连接OP.当AC=2时,直接写出OP长度的最大值.第26页(共59页)27.(2020春•沙坪坝区校级月考)在△ABC中,AC=BC,点G是直线BC上一点,CF⊥AG,垂足为点E,BF⊥CF于点F,点D为AB的中点,连接DF.(1)如图1,如果∠ACB=90°,且G在CB边上,设CF交AB于点R,且E为CR的中点,若CG=1,求线段BG的长;(2)如图2,如果∠ACB=90°,且G在CB边上,求证:EF =DF;(3)如图3,如果∠ACB=60°,且G在CB的延长线上,∠BAG=15°,请探究线段EF、BD之间的数量关系,并直接写出你的结论.第27页(共59页)28.(2021•九龙坡区校级开学)在菱形ABCD中,以点A为顶点作等腰△AEF,然后将等腰△AEF绕着点A顺时针转动,已知∠EAF+∠BAD=180°.(1)如图1,若点E落在线段CD上,当∠BAD=90°时,连接BF交AD于点G,当AG=1,AE=3,求AB的长;(2)如图2,连接DE,BF,取BF的中点G,连接AG.猜想AG与DE存在的数量关系,并证明你的猜想;(3)如图3,在等腰△AEF绕着点A顺时针转动时,设AE交BD于点M,AF交BD于点N.若∠BAD=120°,∠AMD=45°,AB=2时,请直接写出MN的值.第28页(共59页)29.(2021•渝中区校级自主招生)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)如图1,在四边形ABCD中,∠A=60°,∠C=30°,AB=AD,求证:四边形ABCD是勾股四边形;的最小值.(2)如图2,在四边形ABCD中,∠DAB=60°,∠DCB=60°,AB=AD,且BC+DC=8,连接AC,求AC第29页(共59页)30.(2020秋•万州区期末)在菱形ABCD中,AB=4,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点.且CF=AE,连接BE、EF.(1)如图1,若E是线段AC的中点,求EF的长;(2)如图2.若E是线段AC延长线上的任意一点,求证:BE=EF.(3)如图3,若E是线段AC延长线上的一点,CE=AC,将菱形ABCD绕着点B顺时针旋转α°(0≤α≤360),请直接写出在旋转过程中DE的最大值.第30页(共59页)31.(2020秋•开州区期末)如图,在正方形ABCD中,E为边BC上一点,过点C作CF⊥AE交AE的延长线于点F,连接DF,BF,过点D作线段AF 的垂线交AF于点H,交AB于点G.(1)如图1,若CF=1,BF=,求AC;(2)如图1,求证:HG+EF=AH;(3)如图2,若正方形的边长为2,点E在BC边所在直线上运动时,过点C作CM⊥DF交DF于点M,取AD的中点N,请直接写出线段MN的取值范围.第31页(共59页)32.(2020秋•江北区期末)【问题背景】如图1,P是等边三角形ABC外一点,∠APB=30°,则PA2+PB2=PC2.小明为了证明这个结论,将△PAB绕点A逆时针旋转60°,请根据此思路完成其证明.【迁移应用】如图2,在等腰直角三角形ABC中,BA=BC,∠ABC=90°,点P在△ABC外部,且∠BPC=45°,若△APC的面积为5.5,求PC;【拓展创新】如图3,在四边形ABCD中,AD∥BC,点E在四边形ABCD内部,且DE=EC,∠DEC=90°,∠AEB=135°,AD =,BC =,直接写出AB的长.第32页(共59页)33.(2021•巴南区自主招生)如图①,在矩形ABCD中,∠ACB=60°,矩形A1B1CD1是由矩形ABCD绕点C顺时针旋转一个角度得到的,点A1、B1、D1分别是点A、B、D的对应点.在旋转过程中,直线BB1与直线AA1相交于点M.(1)当∠BCB1=100°时,求∠A1B1M的度数;(2)在旋转过程中,请你猜想AM与A1M之间存在的数量关系,并根据所给图形证明你猜想的结论;之间的距离.(3)如图②,设点N在边AB上,且∠BCN=30°,BC=1,在旋转过程中,当NC+NB1的值取最小值时,请直接写出点B1与点M第33页(共59页)34.(2021•北碚区校级模拟)如图,在正方形ABCD中,E,F分别是边BC,AB上一动点,且AF=BE,连接DF,AE交于点G,连接CG.(1)如图1,若CG=AD,求证:CE=AD;(2)如图2,当点E,F分别在边BC,AB上运动时,在以GC为斜边构造等腰直角△CGH,连接DH,猜想∠HDG的大小是否为定值,并证明你的结论;(3)如图3,在(2)的条件下,连接BH,当BH取得最小值时,请直接写出的值.第34页(共59页)35.(2021春•沙坪坝区校级期中)在平行四边形ABCD中,以AB为腰向右作等腰△ABE,AB=AE,以AB为斜边向左作Rt△AFB,∠AFB=90°,(1)如图1,若F,A,D三点在同一直线上,点E与点D重合,连接BD,∠ADC=60°,AD=2,求△BFD的周长;(2)如图2,若F,A,D三点在同一直线上,点E落在CD边上,点P为BE上一点,连接FP,点Q为FP上一点,连接AQ,且∠AQF+∠BFQ=90°,∠QAE+∠C=180°,求证BP=EP;(3)如图3,若F,A,C三点在同一直线上,点E与点C重合,∠D=30°,AB=8,点M为△ABC内部一动点,连接AM,BM,CM,满足∠AMB =120°,点N为CM的中点,连接AN,过点N作NP⊥AN交BC于点P,当PM最小时,将△MNP绕点P旋转,旋转中的△MNP记为△M′N′P,请直接写出点M′到AN距离的最大值.第35页(共59页)36.(2021春•铜梁区校级期末)已知四边形ABCD是平行四边形,在△AEF中,点E、F是动点,AE=EF,∠AEF=90°.(1)如图1,当点F于点B重合时,连接CE交AB于点G,连接AC,若AB=BC,∠BAD=120°,BE=2,求点E到BC的距离;(2)如图2,当点F在AB延长线上时,将△AEF绕着点A逆时针旋转得到△AE′F′,使点F′落在CD边上,点E′在平行四边形ABCD的内部,过点C作CH⊥CD,连接CH、DH,若AF′=DH,∠AF′D=∠H,求证:2BE′+CH =CD;(3)如图3,AB=BC,∠BAD=120°,AB=2,点F从B点出发沿射线BC 运动,求运动过程中(DE+AE)2的最小值.第36页(共59页)37.(2021春•沙坪坝区校级月考)在平行四边形ABCD中,AE⊥EC于点E,AE=EC.(1)如图1,连接BD,若tan∠ADC=3,BE=1,求BD的值;(2)如图2,连接AC,F是AC的中点,过点E作EG⊥AB于点G,延长GE交DC的延长线于点H,连接FH.请猜想CH、AG、FH的关系,并证明你的结论;(3)如图3,在(1)的条件下,将△ABE绕点E顺时针旋转一定的角度α(0°<a<90°),得到△A'B'E,当∠A'=∠A'EA时,停止旋转,此时边A'B'与边AE交于点P.点M是边BC上一动点,点N是平面内一点,△DMN是等边三角形,直接写出PN的最小值.第37页(共59页)38.(2021•北碚区校级模拟)如图,在平行四边形ABCD中,E为平行四边形内部一点,连接AE,BE,CE.(1)如图1,AE⊥BC交BC于点F,已知∠EBC=45°,∠BAF=∠ECF,AB =,EF=1,求AD的长.(2)如图2,AE⊥CD交CD于点F,AE=CF且∠BEC=90°,G为AB上一点,作GP⊥BE且GP=CE,并以BG为斜边作等腰Rt△BGH,连接EP,EH,求证:EP =EH.(3)在(2)的条件下,将△BHG绕着点B旋转,如图3,连接CG,M为CG的中点,若BG=4,BC=8,直接写出2EM+CM的最小值.第38页(共59页)39.(2021•九龙坡区模拟)如图,四边形ABCD是矩形,点E在AB边上,且BC=BE,连接EC、AC,过点B作BG⊥AC,垂足为G,BG分别交EC、DC于F、H两点.(1)如图1,若BC=2,∠ECA=15°,求线段EF的长.(2)如图2,延长AB到M,连接MF,使得∠BMF=∠FBC,求证:BF+FM=AC.(3)如图3,在(1)的条件下,点N是线段DC的三等分点,且DN<CN,点P是线段AD的中点,连接AN,将△ADN绕点D逆时针旋转α°(0≤α≤360)到△A'DN',连接PA',NA',当3NA'﹣PA'取最大值时,请直接写出△A'DH的面积.第39页(共59页)40.(2021•北碚区校级模拟)如图1,在▱ABCD中,对角线BD平分∠ABC,过点B作BE⊥AD交DA的延长线于点E,F是AE的中点,连接EF.(1)若BD=5,BE=3,求EF的长.(2)如图2,G是BD的中点,N,M分别是EF,AD上一点,连接GN,GM.若∠BAD=∠NGM,求证:BC=EN+AM.(3)如图3,K是BC上一点,P是边AB上一动点,连接EP.将△BEP沿EP翻折,使点B落在平面内点Q处,连接DQ,KQ.若AD=6,CK=2,∠C=120°,请直接写出当3KQ+DQ取最小值时,点B到QK的距离.第40页(共59页)41.(2021•渝中区校级模拟)如图,Rt△ABC中,∠ABC=90°,AB=BC,点E是边BC上的一个动点,点D是射线AC上的一个动点;连接DE,以DE为斜边,在DE右侧作等腰Rt△DFE,再过点D作DH⊥BC,交射线BC于点H.(1)如图1,若点F恰好落在线段AE上,且∠DEH=60°,CD=3,求出DF的长;(2)如图2,若点D在AC延长线上,此时,过F作FG⊥BC于点G,FG与AC边的交点记为M,当AE=DE时,求证:FM +MD=AB;(3)如图3,若AB=4,点D在AC延长线上运动,点E也随之运动,且始终满足AE=DE,作点E关于DF的对称点E′,连接CF、FE′、DE′,当CF取得最小值时,请直接写出此时四边形CFE′D的面积.第41页(共59页)42.(2021春•南岸区期中)如图所示,在▱ABCD中,连接对角线AC.把AB绕着点A逆时针旋转60°,得到线段AE,点E在边BC上.点F在线段AE上,且AF=CE.连接BF,DF,G是BF的中点,连接AG,CG.(1)求证:∠BAG=∠EAC;(2)猜想AG与CG存在的数量关系,并证明你猜想的结论;(3)当∠BAG=15°时,请直接写出DF与AB存在的数量关系.第42页(共59页)43.(2021•渝中区模拟)如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF.(1)求证:AE=CF;(2)若AE平分∠BAD,BE=3,求CD的长.44.(2021春•渝中区校级月考)如图,在矩形ABCD中,AC,BD交于点O,点E,F分别在AO,DO上,且AE=DF.(1)求证:∠EBO=∠FCO.(2)若∠EBO=30°,CF⊥BD,BC=4,求△COF的面积.第43页(共59页)45.(2021•九龙坡区校级模拟)在平行四边形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于E,过点C作CF⊥CD交AE于点F,连接OF.以OF为直角边作Rt△OFG,其中∠OFG=90°,连接AG.(1)如图1,若∠EAB=30°,OA=2,AB=6,则求CE的长度;(2)如图2,若CF=CD,∠FGO=45°,求证:EC =AG+2EF;(3)如图3,动点P从点A运动到点D(不与点A、点D重合),连接FP,过点P作FP的垂线,又过点D作AD的垂线交FP的垂线于点Q,点A'是点A关于FP的对称点,连接A'Q.若AE=2EC,FG=2OF,EF=1,AG =,则在动点P的运动过程中,直接写出A'Q的最小值.第44页(共59页)46.(2021•铜梁区校级模拟)已知,△ABC和△DEC都是等腰直角三角形,∠BAC=∠CED=90°,AB=AC,ED=EC,分别过点B、D作BF∥AD、DF∥AB,两平行线交于点F,连接AF.(1)如图1,若点E在AC上,AB=6,tan∠DAC =,求AF的长;(2)如图2,将△DEC绕点C逆时针旋转,使点E落在BC上,若AD=CD,AF交BC于点G,DF交BC于点H ,求的值;(3)如图3,若AB=6,DE=2,将△DEC绕点C旋转一周,当AF的长最大时,直接写出四边形ABFD的面积.第45页(共59页)47.(2021•渝中区校级模拟)如图,在菱形ABCD中,∠ABC=60°,分别过点B作BC的垂线,过点D作CD的垂线,两垂线相交于点E.(1)如图1,若AD=4,连接AE,BD,求三角形ADE的面积;(2)如图2,点F是DE延长线上的一点,点G为EB延长线上的一点,且EF=BG,连接BF,DG,DG交FB的延长线于点H,连接AH,试猜想线段AH,BH,HD的数量关系并证明你的结论;(3)如图3,在(2)的条件下,在AH上取得一点P,使得HP=3AP,已知Q为直线ED上一点,连接BQ,连接QP,当BQ+QP最小时,直接写出的值.第46页(共59页)48.(2021春•合川区校级月考)如图所示,在▱ABCD中,对角线AC,BD相交于点O,OA=5cm,E,F为直线BD.上的两个动点(点E,F始终在▱ABCD的外面),此时DE =OD,BF=OB,连接AE,CE,CF,AF.(1)求证:四边形AFCE为平行四边形.(2)若CA平分∠BCD,∠AEC=60°,求四边形AFCE的周长.(3)若DE =OD,BF =OB,四边形AFCE还是平行四边形吗?若DE =OD,BF =OB呢?简单说明理由.第47页(共59页)49.(2021春•沙坪坝区校级期末)如图1,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.(1)若BE=4,CE =,求AD的长;(2)如图2,点F是BC上一点,且EF=EC,过点C作CG⊥EF于点G,交BE于点H,求证:BH =DE;的值.(3)如图3,在(2)的条件下,连接DG,当BE=BC 时,请直接写出第48页(共59页)50.(2021春•沙坪坝区校级期中)已知,在▱ABCD中,E为AB上一点,且DE=2AD,作∠ADE的平分线交AB于点F.(1)如图1,当E与B重合时,连接FC交BD于点G,若FC⊥CD,AF=3,求线段CF的长.(2)如图2,当CE⊥AB时,过点F作FH⊥BC于点H,交EC于点M.若G为FD中点,CE=2AF,求证:CD﹣3AG=EM.(3)如图3,在(1)的条件下,M为线段FC上一点,且CM =,P为线段CD上的一个动点,将线段MP绕着点M逆时针旋转30°得到线段MP′,连接FP′,直接写出FP′的最小值.第49页(共59页)51.(2021春•九龙坡区校级期末)在正方形ABCD中,点E是对角线BD上一点,连接AE.(1)如图1,若AB=7,BE=10.求AE的长.(2)如图2,对角线AC与BD相交于点O,点F在AB上,且EF=AE,连接CF.点G在EF上,EG=BG,延长BG交AC于点H.求证:CF =BH;(3)如图3,在(1)的条件下,过点E作EM∥CD交OC于点M,把△OEM绕点O逆时针旋转α(0°≤α≤360°)得△OE′M′,取E′M′的中点K,连接CK,将CK顺时针旋转90°得到CN,连接KN.过点N作NR⊥BC于点R,当NR最大时,求线段KR的长.第50页(共59页)。

