2020重庆中考数学A卷
2023年重庆市中考数学真题(A卷)(无答案)
重庆市2023年初中学业水平暨高中招生考试数学试题(A卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1. 试题的答案书写在答题卡上,不得在试题卷上直接作答2. 作答前认真阅读答题卡上的注意事项;3. 作图(包括作辅助线)请一律用黑色2B铅笔完成;4. 考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a=++≠)的顶点坐标为24,24b ac ba a⎛⎫-- ⎪⎝⎭,对称轴为2bxa=-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1. 8的相反数是A.-8 B.8 C.18-D.182. 四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是3. 反比例函数4yx=-的图象一定经过的点是A.(1,4)B.(-1,-4)C.(-2,2)D.(2,2)4. 若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是A . 1:2B .1:4C . 1:8D . 1:165. 如图,,AB CD AD AC ⊥∥,若155∠=,则∠2的度数为A .35B .45C .50D .55 6. 估计()2810+的值应在A . 7和8之间B . 8和9之间C . 9和10之间D . 10和11之间 7. 用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是A . 39B . 44C . 49D . 548. 如图,AC 是⊙O 的切线,B 为切点,连接OA ,OC .若30A ∠=,23AB =,3BC =,则OC 的长度是A . 3B . 3C 13D . 69. 如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=。
2023年重庆市中考数学试题(A卷,附答案)
2023年重庆市中考数学试题(A卷,附答案)第一部分选择题1. 已知直线l等于数a和数b的和,若a = 3,b = 5,则l的数值为:A. 2B. 3C. 5D. 82. 一辆汽车从A地出发,按时速60km/h行驶,2小时后到达B地,再按时速40km/h行驶,行驶4小时后到达C地。
则从A地到C地共需多长时间?A. 4小时B. 5小时C. 6小时D. 7小时3. 如果已知2x - 5 = 7,那么x的值为:A. 1B. 3C. 6D. 84. 设正方形边长为x,则它的周长为:A. x²B. 2xC. 4xD. 4x²5. 一辆汽车以每小时100km的速度行驶,行驶8小时后,已经行驶了多少公里?A. 400kmB. 600kmC. 800kmD. 1000km第二部分解答题6. 旅行团一行30人,乘坐大巴车出游。
大巴车每小时消耗30升的柴油,行驶一公里消耗1.5升柴油。
已知旅行团行程共200公里,大巴车的油箱容量为360升。
请问,旅行团在这次旅行中,油箱最少需要加多少次油?答案:4次7. 若正整数b + 7 = 3的解为b = -4,则b²的值为多少?答案:168. 一条狗在一口深井的底部向上看,白天看到日间高度的3倍,晚上看到日间高度的一半。
已知白天看到井口离地面的距离是36米,那么晚上看到井口离地面的距离是多少米?答案:9米9. 家住A地的小明参加一次马拉松比赛,比赛在A地的起点开始,一共持续了3个小时。
小明在比赛的前2小时内已经跑了2/3的比赛路程。
求小明需要用多长时间能够完成整个比赛?答案:1小时10. 若一个正三角形的周长为15cm,它的边长是多少厘米?答案:5厘米。
2020年重庆市中考数学试卷(A卷)含解析印刷版
2020年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,最小的数是()A.﹣3B.0C.1D.22.(4分)下列图形是轴对称图形的是()A.B.C.D.3.(4分)在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A.26×103B.2.6×103C.2.6×104D.0.26×1054.(4分)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.215.(4分)如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A.40°B.50°C.60°D.70°6.(4分)下列计算中,正确的是()A.+=B.2+=2C.×=D.2﹣2=7.(4分)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x8.(4分)如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A.B.2C.4D.29.(4分)如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A.76.9m B.82.1m C.94.8m D.112.6m10.(4分)若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7B.﹣14C.28D.﹣5611.(4分)如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F 到BC的距离为()A.B.C.D.12.(4分)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A.6B.12C.18D.24二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣1)0+|﹣2|=.14.(4分)一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是.15.(4分)现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为.16.(4分)如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为.(结果保留π)17.(4分)A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.18.(4分)火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的,则摆摊的营业额将达到7月份总营业额的,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2+x(x﹣2y);(2)(1﹣)÷.20.(10分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5a745%八年级7.58b c根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.(10分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.22.(10分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y =性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x…﹣5﹣4﹣3﹣2﹣1012345…y=…﹣﹣﹣﹣303…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3.③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大.(3)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式>2x﹣1的解集(保留1位小数,误差不超过0.2).23.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数﹣﹣“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14÷5=2…4,14÷3=4…2,所以14是“差一数”;19÷5=3…4,但19÷3=6…1,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.24.(10分)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售价不变.A,B两个品种全部售出后总收入将在去年的基础上增加a%.求a的值.25.(10分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A (﹣3,﹣4),B(0,﹣1).(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接P A,PB,求△P AB面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD 绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=AD;(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG 与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使P A+PB+PC的值最小.当P A+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.2020年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,最小的数是()A.﹣3B.0C.1D.2【分析】根据正数大于0,0大于负数,正数大于负数,可得答案.【解答】解:∵﹣3<0<1<2,∴这四个数中最小的数是﹣3.故选:A.2.(4分)下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:B、C、D都不是轴对称图形,A是轴对称图形,故选:A.3.(4分)在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A.26×103B.2.6×103C.2.6×104D.0.26×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:26000=2.6×104,故选:C.4.(4分)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.21【分析】根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为1+2+3+4+……+n,据此可得第⑤个图案中黑色三角形的个数.【解答】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.5.(4分)如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A.40°B.50°C.60°D.70°【分析】根据切线的性质和三角形的内角和即可得到结论.【解答】解:∵AB是⊙O的切线,A为切点,∴∠A=90°,∵∠B=20°,∴∠AOB=90°﹣20°=70°,故选:D.6.(4分)下列计算中,正确的是()A.+=B.2+=2C.×=D.2﹣2=【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【解答】解:A.与不是同类二次根式,不能合并,此选项计算错误;B.2与不是同类二次根式,不能合并,此选项计算错误;C.×==,此选项计算正确;D.2与﹣2不是同类二次根式,不能合并,此选项错误;故选:C.7.(4分)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【分析】根据等式的基本性质将方程两边都乘以6可得答案.【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.8.(4分)如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A.B.2C.4D.2【分析】把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算线段DF的长.【解答】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF==2.故选:D.9.(4分)如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A.76.9m B.82.1m C.94.8m D.112.6m【分析】构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE、EC、BE、DF、AF,进而求出AB.【解答】解:如图,由题意得,∠ADF=28°,CD=45,BC=60,在Rt△DEC中,∵山坡CD的坡度i=1:0.75,∴==,设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴x=9,∴EC=3x=27,DE=4x=36=FB,∴BE=BC+EC=60+27=87=DF,在Rt△ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.10.(4分)若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7B.﹣14C.28D.﹣56【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【解答】解:不等式组整理得:,由解集为x≤a,得到a≤7,分式方程去分母得:y﹣a+3y﹣4=y﹣2,即3y﹣2=a,解得:y=,由y为正整数解,且y≠2得到a=1,7,1×7=7,故选:A.11.(4分)如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F 到BC的距离为()A.B.C.D.【分析】首先求出△ABD的面积.根据三角形的面积公式求出DF,设点F到BD的距离为h,根据•BD•h=•BF•DF,求出BD即可解决问题.【解答】解:∵DG=GE,∴S△ADG=S△AEG=2,∴S△ADE=4,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=4,∠BFD=90°,∴•(AF+DF)•BF=4,∴•(3+DF)•2=4,∴DF=1,∴DB===,设点F到BD的距离为h,则有•BD•h=•BF•DF,∴h=,故选:B.12.(4分)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A.6B.12C.18D.24【分析】如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.证明BD∥AE,推出S△ABE=S△AOE=18,推出S△EOF=S△AOE=9,可得S△FME=S△EOF=3,由此即可解决问题.【解答】解:如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.∵AN∥FM,AF=FE,∴MN=ME,∴FM=AN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM=,∴•ON•AN=•OM•FM,∴ON=OM,∴ON=MN=EM,∴ME=OE,∴S△FME=S△FOE,∵AD平分∠OAE,∴∠OAD=∠EAD,∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=∠DAE,∴AE∥BD,∴S△ABE=S△AOE,∴S△AOE=18,∵AF=EF,∴S△EOF=S△AOE=9,∴S△FME=S△EOF=3,∴S△FOM=S△FOE﹣S△FME=9﹣3=6=,∴k=12.故选:B.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣1)0+|﹣2|=3.【分析】根据零次幂和绝对值的意义,进行计算即可.【解答】解:(π﹣1)0+|﹣2|=1+2=3,故答案为:3.14.(4分)一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是6.【分析】n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【解答】解:设这个多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6.故答案为:6.15.(4分)现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为.【分析】画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=.故答案为.16.(4分)如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为4﹣π.(结果保留π)【分析】根据勾股定理求出AC,得到OA、OC的长,根据正方形的面积公式、扇形面积公式计算,得到答案.【解答】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC==2,∴OA=OC=,∴图中的阴影部分的面积=22﹣×2=4﹣π,故答案为:4﹣π.17.(4分)A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是(4,160).【分析】根据点C与点D的坐标即可得出乙货车的速度,进而得出乙货车从B地到A地所用时间,据此即可得出点E的坐标.【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(40km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到底A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).18.(4分)火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的,则摆摊的营业额将达到7月份总营业额的,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是1:8.【分析】设6月份堂食、外卖、摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,由题意列出方程组,可求a,b的值,即可求解.【解答】解:设6月份堂食、外卖、摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,由题意可得:,解得:,∴7月份外卖还需增加的营业额与7月份总营业额之比=(5b﹣5a):20b=1:8,故答案为:1:8.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2+x(x﹣2y);(2)(1﹣)÷.【分析】(1)根据整式的四则运算的法则进行计算即可;(2)先计算括号内的减法,再计算除法,注意约分和因式分解.【解答】解:(1)(x+y)2+x(x﹣2y),=x2+2xy+y2+x2﹣2xy,=2x2+y2;(2)(1﹣)÷,=(﹣)×,=×,=.20.(10分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5a745%八年级7.58b c根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?【分析】(1)根据题目中的数据和条形统计图中的数据,可以得到a、b、c的值;(2)根据统计表中的数据,可以得到该校七、八年级中哪个年级学生掌握垃极分类知识较好,然后说明理由即可,注意本题答案不唯一,理由只要合理即可;(3)根据题目中的数据和条形统计图中的数据,可以计算出参加此次测试活动成绩合格的学生人数是多少.【解答】解:(1)∵七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,∴a=7,由条形统计图可得,b=(7+8)÷2=7.5,c=(5+2+3)÷20×100%=50%,即a=7,b=7.5,c=50%;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)∵从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有1200×=1080(人),即参加此次测试活动成绩合格的学生有1080人.21.(10分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.【分析】(1)利用三角形内角和定理求出∠EAO,利用角平分线的定义求出∠DAC,再利用平行线的性质解决问题即可.(2)证明△AEO≌△CFO(AAS)可得结论.【解答】(1)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=50°,∴∠EAO=40°,∵CA平分∠DAE,∴∠DAC=∠EAO=40°,∵四边形ABCD是平行四边形,∴AD∥BC,∠ACB=∠DAC=40°,(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.22.(10分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x…﹣5﹣4﹣3﹣2﹣1012345…y=…﹣﹣﹣﹣﹣303…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3.③当x<﹣1或x >1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大.(3)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式>2x﹣1的解集(保留1位小数,误差不超过0.2).【分析】(1)将x=﹣3,3分别代入解析式即可得y的值,再画出函数的图象;(2)结合图象可从函数的增减性及对称性进行判断;(3)根据图象求得即可.【解答】解:(1)补充完整下表为:x (5)4﹣3﹣2﹣1012345…y =…﹣﹣﹣﹣﹣303…画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3,说法正确;③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大,说法正确.(3)由图象可知:不等式>2x﹣1的解集为x<﹣1或﹣0.3<x<1.8.23.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数﹣﹣“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14÷5=2…4,14÷3=4…2,所以14是“差一数”;19÷5=3…4,但19÷3=6…1,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.【分析】(1)根据“差一数”的定义即可求解;(2)根据“差一数”的定义即可求解.【解答】解:(1)49÷5=9…4,但49÷3=16…1,所以49不是“差一数”;74÷5=14…4,74÷3=24…2,所以74是“差一数”.(2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399,其中除以3余数为2的有314,329,344,359,374,389.故大于300且小于400的所有“差一数”有314,329,344,359,374,389.24.(10分)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售价不变.A,B两个品种全部售出后总收入将在去年的基础上增加a%.求a的值.【分析】(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.【解答】解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,,解得:,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+a%),解得:a=10,答:a的值为10.25.(10分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A (﹣3,﹣4),B(0,﹣1).(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接P A,PB,求△P AB面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.。
2020年重庆市中考数学试卷(A卷)(含答案解析)
