全微分方程的解法
几种常见的微分方程简介,解法
第十二章:微分方程教学目的:1.了解微分方程及其解、阶、通解,初始条件和特等概念。
2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。
4.会用降阶法解下列微分方程:()()n y f x =, (,)y f x y '''+和(,)y f y y '''=5.理解线性微分方程解的性质及解的结构定理。
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。
8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。
9.会解微分方程组(或方程组)解决一些简单的应用问题。
教学重点:1、可分离的微分方程及一阶线性微分方程的解法2、可降阶的高阶微分方程()()n y f x =, (,)y f x y '''+和(,)y f y y '''=3、二阶常系数齐次线性微分方程;4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;教学难点:1、齐次微分方程、伯努利方程和全微分方程;2、线性微分方程解的性质及解的结构定理;3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。
4、欧拉方程§12. 1 微分方程的基本概念函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程.几个概念:微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程.偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程.微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x 3 y '''+x 2 y ''-4xy '=3x 2 ,y (4) -4y '''+10y ''-12y '+5y =sin2x ,y (n ) +1=0,一般n 阶微分方程:F (x , y , y ', ⋅ ⋅ ⋅ , y (n ) )=0.y (n )=f (x , y , y ', ⋅ ⋅ ⋅ , y (n -1) ) .微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y =ϕ(x )在区间I 上有n 阶连续导数, 如果在区间I 上, F [x , ϕ(x ), ϕ'(x ), ⋅ ⋅ ⋅, ϕ(n ) (x )]=0,那么函数y =ϕ(x )就叫做微分方程F (x , y , y ', ⋅ ⋅ ⋅, y (n ) )=0在区间I 上的解.通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解.初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如x =x 0 时, y =y 0 , y '= y '0 .一般写成00y y x x ==, 00y y x x '='=. 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解.初值问题: 求微分方程满足初始条件的解的问题称为初值问题.如求微分方程y '=f (x , y )满足初始条件00y y x x ==的解的问题, 记为⎩⎨⎧=='=00),(y y y x f y x x . 积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线.例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程.解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程)x dxdy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件:x =1时, y =2, 简记为y |x =1=2. (2)把(1)式两端积分, 得(称为微分方程的通解)⎰=x d x y 2, 即y =x 2+C , (3)其中C 是任意常数.把条件“x =1时, y =2”代入(3)式, 得2=12+C ,由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1.例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程?解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式4.022-=dt s d . (4) 此外, 未知函数s =s (t )还应满足下列条件:t =0时, s =0, 20==dtds v . 简记为s |t =0=0, s '|t =0=20. (5)把(4)式两端积分一次, 得14.0C t dtds v +-==; (6) 再积分一次, 得s =-0.2t 2 +C 1t +C 2, (7)这里C 1, C 2都是任意常数.把条件v |t =0=20代入(6)得20=C 1;把条件s |t =0=0代入(7)得0=C 2.把C 1, C 2的值代入(6)及(7)式得v =-0.4t +20, (8)s =-0.2t 2+20t . (9)在(8)式中令v =0, 得到列车从开始制动到完全停住所需的时间504.020==t (s ). 再把t =50代入(9), 得到列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).解 设列车在开始制动后t 秒时行驶了s 米,s ''=-0.4, 并且s |t =0=0, s '|t =0=20.把等式s ''=-0.4两端积分一次, 得s '=-0.4t +C 1, 即v =-0.4t +C 1(C 1是任意常数),再积分一次, 得s =-0.2t 2 +C 1t +C 2 (C 1, C 2都C 1是任意常数).由v |t =0=20得20=C 1, 于是v =-0.4t +20;由s |t =0=0得0=C 2, 于是s =-0.2t 2+20t .令v =0, 得t =50(s). 于是列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).例3 验证: 函数x =C 1cos kt +C 2 sin kt是微分方程0222=+x k dt x d 的解.解 求所给函数的导数:kt kC kt kC dtdx cos sin 21+-=, )s i n c o s (s i n c o s 212221222kt C kt C k kt C k kt C k dtx d +-=--=. 将22dtx d 及x 的表达式代入所给方程, 得 -k 2(C 1cos kt +C 2sin kt )+ k 2(C 1cos kt +C 2sin kt )≡0.这表明函数x =C 1cos kt +C 2sin kt 满足方程0222=+x k dtx d , 因此所给函数是所给方程的解. 例4 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程0222=+x k dtx d 的通解, 求满足初始条件 x | t =0 =A , x '| t =0 =0的特解.解 由条件x | t =0 =A 及x =C 1 cos kt +C 2 sin kt , 得C 1=A .再由条件x '| t =0 =0, 及x '(t ) =-kC 1sin kt +kC 2cos kt , 得C 2=0.把C 1、C 2的值代入x =C 1cos kt +C 2sin kt 中, 得x =A cos kt .§12. 2 可分离变量的微分方程观察与分析:1. 求微分方程y '=2x 的通解. 为此把方程两边积分, 得y =x 2+C .一般地, 方程y '=f (x )的通解为C dx x f y +=⎰)((此处积分后不再加任意常数).2. 求微分方程y '=2xy 2 的通解.因为y 是未知的, 所以积分⎰dx xy 22无法进行, 方程两边直 接积分不能求出通解.为求通解可将方程变为x d x dy y 212=, 两边积分, 得 C x y +=-21, 或Cx y +-=21, 可以验证函数C x y +-=21是原方程的通解. 一般地, 如果一阶微分方程y '=ϕ(x , y )能写成g (y )dy =f (x )dx形式, 则两边积分可得一个不含未知函数的导数的方程G (y )=F (x )+C ,由方程G (y )=F (x )+C 所确定的隐函数就是原方程的通解对称形式的一阶微分方程:一阶微分方程有时也写成如下对称形式:P (x , y )dx +Q (x , y )dy =0在这种方程中, 变量x 与y 是对称的.若把x 看作自变量、y 看作未知函数, 则当Q (x ,y )≠0时, 有),(),(y x Q y x P dx dy -=. 若把y 看作自变量、x 看作未知函数, 则当P (x ,y )≠0时, 有),(),(y x P y x Q dy dx -=. 可分离变量的微分方程:如果一个一阶微分方程能写成g (y )dy =f (x )dx (或写成y '=ϕ(x )ψ(y ))的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程.讨论: 下列方程中哪些是可分离变量的微分方程?(1) y '=2xy , 是. ⇒y -1dy =2xdx .(2)3x 2+5x -y '=0, 是. ⇒dy =(3x 2+5x )dx .(3)(x 2+y 2)dx -xydy =0, 不是.(4)y '=1+x +y 2+xy 2, 是. ⇒y '=(1+x )(1+y 2).(5)y '=10x +y , 是. ⇒10-y dy =10x dx . (6)xy y x y +='. 不是. 可分离变量的微分方程的解法:第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式;第二步 两端积分:⎰⎰=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ;第三步 求出由G (y )=F (x )+C 所确定的隐函数y =Φ(x )或x =ψ(y )G (y )=F (x )+C , y =Φ (x )或x =ψ(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解.