2021年重庆中考数学专题复习应用题

2021年重庆中考数学专题复习应用题

2021重庆中考数学专题复习应用题1.樱桃果实味甘性温,营养丰富,含铁量高,有调中补气、祛风湿、促进血红蛋白再生等功能.宋代女诗人朱淑真以“樱桃”为题吟道:“为花结实自殊常,摘下盘中颗颗香.味重不容轻众口,独于寝庙荐先尝”.本月正是日啖樱桃的好时节,小玉访友途中先后购买了攀枝花甜樱桃(简称“P樱桃”)4斤和壁山小樱桃(简称“B樱桃”)2斤,共支付125元.(1)已知P樱桃单价是B樱桃单价的2倍,则P樱桃单价是多少?(2)小玉发现后购买的樱桃价虽廉,但物不够美,决定到甲、乙两个采摘园自行采摘.回家后发现,甲采摘园樱桃单价比P樱桃单价少a%,乙采摘园樱桃单价比B樱桃高a%,且在甲采摘园采摘的数量比途斤,在乙采摘园采摘的数量与途中购买的B樱桃数量一样多,总价比途中购中购买的P樱桃数量少a20a%,则a的值为多少?买时的支付费用125元少752.端午将至,各大商家都在为端午节销售粽子做准备.重庆某知名食品公司主推两款粽子礼盒,蛋黄鲜肉粽礼盒和八宝粽礼盒.礼盒上市第一天,卖出两种礼盒共计5000盒,其中蛋黄鲜肉粽礼盒和八宝粽礼盒的售价分别为160元和120元.(1)若礼盒上市当天,蛋黄鲜肉粽礼盒销售数量是八宝粽礼盒销售数量的1.5倍,求当天八宝粽礼盒的销售量?(2)在(1)的条件下,礼盒上市第二天,蛋黄鲜肉粽礼盒销售数量增长了a%,八宝粽礼盒销售数量增长a%,而蛋黄鲜肉粽礼盒价格下降了a%,八宝粽礼盒价格不变,最终礼盒上市第二天两种礼盒的销了15售总额和(1)中两种礼盒的销售总额相等,求a的值.3. 水蜜桃,因其鲜嫩多汁,香甜可口深受广大市民喜爱.近期是水蜜桃大量上市的日子,某水果店以12元每千克购进水蜜桃100千克进行销售.若在运输过程中质量损耗10%,其他费用忽略不计.(1)问每千克水蜜桃售价至少定为多少元,才能使销售完后的利润率不低于20%?(2)因水蜜桃销售情况良好,很快一抢而空,水果店本周又购进了第二批水蜜桃400千克,第二批水蜜桃的购进价格比第一批上涨了13a%,由于天气原因,第二批水蜜桃在运输过程中质量损耗提高到14a%,所以水果商决定提高售价,比第一批的最低售价提高110a 元,这样,第二批水蜜桃销售完后比第一批水蜜桃多赚1480元,求a 的值.4. 某超市计划把每盒利润是50元和30元的A 、B 两种礼盒糕点共进2000盒,作为本月的主打商品.(1)若全部销售完这些商品,礼盒B 的利润不超过礼盒A 的利润的90%,则礼盒A 至少进多少盒?(2)超市在实际进货时,因晚了一周,虽然两种礼盒进价都不变,但是由于市场供求变化,礼盒A 的售价每盒降低了5a 元,其销量比(1)中最少进货量增加了a 30,礼盒B 的每盒利润下调了7a 90,其销量在(1)问中最多进货量上多了400盒.在这批货全部售完的情况下礼盒A 的总利润比礼盒B 的总利润少了8000元,求a 的值?5.某蛋糕店生产的水果蛋糕深受消费者喜爱,但2020年受疫情影响,销售情况大幅受挫,2020年4月该蛋糕店仅售出60盒这种水果蛋糕,已知该水果蛋糕每盒的成本为100元,卖价为每盒200元;2020年5月该店推出了一款新口味蛋糕,该新口味蛋糕每盒成本为75元,卖价仍为每盒200元,并且从5月一开始,该店不再生产和出售旧款的水果蛋糕,(1)若要使4月、5月该店卖出两款蛋糕的总利润不低于28500元,则5月至少应该卖出多少盒新口味蛋糕?(2)随着消费市场的逐渐好转,该店5月按照(1)中最低数量进行生产制作新口味蛋糕,但由于材料、人工等方面影响,新口味蛋糕每盒的成本比75元多了a%(a>10),于是该店将售价也提高了a%,在实a%的新口味蛋糕变质而无法卖出,最终,5月的总利润比4月多了际售卖过程中,由于天气原因,有1216500元,求a的值.6.谊品生鲜超市在六月第三周购进“夏黑”和“阳光玫瑰”两种葡萄,已知“夏黑”葡萄的售价比“阳光玫瑰”葡萄的售价每千克少10元.(1)若六月第三周超市购进100千克的“夏黑”葡萄,“阳光玫瑰”葡萄的购进数量是“夏黑”葡萄购进数量的2倍,全部销售完后,销售额为17000元,则“夏黑”葡萄每千克的售价为多少元?(2)由于两种葡萄销量很好,六月第四周超市又购进了两种葡萄若干千克.6月24日,两种葡萄的售价与第三周的售价相同,其中“夏黑”葡萄与“阳光玫瑰”葡萄当天的销量之比为3:2,6月25日是端午节,超市决定调整销售方案,“夏黑”葡萄的售价每千克降价a%,销量比6月24日增加了2a%,“阳a%,销量比6月24日增加了a%,结果6月25日两种葡萄的总销售光玫瑰”葡萄的售价每千克上涨14a%,求a的值(a>0).额比6月24日两种葡萄的总销售额增加了31367.5月10日,重庆正式启动“加快发展直播带货行动计划”,以推动直播带货和“网红经济”发展.已知云阳桃片糕每盒12元,仙女山红茶每盒50元.第一次直播期间,共卖出云阳桃片糕和仙女山红茶共计2000盒.(1)若卖出桃片糕和红茶的总销售额不低于54400元,则至少卖出仙女山红茶多少盒?a%,红茶每盒降价4a%,(2)第一次直播结束,为了回馈顾客,在第二次直播期间,桃片糕每盒降价103桃片糕数量在(1)问最多的数量下增加6a%,红茶数量在(1)问最少的数量下增加4a%,最终第二次直播总销售额比第一次直播的最低销售额54400元少80a元,求a的值.8.亲子装是现代家庭中的一种流行趋势,亲子装不仅能表达“我们是亲密的一家人”的浓浓亲情,同时家长可以过一把“孩意”瘾,重温那份久违的童真.某专卖店购进一批甲、乙两款亲子装,共花费了18400元,甲款比乙款多20套,其中每套甲款亲子装进价200元,每套乙款亲子装进价160元,进行试销售,供不应求,很快全部销售完毕,已知每套乙款亲子装售价为240元,(1)求购进甲、乙两款亲子装各多少套?(2)六一儿童节临近,专卖店又购入第二批甲、乙两款亲子装并进行促销活动,在促销期间,每套甲款a%销售,结亲子装在进价的基础上提高(a+10)%销售,每套乙款亲子装在第一批售价的基础上降低12果在促销活动中,甲款亲子装的销售量比第一批甲款销售量降低了a%,乙款亲子装的销售量比第一批乙款销售量上升了25%,结果本次促销活动共获利5200元,求a的值.9.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动,甲卖家的A商品成本为600元,在标价1000元的基础上打8折销售(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为,乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,m%后,这样一天的利润达使得A商品在3月15日那一天卖出的数量就比原来一周卖出的数量增加了52到了20000元,求m的值10.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降的购买价格比原有价格上涨52m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总了920m%,求出m的值.额增加了15211.5G网络,是最新一代蜂窝移动通信技术,其数据传输速率远高于以前的蜂窝网络,最高可达10Gbit/s,比4G快100倍.5G手机也成为生活、工作不可缺少的移动设备,某电商公司销售两种5G手机,已知售出5部A型手机,3部B型手机的销售额为51000元;售出3部A型手机,2部B型手机的销售额为31500元.(1)求A型手机和B型手机的售价分别是多少元;(2)该电商公司在3月实行“满减促销”活动,活动方案为:单部手机满3000元减500元,满5000元减1500元(每部手机只能参加最高满减活动),结果3月A型手机的销量是B型手机的1,4月该电商公3a%,销量比3月增加2a%;每部B 司加大促销活动力度,每部A型手机按照3月满减后的售价再降13a%,结果4月的销售总额比3月的销售总额型手机按照满减后的售价再降a%,销量比3月销量增加23a%,求a的值.多21512.新型冠状病毒肺炎是一种极性感染性肺炎,其病原体是一种先前未在人体中发现的新型冠状病毒,市民出于防疫的需求,持续抢购防护用品.某药店口罩每袋售价20元,医用酒精每瓶售价15元.(1)该药店第一周口罩的销售袋数比医用酒精的销售瓶数多100,且第一周这两种防护用品的总销售额为9000元,求该药店第一周销售口罩多少袋?a%,销量比第一周增加了(2)由于疫情紧张,该药店为了帮助大家共渡难关,第二周口罩售价降低了122a%,医用酒精的售价保持不变,销售比第一周增加了a%,结果口罩和医用酒精第二周的总销售额比a%,求a的值.第一周增加了6513.农历五月初五是中国民间传统节日一端午节,又称端阳节,也是纪念诗人屈原的节日.划龙舟与食粽是端午节的两大礼俗,这两大礼俗在中国自古传承,至今不辍,某蛋糕店一直销售的是白水粽,端午节临近又推出了红豆粽,其中红豆粽的销售单价是白水粽的1.25倍,4月份,红豆粽和白水粽共销售150千克,红豆粽的销售额是1200元,白水粽的销售额为1440元.(1)求红豆粽、白水粽的销售单价各是多少?(2)为迎接端午节到来,该蛋糕店在5月推出“粽享会员”活动,对所有的粽子均可享受a%的折扣,非“粽享会员”需要按照原价购买,就红豆粽而言,5月销量比4月销量增加了a%,其中通过“粽享会员”购买的销量占5月红豆粽销量的56,而5月红豆粽的销售总额比4月红豆粽销售额提高了112a%,求a 的值.14. 市扶贫办在精准扶贫中实施产业扶贫,重百超市积极响应号召,帮助贫困农户进行脐橙和柚子的销售.脐橙售价20元/千克,柚子售价15元/千克,第一周脐橙的销量比柚子的销量多100千克,两种水果的销售总额达到9000元.(1)第一周脐橙和柚子的销售量分别为多少千克?(2)第二周继续销售这两种水果,第二周脐橙售价降低了12a%,销量比第一周增加了2a%.柚子的售价保持不变,销量比第一周增加了a%,结果这两种水果第二周的总销售额比第一周增加了65a%,求a 的值.15. 2020年,我国脱贫攻坚在力度、广度、深度和精准度上都达到了新的水平,重庆市深度贫困地区脱贫进程明显加快,作风治理和能力建设初见成效,精准扶贫、精准脱贫取得突破性进展.为助力我市脱贫攻坚,某村村委会在网上直播销售该村优质农产品礼包,该村在今年1月份销售256包,2、3月该礼包十分畅销,销售量持续走高,在售价不变的基础上,3月份的销售量达到400包.(1)若设2、3这两个月销售量的月平均增长率为a%,求a 的值;(2)若农产品礼包每包进价25元,原售价为每包40元,该村在今年4月进行降价促销,经调查发现,若该农产品礼包每包降价1元,销售量可增加5袋,当农产品礼包每包降价多少元时,这种农产品在4月份可获利4620元?16.近年来,随着科技的进步,物质生活丰富的同时,人们对于生活质量的要求也越来越高,特别对室内空气净化、杀菌消毒、消除异味等需求的重视程度有明显提升.某公司研发生产了一款新型空气净化器,每台的成本是4400元,某专卖网店从该公司购进10000台空气净化器,同时向国内、国外进行在线发售.第一周,国内销售每台售价5400元,国内获利100万元;国外销售也售出了相同数量的空气净化器,但每台的成本增加了400元;国外销售每台获得的利润是国内销售每台利润的6倍.(1)该专卖网店国外销售空气净化器第一周的售价是每台多少元?(2)受贸易环境的影响,第二周,国内销售每台售价在第一周的基础上降低a%,销量上涨5a%;国外销售每台售价在第一周的基础上上涨a%,并且在第二周将剩下的空气净化器全部卖完,结果第二周国外的销售总额比国内的销售总额多6993万元,求a的值.17.六一前夕,某商场以每个30元的价格购进了500个玩具,再以每个40元的价格售出,很快销售一空,商场计划再进一批.(1)第二次进价每个上涨了5元,仍以原价出售,若两批玩具的总利润不低于13000元,则第二批至少要进多少个?(2)实际进货时,商场以(1)问中的最低数量进货.为了扩大销售,商场投入了1600元宣传费,并把售价提高10a%,由于竞争激烈,还剩下5a%没卖出去,商场决定对剩下的玩具6折销售,很快售完,第二批货仍获利6400元,求a的值.。