2020年重庆市中考数学试卷(A卷)副标题题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.下列各数中,最小的数是()A. −3B. 0C. 1D. 22.下列图形是轴对称图形的是()A. B. C. D.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A. 26×103B. 2.6×103C. 2.6×104D. 0.26×1054.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A. 10B. 15C. 18D. 215.如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A. 40°B. 50°C. 60°D. 70°6.下列计算中,正确的是()A. √2+√3=√5B. 2+√2=2√2C. √2×√3=√6D. 2√3−2=√37.解一元一次方程12(x+1)=1−13x时,去分母正确的是()A. 3(x+1)=1−2xB. 2(x+1)=1−3xC. 2(x+1)=6−3xD. 3(x+1)=6−2x8.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A. √5B. 2C. 4D. 2√59.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A. 76.9mB. 82.1mC. 94.8mD. 112.6m10.若关于x的一元一次不等式组{3x−12≤x+3,x≤a的解集为x≤a;且关于y的分式方程y−a y−2+3y−4y−2=1有正整数解,则所有满足条件的整数a的值之积是()A. 7B. −14C. 28D. −5611.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A. √55B. 2√55C. 4√55D. 4√3312.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=kx(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A. 6B. 12C. 18D. 24二、填空题(本大题共6小题,共24.0分)13.计算:(π−1)0+|−2|=______.14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是______.15. 现有四张正面分别标有数字−1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n.则点P(m,n)在第二象限的概率为______.16. 如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为______.(结果保留π) 17. A ,B 两地相距240km ,甲货车从A 地以40km/ℎ的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程y(km)与甲货车出发时间x(ℎ)之间的函数关系如图中的折线CD −DE −EF 所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是______.18. 火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是______. 三、解答题(本大题共8小题,共78.0分) 19. 计算:(1)(x +y)2+x(x −2y);(2)(1−m m+3)÷m 2−9m 2+6m+9.20. 为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占年级平均数众数中位数8分及以上人数所占百分比七年级7.5a745%八年级7.58b c根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=6xx2+1性质及其应用的部分过程,请按要求完成下列各小题.x…−5−4−3−2−1012345…y=6xx2+1…−1513−2417______ −125−303125______24171513…相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=−1时,函数取得最小值−3.③当x<−1或x>1时,y随x的增大而减小;当−1<x<1时,y随x的增大而增大.(3)已知函数y=2x−1的图象如图所示,结合你所画的函数图象,直接写出不等式6xx2+1>2x−1的解集(保留1位小数,误差不超过0.2).23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数--“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14÷5=2…4,14÷3=4…2,所以14是“差一数”;19÷5=3…4,但19÷3=6…1,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.24.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A 的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售价不a%.求a的值.变.A,B两个品种全部售出后总收入将在去年的基础上增加20925.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(−3,−4),B(0,−1).(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.26.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√2AD;2(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.答案和解析1.【答案】A【解析】解:∵−3<0<1<2,∴这四个数中最小的数是−3.故选:A.根据正数大于0,0大于负数,正数大于负数,可得答案.本题考查了有理数比较大小,正数大于0,0大于负数,正数大于负数.2.【答案】A【解析】解:B、C、D都不是轴对称图形,A是轴对称图形,故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念,找出图形的对称轴.3.【答案】C【解析】解:26000=2.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为1+2+3+4+⋯…+n,据此可得第⑤个图案中黑色三角形的个数.本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n个图案中黑色三角形的个数为1+2+3+4+⋯…+n.5.【答案】D【解析】解:∵AB是⊙O的切线,A为切点,∴∠A=90°,∵∠B=20°,∴∠AOB=90°−20°=70°,故选:D.根据切线的性质和三角形的内角和即可得到结论.本题考查了切线的性质,三角形的内角和,熟练掌握切线的性质是解题的关键.6.【答案】C【解析】解:A.√2与√3不是同类二次根式,不能合并,此选项计算错误;B.2与√2不是同类二次根式,不能合并,此选项计算错误;C.√2×√3=√2×3=√6,此选项计算正确;D.2√3与−2不是同类二次根式,不能合并,此选项错误;故选:C.根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.7.【答案】D【解析】解:方程两边都乘以6,得:3(x+1)=6−2x,故选:D.根据等式的基本性质将方程两边都乘以6可得答案.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.8.【答案】D【解析】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2√5.故选:D.把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算线段DF的长.本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.9.【答案】B【解析】解:如图,由题意得,∠ADF=28°,CD=45,BC=60,在Rt△DEC中,∵山坡CD的坡度i=1:0.75,∴DEEC =10.75=43,设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴x=9,∴EC=3x=27,DE=4x=36=FB,∴BE=BC+EC=60+27=87=DF,在Rt△ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE、EC、BE、DF、AF,进而求出AB.本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计算的前提.10.【答案】C【解析】解:不等式组整理得:{x ≤7x ≤a,由解集为x ≤a ,得到a ≤7,分式方程去分母得:y −a +3y −4=y −2,即3y −2=a , 解得:y =a+23,由y 为正整数解,得到a =1,4,7 1×4×7=28, 故选:C .不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a 的值,求出之和即可.此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.【答案】B【解析】解:∵DG =GE , ∴S △ADG =S △AEG =2, ∴S △ADE =4,由翻折可知,△ADB≌△ADE ,BE ⊥AD , ∴S △ABD =S △ADE =4,∠BFD =90°, ∴12⋅(AF +DF)⋅BF =4, ∴12⋅(3+DF)⋅2=4,∴DF =1,∴DB =√BF 2+DF 2=√12+22=√5,设点F 到BD 的距离为h ,则有12⋅BD ⋅ℎ=12⋅BF ⋅DF , ∴ℎ=2√55,故选:B .首先求出△ABD 的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据12⋅BD ⋅ℎ=12⋅BF ⋅DF ,求出BD 即可解决问题.本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题. 12.【答案】B【解析】解:如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.∵AN//FM,AF=FE,∴MN=ME,∴FM=12AN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM=k2,∴12⋅ON⋅AN=12⋅OM⋅FM,∴ON=12OM,∴ON=MN=EM,∴ME=13OE,∴S△FME=13S△FOE,∵AD平分∠OAE,∴∠OAD=∠EAD,∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=∠DAE,∴AE//BD,∴S△ABE=S△AOE,∴S△AOE=18,∵AF=EF,∴S△EOF=12S△AOE=9,∴S△FME=13S△EOF=3,∴S△FOM=S△FOE−S△FME=9−3=6=k2,∴k=12.故选:B.如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.证明BD//AE,推出S△ABE=S△AOE=18,推出S△EOF=12S△AOE=9,可得S△FME=13S△EOF=3,由此即可解决问题.本题考查反比例函数的性质,矩形的性质,平行线的判断和性质,等高模型等知识,解题的关键是证明BD//AE,利用等高模型解决问题,属于中考选择题中的压轴题.13.【答案】3【解析】解:(π−1)0+|−2|=1+2=3,故答案为:3.根据零次幂和绝对值的意义,进行计算即可.本题考查零次幂和绝对值的性质,掌握零次幂和绝对值的性质是正确计算的前提.14.【答案】6【解析】解:设这个多边形的边数为n,依题意,得:(n−2)⋅180°=2×360°,解得n=6.故答案为:6.n边形的内角和可以表示成(n−2)⋅180°,外角和为360°,根据题意列方程求解.本题考查多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.15.【答案】316【解析】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,.所以点P(m,n)在第二象限的概率=316故答案为3.16画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.16.【答案】4−π【解析】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC=√AB2+BC2=2√2,∴OA=OC=√2,∴图中的阴影部分的面积=22−90π×(√2)2×2=4−π,360故答案为:4−π.根据勾股定理求出AC,得到OA、OC的长,根据正方形的面积公式、扇形面积公式计算,得到答案.本题考查的是扇形面积计算、正方形的性质,掌握扇形面积公式是解题的关键.17.【答案】(4,160)【解析】解:根据题意可得,乙货车的速度为:240÷2.4−40=60(40km/ℎ), ∴乙货车从B 地到A 地所用时间为:240÷60=4(小时),当乙货车到底A 地时,甲货车行驶的路程为:40×4=160(千米), ∴点E 的坐标是(4,160). 故答案为:(4,160).根据点C 与点D 的坐标即可得出乙货车的速度,进而得出乙货车从B 地到A 地所用时间,据此即可得出点E 的坐标.本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型. 18.【答案】1:8【解析】解:设6月份堂食、外卖、摆摊三种方式的营业额为3a ,5a ,2a ,设7月份总的增加营业额为5x ,摆摊增加的营业额为2x ,7月份总营业额20b ,摆摊7月份的营业额为7b ,堂食7月份的营业额为8b ,外卖7月份的营业额为5b , 由题意可得:{7b −2a =2x20b −10a =5x ,解得:{a =x6b =x 3,∴7月份外卖还需增加的营业额与7月份总营业额之比=(5b −5a):20b =1:8, 故答案为:1:8.设6月份堂食、外卖、摆摊三种方式的营业额为3a ,5a ,2a ,设7月份总的增加营业额为5x ,摆摊增加的营业额为2x ,7月份总营业额20b ,摆摊7月份的营业额为7b ,堂食7月份的营业额为8b ,外卖7月份的营业额为5b ,由题意列出方程组,可求a ,b 的值,即可求解.本题考查了三元一次方程组的应用,理解题意,找到正确的等量关系是本题的关键. 19.【答案】解:(1)(x +y)2+x(x −2y), =x 2+2xy +y 2+x 2−2xy , =2x 2+y 2;(2)(1−mm+3)÷m 2−9m 2+6m+9, =(m+3m+3−mm+3)×(m+3)2(m+3)(m−3), =3m+3×m+3m−3, =3m−3.【解析】(1)根据整式的四则运算的法则进行计算即可;(2)先计算括号内的减法,再计算除法,注意约分和因式分解.考查整式、分式的四则混合运算,掌握计算法则和因式分解是正确计算的前提.20.【答案】解:(1)∵七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6, ∴a =7,由条形统计图可得,b =(7+8)÷2=7.5, c =(5+2+3)÷20×100%=50%,即a=7,b=7.5,c=50%;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)∵从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有1200×(20−2)+(20−2)20+20=1080(人),即参加此次测试活动成绩合格的学生有1080人.【解析】(1)根据题目中的数据和条形统计图中的数据,可以得到a、b、c的值;(2)根据统计表中的数据,可以得到该校七、八年级中哪个年级学生掌握垃极分类知识较好,然后说明理由即可,注意本题答案不唯一,理由只要合理即可;(3)根据题目中的数据和条形统计图中的数据,可以计算出参加此次测试活动成绩合格的学生人数是多少.本题考查条形统计图、中位数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】(1)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=50°,∴∠EAO=40°,∵CA平分∠DAE,∴∠DAC=∠EAO=40°,∵四边形ABCD是平行四边形,∴AD//BC,∠ACB=∠DAC=40°,(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.【解析】(1)利用三角形内角和定理求出∠EAO,利用角平分线的定义求出∠DAC,再利用平行线的性质解决问题即可.(2)证明△AEO≌△CFO(AAS)可得结论.本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】−959 5【解析】解:(1)补充完整下表为:画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y 轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当x =1时,函数取得最大值3;当x =−1时,函数取得最小值−3,说法正确;③当x <−1或x >1时,y 随x 的增大而减小;当−1<x <1时,y 随x 的增大而增大,说法正确.(3)由图象可知:不等式6xx 2+1>2x −1的解集为x <−1或−0.3<1.8.(1)将x =−3,3分别代入解析式即可得y 的值,再画出函数的图象; (2)结合图象可从函数的增减性及对称性进行判断; (3)根据图象求得即可.本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.23.【答案】解:(1)49÷5=9…4,但49÷3=16…1,所以49不是“差一数”; 74÷5=14…4,74÷3=24…2,所以74是“差一数”.(2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399, 其中除以3余数为2的有314,327,344,359,374,389.故大于300且小于400的所有“差一数”有314,327,344,359,374,389.【解析】(1)根据“差一数”的定义即可求解; (2)根据“差一数”的定义即可求解.考查了因式分解的应用,本题是一个新定义题,关键是根据新定义的特征和仿照样例进行解答,主要考查学生的自学能力.24.【答案】解:(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克; 根据题意得,{y −x =10010×2.4(x +y)=21600,解得:{x =400y =500,答:A 、B 两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+209a%),解得:a =0.1, 答:a 的值为0.1.【解析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.本题考查了一元二次方程的应用,二元一次方程组的应用,正确的理解题意是解题的关键.25.【答案】解:(1)将点A 、B 的坐标代入抛物线表达式得{−4=9−3b =c c =−1,解得{b =4c =−1, 故抛物线的表达式为:y =x 2+4x −1;(2)设直线AB 的表达式为:y =kx +t ,则{−4=−3k +t t =−1,解得{k =1t =−1,故直线AB 的表达式为:y =x −1,过点P 作y 轴的平行线交AB 于点H ,设点P(x,x 2+4x −1),则H(x,x −1),△PAB 面积S =12×PH ×(x B −x A )=12(x −1−x 2−4x +1)×(0+3)=−32x 2−92x , ∵−32<0,故S 有最大值,当x =−32时,S 的最大值为278;(3)抛物线的表达式为:y =x 2+4x −1=(x +2)2−5, 则平移后的抛物线表达式为:y =x 2−5, 联立上述两式并解得:{x =−1y =−4,故点C(−1,−4);设点D(−2,m)、点E(s,t),而点B 、C 的坐标分别为(0,−1)、(−1,−4); ①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D(E)向右平移1个单位向上平移3个单位得到E(D),即−2+1=s 且m +3=t①或−2−1=s 且m −3=t②,当点D 在E 的下方时,则BE =BC ,即s 2+(t +1)2=12+32③,当点D在E的上方时,则BD=BC,即22+(m+1)2=12+32④,联立①③并解得:s=−1,t=2或−4(舍去−4),故点E(−1,3);联立②④并解得:s=1,t=−4±√6,故点E(1,−4+√6)或(1,−4−√6);②当BC为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m+t⑤,此时,BD=BE,即22+(m+1)2=s2+(t+1)2⑥,联立⑤⑥并解得:s=1,t=−3,故点E(1,−3),综上,点E的坐标为:(−1,2)或(1,−4+√6)或(1,−4−√6)或(1,−3).【解析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)△PAB面积S=12×PH×(x B−x A)=12(x−1−x2−4x+1)×(0+3)=−32x2−92x,即可求解;(3)分BC为菱形的边、菱形的的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.26.【答案】证明:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵把AD绕点A逆时针旋转90°,得到AE,∴AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,DE=√2AD,又∵AB=AC,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=45°,∴∠BCE=∠BCA+∠ACE=90°,∵点F是DE的中点,∴CF=12DE=√22AD;(2)AG=√26BC,理由如下:如图2,过点G作GH⊥BC于H,∵BD=2CD,∴设CD=a,则BD=2a,BC=3a,∵∠BAC=90°,AB=AC,∴AB=AC=√2=3√22a,由(1)可知:△BAD≌△CAE,∴BD=CE=2a,∵CF=DF,∴∠FDC=∠FCD,∴tan∠FDC=tan∠FCD,∴CECD =GHCH=2,∴GH=2CH,∵GH⊥BC,∠ABC=45°,∴∠ABC=∠BGH=45°,∴BH=GH,∴BG=√2BH ∵BH+CH=BC=3a,∴CH=a,BH=GH=2a,∴BG=2√2a,∴AG=BG−AB=√22a=√22CD=√26BC;(3)如图3−1,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴PA+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时,如图3−2,连接MC,∵将△BPC绕点B顺时针旋转60°得到△BNM,∴BP=BN,BC=BM,∠PBN=60°=∠CBM,∴△BPN是等边三角形,△CBM是等边三角形,∴∠BPN=∠BNP=60°,BM=CM,∵BM=CM,AB=AC,∴AM垂直平分BC,∵AD⊥BC,∠BPD=60°,∴BD=√3PD,∵AB=AC,∠BAC=90°,AD⊥BC,∴AD=BD,∴√3PD=PD+AP,∴PD=√3+12m,∴BD=√3PD=3+√32m,由(1)可知:CE=BD=3+√32m.【解析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE=45°,可求∠BCE= 90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)过点G作GH⊥BC于H,设CD=a,可得BD=2a,BC=3a,AB=AC=3√22a,由全等三角形的性质可得BD=CE=2a,由锐角三角函数可求GH=2CH,可求CH=a,可求BG的长,即可求AG=√22a=√22CD=√26BC;(3)将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,可得当点A,点P,点N,点M共线时,PA+PB+PC值最小,由旋转的性质可得△BPN是等边三角形,△CBM是等边三角形,可得∠BPN=∠BNP=60°,BM=CM,由直角三角形的性质可求解.本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数等知识,确定点P的位置是本题的关键.。
2020年重庆市中考数学试题A卷(解析版)