例1 求微分方程xy dxdy 2=的通解. 解 此方程为可分离变量方程, 分离变量后得x d x dy y21=, 两边积分得⎰⎰=x d x dy y 21, 即 ln|y |=x 2+C 1,从而 2112x C C x e e e y ±=±=+. 因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解2x Ce y =.解 此方程为可分离变量方程, 分离变量后得x d x dy y21=, 两边积分得 ⎰⎰=x d x dy y 21,即 ln|y |=x 2+ln C ,从而 2x Ce y =.例2 铀的衰变速度与当时未衰变的原子的含量M 成正比. 已知t =0时铀的含量为M 0, 求在衰变过程中铀含量M (t )随时间t 变化的规律.解 铀的衰变速度就是M (t )对时间t 的导数dtdM . 由于铀的衰变速度与其含量成正比, 故得微分方程M dtdM λ-=, 其中λ(λ>0)是常数, λ前的曲面号表示当t 增加时M 单调减少. 即0<dt dM . 由题意, 初始条件为M |t =0=M 0.将方程分离变量得dt MdM λ-=. 两边积分, 得⎰⎰-=dt M dM)(λ, 即 ln M =-λt +ln C , 也即M =Ce -λt .由初始条件, 得M 0=Ce 0=C ,所以铀含量M (t )随时间t 变化的规律M =M 0e -λt .例3 设降落伞从跳伞塔下落后, 所受空气阻力与速度成正比, 并设降落伞离开跳伞塔时速度为零. 求降落伞下落速度与时间的函数关系.解 设降落伞下落速度为v (t ). 降落伞所受外力为F =mg -kv ( k 为比例系数). 根据牛顿第二运动定律F =ma , 得函数v (t )应满足的方程为kv mg dtdv m -=, 初始条件为v |t =0=0.方程分离变量, 得mdt kv mg dv =-, 两边积分, 得⎰⎰=-mdt kv mg dv , 1)l n (1C m t kv mg k+=--, 即 t m k Ce k m g v -+=(ke C kC 1--=), 将初始条件v |t =0=0代入通解得km g C -=, 于是降落伞下落速度与时间的函数关系为)1(t m k e km g v --=. 例4 求微分方程221xy y x dxdy +++=的通解. 解 方程可化为)1)(1(2y x dxdy ++=, 分离变量得dx x dy y )1(112+=+, 两边积分得⎰⎰+=+dx x dy y )1(112, 即C x x y ++=221arctan . 于是原方程的通解为)21tan(2C x x y ++=.例5有高为1m 的半球形容器, 水从它的底部小孔流出, 小孔横截面面积为1cm 2. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面高度h 随时间t 变化的规律.解 由水力学知道, 水从孔口流出的流量Q 可用下列公式计算:gh S dtdV Q 262.0==, 其中0. 62为流量系数, S 为孔口横截面面积, g 为重力加速度. 现在孔口横截面面积S =1cm 2, 故 gh dtdV 262.0=, 或dt gh dV 262.0=. 另一方面, 设在微小时间间隔[t , t +d t ]内, 水面高度由h 降至h +dh (dh <0), 则又可得到dV =-πr 2dh ,其中r 是时刻t 的水面半径, 右端置负号是由于dh <0而dV >0的缘故. 又因222200)100(100h h h r -=--=,所以 dV =-π(200h -h 2)dh .通过比较得到dh h h dt gh )200(262.02--=π,这就是未知函数h =h (t )应满足的微分方程.此外, 开始时容器内的水是满的, 所以未知函数h =h (t )还应满足下列初始条件:h |t =0=100.将方程dh h h dt gh )200(262.02--=π分离变量后得dh h h g dt )200(262.02321--=π. 两端积分, 得⎰--=dh h h g t )200(262.02321π,即 C h h g t +--=)523400(262.02523π, 其中C 是任意常数.由初始条件得C g t +⨯-⨯-=)100521003400(262.02523π, 5101514262.0)52000003400000(262.0⨯⨯=-=g g C ππ. 因此 )310107(262.05335h h g t +-⨯=π.上式表达了水从小孔流出的过程中容器内水面高度h 与时间t 之间的函数关系.§12. 3 齐次方程齐次方程:如果一阶微分方程),(y x f dxdy =中的函数f (x , y )可写成 x y 的函数, 即)(),(xy y x f ϕ=, 则称这方程为齐次方程. 下列方程哪些是齐次方程?(1)022=---'x y y y x 是齐次方程.1)(222-+=⇒-+=⇒x y x y dx dy x x y y dx dy . (2)2211y y x -='-不是齐次方程.2211x y dx dy --=⇒. (3)(x 2+y 2)dx -xydy =0是齐次方程. x y y x dx dy xy y x dx dy +=⇒+=⇒22. (4)(2x +y -4)dx +(x +y -1)dy =0不是齐次方程.142-+-+-=⇒y x y x dx dy . (5)0ch 3)ch 3sh 2(=-+dy xy x dx x y y x y x 是齐次方程. x y x y dx dy xy x x y y x y x dx dy +=⇒+=⇒th 32ch 3ch 3sh 2齐次方程的解法:在齐次方程)(xy dx dy ϕ=中, 令x y u =, 即y =ux , 有 )(u dx du x u ϕ=+, 分离变量, 得xdx u u du =-)(ϕ.两端积分, 得⎰⎰=-xdx u u du )(ϕ. 求出积分后, 再用xy 代替u , 便得所给齐次方程的通解. 例1 解方程dx dy xy dx dy x y =+22. 解 原方程可写成1)(222-=-=x y x y x xy y dx dy , 因此原方程是齐次方程. 令u x y =, 则 y =ux ,dxdu x u dx dy +=, 于是原方程变为12-=+u u dx du x u , 即 1-=u u dx du x . 分离变量, 得xdx du u =-)11(. 两边积分, 得u -ln|u |+C =ln|x |,或写成ln|xu |=u +C . 以xy 代上式中的u , 便得所给方程的通解 C xy y +=||ln . 例2 有旋转曲面形状的凹镜, 假设由旋转轴上一点O 发出的一切光线经此凹镜反射后都与旋转轴平行. 求这旋转曲面的方程.解 设此凹镜是由xOy 面上曲线L : y =y (x )(y >0)绕x 轴旋转而成, 光源在原点. 在L 上任取一点M (x , y ), 作L 的切线交x 轴于A . 点O 发出的光线经点M 反射后是一条平行于x 轴射线. 由光学及几何原理可以证明OA =OM ,因为 x y y OP PM OP AP OA -'=-=-=αcot , 而 22y x OM +=. 于是得微分方程22y x x y y +=-', 整理得1)(2++=yx y x dy dx . 这是齐次方程. 问题归结为解齐次方程1)(2++=y x y x dy dx . 令v y x =, 即x =yv , 得12++=+v v dy dv y v , 即 12+=v dydv y , 分离变量, 得y dy v dv =+12, 两边积分, 得 C y v v ln ln )1ln(2-=++, C y v v =++⇒12, 1)(22+=-⇒v v Cy , 1222=-Cyv C y , 以yv =x 代入上式, 得)2(22C x C y +=. 这是以x 轴为轴、焦点在原点的抛物线, 它绕x 轴旋转所得旋转曲面的方程为)2(222C x C z y +=+. 这就是所求的旋转曲面方程. .例3 设一条河的两岸为平行直线, 水流速度为a , 有一鸭子从岸边点A 游向正对岸点O , 设鸭子的游速为b (b >a ), 且鸭子游动方向始终朝着点O , 已知OA =h , 求鸭子游过的迹线的方程. 解 取O 为坐标原点, 河岸朝顺水方向为x 轴, y 轴指向对岸. 设在时刻t 鸭子位于点P (x , y ), 则鸭子运动速度) ,() ,(dtdy dt dx v v y x ==v , 故有y x v v dy dx =. 另一方面, ) ,()0 ,(2222y x y y x x b a +-+-+=+=b a v , ) ,(2222y x by y x bx a +-+-=v . 因此yx y x b a v v dy dx y x ++-==1)(2, 即y x y x b a dy dx ++-=1)(2. 问题归结为解齐次方程y x y x b a dy dx ++-=1)(2. 令u y x =, 即x =yu , 得 12+-=u ba dy du y , 分离变量, 得dy by a u du -=+12, 两边积分, 得 )ln (ln arsh C y ab u +-=, 将yx u =代入上式并整理, 得])()[(2111b a b a Cy Cy C x +--=. 以x |y =h =0代入上式, 得hC 1=, 故鸭子游过的轨迹方程为 ])()[(211b a b a hy h y h x +--=, 0≤y ≤h . 将y x u =代入)ln (ln arsh C y ab u +-=后的整理过程: )ln (ln arsh C y ab y x +-= a b Cy y x -=⇒)ln(sh ])()[(21a ba b Cy Cy y x -=⇒- ])()[(2a b a b Cy Cy y x -=⇒-])()[(2111b b Cy Cy C x +--=⇒.§12.4 线性微分方程一、 线性方程线性方程:方程)()(x Q y x P dxdy =+叫做一阶线性微分方程. 如果Q (x )≡0 , 则方程称为齐次线性方程, 否则方程称为非齐次线性方程. 