10月训练题集 重庆中考数学几何证明题专题训练1 (1)

10月训练题集   重庆中考数学几何证明题专题训练1 (1)
17.如图,在正方形 ABCD 中,点 E、点 F 分别在边 BC、DC 上,BE=DF,∠EAB=15°。 (1)若 AE=3,求 EC 的长; (2)若点 G 在 DC 上,且∠CGA=120°,求证:AG=EG+FG。
18.如图,在等腰三角形 ABC 中,CA = CB,∠ACB = 90°,点 D、E 是直线 BC 上两点且 CD = BE,过点 C 作 CM⊥AE 交 AE 于点 M,交 AB 于点 F,连接 DF 并延长交 AE 于点 N.
(1) 若 AC = 2,CD = 1,求 CM 的值; (2) 求证:∠D =∠E.
10 月训练题集 张勋老师微信 IT101010
19.如图,口 ABCD 中,E 在 AD 边上,AE = DC,F 为口 ABCD 外一点,连接 AF、BF, 连接 EF 交 AB 于 G,且∠EFB = ∠C = 60°.
AC 上一点,
过点 E 作 EF // AB ,交 CD 于点 F,连接 EB,取 EB 的中点 G,连接 DG、FG。 (1)求证: EF CF ; (2)求证: FG DG 。
26、已知:如图,在 ABC 中,点 E、F 分别是 AB、AC 上的点,且 EF//BC,BM 是线段
CF 的垂直平分线,垂足为 M。N 是线段 BM 上一点,且 NC=EF。
10 月训练题集 张勋老师微信 IT101010
16.如图,在□ ABCD 中,O 为对角线 BD 的中点,BE 平分 ABC 且交 AD 于点 P ,交 CD 的延长线于点 E ;作 EO 交 AD 于点 F ,交 BC 于点 G .
(1)求证: DF BG ; (2)若 AB = 6 , AD 9 ,求 DF 的长.
10 月训练题集 张勋老师微信 IT101010

2021年中考数学 一轮专题训练:一元一次不等式(组)(含答案)

2021年中考数学 一轮专题训练:一元一次不等式(组)(含答案)

2021中考数学 一轮专题训练:一元一次不等式(组)一、选择题(本大题共10道小题)1. 若x +5>0,则( )A. x +1<0B. x -1<0C. x5<-1 D. -2x <122. 一个不等式组的解集在数轴上表示出来如图,则下列符合条件的不等式组为( )A.B.2,1x x <⎧⎨>-⎩C.2,1x x <⎧⎨≥-⎩D.2,1x x <⎧⎨≤-⎩3. 不等式组的解集在数轴上表示正确的是 ( )4. 红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有 ( )A .3种B .4种C .5种D .6种5. 直线l 1:y =k 1x +b与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )A .x >1B .x <1C .x >-2D .x <-26. 已知点M (1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是()7. (2019·聊城)若不等式组11324x xx m +⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为A .2m ≤B .2m <C .2m ≥D .2m >8. 不等式组24339x x x x <+⎧⎨+≥+⎩的解集在数轴上用阴影表示正确的是A .B .C .D .9. 若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x +>++﹣成立,则m 的取值范围是A .35m >-B .15m <-C .35m <-D .15m >-10. (2019•呼和浩特)若不等式253x+-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,则m的取值范围是A.m>-35B.m<-15C.m<-35D.m>-15二、填空题(本大题共7道小题)11. 不等式组的最小整数解是.12. 若关于x的不等式组2,xx m⎧⎨⎩>>的解集是x>2,则m的取值范围是________.13. (2019•甘肃)不等式组2021xx x-≥⎧⎨>-⎩的最小整数解是__________.14. (2019•鄂州)若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足x+y≤0,则m的取值范围是__________.15. 已知不等式组29611x xx k+>-+⎧⎨->⎩的解集为1x>-,则k的取值范围是__________.16. (2019•荆州)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n-0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x-1)=6,则实数x的取值范围是__________.17. 已知关于x的方程2x=m的解满足⎩⎨⎧x-y=3-nx+2y=5n(0<n<3),若y>1,则m的取值范围是________.三、解答题(本大题共4道小题)18. 试确定实数a的取值范围,使不等式组123544(1)33x xax x a+⎧+>⎪⎪⎨+⎪+>++⎪⎩恰有两个整数解.19. 某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量3 0人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A 型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?20. 某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过2 30元,求可能的购买方案?21. 为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?2021中考数学一轮专题训练:一元一次不等式(组)-答案一、选择题(本大题共10道小题)1. 【答案】D【解析】,若x+5>0,则x>-5.逐项分析如下:A∵x +1>-4,∴x +1<0不能确定×B ∵x -1>-6,∴x -1<0不能确定×C ∵x>-5,∴x5>-1 × D∵x>-5,-2x<10<12√2. 【答案】C3. 【答案】B[解析]解不等式2x -6<3x ,得x>-6,解不等式≥0,得x ≤13,故选B .4. 【答案】C[解析]设该店购进甲种商品x 件,则购进乙种商品(50-x )件,根据题意,得:解得20≤x<25.∵x 为正整数,∴x=20,21,22,23,24, ∴该店进货方案有5种,故选C .5. 【答案】B6. 【答案】A解析:由题意得,点M 关于x 轴对称的点的坐标为(1-2m ,1-m ).又∵M (1-2m ,m -1)关于x 轴的对称点在第一象限,∴⎩⎨⎧1-2m >0,1-m >0.解得⎩⎪⎨⎪⎧m <12,m <1.在数轴上表示为.故选A.7. 【答案】A【解析】解不等式1132x x+<--,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选A .8. 【答案】C【解析】不等式组整理得:43x x <⎧⎨≤-⎩,∴不等式组的解集为3x ≤-,故选C .9. 【答案】C【解析】解不等式25123x x +-≤-得:45x ≤, ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,∴12mx -<,故选C.10. 【答案】C【解析】解不等式253x+-1≤2-x得:x≤45,∵不等式253x+-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,∴x<12m-,∴12m->45,解得:m<-35,故选C.二、填空题(本大题共7道小题)11. 【答案】x=012. 【答案】m≤213. 【答案】0【解析】不等式组整理得:21xx≤⎧⎨>-⎩,∴不等式组的解集为-1<x≤2,则最小的整数解为0,故答案为:0.14. 【答案】m≤-2【解析】34355x y m x y -=+⎧⎨+=⎩①②,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤-2. 故答案为:m≤-2.15. 【答案】2k ≤-【解析】29611x x x k +>-+⎧⎨->⎩①②,由①得1x >-; 由②得1x k >+.∵不等式组29611x x x k +>-+⎧⎨->⎩的解集为1x >-,∴11k +≤-, 解得2k ≤-. 故答案为:2k ≤-.16. 【答案】13≤x<15【解析】依题意得:6-0.5≤0.5x -1<6+0.5,解得13≤x<15.故答案为:13≤x<15.17. 【答案】25<m <23 【解析】解原方程组,得⎩⎨⎧x =n +2y =2n -1.∵y >1,∴2n -1>1,即n >1.∵0<n <3,∴1<n <3,∴3<x <5.当x =3时,m =2x =23;当x =5时,m =2x =25.∵当x >0时,m 随x 的增大而减小,∴25<m <23.三、解答题(本大题共4道小题)18. 【答案】解:⎩⎪⎨⎪⎧x 2+x +13>0, ①x +5a +43>43x +1+a . ②解不等式①,得x >-25. 解不等式②,得x <2a .由该不等式有实数解,得该不等式组的解集为-25<x <2a . 又由该不等式恰有两个整数解,得1<2a ≤2. 解得12<a ≤1.∴实数a 的取值范围为12<a ≤1.19. 【答案】(1)设租用A ,B 两型客车,每辆费用分别是x 元、y 元,43107003410300x y x y +=⎧⎨+=⎩, 解得,17001300x y =⎧⎨=⎩,答:租用A ,B 两型客车,每辆费用分别是1700元、1300元. (2)设租用A 型客车a 辆,租用B 型客车b 辆,45302401700130010000a b a b +≥⎧⎨+≤⎩,解得,25a b =⎧⎨=⎩,42a b =⎧⎨=⎩,51a b =⎧⎨=⎩, ∴共有三种租车方案,方案一:租用A 型客车2辆,B 型客车5辆,费用为9900元, 方案二:租用A 型客车4辆,B 型客车2辆,费用为9400元, 方案三:租用A 型客车5辆,B 型客车1辆,费用为9800元, 由上可得,方案二:租用A 型客车4辆,B 型客车2辆最省钱.20. 【答案】(1)设购买甲种树苗x 棵,购买乙种树苗(240)x -棵, 由题意可得,3020(240)9000x x +-=,509800x =,196x =,∴购买甲种树苗196棵,乙种树苗352棵.(2)设购买甲树苗y 棵,乙树苗(10)y -棵, 根据题意可得,3020(10)230y y +-≤,1030y ≤, ∴3y ≤,∵y 为自然数,∴y=3、2、1、0,有四种购买方案,购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵; 购买方案4:购买甲树苗0棵,乙树苗10棵.21. 【答案】解:(1)设甲票价为4x 元,则乙为3x 元.∴3x +4x =42,解得x =6.∴4x =24,3x =18.∴甲、乙两种票的单价分别是24元、18元.(2)设甲票有y 张,根据题意,得⎩⎨⎧ 24y +1836-y ≤750,y >15.解得15<y ≤17.∵x 为整数,∴y =16或17.∴有两种购买方案:甲种票16张,乙种票20张;甲种票17张,乙种票19张.。

2021年九年级中考数学 专题训练 一元二次方程及其应用(含答案)