重庆市2020年初中学业水平暨高中招生考试数学试题(A卷)一、选择题1.下列各数中,最小的数是()A. -3B. 0C. 1D. 2【答案】A【解析】【分析】有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,绝对值大的反而小.-<<<,【详解】∵3012∴最小的数是-3,故选:A.【点睛】本题考查有理数的大小比较,属于基础应用题,只需熟练掌握有理数的大小比较法则,即可完成.2.下列图形是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( )A. 32610⨯B. 32.610⨯C. 42.610⨯D. 50.2610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】42.62600010⨯=,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21【答案】B【解析】【分析】 根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1+2+3+4+……+n ,据此可得第⑤个图案中黑色三角形的个数.【详解】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B .【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n 个图案中黑色三角形的个数为1+2+3+4+……+n .5.如图,AB 是O 的切线,A 切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A. 40°B. 50°C. 60°D. 70° 【答案】D【解析】【分析】根据切线的性质可得90?OAB ∠=,再根据三角形内角和求出AOB ∠.【详解】∵AB 是O 的切线∴90?OAB ∠=∵20B ∠=︒∴18070AOB OAB B ∠=︒-∠-∠=︒故选D.【点睛】本题考查切线的性质,由切线得到直角是解题的关键.6.下列计算中,正确的是( ) A. 235= B. 2222+= C. 236= D. 2323=【答案】C【解析】【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:A 23B .22不是同类二次根式,不能合并,此选项计算错误;C 23236=⨯=D .32不是同类二次根式,不能合并,此选项错误;故选:C .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.7.解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A. 3(1)12x x +=-B. 2(1)13x x +=-C. 2(1)63x x +=-D. 3(1)62x x +=-【答案】D【解析】【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质. 8.如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )5 B. 2 C. 4 D. 25【答案】D【解析】【分析】 把A 、C 的横纵坐标都乘以2得到D 、F 的坐标,然后利用两点间的距离公式计算线段DF 的长.【详解】解:∵以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为2:1,而A (1,2),C (3,1),∴D (2,4),F (6,2),∴DF =()()222642--+=25,故选:D .【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k .9.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45m CD =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为( )(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈)A. 76.9mB. 82.1mC. 94.8mD. 112.6m【答案】B【解析】【分析】 构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE 、EC 、BE 、DF 、AF ,进而求出AB .【详解】解:如图,由题意得,∠ADF =28°,CD =45,BC =60,在Rt DEC 中,∵山坡CD 的坡度i =1:0.75,∴DE EC =10.75=43, 设DE =4x ,则EC =3x ,由勾股定理可得CD =5x ,又CD =45,即5x =45,∴x =9,∴EC =3x =27,DE =4x =36=FB ,∴BE=BC+EC=60+27=87=DF,在Rt ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.【点睛】本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计算的前提.10.若关于x的一元一次不等式结3132xxx a-⎧≤+⎪⎨⎪≤⎩的解集为x a≤;且关于y的分式方程34122y a yy y--+=--有正整数解,则所有满足条件的整数a的值之积是()A. 7B. -14C. 28D. -56【答案】A【解析】【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【详解】解:解不等式3132xx-≤+,解得x≤7,∴不等式组整理的7 xx a≤⎧⎨≤⎩,由解集为x≤a,得到a≤7,分式方程去分母得:y−a+3y−4=y−2,即3y−2=a,解得:y=+23a,由y为正整数解且y≠2,得到a=1,7,1×7=7,故选:A.【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AED ,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG 的面积为2,则点F 到BC 的距离为( )5 25 45 43 【答案】B【解析】【分析】 首先求出ABD 的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据12•BD •h =12•BF •DF ,求出BD 即可解决问题. 【详解】解:∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4, 由翻折可知,ADB ≌ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°, ∴12•(AF +DF )•BF =4, ∴12•(3+DF )•2=4, ∴DF =1,∴DB 22BF DF +2212+5设点F 到BD 的距离为h , 则12•BD •h =12•BF •DF , ∴h 25, 故选:B .【点睛】本题考查翻折变换,三角形的面积,勾股定理二次根式的运算等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.12.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE △的面积为18,则k 的值为( )A. 6B. 12C. 18D. 24【答案】B【解析】【分析】 先证明OB ∥AE ,得出S △ABE =S △OAE =18,设A 的坐标为(a ,k a ),求出F 点的坐标和E 点的坐标,可得S △OAE =12×3a ×k a=18,求解即可. 【详解】解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE ,∵S △ABE =18,∴S △OAE =18,设A 的坐标为(a ,k a ), ∵AF=EF ,∴F 点的纵坐标为2k a, 代入反比例函数解析式可得F 点的坐标为(2a ,2k a ), ∴E 点的坐标为(3a ,0),S △OAE =12×3a ×k a=18, 解得k=12,故选:B .【点睛】本题考查了反比例函数和几何综合,矩形的性质,平行线的判定,得出S △ABE =S △OAE =18是解题关键.二、填空题13.计算:0(1)|2|π-+-=__________.【答案】3【解析】【分析】根据零指数幂及绝对值计算即可.【详解】0(1)|2|1+2=3π-+-=;故答案为3.【点睛】本题比较简单,考查含零指数幂的简单实数混合运算,熟记公式0(01)x x =≠是关键. 14.若多边形的内角和是外角和的2倍,则该多边形是_____边形.【答案】六【解析】【分析】设这个多边形的边数为n ,根据内角和公式和外角和公式,列出等式求解即可.【详解】设这个多边形的边数为n ,∴()21802360n-⋅︒=⨯︒,解得:6n=,故答案为:六.【点睛】本题考查了多边形的内角和与外角和,是基础知识要熟练掌握内角和公式和外角和公式.15.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.【答案】3 16【解析】【分析】画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=3 16.故答案为:3 16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.16.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为__________.(结果保留π)【答案】4π-【解析】【分析】根据图形可得S 2ABCD S S =-阴影扇形,由正方形的性质可求得扇形的半径,利用扇形面积公式求出扇形的面积,即可求出阴影部分面积. 【详解】由图可知,S 2ABCD S S =-阴影扇形,224ABCD S =⨯=,∵四边形ABCD 是正方形,边长为2, ∴=22AC , ∵点O 是AC 的中点, ∴OA=2, ∴290(2)3602S ππ︒==︒扇形,∴S 2=4-ABCD S S π=-阴影扇形, 故答案为:4π-.【点睛】本题考查了求阴影部分面积,扇形面积公式,正方形的性质,解题的关键是观察图形得出S 2ABCD S S =-阴影扇形.17.A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是__________.【答案】()4,160 【解析】 【分析】先根据CD 段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E 表示的意义,由此即可得出答案.【详解】设乙货车的行驶速度为/akm h由题意可知,图中的点D 表示的是甲、乙货车相遇 点C 的坐标是()0,240,点D 的坐标是()2.4,0∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为40 2.496()km ⨯=,乙货车行驶的距离为24096144()km -=∴144 2.460(/)a km h =÷=∴乙货车从B 地前往A 地所需时间为240604()h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地 则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯= 即点E 的坐标为(4,160) 故答案为:(4,160).【点睛】本题考查了一次函数的实际应用,读懂函数图象是解题关键.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________. 【答案】18【解析】 【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案. 【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k ,5k ,2k ,7月份总增加的营业额为m ,则7月份摆摊增加的营业额为25m ,设7月份外卖还需增加的营业额为x . ∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5, ∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7, ∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a ,5a ,7a ,由题意可知:3385552275k m x a k x am k a ⎧+-=⎪⎪+=⎨⎪⎪+=⎩ , 解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴512857208ax a a a a ==++, 故答案为:18. 【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.三、解答题19.计算:(1)2()(2)x y x x y ++-; (2)2291369m m m m m -⎛⎫-÷ ⎪+++⎝⎭. 【答案】(1)222x y +;(2)33m - 【解析】 【分析】(1)利用完全平方公式和整式乘法展开后合并同类型即可; (2)先把分子分母因式分解,然后按顺序计算即可; 【详解】(1)解:原式22222x xy y x xy =+++-222x y =+(2)解:原式23(3)3(3)(3)m m m m m m +-+=⋅++-23(3)3(3)(3)m m m m +=⋅++- 33m =-【点睛】本题考查整式的运算和分式的混合运算,熟记运算法则是解题的关键.20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息. 七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示: 年级 平均数 众数 中位数 8分及以上人数所占百分比七年级 7.5 a 7 45% 八年级 7.58bc八年级20名学生的测试成绩条形统计图如图:根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?【答案】(1)7a =,7.5b =,50%c =;(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高;(3)估计参加此次测试活动成绩合格的人数有1080人 【解析】 【分析】(1)七年级20名学生的测试成绩的众数找出现次数最多的即可得出a 的值,由条形统计图即可得出八年级抽取的学生的测试成绩的中位数,八年级8分及以上人数除以总人数20人即可得出c 的值; (2)分别比较七年级和八年级的平均数、众数、中位数、8分及以上人数所占百分比即可得出结论; (3)用七八年级的合格总人数除以总人数40人,得到这两个年级测试活动成绩合格的百分比,再乘以1200即可得出答案.【详解】解:(1)七年级20名学生的测试成绩的众数是:7, ∴7a =,由条形统计图可得,八年级抽取的学生的测试成绩的中位数是:787.52+=, ∴7.5b =,八年级8分及以上人数有10人,所占百分比为:50% ∴50%c =,(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高; (3)七年级合格人数:18人, 八年级合格人数:18人,18181200100%108040+⨯⨯=人, 答:估计参加此次测试活动成绩合格的人数有1080人.【点睛】本题考查了平均数,众数,中位数,条形统计图等知识,熟练掌握平均数的求法,众数、中位数的概念是解决本题的关键.21.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠. (1)若50AOE ∠=︒,求ACB ∠的度数; (2)求证:AE CF =.【答案】(1)40ACB ∠=︒;(2)见解析 【解析】 【分析】(1)利用三角形内角和定理求出EAO ∠,利用角平分线的定义求出DAC ∠,再利用平行线的性质解决问题即可.(2)证明()AEO CFO AAS 可得结论.【详解】(1)解:AE BD ⊥,90AEO ∴∠=︒,50AOE , 40EAO,CA 平分DAE ∠,40DACEAO,四边形ABCD 是平行四边形,//AD BC ∴,40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥,90AEOCFO,AOE COF ∠=∠,()AEOCFO AAS ,AE CF ∴=.【点睛】本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握相关的知识点.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题. (1)请把下表补充..完整,并在图中补全..该函数图象;(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y 轴;( )②该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;( )③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;( ) (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).【答案】(1)95-,95;(2)①× ②√ ③√;(3)x <−1或−0.3<x <1.8.【解析】 【分析】(1)代入x=3和x=-3即可求出对应的y 值,再补全函数图象即可; (2)结合函数图象可从增减性及对称性进行判断; (3)根据图象求解即可. 【详解】解:(1)当x=-3时,2618911x y x -==++95=-, 当x=3时,2618911x y x ===++95, 函数图象如下:(2)①由函数图象可得它是中心对称图形,不是轴对称图形; 故答案为:×, ②结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3; 故答案为:√ ,③观察函数图象可得:当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;故答案为:√.(3)1x <-,0.28 1.78(0.280.2 1.780.2)x x -<<-±<<± 26211x x x =-+时,()2(1)2310x x x +--=得11x =-,2 1.8x =≈,30.3x ≈-, 故该不等式的解集为: x <−1或−0.3<x <1.8.【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.【答案】(1)49不是“差一数”, 74是“差一数”,理由见解析;(2)314、329、344、359、374、389 【解析】 【分析】(1)直接根据“差一数”的定义计算即可;(2)根据“差一数”的定义可知被5除余4的数个位数字为4或9;被3除余2的数各位数字之和被3除余2,由此可求得大于300且小于400的所有“差一数”. 【详解】解:(1)∵49594÷=;493161÷=,∴49不是“差一数”, ∵745144÷=;743242÷=, ∴74是“差一数”;(2)∵“差一数”这个数除以5余数为4, ∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399, ∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2,∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.【点睛】此题主要考查了带余数的除法运算,本题用逐步增加条件的方法依此找到满足条件的所有数是解决本题的关键.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A 、B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元.(1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a %,而A 品种的售价保持不变,A 、B 两个品种全部售出后总收人将增加20%9a ,求a 的值. 【答案】(1)A 品种去年平均亩产量是400、B 品种去年平均亩产量是500千克;(2)10. 【解析】 【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,根据题意列出方程组,解方程组即可得到答案; (2)根据题意分别表示A 品种、B 品种今年的收入,利用总收入等于A 品种、B 品种今年的收入之和,列出一元二次方程求解即可得到答案.【详解】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,由题意得1002.410 2.41021600y x x y =+⎧⎨⨯+⨯=⎩, 解得400500x y =⎧⎨=⎩.答:A .B 两个品种去年平均亩产量分别是400、500千克(2)根据题意得:()()()20244001%241%50012%216001%9a a a a ⎛⎫⨯+++⨯+=+⎪⎝⎭. 令a %=m ,则方程化为:()()()20244001241500122160019m m m m ⎛⎫⨯+++⨯+=+⎪⎝⎭. 整理得10m 2-m =0,解得:m 1=0(不合题意,舍去),m 2=0.1 所以a %=0.1,所以a =10,答:a 的值为10.【点睛】本题考查的是二元一次方程组的应用,一元二次方程的应用,掌握列方程或方程组解应用题的方法与步骤是解题的关键.25.如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中()3,4A --,()0,1B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB △面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线()211110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.【答案】(1)241y x x =+-;(2)PAB △面积最大值为278;(3)存在,1234(12)(346)(346),(13)E E E E ---+----,,,,,,【解析】 【分析】(1)将点A 、B 的坐标代入抛物线表达式,即可求解;(2)设AB y kx b =+,求得解析式,过点P 作x 轴得垂线与直线AB 交于点F ,设点()2,41P a a a +-,则(,1)F a a -,1||2PABB A S PF x x ∆=⋅-23327228a ⎛⎫=-++ ⎪⎝⎭,即可求解; (3)分BC 为菱形的边、菱形的的对角线两种情况,分别求解即可. 【详解】解:(1)∵抛物线过(3,4)A --,(0,1)B -∴9341b c c -+=-⎧⎨=-⎩∴41b c =⎧⎨=-⎩ ∴241y x x =+-(2)设AB y kx b =+,将点()3,4A --(0,1)B -代入AB y∴1AB y x =-过点P 作x 轴得垂线与直线AB 交于点F设点()2,41P a a a +-,则(,1)F a a - 由铅垂定理可得1||2PAB B A S PF x x ∆=⋅- ()231412a a a =---+ ()2332a a =-- 23327228a ⎛⎫=-++ ⎪⎝⎭ ∴PAB △面积最大值为278(3)(3)抛物线的表达式为:y =x 2+4x−1=(x +2)2−5,则平移后的抛物线表达式为:y =x 2−5,联立上述两式并解得:14x y -⎧⎨-⎩==,故点C (−1,−4);设点D (−2,m )、点E (s ,t ),而点B 、C 的坐标分别为(0,−1)、(−1,−4);①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即−2+1=s 且m +3=t ①或−2−1=s 且m−3=t ②,当点D 在E 的下方时,则BE =BC ,即s 2+(t +1)2=12+32③,当点D 在E 的上方时,则BD =BC ,即22+(m +1)2=12+32④,联立①③并解得:s =−1,t =2或−4(舍去−4),故点E (−1,2);联立②④并解得:s =-3,t =-4±6,故点E (-3,-46)或(-3,-6);②当BC 为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m +t ⑤,此时,BD =BE ,即22+(m +1)2=s 2+(t +1)2⑥,联立⑤⑥并解得:s =1,t =−3,故点E (1,−3),综上,点E 的坐标为:(−1,2)或(346)--,,或(346)--,或(1,−3). ∴存在,1234(12)(346)(346),(13)E E E E ---+----,,,,,, 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.26.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF .(1)求证:22CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.【答案】(1)证明见解析;(2)32BC =;(3)33CE +=【解析】【分析】 (1)先证△BAD ≌△CAE ,可得∠ABD =∠ACE =45°,可求∠BCE =90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=,推出454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,然后根据现有条件说明在Rt DCB △中,22225DE CD CE CD BD CD =++=,点A ,D ,C ,E 四点共圆,F 为圆心,则CF AF =,在Rt AGC 中,推出222218254AG CG AC CD CD --=,即可得出答案; (3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,设PD 为a , 得出3BD a =,3AD BD a =,得出3a m a +=,解出a ,根据BD CE =即可得出答案.【详解】解:(1)证明如下:∵90BAC DAE ∠=∠=︒,∴BAD CAE ∠=∠,∵AB AC =,AD AE =,∴在ABD △和ACE △中BAD CAE AB AC AD AE ∠=∠⎧⎪=⎨⎪=⎩,∴ABD ACE ∆≅∆,∴45ABD ACE ∠=∠=︒,∴90DCE ACB ACE ∠︒=∠+∠=,在Rt ADE 中,F 为DE 中点(同时AD AE =),45ADE AED ∠=∠=︒,∴AF DE ⊥,即Rt ADF 为等腰直角三角形, ∴22AF DF AD ==,∵CF DF =, ∴22CF AD =; (2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=, ∴454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,在Rt DCB △中,22225DE CD CE CD BD CD =+=+=,∵F 为DE 中点,∴152DE EF DE CD ===, 在四边形ADCE 中,有90CAG DCE ︒∠=∠=,180CZG DCE ︒∠+∠=,∴点A ,D ,C ,E 四点共圆,∵F 为DE 中点,∴F 为圆心,则CF AF =,在Rt AGC 中,∵CF AF =,∴F 为CG 中点,即CG 2CF 5CD ==,∴2222182542AG CG AC CD CD CD =-=-=, 即32BC AG =;(3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,∴60BPD ∠=︒,设PDa , ∴3BD a =,又3AD BD a =,∴3a m a +,=1)m aa=又BD CE∴CE.【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数等知识,灵活运用所学知识是解本题的关键.。
2023年重庆市中考数学试卷(A卷)及答案解析