方程0)(=+y x P dx dy 叫做对应于非齐次线性方程)()(x Q y x P dxdy =+的齐次线性方程. 下列方程各是什么类型方程? (1)y dx dy x =-)2(⇒021=--y x dx dy 是齐次线性方程. (2) 3x 2+5x -5y '=0⇒y '=3x 2+5x , 是非齐次线性方程.(3) y '+y cos x =e -sin x , 是非齐次线性方程.(4)y x dxdy +=10, 不是线性方程. (5)0)1(32=++x dxdy y ⇒0)1(23=+-y x dx dy 或32)1(x y dy dx +-, 不是线性方程. 齐次线性方程的解法:齐次线性方程0)(=+y x P dx dy 是变量可分离方程. 分离变量后得 dx x P ydy )(-=, 两边积分, 得1)(||ln C dx x P y +-=⎰,或 )( 1)(C dx x P e C Ce y ±=⎰=-, 这就是齐次线性方程的通解(积分中不再加任意常数).例1 求方程y dxdy x =-)2(的通解. 解 这是齐次线性方程, 分离变量得2-=x dx y dy , 两边积分得ln|y |=ln|x -2|+lnC ,方程的通解为y =C (x -2).非齐次线性方程的解法:将齐次线性方程通解中的常数换成x 的未知函数u (x ), 把⎰=-dx x P e x u y )()(设想成非齐次线性方程的通解. 代入非齐次线性方程求得)()()()()()()()()(x Q e x u x P x P e x u e x u dx x P dx x P dx x P =⎰+⎰-⎰'---, 化简得 ⎰='dx x P e x Q x u )()()(,C dx e x Q x u dx x P +⎰=⎰)()()(,于是非齐次线性方程的通解为])([)()(C dx e x Q e y dx x P dx x P +⎰⎰=⎰-, 或 dx e x Q e Ce y dx x P dx x P dx x P ⎰⎰⎰+⎰=--)()()()(. 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和.例2 求方程25)1(12+=+-x x y dx dy 的通解. 解 这是一个非齐次线性方程.先求对应的齐次线性方程012=+-x y dx dy 的通解. 分离变量得12+=x dx y dy , 两边积分得ln y =2ln (x +1)+ln C ,齐次线性方程的通解为y =C (x +1)2.用常数变易法. 把C 换成u , 即令y =u ⋅(x +1)2, 代入所给非齐次线性方程, 得2522)1()1(12)1(2)1(+=+⋅+-+⋅++⋅'x x u x x u x u 21)1(+='x u ,两边积分, 得C x u ++=23)1(32. 再把上式代入y =u (x +1)2中, 即得所求方程的通解为 ])1(32[)1(232C x x y +++=. 解: 这里12)(+-=x x P , 25)1()(+=x x Q . 因为 )1ln(2)12()(+-=+-=⎰⎰x dx x dx x P , 2)1l n (2)()1(+==⎰+-x e e x dx x P , 2321225)()1(32)1()1()1()(+=+=++=⎰⎰⎰⎰-x dx x dx x x dx e x Q dx x P , 所以通解为])1(32[)1(])([232)()(C x x C dx e x Q e y dx x P dx x P +++=+⎰⎰=⎰-. 例3 有一个电路如图所示, 其中电源电动势为E =E m sin ωt (E m 、ω都是常数), 电阻R 和电感L 都是常量. 求电流i (t ).解 由电学知道, 当电流变化时, L 上有感应电动势dt di L-. 由回路电压定律得出 0=--iR dt di LE , 即 LE i L R dt di =+. 把E =E m sin ω t 代入上式, 得t LE i L R dt di m sin ω=+. 初始条件为i |t =0=0.方程t LE i L R dt di m sin ω=+为非齐次线性方程, 其中 L R t P =)(, t L E t Q m s i n )(ω=. 由通解公式, 得])([)()()(C dt e t Q e t i dt t P dt t P +⎰⎰=⎰-) s i n (C dt e t L E e dt L Rm dt L R +⎰⎰=⎰-ω )s i n (C dt te e LE t L R t L Rm +=⎰-ω t L R m Ce t L t R LR E -+-+=) cos sin (222ωωωω. 其中C 为任意常数.将初始条件i |t =0=0代入通解, 得222 LR LE C m ωω+=, 因此, 所求函数i (t )为) c o s s i n ( )(222222t L t R L R E e L R LE t i m t L R m ωωωωωω-+++=-. 二、伯努利方程伯努利方程: 方程n y x Q y x P dxdy )()(=+ (n ≠0, 1) 叫做伯努利方程.下列方程是什么类型方程?(1)4)21(3131y x y dx dy -=+, 是伯努利方程. (2)5xy y dxdy +=, ⇒5xy y dx dy =-, 是伯努利方程. (3)x y y x y +=', ⇒11-=-'xy y x y , 是伯努利方程.(4)x xy dxdy 42=-, 是线性方程, 不是伯努利方程. 伯努利方程的解法: 以y n 除方程的两边, 得 )()(1x Q y x P dx dy y n n=+-- 令z =y 1-n , 得线性方程)()1()()1(x Q n z x P n dxdz -=-+. 例4 求方程2)(ln y x a xy dx dy -+的通解. 解 以y 2除方程的两端, 得x a y xdx dy y ln 112=+--, 即 x a y x dx y d ln 1)(11=+---, 令z =y -1, 则上述方程成为x a z xdx dz ln 1-=-. 这是一个线性方程, 它的通解为 ])(l n 2[2x aC x z -=.以y -1代z , 得所求方程的通解为1])(l n 2[2=-x a C yx .经过变量代换, 某些方程可以化为变量可分离的方程, 或化为已知其求解方法的方程. 例5 解方程yx dx dy +=1. 解 若把所给方程变形为y x dydx +=, 即为一阶线性方程, 则按一阶线性方程的解法可求得通解. 但这里用变量代换来解所给方程. 令x +y =u , 则原方程化为u dx du 11=-, 即uu dx du 1+=.分离变量, 得dx du u u =+1, 两端积分得u -ln|u +1|=x -ln|C |.以u =x +y 代入上式, 得y -ln|x +y +1|=-ln|C |, 或x =Ce y -y -1.§12. 5 全微分方程全微分方程:一个一阶微分方程写成P (x , y )dx +Q (x , y )dy =0形式后, 如果它的左端恰好是某一个函数u =u (x , y )的全微分:du (x , y )=P (x , y )dx +Q (x , y )dy ,那么方程P (x , y )dx +Q (x , y )dy =0就叫做全微分方程. 这里),(y x P x u =∂∂, ),(y x Q yu =∂∂, 而方程可写为du (x , y )=0.全微分方程的判定:若P (x , y )、Q (x , y )在单连通域G 内具有一阶连续偏导数, 且xQ y P ∂∂=∂∂, 则方程P (x , y )dx +Q (x , y )dy =0是全微分方程,全微分方程的通解:若方程P (x , y )dx +Q (x , y )dy =0是全微分方程, 且du (x , y )=P (x , y )dx +Q (x , y )dy则 u (x , y )=C ,即 )),(( ),(),(00000G y x C dx y x Q dx y x P yy x x ∈=+⎰⎰.是方程P (x , y )dx +Q (x , y )dy =0的通解例1 求解(5x 4+3xy 2-y 3)dx +(3x 2y -3xy 2+y 2 )dy =0.解 这里xQ y xy y P ∂∂=-=∂∂236, 所以这是全微分方程. 取(x 0, y 0)=(0, 0), 有 ⎰⎰+-+=y x dy y dx y xy x y x u 020324)35(),( 332253123y xy y x x +-+=.于是, 方程的通解为C y xy y x x =+-+332253123.积分因子:若方程P (x , y )dx +Q (x , y )dy =0不是全微分方程, 但存在一函数μ=μ(x , y ) (μ(x , y )≠0), 使方程μ(x , y )P (x , y )dx +μ(x , y )Q (x , y )dy =0是全微分方程, 则函数μ(x , y )叫做方程P (x , y )dx +Q (x , y )dy =0的积分因子.例2 通过观察求方程的积分因子并求其通解:(1)ydx -xdy =0;(2)(1+xy )ydx +(1-xy )xdy =0.解 (1)方程ydx -xdy =0不是全微分方程.因为2)(y x d y y d x y xd -=, 所以21y 是方程ydx -xdy =0的积分因子, 于是 02=-y xdy ydx 是全微分方程, 所给方程的通解为C y x =. (2)方程(1+xy )ydx +(1-xy )xdy =0不是全微分方程.将方程的各项重新合并, 得(ydx +xdy )+xy (ydx -xdy )=0,再把它改写成0)()(22=-+y dy x dx y x xy d , 这时容易看出2)(1xy 为积分因子, 乘以该积分因子后, 方程就变为 0)()(2=-+ydy x dx xy xy d , 积分得通解C yx xy ln ||ln 1=+-, 即xy Ce y x 1=. 我们也可用积分因子的方法来解一阶线性方程y '+P (x )y =Q (x ).可以验证⎰=dx x P e x )()(μ是一阶线性方程y '+P (x )y =Q (x )的一个积分因子. 