2021年九年级中考数学 专题训练 一元二次方程及其应用(含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯2021中考数学专题训练一元二次方程及其应用一、选择题(本大题共10道小题)1. 若关于x的一元二次方程x2+2x-k=0有两个不相等的实数根,则k的取值范围是()A.k<-1B.k>-1C.k<1D.k>12. 一元二次方程x2+2x-3=0的根是()A.x1=1,x2=-3 B.x1=-1,x2=-3C.x1=-1,x2=3 D.x1=1,x2=33. 有5人患了流感,经过两轮传染后共有605人患了流感,假设每轮传染中一个人传染相同数量的人,则第一轮传染后患流感的人数为()A.10 B.50 C.55 D.454. 当b+c=5时,关于x的一元二次方程3x2+bx-c=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5. 某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=5076. 随着生产技术的进步,某厂生产一件产品的成本从两年前的100元下降到现在的64元,求年平均下降率.设年平均下降率为x,通过解方程得到一个根为1.8,则正确的解释是()A.年平均下降率为80%,符合题意B.年平均下降率为18%,符合题意C .年平均下降率为1.8%,不符合题意D .年平均下降率为180%,不符合题意7. 若关于x 的一元二次方程(k -1)x 2+x +1=0有两个实数根,则k 的取值范围是( ) A .k≤54 B .k>54C .k<54且k≠1D .k≤54且k≠18. 一元二次方程(x +1)(x -3)=2x -5的根的情况是( )A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于39. 若方程(x +3)2=m的解是有理数,则实数m 不能..取下列四个数中的( ) A .1 B .4C.14D.1210. 用换元法解方程x x -1-x -1x -2=0时,如果设x x -1=y ,那么将原方程变形后表示为一元二次方程的一般形式是( ) A .y -1y -2=0B .y -2y -1=0C .y 2-2y -1=0D .y 2-y -2=0二、填空题(本大题共8道小题)11. 已知等腰三角形的一边长为9,另一边长为方程x 2-8x +15=0的根,则该等腰三角形的周长为________.12.用公式法解方程2x 2+43x =22时,其中求得的b 2-4ac 的值是________.13. 在x 2++4=0的横线上添加一个关于x 的一次项,使方程有两个相等的实数根.14. 已知方程x2-6x+q=0可转化为x-3=±7,则q=________.15. 一元二次方程4x2=3x的解是______________.16. 某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡每张的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,设每张贺年卡应降低x个0.1元,则所列方程为__________________________________.17. 已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k 的最大整数值为________.18. 2019·成都已知x1,x2是关于x的一元二次方程x2+2x+k-1=0的两个实数根,且x12+x22-x1x2=13,则k的值为________.三、解答题(本大题共6道小题)19. 已知关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.20. 2019·长沙近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上、线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批、第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次.21. “早黑宝”是某省农科院研制的优质新品种,在该省被广泛种植.某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“早黑宝”的种植面积达到225亩.(1)求该基地这两年“早黑宝”种植面积的年平均增长率;(2)市场调查发现,当“早黑宝”售价为20元/千克时,每天能售出200千克,每千克的售价每降低1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1800元,则每千克的售价应降低多少元?22. 《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”题意为已知长方形门的高比宽多6尺8寸,门的对角线长一丈,那么门的宽和高各是多少?(1丈=10尺,1尺=10寸)23. 2018·常州阅读材料:各类方程的解法:求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似地,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=________,x3=________;(2)拓展:用“转化”思想求方程2x+3=x的解;(3)应用:如图1-T-2,已知矩形草坪ABCD的长AD=8 m,宽AB=3 m,小华把一根长为10 m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD,DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.24. 某广告公司制作广告的收费标准是以面积为单位,在不超过规定的面积a(m2)的范围内,每张广告费1000元,如果超过a(m2),那么除了要交1000元的广告费以外,超过的部分还要按每平方米50a元交费.下表是该公司对两家用户广告的收费面积和广告费情况的记录.广告的收费单位广告费(元)面积(m2)烟草公司61400食品公司31000红星公司要制作一张大型公益广告,其材料形状是矩形,如果它的四周是空白,并且四周各空0.5 m,空白部分不收广告费,中间的矩形部分才是广告的收费面积.这张广告的长、宽之比为3∶2,并且红星公司为此支出110400元的广告费.(1)求a的值;(2)红星公司要制作的这张广告的长和宽各是多少米?解题突破(7题)利用烟草公司及食品公司的广告费建立方程求a的值,利用红星公司支出的广告费和收费标准求其广告的收费面积,利用收费面积和已知条件求这张广告的长与宽.2021中考数学专题训练一元二次方程及其应用-答案一、选择题(本大题共10道小题)1. 【答案】B[解析]∵关于x的一元二次方程x2+2x-k=0有两个不相等的实数根,∴Δ=22-4×1·(-k)=4+4k>0,∴k>-1.2. 【答案】A3. 【答案】 C4. 【答案】A[解析]因为b+c=5,所以c=5-b.因为Δ=b2-4×3·(-c)=b2+4×3·(5-b)=(b-6)2+24>0,所以该一元二次方程有两个不相等的实数根.5. 【答案】B6. 【答案】D[解析] 设年平均下降率为x,则可得100(1-x)2=64,解之得x1=0.2=20%,x2=1.8=180%.由于0<x<1,因此年平均下降率为180%不符合题意.7. 【答案】D[解析] ∵关于x的一元二次方程(k-1)x2+x+1=0有两个实数根,∴Δ≥0,即12-4×(k-1)×1≥0,解得k≤5 4.又∵k-1≠0,∴k≠1,∴k 的取值范围为k≤54且k≠1. 故选D.8. 【答案】D[解析] 将一元二次方程(x +1)(x -3)=2x -5化简为x 2-4x +2=0.其判别式Δ=b 2-4ac =(-4)2-4×1×2=8>0,∴方程的两根为x =-(-4)±82,即x 1=2+2,x 2=2- 2.∵2+2>3,2-2>0,∴该方程有两个正根,且有一根大于3.故选D.9. 【答案】D10. 【答案】C[解析] 已知x x -1=y ,那么原方程可化为y -1y -2=0,去分母,得y 2-1-2y =0. 整理,得y 2-2y -1=0.二、填空题(本大题共8道小题)11. 【答案】19或21或23 【解析】解方程x 2-8x +15=0,得x 1=3或x 2=5,等腰三角形的一边为9,则有这样几种情况:3、9、9;5、9、9;5、5、9,周长分别为21或23或19. 12. 【答案】64 [解析] 要求b 2-4ac 的值,需先将原方程转化为ax 2+bx +c =0(a≠0)的形式.原方程可化为2x 2+4 3x -2 2=0,b 2-4ac =(4 3)2-4× 2×(-2 2)=64.故填64.13. 【答案】4x (或-4x ,只写一个即可)[解析]一元二次方程有两个相等的实根,则b 2-4ac=b 2-16=0,解得b=±4,所以一次项为4x 或-4x.14. 【答案】215. 【答案】x 1=0,x 2=34[解析] 4x 2=3x , 4x 2-3x =0, x(4x -3)=0, x =0或4x -3=0,所以x 1=0,x 2=34.16. 【答案】(0.3-0.1x )(500+100x )=12017. 【答案】0[解析] 由题意得Δ=b 2-4ac =4-4(k -1)>0,∴k<2.又∵k -1≠0,即k≠1,∴k<2且k≠1,∴k 的最大整数值为0.18. 【答案】-2[解析] 根据题意,得x 1+x 2=-2,x 1x 2=k -1,∴x 12+x 22-x 1x 2=(x 1+x 2)2-3x 1x 2=4-3(k -1)=13, 解得k =-2. 故答案为:-2.三、解答题(本大题共6道小题)19. 【答案】解:(1)∵关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根,∴Δ=b 2-4ac =(2m +1)2-4×1×(m 2-1)=4m +5>0,解得m >-54.(2)答案不唯一,如取m =1,此时原方程为x 2+3x =0,解得x 1=0,x 2=-3.20. 【答案】解:(1)设这个增长率为x , 根据题意,得2(1+x )2=2.42, 解得x 1=-2.1(舍去),x 2=0.1=10%. 答:这个增长率为10%.(2)2.42×(1+0.1)=2.662(万人次).答:预计第四批公益课受益学生将达到2.662万人次.21. 【答案】解:(1)设该基地这两年“早黑宝”种植面积的年平均增长率为x , 根据题意,得100(1+x )2=225,解得x 1=0.5=50%,x 2=-2.5(不合题意,舍去).答:该基地这两年“早黑宝”种植面积的年平均增长率为50%.(2)设每千克的售价降低y元,则每天可售出(200+50y)千克,根据题意,得(20-12-y)(200+50y)=1800,整理,得y2-4y+4=0,解得y1=y2=2.答:每千克的售价应降低2元.22. 【答案】解:设门的宽为x尺,则高为(x+6.8)尺.根据题意,得x2+(x+6.8)2=102,整理,得2x2+13.6x-53.76=0,解得x1=2.8,x2=-9.6(舍去),所以x+6.8=9.6.所以门的宽为2尺8寸,高为9尺6寸.23. 【答案】解:(1)x3+x2-2x=0,x(x2+x-2)=0,x(x+2)(x-1)=0,∴x=0或x+2=0或x-1=0,∴x1=0,x2=-2,x3=1.故答案为:-2,1.(2)2x+3=x,方程两边平方,得2x+3=x2,即x2-2x-3=0,(x-3)(x+1)=0,∴x-3=0或x+1=0,∴x1=3,x2=-1.当x=-1时,2x+3=1=1≠-1,∴-1不是原方程的解.∴方程2x+3=x的解是x=3.(3)∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD=3 m.设AP=x m,则PD=(8-x)m.∵BP+CP=10 m,BP=AB2+AP2,CP=PD2+CD2,∴9+x2+(8-x)2+9=10,∴(8-x)2+9=10-9+x2,两边平方,得(8-x)2+9=100-20 9+x2+9+x2,整理,得5 9+x2=4x+9,两边平方并整理,得x2-8x+16=0,即(x-4)2=0,解得x1=x2=4.经检验,x=4是方程的解.答:AP的长为4 m.24. 【答案】解:(1)由题中表格可知3≤a<6.根据题意,得1000+50a(6-a)=1400,解得a1=4,a2=2(舍去),则a=4.(2)设这张广告的收费面积为S m2,根据题意,得1000+50×4(S-4)=110400,解得S=551.设这张广告的长、宽分别为3x m,2x m.根据题意,得(3x-1)(2x-1)=551,整理,得6x2-5x-550=0,解得x1=10,x2=-556(舍去),则3x=30,2x=20.答:红星公司要制作的这张广告的长和宽分别是30 m和20 m.。

备战2021中考数学考点专题训练——专题一:一次函数(word解析版)

备战2021中考数学考点专题训练——专题一:一次函数(word解析版)