2023年重庆市中考数学试卷(A卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)8的相反数是()A.﹣8B.8C.D.2.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.3.(4分)反比例函数y=﹣的图象一定经过的点是()A.(1,4)B.(﹣1,﹣4)C.(﹣2,2)D.(2,2)4.(4分)若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.(4分)如图,AB∥CD,AD⊥AC,若∠1=55°,则∠2的度数为()A.35°B.45°C.50°D.55°6.(4分)估计(+)的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.(4分)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.(4分)如图,AC是⊙O的切线,B为切点,连接OA,OC.若∠A=30°,AB=2,BC=3,则OC的长度是()A.3B.C.D.69.(4分)如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于()A.2αB.90°﹣2αC.45°﹣αD.90°﹣α10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:2﹣1+30=.12.(4分)如图,正五边形ABCDE中,连接AC,那么∠BAC的度数为.13.(4分)一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是.14.(4分)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为.16.(4分)如图,⊙O是矩形ABCD的外接圆,若AB=4,AD=3,则图中阴影部分的面积为.(结果保留π)17.(4分)若关于x的一元一次不等式组至少有2个整数解,且关于y的分式方程+=2有非负整数解,则所有满足条件的整数a的值之和是.18.(4分)如果一个四位自然数的各数位上的数字互不相等且均不为0,满足﹣=,那么称这个四位数为“递减数”.例如:四位数4129,∵41﹣12=29,∴4129是“递减数”;又如:四位数5324,∵53﹣32=21≠24,∴5324不是“递减数”.若一个“递减数”为,则这个数为;若一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,则满足条件的数的最大值是.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)a(2﹣a)+(a+1)(a﹣1);(2)÷(x﹣).20.(10分)学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC的垂直平分线交DC于点E,交AB于点F,垂足为点O.(只保留作图痕迹)已知:如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为点O.求证:OE=OF.证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=.∵EF垂直平分AC,∴.又∠EOC=,∴△COE≌△AOF(ASA).∴OE=OF.小虹再进一步研究发现,过平行四边形对角线AC中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线.21.(10分)为了解A、B两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A、B两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x表示,共分为三组:合格60≤x<70,中等70≤x<80,优等x≥80),下面给出了部分信息:A款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82.B款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73.两款智能玩具飞机运行最长时间统计表类别A B平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:(1)上述图表中a=,b=,m=;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?22.(10分)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?23.(10分)如图,△ABC是边长为4的等边三角形,动点E,F分别以每秒1个单位长度的速度同时从点A出发,点E沿折线A→B→C方向运动,点F沿折线A→C→B方向运动,当两者相遇时停止运动.设运动时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E,F相距3个单位长度时t的值.24.(10分)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A﹣D﹣C﹣B;②A﹣E﹣B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E 在点A的正南方,点E在点B的南偏西60°方向.(参考数据:≈1.41,≈1.73)(1)求AD的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2过点(1,3),且交x轴于点A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PD⊥BC于点D,过点P作y 轴的平行线交直线BC于点E,求△PDE周长的最大值及此时点P的坐标;(3)在(2)中△PDE周长取得最大值的条件下,将该抛物线沿射线CB方向平移个单位长度,点M为平移后的抛物线的对称轴上一点.在平面内确定一点N,使得以点A,P,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.26.(10分)在Rt△ABC中,∠ACB=90°,∠B=60°,点D为线段AB上一动点,连接CD.(1)如图1,若AC=9,BD=,求线段AD的长;(2)如图2,以CD为边在CD上方作等边△CDE,点F是DE的中点,连接BF并延长,交CD的延长线于点G.若∠G=∠BCE,求证:GF=BF+BE;(3)在CD取得最小值的条件下,以CD为边在CD右侧作等边△CDE.点M为CD所在直线上一点,将△BEM沿BM所在直线翻折至△ABC所在平面内得到△BNM.连接AN,点P为AN的中点,连接CP,当CP取最大值时,连接BP,将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,请直接写出此时的值.2023年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:8的相反数是﹣8.故选:A.【点评】本题考查相反数,关键是掌握相反数的定义.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,底层是两个小正方形,上层的右边是一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图.解题的关键是理解简单组合体的三视图的定义,明确从正面看得到的图形是主视图.3.【分析】根据k=xy对各选项进行逐一判断即可.【解答】解:∵反比例函数y=﹣,∴k=﹣4,A、∵1×4=4≠﹣4,∴此点不在函数图象上,故本选项不合题意;B、∵﹣1×(﹣4)=4≠﹣4,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×2=﹣4,∴此点在函数图象上,故本选项符合题意;D、∵2×2=4≠﹣4,∴此点不在函数图象上,故本选项不合题意.故选:C.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy为定值是解答此题的关键.4.【分析】根据相似三角形的性质:相似三角形周长的比等于相似比,求解即可.【解答】解:∵两个相似三角形周长的比为1:4,∴这两个三角形对应边的比为1:4,故选:B.【点评】本题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.5.【分析】根据平行线的性质,可以求得∠BAC+∠1=180°,然后根据∠1的度数和AD⊥AC,即可得到∠2的度数.【解答】解:∵AB∥CD,∴∠BAC+∠1=180°,∵∠1=55°,∴∠BAC=125°,∵AD⊥AC,∴∠CAD=90°,∴∠2=∠BAC﹣∠CAD=35°,故选:A.【点评】本题考查平行线的性质、垂线,解答本题的关键是明确题意,利用数形结合的思想解答.6.【分析】化简题干中的式子得到4+2,计算出2<<2.5.利用不等式的性质,得出式子的值所在的范围.【解答】解:原式=4+2.∵2.52=6.25,∴2<<2.5,∴4<2<5,∴8<4+2<9.故选:B.【点评】本题以计算选择为背景考查了无理数的估算,考核了学生对无理数范围确定及不等式的性质的掌握,解题关键是化简式子并确定无理数的范围利用不等式的性质解决问题.解题时应注意合理缩小无理数的范围得到最准确的答案.7.【分析】根据图形可以写出前几个图案需要的小木棒的数量,即可发现小木棒数量的变化规律,从而可以解答本题.【解答】解:由图可得,图案①有:4+5=9根小木棒,图案②有:4+5×2=14根小木棒,图案③有:4+5×3=19根小木棒,…,∴第n个图案有:(4+5n)根小木棒,∴第⑧个图案有:4+5×8=44根小木棒,故选:B.【点评】本题考查图形的变化类、列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.8.【分析】根据切线的性质得到OB⊥AC,求得∠ABO=∠CBO=90°,得到OB=AB =2,根据勾股定理即可得到结论.【解答】解:连接OB,∵AC是⊙O的切线,∴OB⊥AC,∴∠ABO=∠CBO=90°,∵∠A=30°,AB=2,∴OB=AB=2,∵BC=3,∴OC===,故选:C.【点评】本题考查了切线的性质,解直角三角形,正确的作出辅助线是解题的关键.9.【分析】根据正方形的性质可得AD=AB,∠BAD=∠ABC=∠ADC=90°,将△ADF绕点A顺时针旋转90°,得△ABG,易证△GAE≌△FAE(SAS),根据全等三角形的性质可得∠AEF=∠AEG,进一步根据∠FEC=180°﹣∠AEF﹣∠AEB求解即可.【解答】解:在正方形ABCD中,AD=AB,∠BAD=∠ABC=∠ADC=90°,将△ADF绕点A顺时针旋转90°,得△ABG,如图所示:则AF=AG,∠DAF=∠BAG,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠GAE=∠FAE=45°,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS),∴∠AEF=∠AEG,∵∠BAE=α,∴∠AEB=90°﹣α,∴∠AEF=∠AEB=90°﹣α,∴∠FEC=180°﹣∠AEF﹣∠AEB=180°﹣2×(90°﹣α)=2α,故选:A.【点评】本题考查了正方形的性质,全等三角形的判定和性质,涉及旋转的性质,添加合适的辅助线是解题的关键.10.【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y ﹣z|﹣m﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y ﹣z﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m ﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.【点评】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.【分析】根据负整数指数幂和零指数幂计算即可.【解答】解:2﹣1+30=+1=,故答案为:.【点评】本题考查了负整数指数幂,零指数幂,熟练掌握这些知识是解题的关键.12.【分析】利用多边形内角和公式及正多边形性质易得∠B的度数,AB=BC,再根据等边对等角,利用三角形内角和定理即可求得答案.【解答】解:∵五边形ABCDE是正五边形,∴AB=BC,∠B=(5﹣2)×180°÷5=108°,∴∠BAC=∠BCA===36°,故答案为:36°.【点评】本题主要考查多边形内角和及正多边形性质,利用其求得∠B的度数是解题的关键.13.【分析】画树状图,共有9种等可能的结果,其中两次都摸到红球的结果有1种,再由概率公式求解即可.【解答】解:画树状图如下:共有9种等可能的结果,其中两次都摸到红球的结果有1种,∴两次都摸到红球的概率是,故答案为:.【点评】此题考查的是树状图法以及概率公式.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】根据今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,列一元二次方程即可.【解答】解:根据题意,得1501(1+x)2=1815,故答案为:1501(1+x)2=1815.【点评】本题考查了一元二次方程的应用,理解题意并根据题意建立等量关系是解题的关键.15.【分析】先证明△ABE≌△CAF(AAS),根据全等三角形的性质可得AF=BE=4,AE=CF=1,进一步可得EF的长.【解答】解:∵BE⊥AD,CF⊥AD,∴∠BEA=∠AFC=90°,∴∠BAE+∠ABE=90°,∵∠BAC=90°,∴∠BAE+∠FAC=90°,∴∠FAC=∠ABE,在△ABE和△CAF中,,∴△ABE≌△CAF(AAS),∴AF=BE,AE=CF,∵BE=4,CF=1,∴AF=BE=4,AE=CF=1,∴EF=AF﹣AE=4﹣1=3,故答案为:3.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.16.【分析】连接BD,根据圆周角定理证得BD是⊙O的直径,利用勾股定理求得直径,然后利用圆的面积减去矩形的面积即可求得阴影部分的面积.【解答】解:连接BD,∵∠BAD=90°,∴BD是⊙O的直径,∵AB=4,AD=3,∴BD===5,=S⊙O﹣S矩形ABCD=﹣3×4=π﹣12.∴S阴影故答案为:π﹣12.【点评】本题考查了圆的面积和矩形的面积,解题的关键是明确阴影部分的面积是圆的面积减去矩形的面积,属于中考常考题型.17.【分析】先解不等式组,根据至少有2个整数解求出a的取值范围,再解分式方程,根据解是非负整数,可求出满足条件的a的值,进一步求解即可.【解答】解:解不等式组,得,∵至少有2个整数解,∴≤4,∴a≤6,解分式方程+=2,得y=,∵y的值是非负整数,a≤6,∴当a=5时,y=2,当a=3时,y=1,当a=1时,y=0,∵y=2是分式方程的增根,∴a=5(舍去),∴满足条件的a的值有3和1,∵3+1=4,∴所有满足条件的整数a的值之和是4.故答案为:4.【点评】本题考查了分式方程与一元一次不等式组的综合,熟练掌握解一元一次不等式组和分式方程的解法是解题的关键.18.【分析】根据递减数的概念列方程求a的值,根据递减数的概念先求得10a﹣9b﹣11c=d,然后根据题意列出两个三位数字之和,结合能被9整除的数的特征分析满足条件的最大值.【解答】解:由题意可得10a+3﹣31=12,解得a=4,∴这个数为4312,由题意可得,10a+b﹣(10b+c)=10c+d,整理,可得10a﹣9b﹣11c=d,一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和为:100a+10b+c+100b+10c+d=100a+10b+c+100b+10c+10a﹣9b﹣11c=110a+101b=99(a+b)+11a+2b,又∵一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,∴是整数,且a≠b≠c≠d,1≤a≤9,1≤b≤9,1≤c≤9,0≤d≤9,a=9时,原四位数可得最大值,此时b只能取0,不符合题意,舍去,当a=8时,b=1,此时71﹣11c=d,c取9或8或7时,均不符合题意,当c取6时,d=5,∴满足条件的数的最大值是8165,故答案为:4312;8165.【点评】本题考查新定义运算,理解新定义概念,正确推理计算是解题关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.【分析】(1)先由单项式乘以多项式,平方差公式进行化简,然后合并同类项即可;(2)先将括号内的进行合并,除法变成乘法,再约分化简即可.【解答】解:(1)a(2﹣a)+(a+1)(a﹣1)=2a﹣a2+a2﹣1=2a﹣1.(2)÷(x﹣)===.【点评】此题主要是考查了分式的混合运算,整式的混合运算,能够熟练运用平方差公式,完全平方公式是解答此题的关键.20.【分析】根据平行四边形的性质和全等三角形的判定和性质解答即可.【解答】证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO.∵EF垂直平分AC,∴OA=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴OE=OF;过平行四边形对角线中点的直线被一组对边截得的线段被对角线的中点平分,故答案为:∠FAO;OA=OC;∠FOA;被一组对边截得的线段被对角线的中点平分.【点评】此题考查命题与定理,关键是根据平行四边形的性质和全等三角形的判定和性质解答.21.【分析】(1)根据众数的定义可得a的值,根据中位数的定义可得b的值,用“1”减去其他两组所占百分百可得m的值;(2)可比较中位数,众数与方差得出结论;(3)利用样本估计总体可求解.【解答】解:(1)A款智能玩具飞机10架一次充满电后运行最长时间中,72出现的次数最多,故众数a=72,把B款智能玩具飞机10架一次充满电后运行最长时间从小到大排列,排在中间的两个数是70和71,故中位数b==70.5,m%=1﹣50%﹣40%=10%,即m=10.故答案为:72,70.5,10;(2)A款智能玩具飞机运行性能更好,理由如下:虽然两款智能玩具飞机运行最长时间的平均数相同,但A款智能玩具飞机运行最长时间的中位数和众数均高于B款智能玩具飞机,所以A款智能玩具飞机运行性能更好;(答案不唯一);(3)200×+120×(1﹣40%)=120+72=192(架),答:估计两款智能玩具飞机运行性能在中等及以上的大约共有192架.【点评】本题考查扇形统计图,频数分布表,中位数,众数,方差以及用样本估计总体,解题关键是从统计图表中获取有用信息是解题的关键.22.【分析】(1)设购买炸酱面x份,牛肉面y份,利用总价=单价×数量,结合该公司花费3000元一次性购买了杂酱面、牛肉面共170份,可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买牛肉面m份,则购买炸酱面(1+50%)m份,利用单价=总价÷数量,结合每份杂酱面比每份牛肉面的价格少6元,可得出关于m的分式方程,解之经检验后,即可得出结论.【解答】解:(1)设购买炸酱面x份,牛肉面y份,根据题意得:,解得:.答:购买炸酱面80份,牛肉面90份;(2)设购买牛肉面m份,则购买炸酱面(1+50%)m份,根据题意得:﹣=6,解得:m=60,经检验,m=60是所列方程的解,且符合题意.答:购买牛肉面60份.【点评】本题考查了二元一次方程组的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出分式方程.23.【分析】(1)根据动点E、F运动的路线和速度分段进行分析,写出不同时间的函数表达式并注明自变量t的取值范围即可;(2)根据画函数图象的方法分别画出两段函数图象,再根据图象写出函数的一个性质即可;(3)根据两个函数关系式分别求出当y=3时的t值即可解决问题.【解答】解:(1)当点E、F分别在AB、AC上运动时,△AEF为边长等于t的等边三角形,∴点E,F的距离等于AE、AF的长,∴当0≤t≤4时,y关于t的函数表达式为y=t,当点E、F都在BC上运动时,点E,F的距离等于4﹣2(t﹣4),∴当4<t≤6时,y关于t的函数表达式为y=4﹣2(t﹣4)=12﹣2t,∴y关于t的函数表达式为;(2)由(1)中得到的函数表达式可知:当t=0时,y=0;当t=4时,y=4;当t=6时,y=0,分别描出三个点(0,0),(4,4),(6,0),然后顺次连线,如图:该函数的其中一个性质:当0≤t≤4时,y随t的增大而增大.(答案不唯一,正确即可)(3)把y=3分别代入y=t和y=12﹣2t中,得:3=t,3=12﹣2t,解得:t=3或t=4.5,∴点E,F相距3个单位长度时t的值为3或4.5.【点评】本题是三角形综合题,主要考查等边三角形的性质、一次函数的图象和性质,以及一次函数的应用,深入理解题意是解决问题的关键.24.【分析】(1)过D作DF⊥AE,垂足为F,根据题意可得:四边形ABCF是矩形,从而可得AF=BC=10千米,然后在Rt△AFD中,利用锐角三角函数的定义进行计算,即可解答;(2)先在Rt△ADF中,根据等腰三角形的判定求出AF的长,再在Rt△ABE中,利用锐角三角函数的定义求出AB,AE的长,最后利用线段的和差关系进行计算,比较即可解答.【解答】解:(1)过D作DF⊥AE,垂足为F,由题意得:四边形ABCF是矩形,∴AF=BC=10千米,在Rt△ADF中,∠DAF=45°,∴AD===10≈10×1.41≈14(千米).∴AD的长度约为14千米;(2)小明应该选择线路①,理由:在Rt△ADF中,∠DAF=45°,AF=10千米,∴∠ADF=45°=∠DAF,∴DF=AF=10千米,在Rt△ABE中,∠ABE=90°﹣60°=30°,AB=DF+CD=24千米,∴AE=AB•tan30°=24×=8(千米),EB=2AE=16千米,按路线①A﹣D﹣C﹣B走的路程为AD+DC+CB=14+14+10=38(千米)按路线②A﹣E﹣B走的路程为AE+EB=8+16≈24×1.73=41.52(千米)∵38千米<41.52千米,∴小明应该选择线路①.【点评】本题考查了解直角三角形的应用﹣方向角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.【分析】(1)由待定系数法即可求解;(2)由△PDE周长的最大值=PE(1+sin∠PED+cos∠PED),即可求解;(3)当AP是对角线时,由中点坐标公式和AM=AN,列出方程组即可求解;当AM或AN是对角线时,同理可解.【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=﹣x2+x+2;(2)令y=﹣x2+x+2=0,解得:x=4或﹣1,即点B(4,0),∵PE∥y轴,则∠PED=∠OCB,则tan∠PED=tan∠OCB=2,则sin∠PED=,cos∠PED=,由点B、C的坐标得,直线BC的表达式为:y=﹣x+2,则PE=﹣x2+x+2+x﹣2=﹣(x﹣2)2+2≤2,即PE的最大值为2,此时,点P(2,3),则△PDE周长的最大值=PE(1+sin∠PED+cos∠PED)=(1++)PE=,即△PDE周长的最大值为,点P(2,3);(3)抛物线沿射线CB方向平移个单位长度,相当于向右平移2个单位向下平移1个单位,则平移后抛物线的对称轴为x=,设点M(,m),点N(s,t),由点A、P的坐标得,AP2=18,当AP是对角线时,由中点坐标公式和AM=AN得:,解得:,即点N的坐标为:(﹣,);当AM或AN是对角线时,由中点坐标公式和AN=AP或AM=AP得:或,解得:(不合题意的值已舍去),即点N的坐标为:(,);综上,点N的坐标为:(,﹣)或(,)或(﹣,).【点评】本题是二次函数综合题,主要考查了一次函数的性质、菱形的性质、平行四边形的性质、解直角三角形等,其中(3),要注意分类求解,避免遗漏.26.【分析】(1)在Rt△ABC中,由∠B=60°,AC=9,可得BC==3,AB=2BC =6,即得AD=AB﹣BD=5;(2)取AB的中点O,连接OC,证明△BOC为等边三角形,得CO=CB,∠OCB=∠BOC=60°,可得△OCD≌△BCE(SAS),有∠EBC=∠DOC=120°,故OC∥BE,在GF上截取HF=BF,连接DH,可证△BEF≌△HDF(SAS),得BE=HD,∠BEF=∠HDF,有DH∥BE,DH∥OC,可得∠HDG=∠OCD,知∠G=∠HDG,HG=HD,从而HG=BE,GF=HG+FH=BE+BF;(3)取AB的中点S,连接PS,在CD取得最小值时,CD⊥AB,设AB=4a,则BC=2a,AC=2a,用面积法得CD==a,BD=BC=a,证明△BCD≌△BCE (SAS),知BD=BE=a,根据将△BEM沿BM所在直线翻折至△ABC所在平面内得到△BNM,有BE=BN=a,故N的运动轨迹是以B为圆心,a为半径的圆,又PS=BN =a,故P的运动轨迹是以S为圆心,a为半径的圆,当CP最大时,C,P,S三点共线,过P作PT⊥AC于T,过N作NR⊥AC于R,可得△BSC是等边三角形,∠PCB=60°,BC=CS=2a,而CP=CS+PS=2a+a=a,可求得PT=CP=a,CT=PT =a,AT=AC﹣CT=a,连接PQ交NR于W,根据将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,知PQ⊥BC,故即PW∥AR,PW是△ANR的中位线,同理可得PT是△ANR的中位线,即可得PT=NW=RW=a,PW=AR=AT=a,根据将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,得CP=CQ,∠QCP=120°,有PQ=CP=a,即得WQ=PQ﹣PW=a,从而NQ==a,=.【解答】(1)解:在Rt△ABC中,∠ACB=90°,∵∠B=60°,AC=9,∴BC==3,AB=2BC=6∵BD=,∴AD=AB﹣BD=5;(2)证明:取AB的中点O,连接OC,如图:在Rt△ABC中,点O为斜边AB的中点,∴OC=OB,∵∠ABC=60°,∴△BOC为等边三角形,∴CO=CB,∠OCB=∠BOC=60°,∴∠DOC=120°,∵△CDE为等边三角形,∴CD=CE,∠DCE=60°,∴∠DCE=∠OCB=60°,即∠OCD+∠OCE=∠OCE+∠BCE,∴∠OCD=∠BCE,在△OCD和△BCE中,,∴△OCD≌△BCE(SAS),∴∠EBC=∠DOC=120°,∴∠OCB+∠EBC=180°,∴OC∥BE,在GF上截取HF=BF,连接DH,∵点F是DE的中点,∴FE=FD.在△BEF和△HDF中,,∴△BEF≌△HDF(SAS),∴BE=HD,∠BEF=∠HDF,∴DH∥BE,∴DH∥OC,∴∠HDG=∠OCD,又∠G=∠BCE,∴∠G=∠HDG,∴HG=HD,∴HG=BE,∴GF=HG+FH=BE+BF;(3)解:取AB的中点S,连接PS,如图:在CD取得最小值时,CD⊥AB,设AB=4a,则BC=2a,AC=2a,=AC•BC=AB•CD,∵2S△ABC∴CD==a,BD=BC=a,∵△CDE是等边三角形,∴∠DCE=60°,CD=CE,∴∠BCE=∠DCE﹣∠DCB=60°﹣30°=30°=∠DCB,∵BC=BC,∴△BCD≌△BCE(SAS),。
2020年重庆市中考数学试题(A卷)、答案