在一阶线性方程的两边乘以⎰=dx x P e x )()(μ得 ⎰=⎰+⎰'dx x P dx x P dx x P e x Q e x yP e y )()()()()(, 即 ⎰='⎰+⎰'dx x P dx x P dx x P e x Q e y e y )()()()(][, 亦即 ⎰='⎰dx x P dx x P e x Q ye )()()(][.两边积分, 便得通解C dx e x Q ye dx x P dx x P +⎰=⎰⎰)()()(,或 ])([)()(C dx e x Q e y dx x P dx x P +⎰⎰=⎰-. 例3用积分因子求x xy dxdy 42=+的通解. 解 方程的积分因子为22)(x x d x e e x =⎰=μ.方程两边乘以2x e 得22242x x x xe y xe e y =+', 即224)(x x xe y e =',于是 C e dx xe y e x x x +==⎰22224. 因此原方程的通解为2224x x Ce dx xe y -+==⎰. §12. 6 可降阶的高阶微分方程一、y (n )=f (x )型的微分方程解法: 积分n 次1)1()(C dx x f y n +=⎰-, 21)2(])([C dx C dx x f y n ++=⎰⎰-, ⋅ ⋅ ⋅.例1 求微分方程y '''=e 2x -cos x 的通解.解 对所给方程接连积分三次, 得12s i n 21C x e y x +-='',212c o s 41C x C x e y x +++=',3221221s i n 81C x C x C x e y x ++++=,这就是所给方程的通解.或 122sin 21C x e y x +-='',2122c o s 41C x C x e y x +++=',32212s i n 81C x C x C x e y x ++++=,这就是所给方程的通解.例2 质量为m 的质点受力F 的作用沿Ox 轴作直线运动. 设力F 仅是时间t 的函数:F =F (t ). 在开始时刻t =0时F (0)=F 0, 随着时间t 的增大, 此力F 均匀地减小, 直到t =T 时, F (T )=0. 如果开始时质点位于原点, 且初速度为零, 求这质点的运动规律.解 设x =x (t )表示在时刻t 时质点的位置, 根据牛顿第二定律, 质点运动的微分方程为)(22t F dtx d m =. 由题设, 力F (t )随t 增大而均匀地减小, 且t =0时, F (0)=F 0, 所以F (t )=F 0-kt ; 又当t =T 时, F (T )=0, 从而)1()(0Tt F t F -=.于是质点运动的微分方程又写为)1(022T t mF dt x d -=, 其初始条件为0|0==t x , 0|0==t dt dx . 把微分方程两边积分, 得120)2(C Tt t m F dt dx +-=. 再积分一次, 得21320)621(C t C Tt t m F x ++-=. 由初始条件x |t =0=0,0|0==t dt dx , 得C 1=C 2=0.于是所求质点的运动规律为 )621(320Tt t m F x -=, 0≤t ≤T . 解 设x =x (t )表示在时刻t 时质点的位置,根据牛顿第二定律, 质点运动的微分方程为mx ''=F (t ).由题设, F (t )是线性函数, 且过点(0, F 0)和(T , 0),故 1)(0=+T t F t F , 即)1()(0Tt F t F -=. 于是质点运动的微分方程又写为)1(0Tt m F x -=''. 其初始条件为x |t =0=0, x '|t =0=0.把微分方程两边积分, 得120)2(C Tt t m F x +-=', 再积分一次, 得2320)621(C Tt t m F x +-=, 由初始条件x |t =0=0, x '|t =0=0,得C 1=C 2=0.于是所求质点的运动规律为)621(320Tt t m F x -=, 0≤t ≤T . 二、y ''= f (x , y ')型的微分方程解法:设y '=p 则方程化为p '=f (x , p ).设p '=f (x , p )的通解为p =ϕ(x ,C 1), 则),(1C x dxdy ϕ=. 原方程的通解为21),(C dx C x y +=⎰ϕ.例3 求微分方程()2xy''y'x 12=+满足初始条件 y |x =0=1, y '|x =0=3的特解.解 所给方程是y ''=f (x , y ')型的. 设y '=p , 代入方程并分离变量后, 有dx x x p dp 212+=. 两边积分, 得ln|p |=ln(1+x 2)+C ,即 p =y '=C 1(1+x 2) (C 1=±e C ).由条件y '|x =0=3, 得C 1=3,所以 y '=3(1+x 2).两边再积分, 得 y =x 3+3x +C 2.又由条件y |x =0=1, 得C 2=1,于是所求的特解为y =x 3+3x +1.例4 设有一均匀、柔软的绳索, 两端固定, 绳索仅受重力的作用而下垂. 试问该绳索在平衡状态时是怎样的曲线?三、y ''=f (y , y ')型的微分方程解法: 设y '=p ,有dydp p dx dy dy dp dx dp y =⋅==''. 原方程化为 ),(p y f dydp p=. 设方程),(p y f dy dp p =的通解为y '=p =ϕ(y , C 1), 则原方程的通解为 21),(C x C y dy +=⎰ϕ.例5 求微分yy ''-y '2=0的通解. 解 设y '=p , 则dy dp py ='', 代入方程, 得02=-p dydp yp . 在y ≠0、p ≠0时, 约去p 并分离变量, 得ydy p dp =. 两边积分得ln|p |=ln|y |+ln c ,即 p =Cy 或y '=Cy (C =±c ).再分离变量并两边积分, 便得原方程的通解为ln|y |=Cx +ln c 1,或 y =C 1e Cx (C 1=±c 1).例6 一个离地面很高的物体,受地球引力的作用由静止开始落向地面. 求它落到地面时的速度和所需的时间(不计空气阻力).§12. 7 高阶线性微分方程一、二阶线性微分方程举例例1 设有一个弹簧, 上端固定, 下端挂一个质量为m 的物体. 取x 轴铅直向下, 并取物体的平衡位置为坐标原点.给物体一个初始速度v 0≠0后, 物体在平衡位置附近作上下振动. 在振动过程中, 物体的位置x 是t 的函数: x =x (t ).设弹簧的弹性系数为c , 则恢复力f =-cx .又设物体在运动过程中受到的阻力的大小与速度成正比, 比例系数为μ, 则dtdx R μ-, 由牛顿第二定律得dt dx cx dtx d m μ--=22. 移项, 并记mn μ=2, m c k =2, 则上式化为 02222=++x k dt dx n dt x d , 这就是在有阻尼的情况下, 物体自由振动的微分方程.如果振动物体还受到铅直扰力F =H sin pt的作用, 则有pt h x k dt dx n dt x d sin 2222=++, 其中mH h =. 这就是强迫振动的微分方程. 例2 设有一个由电阻R 、自感L 、电容C 和电源E 串联组成的电路, 其中R 、L 、及C 为常数, 电源电动势是时间t 的函数: E =E m sin ωt , 这里E m 及ω也是常数.设电路中的电流为i (t ), 电容器极板上的电量为q (t ), 两极板间的电压为u c , 自感电动势为E L . 由电学知道dt dq i =, Cq u c =, dt di L E L -=, 根据回路电压定律, 得0=---Ri Cq dt di LE , 即 t E u dt du RC dt u d LC m c c c ωsin 22=++, 或写成t LC E u dt du dt u d m c c c ωωβsin 22022=++,其中L R 2=β, LC10=ω. 这就是串联电路的振荡方程. 如果电容器经充电后撤去外电源(E =0), 则上述成为022022=++c c c u dt du dtu d ωβ. 二阶线性微分方程: 二阶线性微分方程的一般形式为y ''+P (x )y '+Q (x )y =f (x ),若方程右端f (x )≡0时, 方程称为齐次的, 否则称为非齐次的.二、线性微分方程的解的结构先讨论二阶齐次线性方程y ''+P (x )y '+Q (x )y =0, 即0)()(22=++y x Q dx dy x P dxy d . 定理1 如果函数y 1(x )与y 2(x )是方程y ''+P (x )y '+Q (x )y =0.的两个解, 那么y =C 1y 1(x )+C 2y 2(x )也是方程的解, 其中C 1、C 2是任意常数.齐次线性方程的这个性质表明它的解符合叠加原理.证明 [C 1y 1+C 2y 2]'=C 1 y 1'+C 2 y 2',[C 1y 1+C 2y 2]''=C 1 y 1''+C 2 y 2''.因为y 1与y 2是方程y ''+P (x )y '+Q (x )y =0, 所以有y 1''+P (x )y 1'+Q (x )y 1=0及y 2''+P (x )y 2'+Q (x )y 2=0,从而 [C 1y 1+C 2y 2]''+P (x )[ C 1y 1+C 2y 2]'+Q (x )[ C 1y 1+C 2y 2]=C 1[y 1''+P (x )y 1'+Q (x )y 1]+C 2[y 2''+P (x )y 2'+Q (x )y 2]=0+0=0.这就证明了y =C 1y 1(x )+C 2y 2(x )也是方程y ''+P (x )y '+Q (x )y =0的解函数的线性相关与线性无关:设y 1(x ), y 2(x ), ⋅ ⋅ ⋅ , y n (x )为定义在区间I 上的n 个函数. 如果存在n 个不全为零的常数k 1, k 2, ⋅ ⋅ ⋅ , k n , 使得当x ∈I 时有恒等式k 1y 1(x )+k 2y 2(x )+ ⋅ ⋅ ⋅ + k n y n (x )≡0成立, 那么称这n 个函数在区间I 上线性相关; 否则称为线性无关.判别两个函数线性相关性的方法:对于两个函数,它们线性相关与否,只要看它们的比是否为常数,如果比为常数,那么它们就线性相关,否则就线性无关.例如, 1, cos2x, sin2x在整个数轴上是线性相关的.函数1,x,x2在任何区间(a, b)内是线性无关的.