备战2021中考数学考点专题训练——专题一:一次函数1.快车与慢车分別从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程km;快车的速度为km/h;慢车的速度为km/h;(2)出发小时后,快慢两车相遇;(3)求快慢两车出发几小时后第一次相距150km?2.为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)3.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:2 5 20 23 30离开宿舍的时间/min0.2 0.7离宿舍的距离/km(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.4.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣1 0y﹣2 1(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.5.小张和小王是同一单位在A、B两市的同事,已知A、B两市相距400km,周六上午小王从B市出发,开车匀速前往A市的公司开会,1小时后小张从A市的公司出发,沿同一路线开车匀速前往B市,小张行驶了一段路程后,得知小王要到A市的公司开会,便立即加速返回公司(折返的时间忽略不计).已知小张返回时的速度比去时的速度每小时快20km.两人距B市的距离y(km)与小张行驶时间x(h)间的关系如图所示,请结合图象解答下列问题:(1)小王的速度为km/h,a的值为;(2)求小张加速前的速度和b的值;(3)在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km?6.如图,直线l1:y=x+3与直线l2:y=kx+b交于点E(m,4),直线l1与坐标轴交于点A、B,l2与x轴和y轴分别交于点C、D,且OC=2OB,将直线l1向下平移7个单位得到直线l3,交l2于点F,交y轴于点G,连接GE.(1)求直线CD的解析式;(2)求△EFG的面积.7.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距离A地的距离为y(km).甲车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)求甲车距离A地的距离y(km)与行驶时间x(h)之间的函数关系式;(2)当乙车到达A地时,求甲车距离A地的距离.8.在平面直角坐标系中,点A(a,6),B(5,b),(1)若a,b满足+(a﹣b﹣1)2=0,求点A,B的坐标;(2)如图1,点C在在直线AB上,且点C的坐标为(m,n),求m,n应满足怎样的关系式?(3)如图2,将线段AB平移到EF,且点D在直线EF上,且D点的纵坐标为x,当满足S≥S△AOB时,求x的取值范围.△DOE9.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg (除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.10.如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.(1)求点A、B、C的坐标;(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.11.如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交y轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.(1)求点C的坐标及直线BC的函数表达式;(2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.(ⅰ)若∠BDE=45°,求△BDE的面积;(ⅱ)在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.12.如图,四边形OABC是矩形,点A、C在坐标轴上,B点坐标(﹣,4),△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H.(1)求直线BD的解析式;(2)求△BOH的面积;(3)点M在x轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+8交x轴于点A,交y轴于点B,点C在AB上,AC=5,CD∥OA,CD交y轴于点D.(1)求点D的坐标;(2)点P从点O出发,以每秒1个单位长度的速度沿OA匀速运动,同时点Q从点A出发,以每秒个单位长度的速度沿AB匀速运动,设点P运动的时间为t秒(0<t<3),△PCQ的面积为S,求S与t之间的函数关系式;(3)在(2)的条件下,过点Q作RQ⊥AB交y轴于点R,连接AD,点E为AD中点,连接OE,求t为何值时,直线PR与x轴相交所成的锐角与∠OED互余.14.如图,直线y1=﹣x+b分别与x轴、y轴交于A,B两点,与直线y2=kx﹣6交于点C(4,2).(1)b=;k=;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得以P,Q,A,B为顶点的四边形是菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,点C为OB 的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标.(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动,同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P作PH⊥OA,垂足为H,连接MP,MH,设点P的运动时间为t秒.①若△MPH的面积为1,求t的值;②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值?如果有,求出相应的点P的坐标;如果没有,请说明理由.16.已知:如图,平面直角坐标系中,O为坐标原点,直线y=mx+10m交x轴于B,交y轴于A,△AOB的面积为50.(1)求m的值;(2)P为BA延长线上一点,C为x轴上一点,坐标为(6,0),连接PC,D为x轴上一点,连接PD,若PD=PC,P点横坐标为t,△PCD的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过C作CF⊥AB于F,当D在BO上时,过D作DG⊥CP于G,过F 作FE⊥DG于E,连接PE,当PE平分△PDG周长时,求E点坐标.17.问题:如图1,△ABC中,AB=a,∠ACB=α.如何用直尺和圆规作出点P,均使得∠APB=α?(不需解答)尝试:如图2,△ABC中,AC=BC,∠ACB=90°.(1)请用直角三角尺(仅可画直角或直线)在图2中画出一个点P,使得∠APB=45°(2)如图3,若AC=BC=,以点A为原点,直线AB为x轴,过点A垂直于AB的直线为y轴建立平面直角坐标系,直线y=(b≥0)交x轴于点M,交y轴与点N.①当b=7+时,请仅用圆规在射线MN上作出点P,使得∠APB=45°;②请直接写出射线MN上使得∠APB=45°或∠APB=135°时点P的个数及相应的b的取值范围;应用:如图4,△ABC中,AB=a,∠ACB=α,请用直尺和圆规作出点P,使得∠APB=α,且AP+BP最大,请简要说明理由.(不写作法,保留作图痕迹)18.已知,平面直角坐标系中,直线y=kx﹣4k交x轴A,交y轴正半轴于点B,直线y=﹣x+b经过点A,交y轴正半轴于点C,且BC=5OC.(1)如图1,求k的值;(2)如图2,点P为第二象限内直线AC上一点,过点P作AC的垂线,交x轴于点D,交AB于点E,设点P的横坐标为t,△ADE的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,Q为线段PE上一点,PQ=PC,连接AQ,过点C作CG⊥AQ 于G,交直线AB于点F,连接QF,若∠AQP=∠FQE,求点F的坐标.19.y=kx+b的图象经过点(﹣2,2)、(3,7)且与坐标轴相交于点、B两点.(1)求一次函数的解析式.(2)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化?若不变,请求出其值;若变化,请说明理由.(3)在(2)的条件下,在平面内有一点H,当以H、N、B、P为顶点的四边形为菱形时,直接写出点H的坐标.20.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.备战2021中考数学考点专题训练——专题一:一次函数参考答案1.快车与慢车分別从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程km;快车的速度为km/h;慢车的速度为km/h;(2)出发小时后,快慢两车相遇;(3)求快慢两车出发几小时后第一次相距150km?【答案】解:(1)由函数图象可得,甲乙两地之间的路程是560km,快车的速度为:560÷(5﹣1)=140(km/h),慢车的速度为:560÷(5+4﹣1)=70(km/h),故答案为:140,70;(2)设出发a小时时,快慢两车相遇,140a+70a=560,解得,a=,即出发小时后,快慢两车相遇,故答案为:;(3)快慢两车出发b小时后第一次相距150km,140b+70b=560﹣150,解得,b=,即快慢两车出发小时后第一次相距150km2.为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)【答案】解:(1)设ME的函数解析式为y=kx+b(k≠0),由ME经过(0,50),(3,200)可得:,解得,∴ME的解析式为y=50x+50;(2)设BC的函数解析式为y=mx+n,由BC经过(4,0),(6,200)可得:,解得,∴BC的函数解析式为y=100x﹣400;设FG的函数解析式为y=px+q,由FG经过(5,200),(9,0)可得:,解得,∴FG的函数解析式为y=﹣50x+450,解方程组得,同理可得x=7h,答:货车返回时与快递车图中相遇的时间h,7h;(3)(9﹣7)×50=100(km),答:两车最后一次相遇时离武汉的距离为100km.3.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:2 5 20 23 30离开宿舍的时间/min0.2 0.7离宿舍的距离/km(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.【答案】解:(Ⅰ)由图象可得,在前7分钟的速度为0.7÷7=0.1(km/min),故当x=2时,离宿舍的距离为0.1×2=0.2(km),在7≤x≤23时,距离不变,都是0.7km,故当x=23时,离宿舍的距离为0.7km,在28≤x≤58时,距离不变,都是1km,故当x=30时,离宿舍的距离为1km,故答案为:0.2,0.7,1;(Ⅱ)由图象可得,①食堂到图书馆的距离为1﹣0.7=0.3(km),故答案为:0.3;②小亮从食堂到图书馆的速度为:0.3÷(28﹣23)=0.06(km/min),故答案为:0.06;③小亮从图书馆返回宿舍的速度为:1÷(68﹣58)=0.1(km/min),故答案为:0.1;④当0≤x≤7时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为0.6÷0.1=6(min),当58≤x≤68时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min),故答案为:6或62;(Ⅲ)由图象可得,当0≤x≤7时,y=0.1x;当7<x≤23时,y=0.7;当23<x≤28时,设y=kx+b,,得,即当23<x≤28时,y=0.06x﹣0.68;由上可得,当0≤x≤28时,y关于x的函数解析式是y=.4.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣1 0y﹣2 1(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【答案】解:(1)∵直线l′:y=bx+k中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线1′的解析式为y=3x+1;∴直线1的解析式为y=x+3;(2)如图,解得,∴两直线的交点为(1,4),∵直线1′:y=3x+1与y轴的交点为(0,1),∴直线l'被直线l和y轴所截线段的长为:=;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣3+=0时,a=,当(a﹣3+0)=时,a=7,当(+0)=a﹣3时,a=,∴直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为或7或.5.小张和小王是同一单位在A、B两市的同事,已知A、B两市相距400km,周六上午小王从B市出发,开车匀速前往A市的公司开会,1小时后小张从A市的公司出发,沿同一路线开车匀速前往B市,小张行驶了一段路程后,得知小王要到A市的公司开会,便立即加速返回公司(折返的时间忽略不计).已知小张返回时的速度比去时的速度每小时快20km.两人距B市的距离y(km)与小张行驶时间x(h)间的关系如图所示,请结合图象解答下列问题:(1)小王的速度为km/h,a的值为;(2)求小张加速前的速度和b的值;(3)在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km?【答案】解:(1)由图象可得,小王的速度为:80÷1=80(km/h),a=400÷80﹣1=4,故答案为:80,4;(2)设小张加速前的速度为xkm/h,2.4x=(x+20)×(4.4﹣2.4),解得,x=100,b=400﹣2.4×100=160,即小张加速前的速度为100km/h,b的值是160;(3)由题意可得,相遇前:100x+80(x+1)=400﹣20解得,x=,相遇后到小张返回前:100x+80(x+1)=400+20解得,x=,小张返回后到小王到达A市前:80×(x+1)=(400﹣100×2.4)+(100+20)×(x﹣2.4)+20,解得,x=4.7(舍去),小王到达A市到小张返回到A市前,(400﹣100×2.4)+(100+20)×(x﹣2.4)+20=400,解得,x=,由上可得,在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km.6.如图,直线l1:y=x+3与直线l2:y=kx+b交于点E(m,4),直线l1与坐标轴交于点A、B,l2与x轴和y轴分别交于点C、D,且OC=2OB,将直线l1向下平移7个单位得到直线l3,交l2于点F,交y轴于点G,连接GE.(1)求直线CD的解析式;(2)求△EFG的面积.【答案】解:(1)∵直线l1:y=x+3经过点E(m,4),∴4=+3,解得m=2,∴E(2,4),∵直线l1与坐标轴交于点A、B,∴A(﹣6,0),B(0,3),∵OC=2OB,∴OC=6,∴C(6,0),把C(6,0),E(2,4)代入直线l2:y=kx+b得,解得,∴直线CD的解析式为y=﹣x+6;(2)将直线l1向下平移7个单位得到直线l3:y=x﹣4,令x=0,则y=﹣4,∴G(0,﹣4),由,解得,∴F的坐标为(,﹣),∴S△EFG=S△DFG﹣S△DEG=﹣=.7.