2020年重庆市中考数学试题(A 卷)、答案第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,最小的数是( )A .-3B .0C .1D .2 2.下列图形是轴对称图形的是( )A .B .C .D .3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( )A .32610⨯B .32.610⨯C .42.610⨯D .50.2610⨯4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .215.如图,AB 是O 的切线,A 切点,连接0A ,0B ,若20B ∠=︒,则AOB ∠的度数为( )A .40°B .50°C .60°D .70° 6.下列计算中,正确的是( )A B .2 C D .27. 解一元一次方程11(1)123x x +=-时,去分母正确的是( )A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-8.如图,在平面直角坐标系中,ABC △的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF △,使DEF △与ABC △成位似图形,且相似比为2:1,则线段DF 的长度为( )AB .2C .4 D.9.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45m CD =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为( ) (参考数据:sin280.47︒≈,cos280.88︒≈,tan280.53︒≈)A .76.9mB .82.1mC .94.8mD .112.6m10.若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7 B .-14 C .28 D .-5611.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AED △,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG △的面积为2,则点F 到BC 的距离为( )A B C D 12.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE.若AD 平分OAE ∠,反比例函数(0,0)ky k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE△的面积为18,则k 的值为( )A .6B .12C .18D .24第Ⅱ卷(共90分)二、填空题(每题4分,满分24分,将答案填在答题纸上)13.计算:0(1)|2|π-+-= .14. 一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 .15.现有四张正面分别标有数字-1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点(),P m n 在第二象限的概率为 .16. 如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以A0的长为半径画弧,分别与正方形的边相交.则图中的阴影音分面积为 .(结果保留π)17.A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是 .18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上。
2023年重庆市中考数学试卷(a卷)
2023年重庆市中考数学试卷(A卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)8的相反数是()A.8-B.8C.18-D.182.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.3.(4分)反比例函数4yx=-的图象一定经过的点是()A.(1,4)B.(1,4)--C.(2,2)-D.(2,2) 4.(4分)若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是( )A.1:2B.1:4C.1:8D.1:16 5.(4分)如图,//AB CD,AD AC⊥,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒6.(42(810)+的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.(4分)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,⋯,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.(4分)如图,AC是O 的切线,B为切点,连接OA,OC.若30AB=,∠=︒,23ABC=,则OC的长度是()3A.3B.23C.13D.69.(4分)如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,45∠一定等于()∠=,则FECEAF∠=︒.若BAEαA.2αB.902α︒-︒-C.45α︒-D.90α10.(4分)在多项式x y z m n>>>>中,对相邻的两个字母x y z m n----(其中)间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:||----=--+-,x y z m n x y z m n----=---+,⋯.下列说法:x y z m n x y z m n||||①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:1023-+=.12.(4分)如图,正五边形ABCDE中,连接AC,那么BAC∠的度数为.13.(4分)一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是.14.(4分)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为.15.(4分)如图,在Rt ABC∆中,90∠=︒,AB AC=,点D为BC上一点,连BAC接AD.过点B作BE AD⊥于点E,过点C作CF AD⊥交AD的延长线于点F.若BE=,14CF=,则EF的长度为.16.(4分)如图,O 是矩形ABCD的外接圆,若4AB=,3AD=,则图中阴影部分的面积为.(结果保留)π17.(4分)若关于x的一元一次不等式组34222xx a+⎧⎪⎨⎪-⎩至少有2个整数解,且关于y的分式方程14222ay y-+=--有非负整数解,则所有满足条件的整数a的值之和是.18.(4分)如果一个四位自然数abcd的各数位上的数字互不相等且均不为0,满足ab bc cd-=,那么称这个四位数为“递减数”.例如:四位数4129,411229-=,4129∴是“递减数”;又如:四位数5324,53322124-=≠,5324∴不是“递减数”.若一个“递减数”为312a,则这个数为;若一个“递减数”的前三个数字组成的三位数abc与后三个数字组成的三位数bcd的和能被9整除,则满足条件的数的最大值是.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)(2)(1)(1)a a a a-++-;(2)22(211x xxx x x÷-+++.20.(10分)学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC的垂直平分线交DC于点E,交AB于点F,垂足为点O.(只保留作图痕迹)已知:如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为点O.求证:OE OF=.证明: 四边形ABCD是平行四边形,∴.DC AB//∴∠=.ECO垂直平分AC,EF∴.又EOC∠=,∴∆≅∆.()COE AOF ASA∴=.OE OF小虹再进一步研究发现,过平行四边形对角线AC中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线.21.(10分)为了解A、B两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A、B两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x表示,共分为三组:合格6070x<,优等80)x<,中等7080x,下面给出了部分信息:A款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82.B款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73.两款智能玩具飞机运行最长时间统计表类别A B平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:(1)上述图表中a=,b=,m=;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?22.(10分)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?23.(10分)如图,ABC∆是边长为4的等边三角形,动点E,F分别以每秒1个单位长度的速度同时从点A出发,点E沿折线A B C→→方向运动,点F沿折线A C B→→方向运动,当两者相遇时停止运动.设运动时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.24.(10分)为了满足市民的需求,我市在一条小河AB 两侧开辟了两条长跑锻炼线路,如图:①A D C B ---;②A E B --.经勘测,点B 在点A 的正东方,点C 在点B 的正北方10千米处,点D 在点C 的正西方14千米处,点D 在点A 的北偏东45︒方向,点E 在点A 的正南方,点E 在点B 的南偏西60︒方向.(参考数据:1.41≈ 1.73)≈(1)求AD 的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?25.(10分)如图,在平面直角坐标系中,抛物线22y ax bx =++过点(1,3),且交x 轴于点(1,0)A -,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,求PDE ∆周长的最大值及此时点P 的坐标;(3)在(2)中PDE ∆周长取得最大值的条件下,将该抛物线沿射线CB 方向平移个单位长度,点M 为平移后的抛物线的对称轴上一点.在平面内确定一点N ,使得以点A ,P ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.26.(10分)在Rt ABC ∆中,90ACB ∠=︒,60B ∠=︒,点D 为线段AB 上一动点,连接CD .(1)如图1,若9AC =,BD =AD 的长;(2)如图2,以CD 为边在CD 上方作等边CDE ∆,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若G BCE ∠=∠,求证:GF BF BE =+;(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边CDE ∆.点M 为CD 所在直线上一点,将BEM ∆沿BM 所在直线翻折至ABC ∆所在平面内得到BNM ∆.连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将BCP ∆沿BC 所在直线翻折至ABC ∆所在平面内得到BCQ ∆,请直接写出此时NQ CP 的值.2023年重庆市中考数学试卷(A 卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【解答】解:8的相反数是8-.故选:A .2.【解答】解:从正面看,底层是两个小正方形,上层的右边是一个小正方形,故选:D .3.【解答】解: 反比例函数4y x=-,4k ∴=-,A 、1444⨯=≠- ,∴此点不在函数图象上,故本选项不合题意;B 、1(4)44-⨯-=≠- ,∴此点不在函数图象上,故本选项不合题意;C 、224-⨯=- ,∴此点在函数图象上,故本选项符合题意;D 、2244⨯=≠- ,∴此点不在函数图象上,故本选项不合题意.故选:C .4.【解答】解: 两个相似三角形周长的比为1:4,∴这两个三角形对应边的比为1:4,故选:B .5.【解答】解://AB CD ,1180BAC ∴∠+∠=︒,155∠=︒ ,125BAC ∴∠=︒,AD AC ⊥ ,90CAD ∴∠=︒,235BAC CAD ∴∠=∠-∠=︒,故选:A .6.【解答】解:原式4=+22.5 6.25= ,2 2.5∴<<,45∴<<,849∴<+<.故选:B .7.【解答】解:由图可得,图案①有:459+=根小木棒,图案②有:45214+⨯=根小木棒,图案③有:45319+⨯=根小木棒,⋯,∴第n 个图案有:(45)n +根小木棒,∴第⑧个图案有:45844+⨯=根小木棒,故选:B .8.【解答】解:连接OB ,AC 是O 的切线,OB AC ∴⊥,90ABO CBO ∴∠=∠=︒,30A ∠=︒ ,AB =,2OB ∴==,3BC = ,OC ∴=故选:C .9.【解答】解:在正方形ABCD 中,AD AB =,90BAD ABC ADC ∠=∠=∠=︒,将ADF ∆绕点A 顺时针旋转90︒,得ABG ∆,如图所示:则AF AG =,DAF BAG ∠=∠,45EAF ∠=︒ ,45BAE DAF ∴∠+∠=︒,45GAE FAE ∴∠=∠=︒,在GAE ∆和FAE ∆中,AF AG FAE GAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()GAE FAE SAS ∴∆≅∆,AEF AEG ∴∠=∠,BAE α∠= ,90AEB α∴∠=︒-,90AEF AEB α∴∠=∠=︒-,1801802(90)2FEC AEF AEB αα∴∠=︒-∠-∠=︒-⨯︒-=,故选:A.10.【解答】解:||x y z m n x y z m n ----=----,故说法①正确.若使其运算结果与原多项式之和为0,需出现x -,显然无论怎么添加绝对值,都无法使x 的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是||x y z m n x y z m n ----=----;||x y z m n x y z m n ----=-+--;||x y z m n x y z m n ----=--+-;||x y z m n x y z m n ----=---+.当添加两个绝对值时,共有3种情况,分别是||||x y z m n x y z m n ----=--+-;||||x y z m n x y z m n ----=---+;||||x y z m n x y z m n ----=-+-+.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.【解答】解:1023-+112=+32=,故答案为:32.12.【解答】解: 五边形ABCDE 是正五边形,AB BC ∴=,(52)1805108B ∠=-⨯︒÷=︒,1801801083622B BAC BCA ︒-∠︒-︒∴∠=∠===︒,故答案为:36︒.13.【解答】解:画树状图如下:共有9种等可能的结果,其中两次都摸到红球的结果有1种,∴两次都摸到红球的概率是19,故答案为:19.14.【解答】解:根据题意,得21501(1)1815x +=,故答案为:21501(1)1815x +=.15.【解答】解:BE AD ⊥ ,CF AD ⊥,90BEA AFC ∴∠=∠=︒,90BAE ABE ∴∠+∠=︒,90BAC ∠=︒ ,90BAE FAC ∴∠+∠=︒,FAC ABE ∴∠=∠,在ABE ∆和CAF ∆中,BEA AFC ABE FAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CAF AAS ∴∆≅∆,AF BE ∴=,AE CF =,4BE = ,1CF =,4AF BE ∴==,1AE CF ==,413EF AF AE ∴=-=-=,故答案为:3.16.【解答】解:连接BD ,90BAD ∠=︒ ,BD ∴是O 的直径,4AB = ,3AD =,5BD ∴===,2525(341224O ABCD S S S ππ∴=-=⨯-⨯=- 阴影矩形.故答案为:25124π-.17.【解答】解:解不等式组34222x x a +⎧⎪⎨⎪-⎩,得522x a x ⎧⎪⎨+⎪⎩, 至少有2个整数解,∴242a +,6a ∴,解分式方程14222a y y -+=--,得12a y -=,y 的值是非负整数,6a ,∴当5a =时,2y =,当3a =时,1y =,当1a =时,0y =,2y = 是分式方程的增根,5a ∴=(舍去),∴满足条件的a 的值有3和1,314+= ,∴所有满足条件的整数a 的值之和是4.故答案为:4.18.【解答】解:由题意可得1033112a +-=,解得4a =,∴这个数为4312,由题意可得,10(10)10a b b c c d +-+=+,整理,可得10911a b c d --=,一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和为:1001010010a b c b c d+++++100101001010911a b c b c a b c=+++++--110101a b=+99()112a b a b =+++,又 一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴1129a b +是整数,且a b c d ≠≠≠,19a ,19b ,19c ,09d ,9a =时,原四位数可得最大值,此时b 只能取0,不符合题意,舍去,当8a =时,1b =,此时7111c d -=,c 取9或8或7时,均不符合题意,当c 取6时,5d =,∴满足条件的数的最大值是8165,故答案为:4312;8165.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.【解答】解:(1)(2)(1)(1)a a a a -++-2221a a a =-+-21a =-.(2)22(211x x x x x x ÷-+++222(1)1x x x x =÷++2221(1)x x x x +=⨯+11x =+.20.【解答】证明: 四边形ABCD 是平行四边形,//DC AB ∴.ECO FAO ∴∠=∠.EF 垂直平分AC ,OA OC ∴=.又EOC FOA ∠=∠,()COE AOF ASA ∴∆≅∆.OE OF ∴=;过平行四边形对角线中点的直线被一组对边截得的线段被对角线的中点平分,故答案为:FAO ∠;OA OC =;FOA ∠;被一组对边截得的线段被对角线的中点平分.21.【解答】解:(1)A 款智能玩具飞机10架一次充满电后运行最长时间中,72出现的次数最多,故众数72a =,把B 款智能玩具飞机10架一次充满电后运行最长时间从小到大排列,排在中间的两个数是70和71,故中位数707170.52b +==,%150%40%10%m =--=,即10m =.故答案为:72,70.5,10;(2)A 款智能玩具飞机运行性能更好,理由如下:虽然两款智能玩具飞机运行最长时间的平均数相同,但A 款智能玩具飞机运行最长时间的中位数和众数均高于B 款智能玩具飞机,所以A 款智能玩具飞机运行性能更好;(答案不唯一);(3)6200120(140%)1207219210⨯+⨯-=+=(架),答:估计两款智能玩具飞机运行性能在中等及以上的大约共有192架.22.【解答】解:(1)设购买炸酱面x 份,牛肉面y 份,根据题意得:17015203000x y x y +=⎧⎨+=⎩,解得:8090x y =⎧⎨=⎩.答:购买炸酱面80份,牛肉面90份;(2)设购买牛肉面m 份,则购买炸酱面(150%)m +份,根据题意得:120012606(150%)m m-=+,解得:60m =,经检验,60m =是所列方程的解,且符合题意.答:购买牛肉面60份.23.【解答】解:(1)当点E 、F 分别在AB 、AC 上运动时,AEF ∆为边长等于t 的等边三角形,∴点E ,F 的距离等于AE 、AF 的长,∴当04t 时,y 关于t 的函数表达式为y t =,当点E 、F 都在BC 上运动时,点E ,F 的距离等于42(4)t --,∴当46t <时,y 关于t 的函数表达式为42(4)122y t t =--=-,y ∴关于t 的函数表达式为(04)212(46)y t t y t t =⎧⎨=-+<⎩;(2)由(1)中得到的函数表达式可知:当0t =时,0y =;当4t =时,4y =;当6t =时,0y =,分别描出三个点(0,0),(4,4),(6,0),然后顺次连线,如图:该函数的其中一个性质:当04t 时,y 随t 的增大而增大.(答案不唯一,正确即可)(3)把3y =分别代入y t =和122y t =-中,得:3t =,3122t =-,解得:3t =或 4.5t =,∴点E ,F 相距3个单位长度时t 的值为3或4.5.24.【解答】解:(1)过D 作DF AE ⊥,垂足为F ,由题意得:四边形ABCF 是矩形,10AF BC ∴==千米,在Rt ADF ∆中,45DAF ∠=︒,10 1.4114sin 4522AF AD ∴===≈⨯≈︒(千米).AD ∴的长度约为14千米;(2)小明应该选择线路①,理由:在Rt ADF ∆中,45DAF ∠=︒,10AF =千米,45ADF DAF ∴∠=︒=∠,10DF AF ∴==千米,在Rt ABE ∆中,906030ABE ∠=︒-︒=︒,24AB DF CD =+=千米,tan 3024AE AB ∴=⋅︒=⨯(千米),2EB AE ==千米,按路线①A D C B ---走的路程为14141038AD DC CB ++=++=(千米)按路线②A E B --走的路程为24 1.7341.52AE EB +=+≈⨯=(千米)38 千米41.52<千米,∴小明应该选择线路①.25.【解答】解:(1)由题意得:2302a b a b ++=⎧⎨=-+⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,则抛物线的表达式为:213222y x x =-++;(2)令2132022y x x =-++=,解得:4x =或1-,即点(4,0)B ,//PE y 轴,则PED OCB ∠=∠,则tan tan 2PED OCB ∠=∠=,则sin PED ∠=,cos PED ∠=由点B 、C 的坐标得,直线BC 的表达式为:122y x =-+,则2131122(2)2222222PE x x x x =-+++-=--+,即PE 的最大值为2,此时,点(2,3)P ,则PDE ∆周长的最大值10(1sin cos )(15PE PED PED PE +=+∠+∠=+=,即PDE ∆周长的最大值为10655+,点(2,3)P ;(3)抛物线沿射线CB个单位长度,相当于向右平移2个单位向下平移1个单位,则平移后抛物线的对称轴为72x =,设点7(2M ,)m ,点(,)N s t ,由点A 、P 的坐标得,218AP =,当AP 是对角线时,由中点坐标公式和AM AN =得:2222712237(1)(1)2s m t m s t ⎧-+=+⎪⎪=+⎨⎪⎪++=++⎩,解得:329252m t s ⎧=-⎪⎪⎪=⎨⎪⎪=-⎪⎩,即点N 的坐标为:5(2-,9)2;当AM 或AN 是对角线时,由中点坐标公式和AN AP =或AM AP =得:2271223(1)18s m t s t ⎧-=+⎪⎪=+⎨⎪++=⎪⎩或2271237(1)182s t m m ⎧-=⎪⎪=+⎨⎪⎪++=⎩,解得:1223732s t m ⎧=⎪⎪⎪=±⎨⎪⎪=±⎪⎩(不合题意的值已舍去),即点N 的坐标为:1(2,;综上,点N 的坐标为:1(2,或1(2或5(2-,92.26.【解答】(1)解:在Rt ABC ∆中,90ACB ∠=︒,60B ∠=︒ ,9AC =,BC ∴==,2AB BC ==BD =,AD AB BD ∴=-=(2)证明:取AB 的中点O ,连接OC,如图:在Rt ABC ∆中,点O 为斜边AB 的中点,OC OB ∴=,60ABC ∠=︒ ,BOC ∴∆为等边三角形,CO CB ∴=,60OCB BOC ∠=∠=︒,120DOC ∴∠=︒,CDE ∆ 为等边三角形,CD CE ∴=,60DCE ∠=︒,60DCE OCB ∴∠=∠=︒,即OCD OCE OCE BCE ∠+∠=∠+∠,OCD BCE ∴∠=∠,在OCD ∆和BCE ∆中,CD CE OCD BCE CO CB =⎧⎪∠=∠⎨⎪=⎩,()OCD BCE SAS ∴∆≅∆,120EBC DOC ∴∠=∠=︒,180OCB EBC ∴∠+∠=︒,//OC BE ∴,在GF 上截取HF BF =,连接DH ,点F 是DE 的中点,FE FD ∴=.在BEF ∆和HDF ∆中,BF HF BFE HFD FE FD =⎧⎪∠=∠⎨⎪=⎩,()BEF HDF SAS ∴∆≅∆,BE HD ∴=,BEF HDF ∠=∠,//DH BE ∴,//DH OC ∴,HDG OCD ∴∠=∠,又G BCE ∠=∠,G HDG ∴∠=∠,HG HD ∴=,HG BE ∴=,GF HG FH BE BF ∴=+=+;(3)解:取AB 的中点S ,连接PS ,如图:在CD 取得最小值时,CD AB ⊥,设4AB a =,则2BC a =,AC =,2ABC S AC BC AB CD ∆=⋅=⋅ ,AC BC CDAB ⋅∴==,12BD BC a ==,CDE ∆ 是等边三角形,60DCE ∴∠=︒,CD CE =,603030BCE DCE DCB DCB ∴∠=∠-∠=︒-︒=︒=∠,BC BC = ,()BCD BCE SAS ∴∆≅∆,BD BE a ∴==,将BEM ∆沿BM 所在直线翻折至ABC ∆所在平面内得到BNM ∆,BE BN a ∴==,N ∴的运动轨迹是以B 为圆心,a 为半径的圆,点P 为AN 的中点,S 为AB 的中点,1122PS BN a ∴==,P ∴的运动轨迹是以S 为圆心,12a 为半径的圆,当CP 最大时,C ,P ,S 三点共线,过P 作PT AC ⊥于T ,过N 作NR AC ⊥于R ,如图:S 是AB 中点,122BS AS CS AB a ∴====,60ABC ∠=︒ ,BSC ∴∆是等边三角形,60PCB ∴∠=︒,2BC CS a ==,30PCA ∴∠=︒,15222CP CS PS a a a =+=+= ,1524PT CP a ∴==,534CT ==,4AT AC CT ∴=-=,连接PQ 交NR 于W ,如图:将BCP ∆沿BC 所在直线翻折至ABC ∆所在平面内得到BCQ ∆,PQ BC ∴⊥,AC BC ⊥ ,//PQ AC ∴,即//PW AR ,P 为AN 中点,PW ∴是ANR ∆的中位线,12NW RW NR ∴==,同理可得PT 是ANR ∆的中位线,12PT NR ∴=,54PT NW RW a ∴===,13324PW AR AT ===, 将BCP ∆沿BC 所在直线翻折至ABC ∆所在平面内得到BCQ ∆,60QCB PCB ∴∠=∠=︒,CP CQ =,120QCP ∴∠=︒,532PQ ∴==,533373244WQ PQ PW a ∴=-=-=,432NQ a ∴===,∴2552NQ CP a ==.。