定理2 如果如果函数y1(x)与y2(x)是方程y''+P(x)y'+Q(x)y=0的两个线性无关的解,那么y=C1y1(x)+C2y2(x) (C1、C2是任意常数)是方程的通解.例3 验证y1=cos x与y2=sin x是方程y''+y=0的线性无关解,并写出其通解.解因为y1''+y1=-cos x+cos x=0,y2''+y2=-sin x+sin x=0,所以y1=cos x与y2=sin x都是方程的解.因为对于任意两个常数k1、k2,要使k1cos x+k2sin x≡0,只有k1=k2=0,所以cos x与sin x在(-∞, +∞)内是线性无关的.因此y1=cos x与y2=sin x是方程y''+y=0的线性无关解.方程的通解为y=C1cos x+C2sin x.例4 验证y1=x与y2=e x是方程(x-1)y''-xy'+y=0的线性无关解,并写出其通解.解因为(x-1)y1''-xy1'+y1=0-x+x=0,(x-1)y2''-xy2'+y2=(x-1)e x-xe x+e x=0,所以y1=x与y2=e x都是方程的解,因为比值e x/x不恒为常数,所以y1=x与y2=e x在(-∞, +∞)内是线性无关的.因此y1=x与y2=e x是方程(x-1)y''-xy'+y=0的线性无关解.方程的通解为y=C1x+C2e x.推论如果y1(x),y2(x),⋅⋅⋅,y n(x)是方程y(n)+a1(x)y(n-1)+⋅⋅⋅+a n-1(x)y'+ a n(x)y=0的n个线性无关的解,那么,此方程的通解为y=C1y1(x)+C2y2(x)+⋅⋅⋅+ C n y n(x),其中C1,C2,⋅⋅⋅,C n为任意常数.二阶非齐次线性方程解的结构:我们把方程y''+P(x)y'+Q(x)y=0叫做与非齐次方程y''+P(x)y'+Q(x)y=f(x)对应的齐次方程.定理3 设y*(x)是二阶非齐次线性方程y''+P(x)y'+Q(x)y=f(x)的一个特解,Y(x)是对应的齐次方程的通解,那么y=Y(x)+y*(x)是二阶非齐次线性微分方程的通解.证明提示: [Y(x)+y*(x)]''+P(x)[ Y(x)+y*(x)]'+Q(x)[ Y(x)+y*(x)]=[Y ''+P(x)Y '+Q(x)Y ]+[ y* ''+P(x)y* '+Q(x)y*]=0+ f(x)= f(x).例如,Y=C1cos x+C2sin x是齐次方程y''+y=0的通解,y*=x2-2是y''+y=x2的一个特解,因此y=C1cos x+C2sin x+x2-2是方程y''+y=x2的通解.定理4 设非齐次线性微分方程y''+P(x)y'+Q(x)y=f(x)的右端f(x)几个函数之和,如y''+P(x)y'+Q(x)y=f1(x)+f2(x),而y1*(x)与y2*(x)分别是方程y''+P(x)y'+Q(x)y=f1(x)与y''+P(x)y'+Q(x)y=f2(x)的特解,那么y1*(x)+y2*(x)就是原方程的特解.证明提示:[y1+y2*]''+P(x)[ y1*+y2*]'+Q(x)[ y1*+y2*]=[ y1*''+P(x) y1*'+Q(x) y1*]+[ y2*''+P(x) y2*'+Q(x) y2*]=f 1(x )+f 2(x ).§12. 8 二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程:方程 y ''+py '+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ''+py '+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2422,1q p p r -±+-=求出. 特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时,函数x r e y 11=、x r e y 22=是方程的两个线性无关的解.这是因为,函数x r e y 11=、x r e y 22=是方程的解, 又x r r xr x r e e e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时,函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r x r x r x r x r q x e e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+''0)()2(121111=++++=q pr r xe p r e x r x r ,所以xr xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=α±i β时,函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解.函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解.函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α-i β)x =e αx (cos βx -i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y ix e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ''+py '+qy =0的通解的步骤为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.例1 求微分方程y ''-2y '-3y =0的通解.。
常微分方程的常见解法
# 定义网格密度
arrows=LINE,
# 定义线段类型
axes=NORMAL);
# 定义坐标系类型
在MATLAB的向量场命令为 quiver(x,y,px,py)
回车后Maple就在1 1 的网格点上画出了向量场
44
的图形,并给出了过点(-2, 2) (-2 ,1) (-2,2) 的三
条积分曲线,见下图
M (x,y)co x s2xye , y
N (x,y)co x s2xye x
M(x,y)N(x,y)
y
x
所以方程为全微分方程。
由公式F (x ,y ) 0M (s ,y )d s 0N (0 ,s )d s
x(yc o ss 2 se y)d sy2 d s
0
0
ysinxx2ey2y
或
x
y
F (x ,y )x 0M (s ,y ) d s y 0N (x 0 ,s ) d
s
例:验证方程
( y c o s x 2 x e y ) d x ( s i n x x 2 e y 2 ) d y 0
是全微分方程,并求它的通解。 解:由于 M (x ,y ) y c o sx 2 x e yN (x ,y ) s in x x 2 e y 2
dx
令 zy1n,则 dz(1n)yndy
dx
dx
d z (1 n )P (x )z (1 n )Q (x )
d x
求出此方程通解后, 换回原变量即得伯努利方程的通解。
例 湖泊的污染
设一个化工厂每立方米的废水中含有3.08kg盐酸, 这些废水流入一个湖泊中,废水流入的速率20 立方米每小时. 开始湖中有水400000立方米. 河水 中流入不含盐酸的水是1000立方米每小时, 湖泊 中混合均匀的水的流出的速率是1000立方米每小 时,求该厂排污1年时, 湖泊水中盐酸的含量。 解: 设t时刻湖泊中所含盐酸的数量为 x ( t )
微分方程的数值解法
微分方程的数值解法微分方程是描述自然界中众多现象和规律的重要数学工具。
然而,许多微分方程是很难或者无法直接求解的,因此需要使用数值解法来近似求解。
本文将介绍几种常见的微分方程数值解法。
1. 欧拉方法欧拉方法是最简单的数值解法之一。
它将微分方程转化为差分方程,通过计算离散点上的导数来逼近原方程的解。
欧拉方法的基本思想是利用当前点的导数值来估计下一个点的函数值。
具体步骤如下:首先,将自变量区间等分为一系列的小区间。
然后,根据微分方程的初始条件,在起始点确定初始函数值。
接下来,根据导数的定义,计算每个小区间上函数值的斜率。
最后,根据初始函数值和斜率,递推计算得到每个小区间上的函数值。
2. 龙格-库塔方法龙格-库塔方法是一种常用的高阶精度数值解法。
它通过进行多次逼近和修正来提高近似解的准确性。
相比于欧拉方法,龙格-库塔方法在同样的步长下可以获得更精确的解。
具体步骤如下:首先,确定在每个小区间上的步长。
然后,根据微分方程的初始条件,在起始点确定初始函数值。
接下来,根据当前点的导数值,使用权重系数计算多个中间点的函数值。
最后,根据所有中间点的函数值,计算出当前点的函数值。
3. 改进欧拉方法(改进的欧拉-克罗默法)改进欧拉方法是一种中阶精度数值解法,介于欧拉方法和龙格-库塔方法之间。
它通过使用两公式递推来提高精度,并减少计算量。
改进欧拉方法相对于欧拉方法而言,增加了一个估计项,从而减小了局部截断误差。
具体步骤如下:首先,确定在每个小区间上的步长。
然后,根据微分方程的初始条件,在起始点确定初始函数值。
接下来,利用欧拉方法计算出中间点的函数值。
最后,利用中间点的函数值和斜率,计算出当前点的函数值。
总结:微分方程的数值解法为我们研究和解决实际问题提供了有力的工具。
本文介绍了欧拉方法、龙格-库塔方法和改进欧拉方法这几种常见的数值解法。
选择合适的数值解法取决于微分方程的性质以及对解的精确性要求。
在实际应用中,我们应该根据具体情况选择最合适的数值解法,并注意控制步长以尽可能减小误差。
常微分方程常见形式及解法
常微分方程常见形式及解法在数学的广袤领域中,常微分方程是一个极其重要的分支,它在物理学、工程学、经济学等众多领域都有着广泛的应用。
简单来说,常微分方程就是含有一个自变量和未知函数及其导数的方程。
接下来,让我们一起深入探讨常微分方程的常见形式以及相应的解法。
一、常微分方程的常见形式1、一阶常微分方程可分离变量方程:形如$dy/dx = f(x)g(y)$的方程,通过将变量分离,将其化为$\frac{dy}{g(y)}=f(x)dx$,然后两边分别积分求解。
齐次方程:形如$dy/dx = F(y/x)$的方程,通过令$u = y/x$,将其转化为可分离变量的方程进行求解。
一阶线性方程:形如$dy/dx + P(x)y = Q(x)$的方程,使用积分因子法求解。
2、二阶常微分方程二阶线性常微分方程:形如$y''+ p(x)y' + q(x)y = f(x)$的方程。