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距离A地的距离为y(km).甲车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)求甲车距离A地的距离y(km)与行驶时间x(h)之间的函数关系式;(2)当乙车到达A地时,求甲车距离A地的距离.【答案】解:(1)设甲车从A到B地对应的函数解析式为y=kx,1.5k=180,得k=120,即甲车从A到B地对应的函数解析式为y=120x,设甲车从B到A对应的函数解析式为y=ax+b,甲车从A到B用的时间为:300÷120=2.5,则函数y=ax+b过点(2.5,300),(5.5,0),,解得,,即甲车从B到A对应的函数解析式为y=﹣100x+550;(2)乙车的速度为:(300﹣180)÷1.5=80(km/h),乙车从B到A的时间为:300÷80=(小时),将x=代入y=﹣100x+550,得y=﹣100×+550=175,即当乙车到达A地时,甲车距离A地的距离是175km.8.在平面直角坐标系中,点A(a,6),B(5,b),(1)若a,b满足+(a﹣b﹣1)2=0,求点A,B的坐标;(2)如图1,点C在在直线AB上,且点C的坐标为(m,n),求m,n应满足怎样的关系式?(3)如图2,将线段AB平移到EF,且点D在直线EF上,且D点的纵坐标为x,当满足S≥S△AOB时,求x的取值范围.△DOE【答案】解:(1)由a,b满足+(a﹣b﹣1)2=0可知,解得,∴点A(3,6),B(5,2);(2)设直线AB的解析式为y=kx+c,把点A(3,6),B(5,2)代入得,解得,∴直线AB的解析式为y=﹣2x+12,∵点C在在直线AB上,且点C的坐标为(m,n),∴2m+n=12;(3)设直线EF的解析式为y=﹣2x+d,∴E(,0),F(0,d),∵EF=AB,∴()2+d2=(3﹣5)2+(6﹣2)2,解得d=﹣4或4(舍去),∴直线EF为y=﹣2x﹣4,E(﹣2,0),∵直线AB的解析式为y=﹣2x+12,∴直线AB与x轴,y轴的交点分别为(6,0),(0,12),∴S△AOB=﹣﹣=12,∵点D在直线EF上,且D点的纵坐标为x,∴D(x,﹣2x﹣4),∴S△DOE=×|﹣2x﹣4|=|﹣2x﹣4|,∵S△DOE≥S△AOB,∴|﹣2x﹣4|≥×12,解得x≤﹣10或x≥6,∴当满足S△DOE≥S△AOB时,x的取值范围是x≤﹣10或x≥6.9.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg (除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.【答案】解:(1)200×(10﹣8)=400(元)答:截止到6月9日,该商店销售这种水果一共获利400元;(2)设点B坐标为(a,400),根据题意得:(10﹣8)×(600﹣a)+(10﹣8.5)×200=1200﹣400,解这个方程,得a=350,∴点B坐标为(350,400),设线段BC所在直线对应的函数表达式为y=kx+b,则:,解得,∴线段BC所在直线对应的函数表达式为.10.如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.(1)求点A、B、C的坐标;(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.【答案】解:(1)∵直线y=x+9分别交x轴、y轴于点A、B,∴x=0时,y=9,当y=0时,x+9=0,解得x=﹣12.∴A(﹣12,0),B(0,9).∴OA=12,OB=9,∴AB===15,过点C作CD⊥AB于点D,如图1,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≌Rt△BCO(HL),∴BD=BO=9,CO=CD,∴AD=AB﹣BD=15﹣9=6,设CO=x,则AC=12﹣x,CD=x,∵CD2+AD2=AC2,∴x2+62=(12﹣x)2,解得x=.∴C(﹣,0).(2)如图2,当AB为平行四边形的一边时,∵CM∥AB,∴设CM的解析式为y=x+b,∴,解得b=,∴直线CM的解析式为y=.当AB为平行四边形的对角线时,BM∥AC,AM∥BC,∴BM=AC=AO﹣OC=,∴M(﹣,9).设直线CM的解析式为y=mx+n,∴,解得,∴CM的解析式为y=﹣3x﹣.综合以上可得:CM所在直线的解析式为y=x+或y=﹣3x﹣.11.如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交y轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.(1)求点C的坐标及直线BC的函数表达式;(2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.(ⅰ)若∠BDE=45°,求△BDE的面积;(ⅱ)在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.【答案】解:(1)∵直线y=﹣2x+6交x轴于点A,交y轴于点B,∴A(3,0),B(0,6),∴OA=3,OB=6,∵AB=BC,OB⊥AC,∴OC=OA=3,∴C(﹣3,0),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=2x+6.(2)如图,取点Q(﹣1,3),连接BQ,DQ,DQ交AB于E.∵D(a,2)在直线y=﹣2x+6上,∴2=﹣2a+6,∴a=2,∴D(2,2),∵B(0,6),∴QB==,QD==,BD==2,∴BD2=QB2+QD2,QB=QD,∴∠BQD=90°,∠BDQ=45°,∵直线DQ的解析式为y=﹣x+,∴E(0,),∴OE=,BE=6﹣=,∴S△BDE=××2=.(3)如图,过点D作DM⊥OA于M,DN⊥OB于N.∵四边形DEGF是正方形,∴∠EDF=90°,ED=DF,∵∠EDF=∠MDN=90°,∴∠EDN=∠DFM,∵DE=DF,DN=DM,∴△DNE≌△DMF(SAS),∴∠DNE=∠DMF=90°,EN=FM,∴点F在x轴上,∴当点F与C重合时,FM=NE=5,此时E(0,7),同法可证,点F′在直线y=4上运动,当点F′落在BC上时,E(0,﹣1),综上所述,满足条件的点E的坐标为(0,7)或(0,﹣1).12.如图,四边形OABC是矩形,点A、C在坐标轴上,B点坐标(﹣,4),△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H.(1)求直线BD的解析式;(2)求△BOH的面积;(3)点M在x轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【答案】解:(1)∵四边形ABCO是矩形,B(﹣,4),△ODE是由△OCB旋转得到,∴OC=OD=4,∴D(4,0),设直线BD的解析式为y=kx+b,则有,解得,∴直线BD的解析式为y=﹣x+3.(2)∵E(4,),∴直线OE的解析式为y=x,由,解得,∴H(,),∴OH==,∵OB==,∴S△BOH=•OB•OH=××=.(3)如图,由题意F(0,3),D(4,0),∴OF=3,OD=4,∴DF==5,当DM1为菱形的对角线时,M1(﹣4,0),N1(0,﹣3).当DM=DF时,M2(﹣1,0)或M3(9,0),可得N2(﹣5,3),3(5,3),当DF为对角线时,M4(,0),可得N4(,3),综上所述,满足条件的点N的坐标为(0,﹣3)或(﹣5,3)或(5,3)或(,3).13.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+8交x轴于点A,交y轴于点B,点C在AB上,AC=5,CD∥OA,CD交y轴于点D.(1)求点D的坐标;(2)点P从点O出发,以每秒1个单位长度的速度沿OA匀速运动,同时点Q从点A出发,以每秒个单位长度的速度沿AB匀速运动,设点P运动的时间为t秒(0<t<3),△PCQ的面积为S,求S与t之间的函数关系式;(3)在(2)的条件下,过点Q作RQ⊥AB交y轴于点R,连接AD,点E为AD中点,连接OE,求t为何值时,直线PR与x轴相交所成的锐角与∠OED互余.【答案】解:(1)如图1中,∵直线y=﹣x+8交x轴于点A,交y轴于点B,∴A(6,0),B(0,8)∴OA=6,OB=8,∴AB===10,∵AC=5,∴AC=BC=5,∵CD∥OA,∴BD=OD=4,∴D(0,4).(2)如图2,作PF⊥AB于点F,PA=6﹣tPF=PA sin∠PAF=(6﹣t),∴CQ=5﹣t,S=•CQ•PF=(5﹣t)•(6﹣t)=t2﹣6t+12.(3)如图3中,作OG⊥AD于点G,在Rt△AOD中,AD===2,∵S△AOD=•OD•OA=•AD•OG∴OG==,∴DG===,∵DE=AE=,∴GE=DE﹣DG=﹣=,∵∠OED+∠OPR=90°,∠OED+∠EOG=90°,∴∠OPR=∠EOG,∴tan∠OPR=tan∠EOG=∵BR===﹣t,∵tan∠OPR==,OP=t,∴OR=t,当R在y轴的负半轴上,如图3中,OR=BR﹣8=﹣t,∴t=﹣t,解得t=,当R在y轴的正半轴上,如图4中,OR=8﹣BR=t﹣,∴t=t﹣,解得t=,综上,当t值为或,直线PR与x轴相交所成的锐角与∠OED互余.14.如图,直线y1=﹣x+b分别与x轴、y轴交于A,B两点,与直线y2=kx﹣6交于点C(4,2).(1)b=;k=;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得以P,Q,A,B为顶点的四边形是菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.【答案】解:(1)∵直线y2=kx﹣6交于点C(4,2),∴2=4k﹣6,∴k=2,∵直线y1=﹣x+b过点C(4,2),∴2=﹣2+b,∴b=4,∴直线解析式为:y1=﹣x+4,直线解析式为y2=2x﹣6,∵直线y1=﹣x+b分别与x轴、y轴交于A,B两点,∴当x=0时,y=4,当y=0时,x=8,∴点B(0,4),点A(8,0),故答案为:4,2,(0,4);(2)∵点E在线段AB上,点E的横坐标为m,∴,F(m,2m﹣6),①当0≤m≤4时∴.∵四边形OBEF是平行四边形,∴BO=EF,∴,解得:;②当4≤m≤8时,2m﹣6﹣()=4,解得,综上所述:当或时,四边形OBEF是平行四边形;(3)存在.理由如下:①若以AB为边,AP为边,如图1所示:∵点A(8,0),B(0,4),∴.∵四边形BAPQ为菱形,∴AP=AB=4=BQ,AP∥BQ,∴点Q(4,4),点Q'(﹣4,4),若以AB为边,AP是对角线,如图1,∵四边形ABPQ是菱形,∴OB=OQ=4,∴点Q(0,4);②以AB为对角线,如图2所示:∵四边形APBQ是菱形,∴AP=BP=BQ,AP∥BQ,∵BP2=OP2+OB2,∴AP2=(8﹣AP)2+16,∴AP=5,∴BQ=5,∴点Q(5,4)综上所述:若点P为x轴上一点,当点Q坐标为或剧哦(0,﹣4)或(5,4)时,使以P,Q,A,B为顶点的四边形是菱形.15.如图,在平面直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,点C为OB 的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标.(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动,同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P作PH⊥OA,垂足为H,连接MP,MH,设点P的运动时间为t秒.①若△MPH的面积为1,求t的值;②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值?如果有,求出相应的点P的坐标;如果没有,请说明理由.【答案】解:(1)设直线AB交CD于E.∵直线y=x+4分别交x轴,y轴于A,B两点,∴A(﹣4,0),B(0,4),∵OC=BC=2,四边形AOCD是矩形,∴D(﹣4,2),当y=2时,2=x+4,∴x=﹣2,∴E(﹣2,2).(2)①如图2﹣1作MF⊥OA于F.在Rt△AMF中,∵∠AFM=90°,AM=t,∠MAF=45°,∴AF=FM=t当点P在线段OE上时,S△PHM=×2×(4﹣t﹣t)=1解得t=.如图2﹣2中,当点P在线段DE上时,同法可得:S△PHM=×2×(t+t﹣4)=1解得t=,综上所述,满足条件的t的值为或.②如图2﹣3中,BP+PH+HQ存在最小值.连接CQ交AO于H,作HP⊥CD于P,∵BC=PH,BC∥PH,∴四边形BCHP是平行四边形,∴BP=CH,∵BP+PH+HQ=CH+BC+HQ=BC+CQ=定值,根据两点之间线段最短,可知此时BP+PH+HQ的值最小,∵B(0,4),A(4,0),∵AQ=AB,∴Q(﹣8,﹣4),∵C(0,2),Q(﹣8,﹣4),∴直线CQ的解析式为y=x+2,令y=0,解得x=﹣,∴H(﹣,0),∴P(﹣,2).16.已知:如图,平面直角坐标系中,O为坐标原点,直线y=mx+10m交x轴于B,交y轴于A,△AOB的面积为50.(1)求m的值;(2)P为BA延长线上一点,C为x轴上一点,坐标为(6,0),连接PC,D为x轴上一点,连接PD,若PD=PC,P点横坐标为t,△PCD的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过C作CF⊥AB于F,当D在BO上时,过D作DG⊥CP于G,过F 作FE⊥DG于E,连接PE,当PE平分△PDG周长时,求E点坐标.【答案】解:(1)由题意可得:A(0,10m),B(﹣10,0),∴S△AOB=×10×|10m|=50,∴m=1或﹣1(舍弃)∴m=1.(2)如图1中,∵PD=PC,P点横坐标为t,C(6,0),∴CD=2|6﹣t|,∴S△PCD=×2|6﹣t|×|10+t|=|t2+4t﹣60|,当t>6时,S=t2+4t﹣60,当﹣10<t<6时,S=﹣t2﹣4t+60.(3)如图2中,在边CD的下方作⊙K与CD相切于点E,与PD相切于点R,与PC相切于点Q,连接PK,CK,DK,EK,PK交CD于T,作FW⊥PK于W.∵DE=DR,GE=GQ,PR=PQ,∵PD+DE=PG+EG,∴PE平分△PDG的周长,∴当F,E,K共线时,PE平分△PDG的周长,∵DK平分∠RDG,PK平分∠DPG,∴∠DKP=∠DGP=45°,∵∠DTK=90°,∴∠KDT=∠DCK=45°,∴∠DKC=90°,∴DT=TC﹣TK=6﹣t,∵EF⊥DG,DG⊥PC,∴FK∥PQ,∴∠FKW=∠CPT,∵FW⊥PK,∴tan∠FKW=tan∠CPT,∴=,∵BC=16,△FBC是等腰直角三角形,∴F(﹣2,8),∵K(t,t﹣6),∴=,解得t=2,∴P(2,12),D(﹣2,0),K(2,﹣4),∴直线PQ的解析式为y=﹣3x+18,直线FK的解析式为y=﹣3x+2,∵DG⊥PQ,∴直线DG的解析式为y=x+,。

