全微分方程的解法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xdy
x2
ydx
d
(
y x
)
xdy ydx d(ln y)
xy
x
ydx xdy d(xy)
xdy
y2
ydx
d
(
x y
)
xdy x2
ydx y2
d (arctan
y x
)
xdx ydy x2 y2 d(ln
x2 y2)
xdy ydx 可选用的积分因子有
一、概念 定义: 若有全微分形式
d(x, y) P(x, y)dx Q(x, y)dy
则 P(x, y)dx Q(x, y)dy 0 称为全微分方程。
通解则为 (x, y) C (C为任意常数)。
例1:方程 xdx ydy 0是否为全微分方程?
解:令u(x, y) 1 (x2 y2 ),du(x, y) xdx ydy, 2
这里由于 P Q ,故曲线积分与路径无关。因此 y x
(x,y)
(x, y) P(x, y)dx Q(x, y)dy ( x0 , y0 )
二、全微分方程的解法
(1) 线积分法:
x
y
(x, y)
P(x, y)dx
x0
y0 Q(x0, y)dy
(x,y)
或 (x, y) P(x, y)dx Q(x, y)dy ( x0 , y0 )
中连续且有连续的一阶偏导数,则 是全微分方程
证明:(1)证明必要性 因为
是全微分方程,
则存在原函数 (x,,y)使得
d(x, y) P(x, y)dx Q(x, y)dy
所以 P(x, y), Q(x, y)
x
y
将以上二式分别对 x, y 求偏导数,得到
2 P , 2 Q xy y yx x
方程通解为 x2 y x4 C
二、积分因子的求法
1.公式法:
(mP) (mQ) ,
y
x
m P P m m Q Q m
y y x x
Q m
x
Hale Waihona Puke Baidu
P
m
y
m
P y
Q x
Q 1 m P 1 m P Q m x m y y x
x
y
x
由第一个等式,应有 (x, y) P(x, y)dx ( y) x0
代入第二个等式,应有
x P(x, y) dx ( y)
y x0 y
x Q(x, y) dx ( y)
x0 x
x Q(x, y) dx ( y)
x0 x
Q(x, y) Q(x0, y) ( y)
y
因此 ( y) Q(x0, y) ,则 ( y) y0 Q(x0, y)dy C
因此可以取
x
y
(x, y)
P(x, y)dx
x0
y0 Q(x0, y)dy
此时 d(x, y) P(x, y)dx Q(x, y)dy
11 1 1 x2 , y2 , x2 y2 , xy
m( x, y)P( x, y)dx m( x, y)Q( x, y)dy 0成为全
微分方程.则称m ( x, y)为方程的积分因子.
例1 验证 x 是方程 (2 y 4x2 )dx xdy 0 的积分因子,并求方程的通解。
解: x(2 y 4x2 )dx x2dy 0 是全微分方程。
(两边同除 m,)
Q ln m P ln m P Q
x
y y x
求解不容易 特殊地:
a. 当 m 只与 x 有关时,my 0,
m dm ,
x dx
d ln m 1 (P Q) f ( x)
dx Q y x
m ( x) e f ( x)dx .
又因为 P(x, y),Q(x, y) 偏导数连续,
所以
2 2 xy yx
,即
P Q y x
(2)证明充分性
设 P Q,求一个二元函数 (x, y)使它满足 y x
d(x, y) P(x, y)dx Q(x, y)dy 这里
即 P(x, y), Q(x, y) (x0, y0 ) R
所以方程为全微分方程。 (1) 线积分法:
故通解为
(2) 偏积分法: 假设所求全微分函数为
,则有
代入可得 因此 从而 即
(3) 凑微分法: 由于
根据二元函数微分的经验,原方程可写为 方程的通解为:
例3:验证方程
是全微分方程,并求它的通解。 解: 由于
所以方程为全微分方程。 (1) 线积分法:
所以是全微分方程.
例:求方程ydx xdy 0的通解。
解:因为d( xy) ydx xdy,所以ydx xdy 0为恰当方程, 且通解为xy C.
问题: (1)如何判断全微分方程? (2)如何求解全微分方程? (3)如何转化为全微分方程?
定理1 设函数
和
在一个矩形区域
b. 当 u 只与 y有关时, m 0,
x
d ln m 1 (Q P ) g( y)
dy P x y
m dm ,
y dy
m( y) e g( y)dy .
2.观察法: 凭观察凑微分得到 m( x, y)
常见的全微分表达式
xdx ydy d( x2 y2 ) 2
(2) 偏积分法
P(x, y), Q(x, y)
x
y
第一个等式对 x 积分 (x, y) P(x, y)dx ( y)
代入第二个等式求 ( y) ,即可得 (x, y)
(3)凑微分法
直接凑微分得 (x, y)
例2:验证方程
是全微分方程,并求它的通解。 解:由于
故通解为
(2) 偏积分法: 假设所求全微分函数为
,则有
所以 从而
即
(3) 凑微分法: 根据二元函数微分的经验,原方程可写为
方程的通解为: 练习:验证方程
是全微分方程,并求它的通解。 方程的通解为:
积分因子法
一、概念 二、积分因子的求法
一、定义: m( x, y) 0 连续可微函数,使方程