当$f(x) = 0$时,称为二阶线性齐次方程;当$f(x) ≠ 0$时,称为二阶线性非齐次方程。
常系数线性方程:当$p(x)$和$q(x)$都是常数时,即$y''+ py'+ qy = f(x)$,这种方程的解法相对较为固定。
二、常微分方程的解法1、变量分离法这是求解一阶常微分方程的一种基本方法。
对于可分离变量的方程,我们将变量分别放在等式的两边,然后对两边进行积分。
例如,对于方程$dy/dx = x/y$,可以变形为$ydy = xdx$,然后积分得到$\frac{1}{2}y^2 =\frac{1}{2}x^2 + C$,从而解得$y =\pm \sqrt{x^2 +2C}$。
2、齐次方程的解法对于齐次方程$dy/dx = F(y/x)$,令$u = y/x$,则$y = ux$,$dy/dx = u + x(du/dx)$。
原方程可化为$u + x(du/dx) = F(u)$,这就变成了一个可分离变量的方程,从而可以求解。
微分方程的基本解法
微分方程的基本解法及其应用微分方程是数学学科中的一个重要分支,主要研究函数及其导数之间的关系。
通过微分方程,我们可以描述许多自然现象的变化规律,如物体的运动、流体的流动、电路的分析等。
因此,掌握微分方程的解法对于解决实际问题具有重要意义。
一、微分方程的分类微分方程按照其含有的未知函数的最高阶导数的次数可以分为线性微分方程和非线性微分方程。
线性微分方程中的未知函数及其导数的次数都是一次,而非线性微分方程中至少有一个未知函数或其导数的次数是二次或更高。
二、微分方程的基本解法1. 分离变量法分离变量法是求解一阶线性微分方程的一种常用方法。
其基本思想是通过将方程中的未知函数和其导数分离到方程的两边,然后对方程进行积分,从而求出未知函数。
这种方法的优点是步骤简单,易于操作。
2. 变量代换法对于某些非线性微分方程,我们可以通过变量代换将其转化为线性微分方程,从而简化求解过程。
变量代换法的关键在于选择合适的代换变量,使得原方程在新的变量下呈现出线性关系。
3. 常数变易法常数变易法是一种求解一阶非齐次线性微分方程的方法。
其基本思想是将非齐次项看作一个已知的函数,然后将原方程转化为一个关于未知函数的线性微分方程。
这种方法的关键在于利用线性微分方程的叠加原理,将非齐次项的影响分离出来。
4. 积分因子法积分因子法是一种求解一阶线性微分方程的方法,特别适用于当方程中的系数不是常数而是关于x的函数时的情况。
其基本思想是通过引入一个积分因子,使得原方程的系数变为常数,从而简化求解过程。
积分因子的选择依赖于原方程的系数。
5. 特征线法(对于一阶偏微分方程)特征线法是一种求解一阶偏微分方程的方法。
它基于物理直觉,将偏微分方程视为描述某种物理过程的数学模型。
通过找到这些过程的“特征线”,即满足方程的一组曲线,我们可以简化问题并找到解。
6.幂级数法(对于高阶微分方程)幂级数法是一种求解高阶微分方程的方法,特别适用于当方程的解在某一点附近可以表示为一个幂级数时的情况。
§2.3 微分方程式的经典解法
d2 dt 2
y(t) 6 d dt
y(t) 5y(t)
et
y(0) y '(0) 0
解: 齐次方程为
d2
d
dt 2
y(t) 6 dt
y(t) 5y(t)
0
特征方程:
2 6 5 0
特征根:
1 5,2 1
该方程的齐次解为: yh (t) C1e5t C2et
C1eatcosbt C2teatcosbt Ckt k1eatcosbt D1eatsinbt D2teatsinbt Dkt k1eatsinbt
信号与系统
线性时不变系统经典求解
激励函数e(t)
响应函数 r(t) 的特解
E
B
tp
B1t p B2t p1 L Bpt Bp1
d2y(0+ ) , dt 2
L,
dn-1y(0+ ) dt n -1
信号与系统
线性时不变系统经典求解
齐次解 齐次微分方程
an
dn dt n
y(t) an1
d n-1 dt n1
y(t)
a0 y(t) 0
特征方程
an n
an
n1
1
a1
a0
0
特征根
1, 2 , , n
x(t)
bm1
d m-1 dt m1
x(t) L
b0x(t)
若系统为时不变的,则a,b均为常数,此方程为常系数的 n 阶线性常微分方程。
阶次:方程的阶次由独立的动态元件的个数决定。
信号与系统 线性时不变系统经典求解
微分方程分类及解法
微分方程分类及解法微分方程是数学中重要的一类方程,广泛应用于自然科学、工程、社会科学等领域中的各种问题。
在掌握微分方程的基本概念和解法后,我们可以更好地理解实际问题中的潜在规律和机理。
本文将介绍微分方程的分类及解法。
一、微分方程的分类微分方程可分为常微分方程和偏微分方程两类。
常微分方程是只有一个自变量的函数的微分方程,即只与时间、位置、速度等单一变量有关。
常微分方程按阶次可分为一阶常微分方程和高阶常微分方程两类。
一阶常微分方程的一般形式为:$$\frac{dy}{dx} = f(x,y)$$其中y是自变量x的函数,f(x,y)是给定的函数。
高阶常微分方程可表示为:$$F(x,y,y',y'',...y^{(n)})=0$$其中,y是自变量x的函数,n代表微分方程的阶数,y', y'' ,..., y^{(n)}分别表示y的一阶、二阶、n阶导数。
偏微分方程是包含多个自变量的函数的微分方程,通常是用来描述物理现象中的区域上的行为和变化。
偏微分方程按类型可分为椭圆型偏微分方程、抛物型偏微分方程和双曲型偏微分方程。
椭圆型偏微分方程形式为:$$A\frac{\partial^2u}{\partial x^2}+B\frac{\partial^2u}{\partial x\partial y}+C\frac{\partial^2u}{\partial y^2}=0$$该方程描述的是各方向的扩散速度都一样的过程,比如稳态情况下的热传导方程。
抛物型偏微分方程形式为:$$\frac{\partial u}{\partial t} = a\frac{\partial^2u}{\partialx^2}+b\frac{\partial u}{\partial x}+cu$$该方程描述的是运动物体的一维热流方程、空气粘弹性和海浪向上传播等。
双曲型偏微分方程形式为:$$\frac{\partial^2u}{\partial t^2}=a\frac{\partial^2u}{\partialx^2}+b\frac{\partial u}{\partial x}+cu$$该方程描述的是颤动或波动过程,比如振动问题或波动方程等。
微分方程的基本概念与解法
微分方程的基本概念与解法微分方程是数学中的一个重要分支,旨在描述自然界中的各种变化和变化规律。
在数学和其它领域中,微分方程的表述方式和求解方法应用广泛,是研究数学和自然科学必备的基础知识之一。
本文结合一些例子,介绍微分方程的基本概念、分类和解法。
一、微分方程的定义和表示微分方程简单来说是一个含有未知函数及其导数的方程。
我们假设所要研究的函数是y=f(x),f(x)的n阶导数为y^(n),则微分方程可表示成以下形式:F(x, y, y', y'',..., y^n)=0,其中y'=dy/dx,y''=d^2 y/dx^2,y^n=d^n y/dx^n。
例如,一阶常微分方程dy/dx=f(x),则可表示成F(x, y, y')=y'-f(x)=0。
二、微分方程的分类微分方程可分为常微分方程和偏微分方程。
1、常微分方程常微分方程只涉及一个自变量,例如dy/dx=f(x)或y''+p(x)y'+q(x)y=0。
一些常见的常微分方程类型包括:一阶线性方程:dy/dx+p(x)y=q(x),可用一阶常系数线性微分方程的方法求解;二阶线性齐次方程:y''+p(x)y'+q(x)y=0,可用常系数线性微分方程的方法求解;二阶非齐次方程:y''+p(x)y'+q(x)y=f(x),可用常系数非齐次线性微分方程的方法求解。
2、偏微分方程偏微分方程涉及多个自变量,例如p(x,y)∂u/∂x+q(x,y)∂u/∂y=r(x,y)。
该方程式中,u是自变量x和y的函数,偏导数∂u/∂x和∂u/∂y亦为u的函数。
三、微分方程的解法解微分方程可以使用以下方法:1、分离变量法对于一类形如dy/dx=f(x)g(y)的方程,可以通过将方程中的变量分离并进行积分得到其解,即∫(1/g(y))dy = ∫f(x)dx + C,其中C为常数。
微分方程的一些通解和初值问题的解法
微分方程的一些通解和初值问题的解法微分方程作为数学中一个极其重要的分支,它具有广泛的应用背景,包括自然科学、工程技术等多个领域中都有着广泛的应用。
微分方程的求解则是这门学科中一个很关键的问题,尤其是对于一些实际问题,其初值条件决定了微分方程的具体解,本文将探讨一些微分方程的通解以及初值问题解法。
1. 常微分方程的通解对于一个n阶常微分方程,如果它可以表示为:$$F\Bigg(x,\frac{dy}{dx},\frac{d^2 y}{dx^2},\cdots,\frac{d^ny}{dx^n}\Bigg)=0$$其中$y$是自变量$x$的函数,则这个方程是一个n阶常微分方程。
对于这类方程,可以根据它的阶数以及特点进行分类求解。
(1)一阶常微分方程通解这类方程形式如下:$$\frac{dy}{dx}=f(x,y)$$其中$f(x,y)$是定义在某个区域上的函数。
对于这类方程,我们可以通过分离变量的方式进行求解,即:$$\frac{dy}{f(x,y)}=dx$$两边同时积分得到:$$\int\frac{1}{f(x,y)}dy=\int dx+C$$其中$C$是积分常数,通过这个式子可以求得$y$的通解。
(2)二阶常微分方程通解这类方程形式如下:$$y''+p(x)y'+q(x)y=f(x)$$其特点是含有二阶导数项,可用特征方程进行求解。
将一般形式二阶常微分方程的通解表示为$y=c_1y_1+c_2y_2$,其中$c_1$和$c_2$是常数,$y_1$和$y_2$是方程的解,满足$y_1$和$y_2$的任意线性组合都是方程的解。
如果解$y_1$和$y_2$线性无关,则它们构成了二阶常微分方程的通解。
(3)n阶常微分方程通解通常情况下,n阶常微分方程表示为:$$y^{(n)}+a_{n-1}(x)y^{(n-1)}+\cdots+a_1(x)y'+a_0(x)y=f(x)$$我们可以通过求解$n$次的导数,得到这个方程的通解。
微分方程求解-解微分方程
微分方程求解-解微分方程微分方程求解求解微分方程:简单地说,就是去微分,将方程化成自变量与因变量关系的方程。
近来做毕业设计遇到微分方程问题,搞懂后,特发此文,来帮广大同学,网友。