2021年中考数学专题训练—统计与概率综合

2021年中考数学专题训练—统计与概率综合

2021年中考数学专题训练—统计与概率综合1.某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如图不完整的统计图.请根据统计图完成下列问题:参加本次调查有名学生,根据调查数据分析,全校约有名学生参加了音乐社团;请你补全条形统计图.2.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对该年级学生在2021年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2021年全年阅读中外名著的总本数.3.为了掌握某次数学模拟考试卷的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:请将频数分布直方图补充完整;若老师找到第五组中一个学生的语文、数学、英语三科成绩,如表.老师将语文、数学、英语成绩按照3:5:2的比例给出这位同学的综合分数.求此同学的综合分数.4.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b 班征集到作品 件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率. 科目 语文 数学 英语 得分 120 146 1405.2021年3月20日上午8时,重庆国际马拉松赛在南滨路鸣枪开赛,来自30个国家和地区的3万多名跑者朝着快乐奔跑,最终埃塞俄比亚选手夺得男子组冠军,而女子全程前三名则由中国选手包揽.某校课外活动小组为了调查该校学生对“马拉松”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制成了两幅不完整的统计图,请解答下列总量:请你补全两种统计图并估算该校600名学生中“非常喜欢”马拉松的人数.6.双福育才中学为积极响应学校提出的“实现伟大育才梦,建设美丽双福”的号召,面向全校学生开展征文活动,校学生会对七年级各班一周内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)图中投稿篇数为2所对应的扇形的圆心角度数为,并将该条形统计图补充完整.(2)求学校七年级各班在这一周内投稿的平均篇数.(3)若全校共有72个班,请估计全校征文投稿不低于6篇的班级有多少个?7.重庆市巴川中学是全国啦啦操基地,每届学生对啦啦操技巧的掌握都将得到传承,初2021级的同学们本周正在认真学习啦啦操,为庆“六一”表演积极做准备.学校艺体处为了解同学们跳啦啦操的热情和喜爱情况,组织大队委对本年级学生进行随机抽样调查.大队委文艺副部长小王对抽样的同学们对啦啦操的喜爱程度分为四类:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢,并将自己的调查结果绘制成如图的统计图,请你结合图中所给信息解答下列问题:请将条形统计图补充完整;初2021级共有学生2400人,请你用小王的调查结果估计该年级“非常喜欢”和“比较喜欢”跳啦啦操的人数之和有多少人?8.学校教务处为了了解学生下午参加体育活动的情况,采用随机抽样的方式进行问卷调查,调查结果分为“篮球”、“足球”、“乒乓球”、“跳绳”“体育舞蹈”、“其他”六类,分别用A、B、C、D、E、F表示.根据调查结果绘制了如图所示两幅不完整的统计图.结合图中所给出的信息,请补全条形统计图,并根据抽样调查估计全校3600名学生中选择跳绳和体育舞蹈的总人数.9.2021年春节联欢晚会分为A(语言类)、B(歌舞类)、C(魔术类)、D(杂技类)四类节目.为了了解某养老院老人对这几类节目的喜好程度,民政部门在该养老院随机抽取部分老人进行了问卷调查,规定每位老人只能选一类自己最喜欢的节目,并制成了以下两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)补全条形统计图;(2)已知该养老院共有230位老人,请你估计该养老院喜欢语言类节目的老人大约有多少人?10.为丰富我校学生的课余生活,增强学生的综合能力,学校计划在下新开设A:国际象棋社;B:皮影社;C:话剧社;D:手语社这四个社团;为了解学生喜欢哪一个社团,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图,请结合图中信息解答下列问题:求样本中喜欢C社团的人数在扇形统计图中的圆心角的度数,并把条形统计图补充完整.11.随着一部在重庆取景拍摄的电影《火锅英雄》在山城的热播,山城人民又掀起了一股去吃洞子老火锅的热潮.某餐饮公司为了大力宣传和推广该公司的企业文化,准备举办一个火锅美食节.为此,公司派出了若干业务员到几个社区作随机调查,了解市民对火锅的喜爱程度.业务员小王将“喜爱程度”按A、B、C、D进行分类,并将自己的调查结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:“喜爱程度”条形统计图“喜爱程度”扇形统计图(说明:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢)(1)请把条形统计图补充完整;(2)扇形统计图中A类所在的扇形的圆心角度数是;(3)若小王调查的社区大概有5000人,请你用小王的调查结果估计“非常喜欢”和“比较喜欢”的人数之和.12.电视节目“了不起的挑战”播出后深受中小学生的喜爱,小刚想知道我校学生最喜欢哪位明星,于是在我校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的明星),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人.并将两幅统计图补充完整.(2)若小刚所在学校有3500名学生,请根据图中信息,估计全校喜欢“阮经天”的人数.13.数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.14.自1939年创办以来,重庆育才中学一直坚守文化底线,不断挑战自我极限,在沧桑文化中愈加根深叶茂.在今年,即将推出的本部改造计划不仅是文化审美层面的颠覆尝试,也是学校发展的巨大工程,其中三种style的民国大门各具特色,A磅礴大气,B清爽简约,C典雅古朴款,为调查民意学校让教职工进行投票呈现了四种结果,喜欢A款、喜欢B款、喜欢C款、都可以,现调查结果如下:(1)如图,喜欢C款的占20%,喜欢B款的占15%,则调查总人数为,扇形统计图中认为“都可以”的所占圆心角为度;根据题中信息补全条形统计图.(2)我们学校共有600名教职工,请根据上图估算喜欢A款的有多少人?15.重庆市某超市举行盛大的周年庆庆祝活动,推出“感恩顾客,回馈真情”抽奖活动,活动规定,凡购买商品价值不低于200元的顾客,都能参与一次抽奖活动,奖励的等级分为下列五等:A等级:奖励现金50元,B等级:奖励现金30元;C等级:奖励现金10元;D等级:奖励现金6元;E等级:呵呵,恭喜发财,下次再来(没有奖励)!超市根据部分顾客的抽奖情况,对抽奖结果进行分析,绘制了下列两幅不完整的统计图:根据提供的信息,求扇形统计图中“D等级”所对应的圆心角度数,并求出顾客抽一次奖的平均收益,并补全条形统计图.16.小明参加班委竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是五位评委对小明“演讲答辩”的评分条形统计图及全班50位同学民主测评票数统计表,已知小明“演讲答辩”得分是95分(1)请补全条形统计图;(2)小明的民主测评得分是;(3)请求出小明的综合得分.17.在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.18.食品安全关系千家万户,春节期间,食监部门对某超市的甲、乙两种品牌的菜籽油进行了抽检,共随机抽取了36桶油进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,已知乙种品牌的菜籽油全部合格,统计人员将数据处理后制成了如下的扇形统计图及折线统计图,其中扇形统计图表示甲种品牌菜籽油检测的结果,折线统计图表示甲、乙两种品牌菜籽油检测的结果.(1)甲、乙两种品牌的菜籽油各被抽取了多少桶进行检测?(2)甲、乙两种品牌的菜籽油检测结果中“优秀”各有多少桶?19.近年来,“小组合作学习”成为我区推动课堂教学活动改革,打造高效课堂的重要举措.某中学为了了解“小组合作学习”实施后学生的学习兴趣,随机调查了部分学生,并根据调查结果绘制成如图图表:(1)求调查的学生中学习兴趣“高”的人数的百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)已知该校有750人,请根据调查情况估计全校学习兴趣“极高”的人数是多少?20.某中学上学期开展了以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制如图所示的不完整的统计图,请你根据图中提供的信息补全条形统计图并估计该中学1500名学生中最喜爱律师职业的学生有多少名?21.“六一”儿童节前夕,某县××局准备给留守儿童赠送一批学习用品,先对某小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名、7名、8名、10名、12名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有个班级;各班留守儿童人数的中位数是;并补全条形统计图;(2)若该镇所有小学共有65个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.22.《中国足球改革总体方案》提出足球要进校园,为了解某校学生对校园足球喜爱的情况,随机对该校部分学生进行了调查,将调查结果分为“很喜欢”、“较喜欢”、“一般”、“不喜欢”四个等级,并根据调查结果绘制成了如下两幅不完整的统计图;(1)一共调查了名学生,请补全条形统计图;(2)在此次调查活动中,选择“一般”的学生中只有两人来自初三年级,现在要从选择“一般”的同学中随机抽取两人来谈谈各自对校园足球的感想,请用画树状图或列表法求选中的两人刚好都来自初三年级的概率.23.中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;C类所占百分比为;(2)将图1补充完整;(3)现有6名学生,其中A类三名,B类三名,张华在A类,王雨在B类,从A、B中各选1名学生,请用列表法或树状图法求张华、王雨至少有一个被抽到的概率.24.创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).25.某区教委对部分学校的七年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层次,A 级:对学习很感兴趣,B级:对学习比较感兴趣,C级:对学习不敢兴趣)并将调查结果绘制成图1和图2的统计图(不完整)根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生,图2中C级扇形的圆心角是度.并将图1补充完整.(2)已知A级中有4名数奥尖子学生,其中有2名男生,2名女生,B级中有3名体育尖子学生,其中有2名男生,1名女生,从这4名数奥尖子学生和3名体育尖子生中各选出1名学生,参加学校的“特长学生经验交流会”.利用”树状图“或者”列表”法求所选出的2名学生恰好是一名男生和一名女生的概率.26.我校学生社团下将新增四个社团:A.开心农场、B.小小书吧、C.宏帆传媒、D.学生大使团.为了了解学生对四个社团的喜欢情况,学生会干部随机抽取了部分学生进行调查,并将调查结果绘制成下列的统计图,请结合图中的信息解答下列问题:(1)在这次调查中,共调查了多少名学生?(2)请计算扇形统计图中B的圆心角;并将条形统计图补充完整;(3)为了了解学生喜欢“宏帆传媒”社团的原因,调查到喜欢“宏帆传媒”社团的5个学生中有2个初一的,3个初二的,现在这5个学生中任抽取2名学生参加座谈,请用树状图或列表的方法,求刚好抽到同一年级学生的概率.27.某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其它类(记为D).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为人,扇形统计图中D类所对应扇形的圆心角为度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.28.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.29.经国家体育总局、重庆市××局批准,国家级青少年体育俱乐部-重庆巴蜀青少年体育俱乐部-于2021年12月20日成立.体育老师吴老师为了了解七年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如下两幅不完整的统计图(说明:每位学生只选一种自己喜欢的一种球类),请根据这两幅图形解答下列问题:(1)将两个不完整的统计图补充完整;(2)七(一)班在本次调查中有3名女生和2名男生喜欢篮球,现从这5名学生中任意抽取2名学生当篮球队的队长,请用列表法或画树状图的方法求出刚好抽到一男一女的概率.30.某公司××部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若B馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若抽出的两次数字之积为偶数则小明获得门票,反之小华获得门票.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.。

2021年中考数学 专题训练:直角三角形与勾股定理(含答案)

2021年中考数学 专题训练:直角三角形与勾股定理(含答案)

2021中考数学专题训练:直角三角形与勾股定理一、选择题1. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin△BAC的值为()A.B.C.D.2. 如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. 433B. 4 C. 8 3 D. 433. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米4. (2019•南通)小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于A.1和2之间B.2和3之间C.3和4之间D.4和5之间5. 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.36. 公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形的面积是25,则(sinθ-cosθ)2=()A.B.C.D.7. 如图,在Rt△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A. 3B. 4C. 4.8D. 58. 已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.32B.332C.32D. 不能确定二、填空题9. 如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF,若AB=3,AC=2,且α+β=∠B,则EF=.10. 如图,等边三角形ABC内有一点P,分别连接AP,BP,CP,若AP=6,BP=8,CP=10,则S△ABP+S△BPC=.11. 如图①,在Rt△ABC中,∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)根据勾股定理的知识,请直接写出a,b,c之间的数量关系;(2)若正方形EFMN的面积为64,Rt△ABC的周长为18,求Rt△ABC的面积.12. (2019•通辽)腰长为5,高为4的等腰三角形的底边长为__________.13. 如图,在Rt△ABC中,△BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE△BC于点E,连接AE,则△ABE的面积等于________.14. 在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为________.三、解答题15. 如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点E,F分别是边BC,AC的中点.求证:DF=BE.16. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.17. 已知:整式A=(n2-1)2+(2n)2,整式B>0.[尝试] 化简整式A.[发现] A=B2,求整式B.[联想] 由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三n2-12n B边勾股数组Ⅰ8勾股数组Ⅱ3518. 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完............成解答过程......2021中考数学专题训练:直角三角形与勾股定理-答案一、选择题1. 【答案】D[解析]如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.2. 【答案】D【解析】∵Rt△ABC中,∠B=30°,AB=8,∴AC=12AB=4,∴BC=AB2-AC2=64-16=4 3.3. 【答案】C[解析]在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A'BD中,∵∠A'DB=90°,A'D=2米,BD2+A'D2=A'B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).4. 【答案】C【解析】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=2222+=+=,∴P点所表示的数就是132313OA AB,<<,<<34即点P所表示的数介于3和4之间,故选C.5. 【答案】A[解析]过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2+.6. 【答案】A[解析]∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ=,∴(sinθ-cosθ)2=.故选A.7. 【答案】D【解析】∵DE 垂直平分AC ,∴∠AED =90°,AE =CE =4,在Rt△ABC 中,∠ACB =90°,∴DE ∥BC ,∴DE 是△ABC 的中位线,∴DE =12BC =3.在Rt △CED 中,CD =CE 2+DE 2=5.8. 【答案】B【解析】如解图,△ABC 是等边三角形,AB =3,点P 是三角形内任意一点,过点P 分别向三边AB ,BC ,CA 作垂线,垂足依次为D ,E ,F ,过点A 作AH ⊥BC 于点H ,则BH =32,AH =AB 2-BH 2=332.连接P A ,PB ,PC ,则S △P AB +S △PBC +S △PCA =S △ABC ,∴12AB ·PD +12BC ·PE +12CA ·PF =12BC ·AH ,∴PD +PE +PF =AH =332.二、填空题9. 【答案】[解析]∵α+β=∠B ,∴∠EAF=∠BAC +∠B=90°, ∴△AEF 是直角三角形, ∵AE=AB=3,AF=AC=2, ∴EF==.10. 【答案】16+24 [解析]将△ABP 绕点B 顺时针旋转60°到△CBP',连接PP',所以P'C=P A=6,BP=BP',∠PBP'=60°,所以△BPP'是等边三角形,其边长BP 为8,所以PP'=8,S △BPP'=16,因为PC=10,所以PP'2+P'C 2=PC 2,所以△PP'C 是直角三角形,S △PP'C =24,所以S △ABP +S △BPC =S △BPP'+S △PP'C =16+24.11. 【答案】解:(1)由勾股定理得,a 2+b 2=c 2.(2)∵正方形EFMN 的面积为64,∴c 2=64,即c=8. ∵Rt△ABC 的周长为18,∴a +b +c=18, ∴a +b=10,∴Rt△ABC 的面积=ab=[(a +b )2-(a 2+b 2)]=9.12. 【答案】6或【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6; ②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴BC == ③如图3,当5AB AC ==,4CD =时,则3AD ==,∴8BD =,∴BC =∴此时底边长为6或13. 【答案】78【解析】如解图,过A 作AH△BC ,△AB =15,AC =20,△BAC=90°,△由勾股定理得,BC =152+202=25,△AD =5,△DC =20-5=15,△DE△BC ,△BAC =90°,△△CDE△△CBA ,△CE CA =CD CB ,△CE =1525×20=12. 法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE△△CAH 可得,CD CA =ED HA ,△AH =9×2015=12,S △ABE =12×12×13=78.14. 【答案】13 或10 【解析】(1)如解图①所示,当P 点靠近B 点时,∵AC=BC =3,∴CP =2,在Rt △ACP 中,由勾股定理得AP =13;(2)如解图②所示,当P 点靠近C 点时,∵AC =BC =3,∴CP =1,在Rt △ACP 中,由勾股定理得AP =10.综上可得:AP 长为13 或10.三、解答题15. 【答案】证明:连接AE ,∵点E ,F 分别是边BC ,AC 的中点,∴EF 是△ABC 的中位线, ∴EF ∥AB ,即EF ∥AD 且EF=AB. 又∵AD=AB ,∴AD=EF ,∴四边形ADFE 是平行四边形,∴DF=AE. ∵在Rt△ABC 中,点E 是BC 的中点, ∴AE=BC=BE ,∴BE=DF .16. 【答案】解:(1)4(2)∵AC=AD,∠CAD=60°,∴△CAD是等边三角形,∴CD=AC=4,∠ACD=60°.过点D作DE⊥BC于E,∵AC⊥BC,∠ACD=60°,∴∠BCD=30°.在Rt△CDE中,CD=4,∠BCD=30°,∴DE=CD=2,CE=2,∴BE=,在Rt△DEB中,由勾股定理得DB=.17. 【答案】解:[尝试] A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2.[发现] ∵A=B2,B>0,∴B==n2+1.[联想] ∵2n=8,∴n=4,∴B=n2+1=42+1=17.∵n2-1=35,∴B=n2+1=37.∴填表如下:直角三角形三n2-12n B边勾股数组Ⅰ817勾股数组Ⅱ353718. 【答案】解:如解图,过点A作AD⊥BC,垂足为点D,设BD=x,则CD=14-x,根据勾股定理可得:AD2=AB2-BD2=AC2-CD2,即152-x2=132-(14-x)2,解得x=9.(3分)∴AD2=152-x2=152-92=144.(5分)∵AD>0,∴AD=12.(8分)∴S△ABC =12BC·AD=12×14×12=84.(10分)。