2024年重庆市中考数学真题卷(A卷)和答案
重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑。
1.下列四个数中,最小的数是( )A .-2B .0C .3D .12-2.下列四种化学仪器的示意图中,是轴对称图形的是()A .B .C .D .3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A .-3B .3C .-6D .64.如图,,165AB CD ∠=∥,则2∠的度数是()A .105B .115C .125D .1355.若两个相似三角形的相似比是1∶3,则这两个相似三角形的面积比是( )A .13:B .14:C .16:D .19:6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子。
第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是()A .20B .22C .24D .267.已知m =,则实数m 的范围是( )A .23m <<B .34m <<C .45m <<D .56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点。
2020年重庆市中考数学试卷(A卷)
2020年重庆市中考数学试卷(A卷)一、选择题(每小题4分,共48分)1.(4分)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣42.(4分)下列图形中是轴对称图形的是()A.B.C.D.3.(4分)计算x6÷x2正确的结果是()A.3 B.x3C.x4D.x84.(4分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查5.(4分)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.(4分)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.67.(4分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠38.(4分)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:99.(4分)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E 是AD的中点,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.10.(4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.10911.(4分)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米12.(4分)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16二、填空题(每小题4分,共24分)13.(4分)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.(4分)计算:|﹣3|+(﹣1)2=.15.(4分)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=.16.(4分)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是小时.17.(4分)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.18.(4分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.三、解答题(每小题8分,共16分)19.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB 于点F,求∠AFE的度数.20.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.21.(10分)计算:(1)x(x﹣2y)﹣(x+y)2(2)(+a﹣2)÷.22.(10分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.23.(10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.(10分)在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.25.(10分)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.26.(12分)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2020年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)(2020•重庆)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣4【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵﹣4<﹣3<0<2,∴四个实数中,最大的实数是2.故选:B.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(4分)(2020•重庆)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)(2020•重庆)计算x6÷x2正确的结果是()A.3 B.x3C.x4D.x8【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:x6÷x2=x4.故选:C.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.4.(4分)(2020•重庆)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(4分)(2020•重庆)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】首先得出的取值范围,进而得出答案.【解答】解:∵3<<4,∴4<+1<5.故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.6.(4分)(2020•重庆)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.6【分析】直接将x,y的值代入求出答案.【解答】解:∵x=﹣,y=4,∴代数式3x+y﹣3=3×(﹣)+4﹣3=0.故选:B.【点评】此题主要考查了代数式求值,正确计算是解题关键.7.(4分)(2020•重庆)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【分析】根据分式有意义的条件:分母≠0,列式解出即可.【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选D.【点评】本题考查的知识点为:分式有意义,分母不为0.8.(4分)(2020•重庆)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC~△DEF,相似比为3:2,∴对应高的比为:3:2.故选:A.【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.9.(4分)(2020•重庆)如图,矩形ABCD 的边AB=1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A .B .C .D .【分析】利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF ,求出答案. 【解答】解:∵矩形ABCD 的边AB=1,BE 平分∠ABC , ∴∠ABE=∠EBF=45°,AD ∥BC , ∴∠AEB=∠CBE=45°, ∴AB=AE=1,BE=,∵点E 是AD 的中点, ∴AE=ED=1,∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF =1×2﹣×1×1﹣=﹣.故选:B .【点评】此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE 的长以及∠EBC 的度数是解题关键.10.(4分)(2020•重庆)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.109【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑨个图形中菱形的个数.【解答】解:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=91.故选:C.【点评】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.11.(4分)(2020•重庆)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i===可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP==结合AB=AP﹣BQ﹣PQ可得答案.【解答】解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i===,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP==≈13.1,∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选:A.【点评】此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.12.(4分)(2020•重庆)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a 的和为()A.10 B.12 C.14 D.16【分析】根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<﹣2,即可得出a≥﹣2,找出﹣2≤a<6且a≠2中所有的整数,将其相加即可得出结论.【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选A.【点评】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<﹣2,找出﹣2≤a<6且a≠2是解题的关键.二、填空题(每小题4分,共24分)13.(4分)(2020•重庆)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 1.1×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于11000有5位,所以可以确定n=5﹣1=4.【解答】解:11000=1.1×104.故答案为:1.1×104.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.14.(4分)(2020•重庆)计算:|﹣3|+(﹣1)2=4.【分析】利用有理数的乘方法则,以及绝对值的代数意义化简即可得到结果.【解答】解:|﹣3|+(﹣1)2=4,故答案为:4.【点评】此题考查了有理数的混合运算以及绝对值,熟练掌握运算法则是解本题的关键.15.(4分)(2020•重庆)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=32°.【分析】根据AO=OC,可得:∠ACB=∠OAC,然后根据∠AOB=64°,求出∠ACB 的度数是多少即可.【解答】解:∵AO=OC,∴∠ACB=∠OAC,∵∠AOB=64°,∴∠ACB+∠OAC=64°,∴∠ACB=64°÷2=32°.故答案为:32°.【点评】此题主要考查了圆周角定理的应用,以及圆的特征和应用,要熟练掌握.16.(4分)(2020•重庆)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是11小时.【分析】根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数.【解答】解:由统计图可知,一共有:6+9+10+8+7=40(人),∴该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,∴该班这些学生一周锻炼时间的中位数是11,故答案为:11.【点评】本题考查折线统计图、中位数,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.17.(4分)(2020•重庆)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B 之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是180米.【分析】根据题意和函数图象中的数据可以求得甲乙的速度和各段用的时间,从而可以求得乙到达A地时,甲与A地相距的路程.【解答】解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.18.(4分)(2020•重庆)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG 沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN 的周长是.【分析】解法一:如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,△DEF是等腰直角三角形,利用勾理计算DE=EF=,PD==3,如图2,由平行相似证明△DGC∽△FGA,列比例式可得FG 和CG的长,从而得EG的长,根据△GHF是等腰直角三角形,得GH和FH的长,利用DE∥GM证明△DEN∽△MNH,则,得EN=,从而计算出△EMN 各边的长,相加可得周长.解法二,将解法一中用相似得出的FG和CG的长,利用面积法计算得出,其它解法相同.解法三:作辅助线构建正方形和全等三角形,设EP=x,则DQ=4﹣x=FP=x﹣2,求x的值得到PF=1,AE的长;由△DGC和△FGA相似,求AG和GE的长;证△GHF 和△FKM全等,所以GH=FK=4/3,HF=MK=2/3,ML=AK=10/3,DL=AD﹣MK=10/3,即DL=LM,所以DM在正方形对角线DB上,设NI=y,列比例式可得NI的长,分别求MN和EN的长,相加可得结论.【解答】解:解法一:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=,Rt△DAF中,DF==2,∵DE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EF==,∴PD==3,如图2,∵DC∥AB,∴△DGC∽△FGA,∴==2,∴CG=2AG,DG=2FG,∴FG=×=,∵AC==4,∴CG=×=,∴EG=﹣=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH==,∴EH=EF﹣FH=﹣=,由折叠得:GM⊥EF,MH=GH=,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴,∴==3,∴EN=3NH,∵EN+NH═EH=,∴EN=,∴NH=EH﹣EN=﹣=,Rt△GNH中,GN===,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=++=;解法二:如图3,过G作GK⊥AD于K,作GR⊥AB于R,∵AC平分∠DAB,∴GK=GR,∴====2,∵==2,∴,同理,==3,其它解法同解法一,可得:∴△EMN的周长=EN+MN+EM=++=;解法三:如图4,过E作EP⊥AP,EQ⊥AD,∵AC是对角线,∴EP=EQ,易证△DQE和△FPE全等,∴DE=EF,DQ=FP,且AP=EP,设EP=x,则DQ=4﹣x=FP=x﹣2,解得x=3,所以PF=1,∴AE==3,∵DC∥AB,∴△DGC∽△FGA,∴同解法一得:CG=×=,∴EG=﹣=,AG=AC=,过G作GH⊥AB,过M作MK⊥AB,过M作ML⊥AD,则易证△GHF≌△FKM全等,∴GH=FK=,HF=MK=,∵ML=AK=AF+FK=2+=,DL=AD﹣MK=4﹣=,即DL=LM,∴∠LDM=45°∴DM在正方形对角线DB上,过N作NI⊥AB,则NI=IB,设NI=y,∵NI∥EP∴∴,解得y=1.5,所以FI=2﹣y=0.5,∴I为FP的中点,∴N是EF的中点,∴EN=0.5EF=,∵△BIN是等腰直角三角形,且BI=NI=1.5,∴BN=,BK=AB﹣AK=4﹣=,BM=,MN=BN﹣BM=﹣=,∴△EMN的周长=EN+MN+EM=++=;故答案为:.【点评】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数,计算比较复杂,作辅助线,构建全等三角形,计算出PE的长是关键.三、解答题(每小题8分,共16分)19.(8分)(2020•重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.【点评】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.20.(8分)(2020•重庆)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是126度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.【分析】(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数;求出八年级的作文篇数,补全条形统计图即可:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.用画树状图法,即可得出答案.【解答】解:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;故答案为:126;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P(七年级特等奖作文被选登在校刊上)==.【点评】此题考查了扇形统计图和条形统计图、列表法与树状图法的应用;从统计图中、扇形图中获取信息、画出树状图是解决问题的关键.21.(10分)(2020•重庆)计算:(1)x(x﹣2y)﹣(x+y)2(2)(+a﹣2)÷.【分析】(1)先去括号,再合并同类项;(2)先将括号里的进行通分,再将除法化为乘法,分解因式后进行约分.【解答】解:(1)x(x﹣2y)﹣(x+y)2,=x2﹣2xy﹣x2﹣2xy﹣y2,=﹣4xy﹣y2;(2)(+a﹣2)÷.=[+],=,=.【点评】此题考查了分式和整式的混合运算,熟练掌握运算法则是解本题的关键.22.(10分)(2020•重庆)如图,在平面直角坐标系中,一次函数y=mx+n(m ≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.【分析】(1)根据题意可以求得点B的坐标,从而可以求得反比例函数的解析式,进而求得点A的坐标,从而可以求得一次函数的解析式;(2)根据(1)中的函数解析式可以求得点C,点M、点B、点O的坐标,从而可以求得四边形MBOC的面积.【解答】解:(1)由题意可得,BM=OM,OB=2,∴BM=OM=2,∴点B的坐标为(﹣2,﹣2),设反比例函数的解析式为y=,则﹣2=,得k=4,∴反比例函数的解析式为y=,∵点A的纵坐标是4,∴4=,得x=1,∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交与点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC的面积是:==4.【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和反比例函数的性质解答.23.(10分)(2020•重庆)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.【解答】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.【点评】此题主要考查了一元一次不等式的应用以及一元二次方程的应用,正确表示出水果的销售总金额是解题关键.24.(10分)(2020•重庆)在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.【分析】(1)先由AM=BM=ABcos45°=3可得CM=2,再由勾股定理可得AC的长;(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠E.【解答】解:(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=ABcos45°=3×=3,则CM=BC﹣BM=5﹣3=2,∴AC===;(2)延长EF到点G,使得FG=EF,连接BG.由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=CE=BG,因此∠BDG=∠G=∠E.【点评】本题主要考查全等三角形的判定与性质及勾股定理、等腰直角三角形的性质等知识点,熟练掌握全等三角形的判定与性质是解题的关键.25.(10分)(2020•重庆)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.【分析】(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=中,找出最大值即可.【解答】解:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5.∴或或,∴或或,∴或或,∴k的最大值为.【点评】本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(243)、F(617)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.。
2020年重庆市中考数学试卷(A卷)(附答案详解)