1.最简单的例子:——————》求微分方程的通解。
dx解方程是可分离变量的,分离变量后得两端积分:得:从而:又因为。
仍是任意常数,可以记作C 。
非齐次线性方程2y 求方程的通解解:非齐次线性方程。
先求对应的齐次方程的通解。
5,,用常数变易法:把C换成u(x),即令则有,dx12,代入原方程式中得两端积分,得。
33再代入式即得所求方程通解。
3法二:假设待求的微分方程是:我们可以直接应用下式得到方程的通解,其中,2,代入积分同样可得方程通解5,3232.微分方程的相关概念:(看完后你会懂得各类微分方程)一阶微分方程:或可分离变量的微分方程:一阶微分方程可以化为的形式,解法:得:称为隐式通解。
,即写成的函数,解法:dxxydydududxduy设,则,,分离变量,积分后将代替u,齐次方程:一阶微分方程可以写成即得齐次方程通解。
一阶线性微分方程:当时,为齐次方程,当时,为非齐次方程,,全微分方程:如果中左端是某函数的全微分方程,即:应该是该全微分方程的通解。
二阶微分方程:时为齐次时为非齐次二阶常系数齐次线性微分方程及其解法:,其中p,q为常数;求解步骤:1、写出特征方程:,其中r2,r的系数及常数项恰好是(*)式中的系数;2、求出式的两个根r1,r23、根据r1,r2的不同情况,按下表写出(*)式的通解:,p,q为常数型,为常数;型3.工程中的解法:四阶定步长Runge-Kutta算法其中h 为计算步长,在实际应用中该步长是一个常数,这样由四阶Runge-Kutta算法可以由当前状态变量Xt 的值求解出下状态变量Xt +1 的值亲们,你们满意吗?一阶微分方程的解一阶微分方程的常数变易法的应用探析The exploration of linear ordinary differential equation of first order with method of leadingvariables作者:刘*专业:数学与应用数学指导老师:杜* *完成时间:2016年9月1号摘要常数变易法是作为求解一阶线性方程的解法给出的。
各种 微分方程的概念及其解法
第九章微分方程第一节基本概念一.解释下列名词术语1.微分方程:含有未知函数的导数(或微分)的方程.注意:(1)微分方程的一般形式:,在这个方程中是自变量,是的未知函数,是对的一阶、二阶、n阶导数;(2)方程中未知函数及自变量的记号可以不出现,如:;但未知函数的导数则必须出现.2.微分方程的阶:微分方程中所含的未知函数的最高阶导数的阶数.如:是一阶是二阶是n阶3.微分方程的解:代入微分方程能使方程成为恒等式的函数.例如:是的解.4.微分方程的通解:n阶微分方程的含有n个独立的任意常数的解.例如:是的通解;但是的解,而非通解.注意:这里要说明一下“两个常数独立”的含义----即对于任意给定的不同的的取值,则应得到不同的解,则称两个常数是互相独立的.之所以不是的通解,就是因为不是互相独立的.比如:取或者都可得到解.5.微分方程的初始条件:用来确定通解中的任意常数的一种定解的条件.一阶微分方程的初始条件通常为二阶微分方程的初始条件通常为例如:已知是的通解,可由初始条件通常为。
初始条件的个数与微分方程的阶数相同。
6.微分方程的特解:通解中所含的所有任意常数都确定后的解。
比如:是的满足初始条件的特解。
7.积分曲线:微分方程的解的图形(特解是一条积分曲线;通解是一组积分曲线)二。
用微分方程求解实际问题中的未知函数的步骤:1.建立微分方程和初始条件(难点);------这通常使一部分同学感到为难,因为它除了需要数学知识之外,还往往要用到力学、物理学、化学、电学、工程技术等方面的知识,甚至还要用到语文的知识。
2.求通解;3.求特解。
我们这一章的重点是:给定一个微分方程,如何求其通解或特解.第二节一阶微分方程一.可分离变量的微分方程求解微分方程有一个特点:就是“对号入座”,什么样的微分方程,就用什么方法去解决,这几乎成了一个固定的格式.因此,判定所给的方程是什么类型就是首要问题。
这是本章的特点.今天,就给大家介绍一种最简单的一阶微分方程:可分离变量的微分方程.1.引例求解解:因为,所以是是的一个原函数。
如何求解全微分方程
如何求解全微分方程全微分方程作为微积分的重要分支,是解决实际问题的数学工具之一。
全微分方程的求解方法多种多样,其中常见的方法包括分离变量法、常系数线性齐次微分方程的解法以及特殊形式的全微分方程等。
本文将介绍几种常用的求解全微分方程的方法,并通过具体案例进行说明。
一、分离变量法分离变量法是求解全微分方程最常用的方法之一。
其基本思想是将方程中的变量分开,使得方程两边可以分别只含有一个变量,从而可以对两边进行积分得到方程的解。
示例:求解全微分方程 dy/dx = x/y首先将方程中的变量分离,得到 ydy = xdx然后对方程两边进行积分,得到∫(1/y)dy = ∫xdx对于左边的积分∫(1/y)dy,我们可以求得ln|y| + C1(C1为任意常量)对于右边的积分∫xdx,我们可以求得x^2/2 + C2(C2为任意常量)因此,方程的通解为ln|y| + C1 = x^2/2 + C2二、常系数线性齐次微分方程的解法常系数线性齐次微分方程是指满足形式为dy/dx + p(x)y = 0的方程,其中p(x)为常数。
该类方程的解法相对简单,可以通过分离变量法或代数法等方法求解。
示例:求解全微分方程 dy/dx + 2xy = 0首先令p(x) = 2x,由于p(x)为常数,我们可以得到该方程为常系数线性齐次微分方程。
令y = e^(∫p(x)dx),代入方程可得(dy/dx)e^(∫p(x)dx) +p(x)e^(∫p(x)dx)y = 0将该式进行简化后可得(dy/dx)e^(x^2) + 2xe^(x^2)y = 0再进一步整理,得dy/dx + 2xy = 0可以看出形式与原方程相同,因此解为y = Ce^(-x^2)(C为任意常数)三、特殊形式的全微分方程的解法有些全微分方程具有特殊的形式,可以通过特殊的方法求解。
示例:求解全微分方程 (y^2 + x^2)dx - ydy = 0观察方程可知,左边是一个恰当微分的形式,因此我们可以通过恰当微分的方法来求解。
微分方程的分类及解法
微分方程的分类及解法微分方程是数学中的一种重要的概念,在科学中有着广泛的应用。
其解法的复杂性和微分方程本身的类型有关。
本文将详细介绍微分方程的分类及解法。
一、微分方程的分类微分方程一般按照方程中出现各种变量的次数和阶数的不同而进行分类。
具体来说,微分方程可以分为以下几类。
1.常微分方程常微分方程是指方程中仅包含一个自变量(通常为时间t)的微分方程,其一般形式为dy/dt = f(y,t)。
常微分方程又可分为一阶常微分方程和高阶常微分方程两类。
2.偏微分方程偏微分方程是指方程中包含多个自变量(如时间t、空间坐标x、y、z等)的微分方程。
偏微分方程的方程式比较复杂,通常只有数学专业的高年级学生才会接触到。
3.线性微分方程当方程的形式满足一次齐次线性的时候,称为线性微分方程。
即方程中出现的未知函数及其导数都是一次的,如y'' + y' + y = 0。
这种方程类型的解法相对较为简单。
4.非线性微分方程一般来说,非线性微分方程解析解比较难求。
出现非线性情况往往会极大的增加微分方程的难度。
例如,y'' + sin y = 0,和y'' +y^2 = 0这两个方程都是非线性方程。
二、微分方程的解法对于不同类型的微分方程,解法也有所不同。
本段将详细介绍几种微分方程的具体解法。
1.分离变量法分离变量法是处理一阶常微分方程最为常用的方法,也可用于一些高阶常微分方程。
当方程可以表示为dy/dt = f(y)的形式时,我们可以将一般方程分离成含有y的部分和含有t的部分,然后将两部分同时积分,在约定的边界条件下得到解。
2.常系数线性微分方程常系数线性微分方程形如y'' + ay' + by = 0,这里的a,b为常数。
这种微分方程的通解可以通过求出特征方程的两个根r1和r2,然后根据r1和r2的情况进行分类求解。
若r1和r2都是实数或都是虚数,则y = c1e^(r1x) + c2e^(r2x)。
第05节 全微分方程
(
)
即
d ( xy ) + xy ( ydx − xdy ) = 0
1
取 µ = 2 2 ,在方程两端乘上 µ 后,得 x y
d ( xy )
( xy )
即
2
ydx − xdy + =0 xy
x =0 y
1 d − + d ln xy
1 x 故原方程通解为: − + ln = C 故原方程通解为: xy y
1 2 ∴ϕ ( y ) = y + C1 2
(不妨设 C1 = 0)
所以,原方程的通解为: 所以,原方程的通解为:
1 3 1 2 x − yx + y = C 3 2
解三: 分项组合凑微分法)原方程可化为: 解三:(分项组合凑微分法)原方程可化为:
(
x 2dx + ydy − ( ydx + xdy ) = 0
dy y =ϕ dx x
c. 一阶线性方程 y′ + P ( x ) y = Q ( x )
y′ + P ( x ) y = Q ( x ) y n 贝努利方程
d. 全微分方程 Pdx + Qdy = 0 且满足
∂P ∂Q = ∂y ∂x
③解法:初等积分法。 解法:初等积分法。 解题分析过程:是否一阶方程 是否可分 解题分析过程:是否一阶方程→是否可分 离变量方程→是否齐次方程 是否齐次方程→是否一阶线性方 离变量方程 是否齐次方程 是否一阶线性方 是否全微分方程→若都不是 程→是否全微分方程 若都不是,找适当的变 是否全微分方程 若都不是, 换或积分因子,化为上述四种类型。 换或积分因子,化为上述四种类型。 我们讨论的一阶微分方程的解法, 我们讨论的一阶微分方程的解法,是针对 方程的类型来展开的, 方程的类型来展开的,所以类型与解法之间存 在着一种对应。只要辨别出方程的类型, 在着一种对应。只要辨别出方程的类型,也就 有了相应的解法。 有了相应的解法。
微分方程求解
求解微分方程 :简单地说,就是去微分(去掉导数),将方程化成自变量与因变量关系的方程(没有导数)。
近来做毕业设计遇到微分方程问题,搞懂后,特发此文,来帮广大同学,网友。
1.最简单的例子:1.1 x dxdy 2= ——————》 C x y +=2 1.2 求微分方程 xy dxdy 2=的通解。
解 方程是可分离变量的,分离变量后得xdx ydy 2= 两端积分 : ,2⎰⎰=xdx y dy得: ,ln 12C x y +=从而 :2112x C C x e e e y ±=±=+。