2021重庆中考数学专题复习新函数图像题

2021重庆中考数学专题复习新函数图像题

2021重庆中考数学专题复习新函数图像题1.小明根据学习函数的经验,对函数y=1x−1+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=1x−1+1的自变量x的取值范围是______;(2)如表列出了y与x的几组对应值,请写出m,n的值:m=______,n=______;(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,解决问题:①写出该函数的一条性质:______.②当函数值1x−1+1>32时,x的取值范围是:______.2.模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x,y,由矩形的面积为4,得xy=4,即y=4x;由周长为m,得2(x+y)=m,即y=−x+m2.满足要求的(x,y)应是两个函数图象在第______象限内交点的坐标.(2)画出函数图象函数y=4x (x>0)的图象如图所示,而函数y=−x+m2的图象可由直线y=−x平移得到.请在同一直角坐标系中直接画出直线y=−x.(3)平移直线y=−x,观察函数图象①当直线平移到与函数y=4x(x>0)的图象有唯一交点(2,2)时,周长m的值为______;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论若能生产出面积为4的矩形模具,则周长m的取值范围为______.3.小东同学根据函数的学习经验,对函数y=|x−1|+|x+3|进行了探究,下面是他的探究过程:(1)已知x=−3时|x+3|=0;x=1时|x−1|=0,化简:①当x<−3时,y=______;②当−3≤x≤1时,y=______;③当x>1时,y=______;(2)在平面直角坐标系中画出y=|x−1|+|x+3|的图象,根据图象,写出该函数的一条性质:______;(3)根据上面的探究,解决下面问题:已知A(a,0)是x轴上一动点,B(1,0),C(−3,0),则AB+AC的最小值是______.4.根据学习函数的经验,探究函数y=x2+ax−4|x+b|+4(b<0)的图象和性质:(1)下表给出了部分x,y的取值;x L−3−2−1012345L y L30−1030−103L 由上表可知,a=______,b=______;(2)用你喜欢的方式在坐标系中画出函数y=x2+ax−4|x+b|+4的图象;(3)结合你所画的函数图象,写出该函数的一条性质;(4)若方程x2+ax−4|x+b|+4=x+m至少有3个不同的实数解,请直接写出m的取值范围.5.在函数的学习中,我们经历了“确定函数表法式−画函数图象−利用函数图象研究函数性质−利用图象解决问题”的学习过程.在画函数图象时,我们常常通过描点或平移或翻折的方法画函数图象.小明根据学到的函数知识探究函数y1={|2x+4|(x<0)bx+1(x≥0)的图象与性质并利用图象解决问题.小明列出了如表y1与x的几组对应的值:x…−4−3−2−101234…y1…42m24243n45…(1)根据表格中x、y1的对应关系可得m=______,n=______;(2)在平面直角坐标系中,描出表格中各点,两出该函数图象;根据函数图象,写出该函数的一条性质______.(3)当函数y1的图象与直线y2=mx+1有三个交点时,直接写出m的取值范围.6.在初中阶段的函数学习中,我们经历了“确定函数的表达式--利用函数图象研究其性质--应用函数解决问题”的学习过程,在画函数图象时,我们可以通过描点或平移的方法画出一个函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数y=|2x+b|+kx(k≠0)中,当x=0时,y=1;当x=−1时,y=3.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;x−1的图象如图所示,结合你所画的函数图形,直接写出不等式(3)已知函数y=12x−1的解集.|2x+b|+kx≤127.已知函数y=a−b|x−1|(a、b为常数),当x=1时,y=1;当x=2时,y=0;请对该函数及其图象进行如下探究:(1)求函数的解析式;(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质:______;根据函数图象解决下列问题:①若A(m,c),B(n,c)为该函数图象上不同的两点,则m+n=______;x+k有两个不相等的实数解x1,x2,且x1⋅x2>0,则k的取②若方程a−b|x−1|=12值范围是______.8.设函数y=k1x+k2x−1,且k1⋅k2≠0,自变量x与函数值y满足以下表格:x…−2−32−1−121232252372…y…−113−135m−13131n133112335…(1)根据表格直接写出y与x的函数表达式及自变量x的取值范围______ ;(2)在如图所示的平面直角坐标系中,请根据表格中的数据补全函数图象,并写出该函数的一条性质:______ .(3)结合函数图象,直接写出关于x的不等式k1x+k2x−1≥x+1的解集为______ .(x−2)2+|x−2|+3的图9.某次数学活动时,数学兴趣小组成员小融拟研究函数y=−12象和性质.(1)下表是该函数y与自变量x的几组对应值;x…−2012346…y…−1m 3.53n3−1…其中,m的值为______ ,n的值为______ .(2)如图,在平面直角坐标系xOy中,描出上表中各组对应值为坐标的点,再根据描出的点画出该函数图象;(3)根据函数图象,写出该函数的一条性质______ ;(x−2)2+|x−2|+3=k有3个不相等的实数根,则k的值为(4)若关于x的方程−12______ .10.已知函数y=6,请根据已学知识探究该函数的图象和性质.x2+1(1)列表,写出表中a、b、c的值:a=______ ,b=______ ,c=______ .x…−3−2−10123…y…0.6a3b3 1.2c…(2)描点、连线,在下面的平面直角坐标系中画出该函数的图象,并写出该函数的一条性质:______ .≥(3)已知函数y=x+2的图象如图所示,结合你所画的函数图象,直接写出不等式6x2+1 x+2的解集:______ .11.请你用学习函数及图象性质时积累的经验和方法研究函数y1={3x (x>0)−x|x+4|(x≤0)的图象和性质,并解决问题:(1)下表是x与y1的几组对应值.x…−5−4−3−2−100.51234…y1…503m3063n10.75…则m=______ ,n=______ .(2)请你在下面平面直角坐标系画出这个函数的图象,并写出这个函数的一条性质______ ;(3)进一步探究函数图象并解决问题:画出函数y2=12x+1的图象,结合你所画的函数图象,直接写出两函数图象交点坐标中的横坐标的值为______ .(精确到0.1)12.在平面直角坐标系xOy中,函数y1=23x−2的图象与函数y2={2x+5,(x≤1)x+mx−6,(x>1)的图象在第一象限有一个交点A,且点A的横坐标是6.(1)求m的值;(2)补全表格并以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,补充画出y2的函数图象;x−3−2−101 1.2 1.523456789y2−1157 5.2 3.5211219772133(3)写出函数y2的一条性质:______.(4)已知函数y1与y2的图象在第一象限有且只有一个交点A,若函数y3=23x+n与y2的函数图象有三个交点,求n的取值范围.13.已知函数y=a(x−1)2+bx+1(a≠0),某兴趣小组对其图象与性质进行了探究,请补充完整探究过程.x…−3−2−112345…y…−6−22−2−1−2m−385…(1)请根据给定条件直接写出a,b,m的值;(2)如图已经画出了该函数的部分图象,请你根据上表中的数据在平面直角坐标系中描点、连线,补全该函数图象,并写出该函数的一条性质;(3)若a(x−1)2+bx≥x−4,结合图象,直接写出x的取值范围.14.在某次数学活动中,小明根据学习函数的经验,研究函数y=3x2+2x+2的图象和性质.x…−5−4−3−2−32−1110−1910−120123…y (3)1731035a125300101330010112532b310317…(1)上表是该函数y与自变量x的几组对应值,直接写出a、b的值;(2)如图,在给出的平面直角坐标系中,描出了以上表格中的各组对应值为坐标的点,观察描出的这些点的分布,作出该函数的图象;并写出该函数的一条性质;(3)已知函数y=|x+1|的图象如图所示,结合你所画的函数图象,直接写出方程3x2+2x+2=|x+1|的解(结果精确到0.1).15. 函数图象在探索函数的性质中有非常重要的作用,现在就一类特殊的函数展开探索:y ={a|x|−2(−5≤x <4)b(x −6)2+2(x ≥4),探索函数图象和性质过程如下:下表是y 与x 的几组值: 222222(1) 根据给定的条件,求这个函数的表达式;(2)在如图所示的平面直角坐标系中描点并画出函数图象;并写出这个函数的一条性质;(3)若方程y −2=k 有三个不同的的实数根.请根据函数图象,直接写出k 的取值范围.16.大家都知道我们初中学过一次函数、反比例函数、二次函数这三种函数,现在我们把这三种函数组合成分段函数y={mx+1(−7≤x≤−3)−x(−3<x≤0)−12x2+2x(0<x≤4),y与x的部分对应关系如下表;(1)解析式中的m=______ ,表格中的n=______ ;(2)在如图所示的平面直角坐标系中描出上表中各点,并画出函数图象,根据函数图象,写出函数的一条性质:______ .(3)若直线y=−k+1与该函数图象有四个交点,则k的取值范围:______ .17.小林同学根据学习函数的经验,对函数y=2xx−a的图象进行了探究,下面是小林的探究过程,请你通过计算,补充完整.(1)如表列出了y与x的几组对应值,请写出a,m,n的值:a=______ ,m=______ ,n=______ .53(2)在如图所示的平面直角坐标系中,描全表中以各对对应值为坐标的点,并画出该函数的图象.(3)结合函数的图象,解决问题:①写出该函数的一条性质:______ ;②当2xx−a >23时,x的取值范围是:______ .18.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y1={2x−1(x≤0)−|2x−4|+2(x>0)的图象与性质,探究过程如下,请补充完整.(1)列表:x…−4−3−2−101234…y…−0.4−0.5m−1n0p0−2…其中,m=______ ,n=______ ,p=______ ;(2)在平面直角坐标系中,描出相应的点,画出函数的图象;(3)观察函数图象,写出该函数图象的一条性质;(4)已知函数y2=12x2−2的图象如图所示,结合你画的函数图象,直接写出不等式y1≤y2的解集为______ (保留一位小数,误差小于0.2).+1的图象与性质进行了探究,下面是小19.小渡同学根据学习函数的经验,对函数y=2x−3渡同学的探究过程,请根据题意补充完整:(1)如表是y与x的几组对应值:52325则m=______ ,n=______ .(2)在平面直角坐标系xOy中,补全此函数图象:+1>2x−5的图象关于平面直角坐标系中某一点成中心对称,(3)小渡同学发现y=2x−3这一点的坐标是______ .+1>2x−5的解集.(4)根据函数图象,直接写出不等式2x−320.在初中阶段的函数学习中,我们经历了“确定函数解析式--利用函数图象研究其性质--运用函数图象解决问题”的学习过程,以下是我们研究函数y=|4xx+1|−4性质及其应用的部分过程,请按要求完成下列各小题.(1)该函数的自变量取值范围是______ ;下表中p=______ ,q=______ ,在所给的平面直角坐标系中补全该函数图象;x…−5−4−3−2−14−1201234…y=|4x x+1|−4 (1)43p4−83q−4−2−43−1−45…(2)根据函数图象写出该函数的一条性质:______ .(3)已知函数y=−x−1的图象如图所示,结合你所画的函数图象,直接写出不等式|4xx+1|−4<−x−1的解集(保留1位小数,误差不超过0.2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( 1题图 ) ( 2题图 )
2.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把△ABD 沿着AD 翻折,得到△AED ,DE 与AC 交于点G ,连接BE 交AD 于点F 。

若DG = GE ,AF =3,BF =2, △ADG 的面积为2,则点F 到BC 的距离为( )
A .
55 B .552 C .554 D .3
34 3.
( 3题图 ) ( 4题图 )
4. 如图,在矩形ABCD 中,已知3AB =,点E 是BC 边的中点,连接AE ,△1AB E 和ABE ∆关于AE 所在直线对称,1B 在对角线BD 上.若190CB D ∠=︒,则1B D 的长为( )
A .62
B .33
C .2
D .3
5.如图,已知矩形ABCD 中,AB=3,AD=4,沿对角线BD 折叠使点A 落在
平面内的点E 处,过点E 作EF//CD 交BD 于点F,则C 到F 的距离是( )
A .
5372 B .25521 C .5373 D .7
56
( 5题图 ) ( 6题图 )
6.如图,在等腰Rt∆ABC 中,90ACB ∠=,点D 为AB 中点,点E 为AC 上一点,将∆ADE
沿DE 翻折得到A DE '∆,连接A B '、A C ',已知2A C '=,3A B '=,则ABC S ∆=( )
A .172
B .9
C .192
D .212
7.如图,△ABC,在中,∠BAC=30°,AB=8, AC= 5,将∆ABC 绕点A 顺时针旋转30°得到 △ADE, 连接CD,则CD 的长是( )
A. 7
B. 8
C. 12
D. 13
( 7题图 )。

相关文档
最新文档