2020年重庆市中考数学试卷(A卷)一、选择题(本大题共24小题,共96.0分)1.如图,直线a//b,∠1=50°,则∠2的度数为()A. 40°B. 50°C. 55°D. 60°2.5月22日晚,中国自贡第26届国际恐龙灯会开启网络直播,有着近千年历史的自贡灯会进入“云游”时代,70余万人通过“云观灯”感受了“天下第一灯”的璀璨.人数700000用科学记数法表示为()A. 70×104B. 0.7×107C. 7×105D. 7×1063.如图所示的几何体的左视图是()A.B.C.D.4.关于x的一元二次方程ax2−2x+2=0有两个相等实数根,则a的值为()A. 12B. −12C. 1D. −15.在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是()A. (−1,1)B. (5,1)C. (2,4)D. (2,−2)6.下列图形中,是轴对称图形,但不是中心对称图形的是()A. B.C. D.7.对于一组数据3,7,5,3,2,下列说法正确的是()A. 中位数是5B. 众数是7C. 平均数是4D. 方差是38.如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A. 50°B. 70°C. 130°D. 160°9.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A. 50°B. 40°C. 30°D. 20°10.函数y=k与y=ax2+bx+c的图象如图所示,则函数xy=kx−b的大致图象为()A.B.C.D.11.某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. 80(1+35%)x −80x=40 B. 80(1+35%)x−80x=40C. 80x −80(1+35%)x=40 D. 80x−80(1+35%)x=4012.如图,在平行四边形ABCD中,AD=2,AB=√6,∠B是锐角,AE⊥BC于点E,F是AB的中点,连结DF、EF.若∠EFD=90°,则AE长为()A. 2B. √5C. 3√22D. 3√3213.下列各数中,最小的数是()A. −3B. 0C. 1D. 214.下列图形是轴对称图形的是()A. B. C. D.15.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A. 26×103B. 2.6×103C. 2.6×104D. 0.26×10516.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有①个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A. 10B. 15C. 18D. 2117.如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A. 40°B. 50°C. 60°D. 70°18.下列计算中,正确的是()A. √2+√3=√5B. 2+√2=2√2C. √2×√3=√6D. 2√3−2=√319.解一元一次方程12(x+1)=1−13x时,去分母正确的是()A. 3(x+1)=1−2xB. 2(x+1)=1−3xC. 2(x+1)=6−3xD. 3(x+1)=6−2x20.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A. √5B. 2C. 4D. 2√521.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A. 76.9mB. 82.1mC. 94.8mD. 112.6m22.若关于x的一元一次不等式组{3x−12≤x+3,x≤a的解集为x≤a;且关于y的分式方程y−a y−2+3y−4y−2=1有正整数解,则所有满足条件的整数a的值之积是()A. 7B. −14C. 28D. −5623.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A. √55B. 2√55C. 4√55D. 4√3324.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=kx(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A. 6B. 12C. 18D. 24二、填空题(本大题共12小题,共48.0分)25.分解因式:3a2−6ab+3b2=______.26.与√14−2最接近的自然数是______.27.某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号):______.①绘制扇形图;②收集最受学生欢迎菜品的数据;③利用扇形图分析出最受学生欢迎的菜品;④整理所收集的数据.28.如图,我市在建高铁的某段路基横断面为梯形ABCD,DC//AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为______米(结果保留根号).29.如图,矩形ABCD中,E是AB上一点,连接DE,将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,在DF上取点O,以O为圆心,OF长为半径作半圆与CD相切于点G.若AD=4,则图中阴影部分的面积为______.30.如图,直线y=−√3x+b与y轴交于点A,与双曲线y=k在第三象限交于B、C两x点,且AB⋅AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=______,前25个等边三角形的周长之和为______.31.计算:(π−1)0+|−2|=______.32.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是______.33.现有四张正面分别标有数字−1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为______.34.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为______.(结果保留π)35.A,B两地相距240km,甲货车从A地以40km/ℎ的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(ℎ)之间的函数关系如图中的折线CD−DE−EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是______.36.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额,则摆摊的营业额将达到7会增加,其中摆摊增加的营业额占总增加的营业额的25,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还月份总营业额的720需增加的营业额与7月份总营业额之比是______.三、计算题(本大题共1小题,共8.0分))−1.37.计算:|−2|−(√5+π)0+(−16四、解答题(本大题共15小题,共148.0分)38.先化简,再求值:x+1x2−4⋅(1x+1+1),其中x是不等式组{x+1≥05−2x>3的整数解.39.如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.40.某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪,B:环境保护,C:卫生保洁,D:垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条形统计图和扇形统计图.(1)本次调查的学生人数是______人,m=______;(2)请补全条形统计图;(3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小张同学随机选择连续两天,其中有一天是星期一的概率是______;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中有一天是星期三的概率是______.41.甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?42.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x−2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离:因为|x+1|=|x−(−1)|,所以|x+1|的几何意义就是数轴上x所对应的点与−1所对应的点之间的距离.(ⅰ)发现问题:代数式|x+1|+|x−2|的最小值是多少?(ⅰ)探究问题:如图,点A、B、P分别表示数−1、2、x,AB=3.∵|x+1|+|x−2|的几何意义是线段PA与PB的长度之和,∴当点P在线段AB上时,PA+PB=3,当点P在点A的左侧或点B的右侧时,PA+ PB>3.∴|x+1|+|x−2|的最小值是3.请你根据上述自学材料,探究解决下列问题:解决问题:(1)|x−4|+|x+2|的最小值是______;(2)利用上述思想方法解不等式:|x+3|+|x−1|>4;(3)当a为何值时,代数式|x+a|+|x−3|的最小值是2.43.如图,⊙O是△ABC的外接圆,AB为直径,点P为⊙O外一点,且PA=PC=√2AB,连接PO交AC于点D,延长PO交⊙O于点F.(1)证明:AF⏜=CF⏜;(2)若tan∠ABC=2√2,证明:PA是⊙O的切线;(3)在(2)条件下,连接PB交⊙O于点E,连接DE,若BC=2,求DE的长.44.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(−3,0)、B(1,0),交y轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:①求PD+PC的最小值;OQ的最小值.②如图2,Q点为y轴上一动点,请直接写出DQ+1445. 计算:(1)(x +y)2+x(x −2y);(2)(1−m m+3)÷m 2−9m 2+6m+9.46. 为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?47.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.48.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=6x性质及其应用的部分过程,请x2+1按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x…−5−4−3−2−1012345…y=6xx2+1…−1513−2417______ −125−303125______24171513…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=−1时,函数取得最小值−3.③当x<−1或x>1时,y随x的增大而减小;当−1<x<1时,y随x的增大而增大.(3)已知函数y=2x−1的图象如图所示,结合你所画的函数图象,直接写出不等式6xx2+1>2x−1的解集(保留1位小数,误差不超过0.2).49.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数--“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14÷5=2…4,14÷3=4…2,所以14是“差一数”;19÷5=3…4,但19÷3=6…1,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.50.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A 的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售价不a%.求a的值.变.A,B两个品种全部售出后总收入将在去年的基础上增加20951.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(−3,−4),B(0,−1).(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.52.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√2AD;2(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.答案和解析1.【答案】B【知识点】平行线的性质【解析】解:如图所示:∵a//b,∴∠3=∠1=50°,∴∠2=∠3=50°;故选:B.由平行线的性质和对顶角相等即可得出答案.本题考查了平行线的性质和对顶角相等的性质;熟练掌握平行线的性质是解题的关键.2.【答案】C【知识点】科学记数法-绝对值较大的数【解析】解:700000用科学记数法表示为7×105,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【知识点】简单组合体的三视图【解析】解:该几何体从左边看有两列,左边一列底层是一个正方形,右边一列是三个正方形.故选:B.根据左视图即从左边观察所得图形.本题主要考查简单组合体的三视图,解题的关键是掌握三视图的定义.4.【答案】A【知识点】根的判别式【解析】解:∵关于x 的一元二次方程ax 2−2x +2=0有两个相等实数根, ∴{a ≠0△=(−2)2−4×a ×2=0, ∴a =12. 故选:A .根据一元二次方程的定义及根的判别式△=0,即可得出关于a 的一元一次不等式及一元一次方程,解之即可得出a 的值.本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键. 5.【答案】D【知识点】平移中的坐标变化【解析】【分析】此题主要考查了坐标与图形变化−平移,关键是掌握平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.根据平移的方法结合平移中点的坐标变换规律,可以直接算出平移后点的坐标.【解答】解:将点(2,1)向下平移3个单位长度所得点的坐标为(2,1−3),即(2,−2); 故选D .6.【答案】A【知识点】中心对称图形、轴对称图形【解析】解:A 、是轴对称图形,不是中心对称图形,故本选项符合题意; B 、不是轴对称图形,是中心对称图形,故本选项不合题意;C 、既是轴对称图形,又是中心对称图形,故本选项不合题意;D 、既不是轴对称图形,又不是中心对称图形,故本选项不合题意.故选:A .根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.【答案】C【知识点】算术平均数、中位数、方差、众数【解析】解:A、把这组数据从小到大排列为:2,3,3,5,7,最中间的数是3,则中位数是3,故本选项错误;B、3出现了2次,出现的次数最多,则众数是3,故本选项错误;C、平均数是:(3+7+5+3+2)÷5=4,故本选项正确;[2×(3−4)2+(7−4)2+(5−4)2+(2−4)2]=3.2,故本选项错误;D、方差是:15故选:C.根据平均数、众数、中位数及方差的定义和公式分别对每一项进行分析,再进行判断即可.此题考查了平均数、众数、中位数及方差的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数;一般地设n个数据,x1,x2,…x n的平均数[(x1−x−)2+(x2−x−)2+⋯+(x n−x−)2].为x−,则方差S2=1n8.【答案】C【知识点】余角和补角【解析】解:设这个角是x°,根据题意,得x=2(180−x)+30,解得:x=130.即这个角的度数为130°.故选:C.若两个角的和等于180°,则这两个角互补.结合已知条件列方程求解.此题考查了补角的知识,属于基础题,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.9.【答案】D【知识点】三角形内角和定理、等腰三角形的性质【解析】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=12(180°−40°)=70°,∴∠ACD=90°−70°=20°,故选:D.根据三角形的内角和和等腰三角形的性质即可得到结论.本题考查了等腰三角形的性质,三角形的内角和定理,正确的理解题意是解题的关键.10.【答案】D【知识点】一次函数图象与系数的关系、二次函数图象与系数的关系、反比例函数的图象【解析】【分析】本题考查了一次函数的图象,反比例函数图象以及二次函数图象与系数的关系的知识,解题的关键是了解三种函数的图象的性质,难度不大.首先根据二次函数及反比例函数的图象确定k、b的符号,然后根据一次函数的性质确定答案即可.【解答】解:根据反比例函数的图象位于一、三象限知k>0,根据二次函数的图象可知a<0,b<0,∴函数y=kx−b的大致图象经过一、二、三象限,故选D.11.【答案】A【知识点】由实际问题抽象出分式方程【解析】解:设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为x1+35%万平方米,依题意,得:80x1+35%−80x=40,即80(1+35%)x −80x=40.故选:A.设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为x1+35%万平方米,根据工作时间=工作总量÷工作效率结合实际比原计划提前40天完成了这一任务,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.12.【答案】B【知识点】勾股定理、平行四边形的性质、全等三角形的判定与性质【解析】解:如图,延长EF交DA的延长线于Q,连接DE,设BE=x.∵四边形ABCD是平行四边形,∴DQ//BC,∴∠Q=∠BEF,∵AF=FB,∠AFQ=∠BFE,∴△QFA≌△EFB(AAS),∴AQ=BE=x,∵∠EFD=90°,∴DF⊥QE,∴DQ=DE=x+2,∵AE⊥BC,BC//AD,∴AE⊥AD,∴∠AEB=∠EAD=90°,∵AE2=DE2−AD2=AB2−BE2,∴(x+2)2−4=6−x2,整理得:2x2+4x−6=0,解得x=1或x=−3(舍弃),∴BE=1,∴AE=√AB2−BE2=√6−1=√5,故选:B.如图,延长EF交DA的延长线于Q,连接DE,设BE=x.首先证明DQ=DE=x+2,利用勾股定理构建方程即可解决问题.本题考查平行四边形的性质,勾股定理,全等三角形的判定和性质等知识,属于中考选择题中的压轴题.13.【答案】A【知识点】有理数大小比较【解析】解:∵−3<0<1<2,∴这四个数中最小的数是−3.故选:A.根据正数大于0,0大于负数,正数大于负数,可得答案.本题考查了有理数比较大小,正数大于0,0大于负数,正数大于负数.14.【答案】A【知识点】轴对称图形【解析】解:B、C、D都不是轴对称图形,A是轴对称图形,故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念,找出图形的对称轴.15.【答案】C【知识点】科学记数法-绝对值较大的数【解析】解:26000=2.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.【答案】B【知识点】列代数式、图形规律问题【解析】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,…∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.根据题意,即可得解.本题考查图形规律问题,属于基础题.17.【答案】D【知识点】切线的性质【解析】解:∵AB是⊙O的切线,A为切点,∴∠A=90°,∵∠B=20°,∴∠AOB=90°−20°=70°,故选:D.根据切线的性质和三角形的内角和即可得到结论.本题考查了切线的性质,三角形的内角和,熟练掌握切线的性质是解题的关键.18.【答案】C【知识点】二次根式的混合运算【解析】解:A.√2与√3不是同类二次根式,不能合并,此选项计算错误;B.2与√2不是同类二次根式,不能合并,此选项计算错误;C.√2×√3=√2×3=√6,此选项计算正确;D.2√3与−2不是同类二次根式,不能合并,此选项错误;故选:C.根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.19.【答案】D【知识点】一元一次方程的解法【解析】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.根据等式的基本性质将方程两边都乘以6可得答案.【解答】解:方程两边都乘以6,得:3(x+1)=6−2x,故选:D.20.【答案】D【知识点】两点间的距离公式*、坐标与图形性质、位似图形及相关概念【解析】【分析】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算线段DF的长.【解答】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2√5.故选:D.21.【答案】B【知识点】解直角三角形的应用【解析】解:如图,由题意得,∠ADF=28°,CD=45,BC=60,在Rt△DEC中,∵山坡CD的坡度i=1:0.75,∴DEEC =10.75=43,设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴EC =3x =27,DE =4x =36=FB ,∴BE =BC +EC =60+27=87=DF ,在Rt △ADF 中,AF =tan28°×DF ≈0.53×87≈46.11,∴AB =AF +FB =46.11+36≈82.1,故选:B .构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE 、EC 、BE 、DF 、AF ,进而求出AB .本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计算的前提.22.【答案】A【知识点】一元一次不等式组的解法、分式方程的一般解法、分式方程的解【解析】解:不等式组整理得:{x ≤7x ≤a, 由解集为x ≤a ,得到a ≤7,分式方程去分母得:y −a +3y −4=y −2,即3y −2=a ,解得:y =a+23,由y 为正整数解,且y ≠2得到a =1,7,1×7=7,故选A.不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整数方程,由分式方程有正整数解,确定出a 的值即可.此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.23.【答案】B【知识点】翻折变换(折叠问题)、勾股定理、三角形的面积【解析】本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.首先求出△ABD的面积.根据三角形的面积公式求出DF,设点F到BD的距离为h,根据12⋅BD⋅ℎ=12⋅BF⋅DF,求出BD即可解决问题.【解答】解:∵DG=GE,∴S△ADG=S△AEG=2,∴S△ADE=4,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=4,∠BFD=90°,∴12⋅(AF+DF)⋅BF=4,∴12⋅(3+DF)⋅2=4,∴DF=1,∴DB=√BF2+DF2=√12+22=√5,设点F到BD的距离为h,则有12⋅BD⋅ℎ=12⋅BF⋅DF,∴ℎ=2√55,故选:B.24.【答案】B【知识点】反比例函数图象上点的坐标特征、矩形的性质、反比例函数系数k的几何意义、三角形的面积、平行线的判定与性质【解析】【分析】本题考查反比例函数的性质,矩形的性质,平行线的判断和性质,等高模型等知识,解题的关键是证明BD//AE,利用等高模型解决问题,属于中考选择题中的压轴题.连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.证明BD//AE,推出S△ABE=S△AOE=18,推出S△EOF=12S△AOE=9,可得S△FME=13S△EOF=3,由此即可解决问题.【解答】解:如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.∵AN//FM,AF=FE,∴MN=ME,∴FM=12AN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM=k2,∴12⋅ON⋅AN=12⋅OM⋅FM,∴ON=12OM,∴ON=MN=EM,∴ME=13OE,∴S△FME=13S△FOE,∵AD平分∠OAE,∴∠OAD=∠EAD,∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=∠DAE,∴AE//BD,∴S△ABE=S△AOE,∴S△AOE=18,∵AF=EF,∴S△EOF=12S△AOE=9,∴S△FME=13S△EOF=3,∴S△FOM=S△FOE−S△FME=9−3=6=k2,。
2023年重庆市中考数学试卷(A卷)(含解析)
2023年重庆市中考数学试卷(A卷)一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 8的相反数是( )A. −8B. 8C. −18D. 182.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是( )A.B.C.D.3. 反比例函数y=−4x的图象一定经过的点是( )A. (1,4)B. (−1,−4)C. (−2,2)D. (2,2)4. 若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是( )A. 1:2B. 1:4C. 1:8D. 1:165.如图,AB//CD,AD⊥AC,若∠1=55°,则∠2的度数为( )A. 35°B. 45°C. 50°D. 55°6. 估计2(8+10)的值应在( )A. 7和8之间B. 8和9之间C. 9和10之间D. 10和11之间7. 用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是( )A. 39B. 44C. 49D. 548. 如图,AC是⊙O的切线,B为切点,连接OA,OC.若∠A=30°,AB=23,BC=3,则O C的长度是( )A. 3B. 23C. 13D. 69.如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于( )A. 2αB. 90°−2αC. 45°−αD. 90°−α10. 在多项式x−y−z−m−n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x−y−|z−m|−n=x−y−z+m−n,|x−y|−z−|m−n|=x−y−z−m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题(本大题共8小题,共32.0分)11. 计算:2−1+30=______ .12.如图,正五边形ABCDE 中,连接AC ,那么∠BAC 的度数为______ .13. 一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是______ .14. 某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为______ .15. 如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 为BC 上一点,连接AD .过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 交AD 的延长线于点F .若BE =4,CF =1,则EF 的长度为______ .16.如图,⊙O 是矩形ABCD 的外接圆,若AB =4,AD =3,则图中阴影部分的面积为______ .(结果保留π)17. 若关于x 的一元一次不等式组{x +32≤42x −a ≥2至少有2个整数解,且关于y 的分式方程a−1y−2+42−y =2有非负整数解,则所有满足条件的整数a 的值之和是______ .18. 如果一个四位自然数−a b c d的各数位上的数字互不相等且均不为0,满足−a b−−b c=−c d,那么称这个四位数为“递减数”.例如:四位数4129,∵41−12=29,∴4129是“递减数”;又如:四位数5324,∵53−32=21≠24,∴5324不是“递减数”.若一个“递减数”为−a312,则这个数为______ ;若一个“递减数”的前三个数字组成的三位数−a b c与后三个数字组成的三位数−b c d的和能被9整除,则满足条件的数的最大值是______ .三、解答题(本大题共8小题,共78.0分。
2020年重庆市中考数学试题A卷(含答案与解析)
数学(A卷)
一、选择题
1.下列各数中,最小的数是()
A.-3B.0C.1D.2
2.下列图形是轴对称图形的是()
A. B. C. D.
3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()
A. B. C. D.
6.下列计算中,正确的是()
A. B. C. D.
7.解一元一次方程 时,去分母正确的是()
A. B.
C. D.
8.如图,在平面直角坐标系中, 的顶点坐标分别是 , , ,以原点为位似中心,在原点的同侧画 ,使 与 成位似图形,且相似比为2:1,则线段DF的长度为()