又因为 1C e ±仍是任意常数,可以记作C2x Ce y =。
1.3 非齐次线性方程求方程25)1(12'+=+-x x y y 的通解. 解:非齐次线性方程。
先求对应的齐次方程的通解。
012=+-x y dx dy , 12+=x dx y dy , 2)1(+=x C y用常数变易法:把C 换成)(x u ,即令2)1(+=x u y (1)则有 )1(2)1('2+++=x u x u dxdy , 代入原方程式中得 21)1('+=x u ,两端积分,得 C x u ++=23)1(32。
再代入(1)式即得所求方程通解])1(32[)1(232C x x y +++=。
法二: 假设待求的微分方程是:)()(x Q y x P dxdy =+ 我们可以直接应用下式))(()()(C dx e x Q e y dx x P dx x P +⎰⎰=⎰- 得到方程的通解,其中,12)(+-=x x P , 25)1()(+=x x Q 代入积分同样可得方程通解 ])1(32[)1(232C x x y +++=,2.微分方程的相关概念:(看完后你会懂得各类微分方程)即得齐次方程通解。
,代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。
微分方程的解法及应用概述
微分方程的解法及应用概述数学与应用数学专业学生刘倩指导教师徐玉梅摘要:用微分方程来刻画许多自然科学、经济科学甚至社会科学领域中的一些规律,这是微分方程应用的重要领域,也是其发展的动力。
微分方程是数学的重要分支,本文讨论微分方程的解法知识、在实际问题中的应用,以及用微分方程知识解决实际问题的方法步骤,并给出具体实例。
关键词:微分方程的应用微分方程的解法The solution to differential equation and overview ofapplicationStudent majoring in mathematics and applied mathematics qian liuyumei xuTutorAbstract: Using differential equation to depict many natural scienee and economic scienee even some laws in the field of social science,This is an important field of differential equations, as well as the development of power. Differential equation is an important branch of mathematics, this paper discusses the soluti on of the differe ntial equati on for the kno wledge and applicati on in the practical problems, and steps using the method of differential equation of knowledge to solve practical problems, and gives con crete examples.Key words: The application of differential equation ; The solution to differential equation ;引言:微分方程是与微积分一起形成发展起来的重要数学分支,已有悠久的历史,早在17-18世纪,牛顿、莱布尼兹、贝努里和拉格朗日等人在研究力学和几何学中就提出了微分方程。
全微分方程
例3 求微分方程
(3xy + y2 )dx + ( x2 + xy)dy = 0的通解.
1 P Q 1 ∫ ∵ ( ) = , ∴ ( x) = e 解 Q y x x
则原方程成为
1 dx x
= x.
( 3 x 2 y + xy 2 )dx + ( x 3 + x 2 y )dy = 0,
( 3 x y + xy )dx + ( x + x y )dy = 0,
y 2 3x 2 3x Q 6x 6x = 4, = 4 y x x y
P Q ∴ = y x
原方程是全微分方程 原方程是全微分方程.
练 习 题
一、判别下列方程中哪些是全微分方程,并求全微分方 判别下列方程中哪些是全微分方程, 程的通解: 程的通解: 1、e y dx + ( xe y 2 y )dy = 0 ; 2、( x 2 + y 2 )dx + xydy = 0 ; 3、(1 + e 2θ )dρ + 2 ρe 2θ dθ = 0 . 二、利用观察法求出下列方程的积分因子, 并求其通 利用观察法求出下列方程的积分因子 , 解: 1、 ydx xdy + y 2 xdx = 0 ; 2、 xdx + ydy = ( x 2 + y 2 )dx ; 3、 3、(1 + xy ) ydx + (1 xy ) xdy = 0 .
用曲线积分法: A 用曲线积分法:
u( x , y ) = ∫0 ( x + x )dx + ∫0 (1 + x )dy ,
2 3
x
y
B 凑微分法: 凑微分法:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这里由于 P Q ,故曲线积分与路径无关。因此 y x
(x,y)
(x, y) P(x, y)dx Q(x, y)dy ( x0 , y0 )
二、全微分方程的解法
(1)x, y)
P(x, y)dx
x0
y0 Q(x0, y)dy
(x,y)
或 (x, y) P(x, y)dx Q(x, y)dy ( x0 , y0 )
m( x, y)P( x, y)dx m( x, y)Q( x, y)dy 0成为全
微分方程.则称m ( x, y)为方程的积分因子.
例1 验证 x 是方程 (2 y 4x2 )dx xdy 0 的积分因子,并求方程的通解。
解: x(2 y 4x2 )dx x2dy 0 是全微分方程。
一、概念 定义: 若有全微分形式
d(x, y) P(x, y)dx Q(x, y)dy
则 P(x, y)dx Q(x, y)dy 0 称为全微分方程。
通解则为 (x, y) C (C为任意常数)。
例1:方程 xdx ydy 0是否为全微分方程?
解:令u(x, y) 1 (x2 y2 ),du(x, y) xdx ydy, 2
x
y
x
由第一个等式,应有 (x, y) P(x, y)dx ( y) x0
代入第二个等式,应有
x P(x, y) dx ( y)
y x0 y
x Q(x, y) dx ( y)
x0 x
x Q(x, y) dx ( y)
x0 x
Q(x, y) Q(x0, y) ( y)
y
因此 ( y) Q(x0, y) ,则 ( y) y0 Q(x0, y)dy C
因此可以取
x
y
(x, y)
P(x, y)dx
x0
y0 Q(x0, y)dy
此时 d(x, y) P(x, y)dx Q(x, y)dy
(两边同除 m,)
Q ln m P ln m P Q
x
y y x
求解不容易 特殊地:
a. 当 m 只与 x 有关时,my 0,
m dm ,
x dx
d ln m 1 (P Q) f ( x)
dx Q y x
m ( x) e f ( x)dx .
方程通解为 x2 y x4 C
二、积分因子的求法
1.公式法:
(mP) (mQ) ,
y
x
m P P m m Q Q m
y y x x
Q m
x
P
m
y
m
P y
Q x
Q 1 m P 1 m P Q m x m y y x
中连续且有连续的一阶偏导数,则 是全微分方程
证明:(1)证明必要性 因为
是全微分方程,
则存在原函数 (x,,y)使得
d(x, y) P(x, y)dx Q(x, y)dy
所以 P(x, y), Q(x, y)
x
y
将以上二式分别对 x, y 求偏导数,得到
2 P , 2 Q xy y yx x
11 1 1 x2 , y2 , x2 y2 , xy
所以方程为全微分方程。 (1) 线积分法:
故通解为
(2) 偏积分法: 假设所求全微分函数为
,则有
代入可得 因此 从而 即
(3) 凑微分法: 由于
根据二元函数微分的经验,原方程可写为 方程的通解为:
例3:验证方程
是全微分方程,并求它的通解。 解: 由于
所以方程为全微分方程。 (1) 线积分法:
b. 当 u 只与 y有关时, m 0,
x
d ln m 1 (Q P ) g( y)
dy P x y
m dm ,
y dy
m( y) e g( y)dy .
2.观察法: 凭观察凑微分得到 m( x, y)
常见的全微分表达式
xdx ydy d( x2 y2 ) 2
(2) 偏积分法
P(x, y), Q(x, y)
x
y
第一个等式对 x 积分 (x, y) P(x, y)dx ( y)
代入第二个等式求 ( y) ,即可得 (x, y)
(3)凑微分法
直接凑微分得 (x, y)
例2:验证方程
是全微分方程,并求它的通解。 解:由于
xdy
x2
ydx
d
(
y x
)
xdy ydx d(ln y)
xy
x
ydx xdy d(xy)
xdy
y2
ydx
d
(
x y
)
xdy x2
ydx y2
d (arctan
y x
)
xdx ydy x2 y2 d(ln
x2 y2)
xdy ydx 可选用的积分因子有
又因为 P(x, y),Q(x, y) 偏导数连续,
所以
2 2 xy yx
,即
P Q y x
(2)证明充分性
设 P Q,求一个二元函数 (x, y)使它满足 y x
d(x, y) P(x, y)dx Q(x, y)dy 这里
即 P(x, y), Q(x, y) (x0, y0 ) R
故通解为
(2) 偏积分法: 假设所求全微分函数为
,则有
所以 从而
即
(3) 凑微分法: 根据二元函数微分的经验,原方程可写为
方程的通解为: 练习:验证方程
是全微分方程,并求它的通解。 方程的通解为:
积分因子法
一、概念 二、积分因子的求法
一、定义: m( x, y) 0 连续可微函数,使方程
所以是全微分方程.
例:求方程ydx xdy 0的通解。
解:因为d( xy) ydx xdy,所以ydx xdy 0为恰当方程, 且通解为xy C.
问题: (1)如何判断全微分方程? (2)如何求解全微分方程? (3)如何转化为全微分方程?
定理1 设函数
和
在一个矩形区域