A. B.2C.4D.
9.如图,在距某居民楼AB楼底B点左侧水平距离60m C点处有一个山坡,山坡CD的坡度(或坡比) ,山坡坡底C点到坡顶D点的距离 ,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为()
(参考数据: , , )
A. 76.9mB. 82.1mC. 94.8mD. 112.6m
10.若关于x的一元一次不等式结 的解集为 ;且关于 的分式方程 有正整数解,则所有满足条件的整数a的值之积是()
A. 7B.-14C. 28D.-56
11.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把 沿着AD翻折,得到 ,DE与AC交于点G,连接BE交AD于点F.若 , , , 的面积为2,则点F到BC的距离为( )
数学参考答案与解析
一、选择题
1.下列各数中,最小的数是()
A.-3B.0C.1D.2
2023年重庆市中考数学真题(A卷)(答案解析)
重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)1.【答案】A【解析】解:8的相反数是8-,故选A .2.【答案】D【解析】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .3.【答案】C【解析】解:A 选项,将1x =代入反比例函数4y x =-得到14y =-≠,故A 项不符合题意;B 选项,项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 选项,项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 选项,项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .4.【答案】B【解析】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .5.【答案】A【解析】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .6.【答案】B+=4=+∵2 2.5<<,∴45<<,∴849<+,故选:B .7.【答案】B【解析】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .8.【答案】C【解析】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .9.【答案】A【解析】将ADF 绕点A 逆时针旋转90︒至ABH,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .10.【答案】C【解析】解:x y z m n x y z m n ----=----,故说法①正确.若使其运算结果与原多项式之和为0,必须出现x -,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x y z m n x y z m n ----=----;x y z m n x y z m n ----=-+--;||x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+.当添加两个绝对值时,共有3种情况,分别是x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+;x y z m n x y z m n ----=-+-+.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .二、填空题:(本大题8个小题,每小题4分,共32分)11.【答案】1.5【解析】1023-+=11=1.52+.故答案为1.5.12.【答案】36°【解析】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.13.【答案】19【解析】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.14.【答案】()2150111815x +=【解析】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.15.【答案】3【解析】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.16.【答案】25124π-【解析】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;17.【答案】4【解析】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y-+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.18.【答案】①.4312②.8165【解析】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a ab b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)19.【答案】(1)21a -(2)11x +【解析】(1)解:原式2221a a a =-+-21a =-;(2)原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.20.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.21.【答案】(1)72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】(1)解:由题意可知10架A 款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该组数据的众数为72,即72a =;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,则B 款智能玩具飞机运行时间合格的架次为:1040%4⨯=(架)则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.22.【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面60份【解析】(1)解:设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解得,80x =,∴17090x -=,∴购买杂酱面80份,购买牛肉面90份;(2)解:设购买牛肉面a 份,则购买杂酱面1.5a 份,由题意知,1260120061.5a a+=,解得60a =,经检验,60a =是分式方程的解,∴购买牛肉面60份.23.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】(1)解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.24.【答案】(1)AD 的长度约为14千米(2)小明应该选择路线①,理由见解析【解析】(1)解:过点D 作DF AB ⊥于点F ,由题意可得:四边形BCDF 是矩形,∴10DF BC ==千米,∵点D 在点A 的北偏东45︒方向,∴45DAF DAN Ð=Ð=°,∴14sin 45DF AD ==°千米,答:AD 的长度约为14千米;(2)由题意可得:10BC =,14CD =,∴路线①的路程为:14102438AD DC BC ++=+=+(千米),∵10DF BC ==,45DAF DAN Ð=Ð=°,90DFA ∠=︒,∴DAF △为等腰直角三角形,∴10AF DF ==,∴101424AB AF BF AF DC =+=+=+=,由题意可得60EBS Ð=°,∴60E ∠=︒,∴tan 60AB AE ==°,sin 60AB BE ==°,所以路线②的路程为:42AE BE +=千米,∴路线①的路程<路线②的路程,故小明应该选择路线①.25.【答案】(1)213222y x x =-++(2)PDE △周长的最大值65105+,此时点()2,3P (3)以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛ ⎝⎭或137,22⎛⎫- ⎪ ⎪⎝⎭【解析】(1)把()1,3、()1,0A -代入22y ax bx =++得,3202a b a b =++⎧⎨=-+⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为213222y x x =-++;(2)延长PE 交x 轴于F,∵过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,∴DEP BCO ∠=∠,90PDE COB ∠=∠=︒,∴DPE OBC ,∴DPE PEOBC BC =周长周长 ,∴PEDPE OBC BC =⋅周长周长 ,∴当PE 最大时PDE △周长的最大∵抛物线的表达式为213222y x x =-++,∴()4,0B ,∴直线BC 解析式为122y x =-+,BC ==设213,222P m m m ⎛⎫-++ ⎪⎝⎭,则1,22E m m ⎛⎫-+ ⎪⎝⎭∴()222131112222222222PE m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭,∴当2m =时2PE =最大,此时()2,3P ∵BOC周长为6OC OB BC ++=+,∴PDE △(651065++=,此时()2,3P ,即PDE △周长的最大值65105+,此时点()2,3P ;(3)∵将该抛物线沿射线CB方向平移个单位长度,可以看成是向右平移2个单位长度再向下平移一个单位长度,∴平移后的解析式为()()221317222142222y x x x =--+-+-=-+-,此抛物线对称轴为直线72x =,∴设7,2M n ⎛⎫ ⎪⎝⎭,(),N s t ∵()2,3P ,()1,0A -∴218PA =,()()22227923324PM n n ⎛⎫=-+-=+- ⎪⎝⎭,()22227811024AM n n ⎛⎫=++-=+ ⎪⎝⎭,当PA 为对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴PA 与MN 互相平分,且PM AM=∴()22981344n n +-=+,解得32n =-∵PA 中点坐标为2130,22-+⎛⎫ ⎪⎝⎭,MN 中点坐标为72,22s n t ⎛⎫+ ⎪+ ⎪ ⎪⎝⎭,∴7123s n t ⎧+=⎪⎨⎪+=⎩,解得5292s t ⎧=-⎪⎪⎨⎪=⎪⎩,此时59,22N ⎛⎫- ⎪⎝⎭;当PA 为边长且AM 和PN 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AM 与PN 互相平分,且PMPA =∴()293184n +-=,解得3732n =±∵PN 中点坐标为23,22s t ++⎛⎫ ⎪⎝⎭,AM 中点坐标为7102,22n ⎛⎫- ⎪+ ⎪ ⎪⎝⎭,∴721230s t n ⎧+=-⎪⎨⎪+=+⎩,解得122s t ⎧=⎪⎪⎨⎪=±⎪⎩,此时137,22N ⎛⎫ ⎪ ⎪⎝⎭或137,22N ⎛- ⎝⎭;同理,当PA 为边长且AN 和PM 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AN 和PM 互相平分,且AM PA =281184n +=,此方程无解;综上所述,以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛⎫ ⎪ ⎪⎝⎭或137,22⎛- ⎝⎭;26.【答案】(1)(2)见解析(3)435【解析】(1)解:在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,∴sin 32AC AB B ===,∵BD =,∴AD AB BD =-=(2)证明:如图所示,延长FB 使得FH FG =,连接EH ,∵F 是DE 的中点则DF FE =,FH FG =,GFD HFE ∠=∠,∴()SAS GFD HFE ≌,∴H G ∠=∠,∴EH GC ∥,∴60HEC ECD ∠=∠=︒∵DEC 是等边三角形,∴60DEC EDC ∠=∠=︒,∵60DEC DBC ==︒∠∠,∴,,,B C D E 四点共圆,∴EDB BCE ∠=∠,BEC BDC ∠=∠,∴6060BEH BEC BDC EDB ∠=︒-∠=︒-∠=∠,∵G BCE BDE H ∠=∠=∠=∠,∴H BEH ∠=∠,∴EB BH =,∴FH FG BF BH BF EB ==+=+;(3)解:如图所示,在CD 取得最小值的条件下,即CD AB ⊥,设4AB a =,则2BC a =,AC =,∴24AC BC a CD AB a⨯⨯===,12BD BC a ==,∵将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .∴BE BN=∴点N 在以B 为圆心,a 为半径的圆上运动,取AB 的中点S ,连接SP ,则SP 是ABN 的中位线,∴P 在半径为12a 的S 上运动,当CP 取最大值时,即,,P S C 三点共线时,此时如图,过点P 作PTAC ⊥于点T ,过点N 作NR AC ⊥于点R ,∵S 是AB 的中点,60ABC ∠=︒∴SC SB BC ==,∴BCS △是等边三角形,则60PCB ∠=︒,∴30PCA ACB BCP ∠=∠-∠=︒,∵2BC a =,4AB a =,∴2CS BC a ==,12PS a =∴52PC a =,15sin 24PT PC PCT PC a =⨯∠==,TC ==∵AC =,∴AT =,如图所示,连接PQ ,交NR 于点U ,则四边形PURT是矩形,∴PU AR ∥,P 是AN 的中点,∴1NU NP UR PA==即PD 是ANR 的中位线,同理可得PT 是ANR 的中位线,∴54NU UR PT a ===,12PU AR AT ===∵BCS △是等边三角形,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,∴2120QCP BCP ∠=∠=︒∴PQ ===则UQ PQ PU =-=-=在Rt NUQ中,432NQ a =∴43432552a NQ CP a ==.。
2023年重庆市中考数学试卷(A卷)及其答案
2023年重庆市中考数学试卷(A卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)8的相反数是()A.﹣8B.8C.D.2.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.3.(4分)反比例函数y=﹣的图象一定经过的点是()A.(1,4)B.(﹣1,﹣4)C.(﹣2,2)D.(2,2)4.(4分)若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.(4分)如图,AB∥CD,AD⊥AC,若∠1=55°,则∠2的度数为()A.35°B.45°C.50°D.55°6.(4分)估计(+)的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.(4分)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.(4分)如图,AC是⊙O的切线,B为切点,连接OA,OC.若∠A=30°,AB=2,BC=3,则OC 的长度是()A.3B.C.D.69.(4分)如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于()A.2αB.90°﹣2αC.45°﹣αD.90°﹣α10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:2﹣1+30=.12.(4分)如图,正五边形ABCDE中,连接AC,那么∠BAC的度数为.13.(4分)一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是.14.(4分)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B作BE ⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为.16.(4分)如图,⊙O是矩形ABCD的外接圆,若AB=4,AD=3,则图中阴影部分的面积为.(结果保留π)17.(4分)若关于x的一元一次不等式组至少有2个整数解,且关于y的分式方程+=2有非负整数解,则所有满足条件的整数a的值之和是.18.(4分)如果一个四位自然数的各数位上的数字互不相等且均不为0,满足﹣=,那么称这个四位数为“递减数”.例如:四位数4129,∵41﹣12=29,∴4129是“递减数”;又如:四位数5324,∵53﹣32=21≠24,∴5324不是“递减数”.若一个“递减数”为,则这个数为;若一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,则满足条件的数的最大值是.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)a(2﹣a)+(a+1)(a﹣1);(2)÷(x﹣).20.(10分)学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC的垂直平分线交DC于点E,交AB于点F,垂足为点O.(只保留作图痕迹)已知:如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为点O.求证:OE =OF.证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=.∵EF垂直平分AC,∴.又∠EOC=,∴△COE≌△AOF(ASA).∴OE=OF.小虹再进一步研究发现,过平行四边形对角线AC中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线.21.(10分)为了解A、B两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A、B两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x表示,共分为三组:合格60≤x<70,中等70≤x<80,优等x≥80),下面给出了部分信息:A款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82.B款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73.两款智能玩具飞机运行最长时间统计表类别A B平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:(1)上述图表中a=,b=,m=;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?22.(10分)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?23.(10分)如图,△ABC是边长为4的等边三角形,动点E,F分别以每秒1个单位长度的速度同时从点A出发,点E沿折线A→B→C方向运动,点F沿折线A→C→B方向运动,当两者相遇时停止运动.设运动时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E,F相距3个单位长度时t的值.24.(10分)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A﹣D﹣C﹣B;②A﹣E﹣B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.(参考数据:≈1.41,≈1.73)(1)求AD的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2过点(1,3),且交x轴于点A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PD⊥BC于点D,过点P作y轴的平行线交直线BC于点E,求△PDE周长的最大值及此时点P的坐标;(3)在(2)中△PDE周长取得最大值的条件下,将该抛物线沿射线CB方向平移个单位长度,点M为平移后的抛物线的对称轴上一点.在平面内确定一点N,使得以点A,P,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.26.(10分)在Rt△ABC中,∠ACB=90°,∠B=60°,点D为线段AB上一动点,连接CD.(1)如图1,若AC=9,BD=,求线段AD的长;(2)如图2,以CD为边在CD上方作等边△CDE,点F是DE的中点,连接BF并延长,交CD的延长线于点G.若∠G=∠BCE,求证:GF=BF+BE;(3)在CD取得最小值的条件下,以CD为边在CD右侧作等边△CDE.点M为CD所在直线上一点,将△BEM沿BM所在直线翻折至△ABC所在平面内得到△BNM.连接AN,点P为AN的中点,连接CP,当CP取最大值时,连接BP,将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,请直接写出此时的值.2023年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)8的相反数是()A.﹣8B.8C.D.【解答】解:8的相反数是﹣8.故选:A.2.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.【解答】解:从正面看,底层是两个小正方形,上层的右边是一个小正方形,故选:D.3.(4分)反比例函数y=﹣的图象一定经过的点是()A.(1,4)B.(﹣1,﹣4)C.(﹣2,2)D.(2,2)【解答】解:∵反比例函数y=﹣,∴k=﹣4,A、∵1×4=4≠﹣4,∴此点不在函数图象上,故本选项不合题意;B、∵﹣1×(﹣4)=4≠﹣4,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×2=﹣4,∴此点在函数图象上,故本选项符合题意;D、∵2×2=4≠﹣4,∴此点不在函数图象上,故本选项不合题意.故选:C.4.(4分)若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:16【解答】解:∵两个相似三角形周长的比为1:4,∴这两个三角形对应边的比为1:4,故选:B.5.(4分)如图,AB∥CD,AD⊥AC,若∠1=55°,则∠2的度数为()A.35°B.45°C.50°D.55°【解答】解:∵AB∥CD,∴∠BAC+∠1=180°,∵∠1=55°,∴∠BAC=125°,∵AD⊥AC,∴∠CAD=90°,∴∠2=∠BAC﹣∠CAD=35°,故选:A.6.(4分)估计(+)的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间【解答】解:原式=4+2.∵2.52=6.25,∴2<<2.5,∴4<2<5,∴8<4+2<9.故选:B.7.(4分)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【解答】解:由图可得,图案①有:4+5=9根小木棒,图案②有:4+5×2=14根小木棒,图案③有:4+5×3=19根小木棒,…,∴第n个图案有:(4+5n)根小木棒,∴第⑧个图案有:4+5×8=44根小木棒,故选:B.8.(4分)如图,AC是⊙O的切线,B为切点,连接OA,OC.若∠A=30°,AB=2,BC=3,则OC 的长度是()A.3B.C.D.6【解答】解:连接OB,∵AC是⊙O的切线,∴OB⊥AC,∴∠ABO=∠CBO=90°,∵∠A=30°,AB=2,∴OB=AB=2,∵BC=3,∴OC===,故选:C.9.(4分)如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于()A.2αB.90°﹣2αC.45°﹣αD.90°﹣α【解答】解:在正方形ABCD中,AD=AB,∠BAD=∠ABC=∠ADC=90°,将△ADF绕点A顺时针旋转90°,得△ABG,如图所示:则AF=AG,∠DAF=∠BAG,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠GAE=∠FAE=45°,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS),∴∠AEF=∠AEG,∵∠BAE=α,∴∠AEB=90°﹣α,∴∠AEF=∠AEB=90°﹣α,∴∠FEC=180°﹣∠AEF﹣∠AEB=180°﹣2×(90°﹣α)=2α,故选:A.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y﹣z|﹣m ﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:2﹣1+30=.【解答】解:2﹣1+30=+1=,故答案为:.12.(4分)如图,正五边形ABCDE中,连接AC,那么∠BAC的度数为36°.【解答】解:∵五边形ABCDE是正五边形,∴AB=BC,∠B=(5﹣2)×180°÷5=108°,∴∠BAC=∠BCA===36°,故答案为:36°.13.(4分)一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是.【解答】解:画树状图如下:共有9种等可能的结果,其中两次都摸到红球的结果有1种,∴两次都摸到红球的概率是,故答案为:.14.(4分)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为1501(1+x)2=1815.【解答】解:根据题意,得1501(1+x)2=1815,故答案为:1501(1+x)2=1815.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B作BE ⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为3.【解答】解:∵BE⊥AD,CF⊥AD,∴∠BEA=∠AFC=90°,∴∠BAE+∠ABE=90°,∵∠BAC=90°,∴∠BAE+∠FAC=90°,∴∠FAC=∠ABE,在△ABE和△CAF中,,∴△ABE≌△CAF(AAS),∴AF=BE,AE=CF,∵BE=4,CF=1,∴AF=BE=4,AE=CF=1,∴EF=AF﹣AE=4﹣1=3,故答案为:3.16.(4分)如图,⊙O是矩形ABCD的外接圆,若AB=4,AD=3,则图中阴影部分的面积为π﹣12.(结果保留π)【解答】解:连接BD ,∵∠BAD =90°,∴BD 是⊙O 的直径,∵AB =4,AD =3,∴BD ===5,∴S 阴影=S ⊙O ﹣S 矩形ABCD =﹣3×4=π﹣12.故答案为:π﹣12.17.(4分)若关于x 的一元一次不等式组至少有2个整数解,且关于y 的分式方程+=2有非负整数解,则所有满足条件的整数a 的值之和是4.【解答】解:解不等式组,得,∵至少有2个整数解,∴≤4,∴a ≤6,解分式方程+=2,得y =,∵y 的值是非负整数,a ≤6,∴当a =5时,y =2,当a =3时,y =1,当a=1时,y=0,∵y=2是分式方程的增根,∴a=5(舍去),∴满足条件的a的值有3和1,∵3+1=4,∴所有满足条件的整数a的值之和是4.故答案为:4.18.(4分)如果一个四位自然数的各数位上的数字互不相等且均不为0,满足﹣=,那么称这个四位数为“递减数”.例如:四位数4129,∵41﹣12=29,∴4129是“递减数”;又如:四位数5324,∵53﹣32=21≠24,∴5324不是“递减数”.若一个“递减数”为,则这个数为4312;若一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,则满足条件的数的最大值是8165.【解答】解:由题意可得10a+3﹣31=12,解得a=4,∴这个数为4312,由题意可得,10a+b﹣(10b+c)=10c+d,整理,可得10a﹣9b﹣11c=d,一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和为:100a+10b+c+100b+10c+d=100a+10b+c+100b+10c+10a﹣9b﹣11c=110a+101b=99(a+b)+11a+2b,又∵一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,∴是整数,且a≠b≠c≠d,1≤a≤9,1≤b≤9,1≤c≤9,0≤d≤9,a=9时,原四位数可得最大值,此时b只能取0,不符合题意,舍去,当a=8时,b=1,此时71﹣11c=d,c取9或8或7时,均不符合题意,当c取6时,d=5,∴满足条件的数的最大值是8165,故答案为:4312;8165.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)a(2﹣a)+(a+1)(a﹣1);(2)÷(x﹣).【解答】解:(1)a(2﹣a)+(a+1)(a﹣1)=2a﹣a2+a2﹣1=2a﹣1.(2)÷(x﹣)===.20.(10分)学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC的垂直平分线交DC于点E,交AB于点F,垂足为点O.(只保留作图痕迹)已知:如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为点O.求证:OE =OF.证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO.∵EF垂直平分AC,∴OA=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴OE=OF.小虹再进一步研究发现,过平行四边形对角线AC中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线被平分.【解答】证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO.∵EF垂直平分AC,∴OA=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴OE=OF;过平行四边形对角线中点的直线被平分,故答案为:∠FAO;OA=OC;∠FOA;被平分.21.(10分)为了解A、B两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A、B两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x表示,共分为三组:合格60≤x<70,中等70≤x<80,优等x≥80),下面给出了部分信息:A款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82.B款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73.两款智能玩具飞机运行最长时间统计表类别A B平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:(1)上述图表中a=72,b=70.5,m=10;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【解答】解:(1)A款智能玩具飞机10架一次充满电后运行最长时间中,72出现的次数最多,故众数a=72,把B款智能玩具飞机10架一次充满电后运行最长时间从小到大排列,排在中间的两个数是70和71,故中位数b==70.5,m%=1﹣50%﹣40%=10%,即m=10.故答案为:72,70.5,10;(2)A款智能玩具飞机运行性能更好,理由如下:虽然两款智能玩具飞机运行最长时间的平均数相同,但A款智能玩具飞机运行最长时间的中位数和众数均高于B款智能玩具飞机,所以A款智能玩具飞机运行性能更好;(答案不唯一);(3)200×+120×(1﹣40%)=120+72=192(架),答:估计两款智能玩具飞机运行性能在中等及以上的大约共有192架.22.(10分)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?【解答】解:(1)设购买炸酱面x份,牛肉面y份,根据题意得:,解得:.答:购买炸酱面80份,牛肉面90份;(2)设购买牛肉面m份,则购买炸酱面(1+50%)m份,根据题意得:﹣=6,解得:m=60,经检验,m=60是所列方程的解,且符合题意.答:购买牛肉面60份.23.(10分)如图,△ABC是边长为4的等边三角形,动点E,F分别以每秒1个单位长度的速度同时从点A出发,点E沿折线A→B→C方向运动,点F沿折线A→C→B方向运动,当两者相遇时停止运动.设运动时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E,F相距3个单位长度时t的值.【解答】解:(1)当点E、F分别在AB、AC上运动时,△AEF为边长等于t的等边三角形,∴点E,F的距离等于AE、AF的长,∴当0<t≤4时,y关于t的函数表达式为y=t,当点E、F都在BC上运动时,点E,F的距离等于4﹣2(t﹣4),∴当4<t≤6时,y关于t的函数表达式为y=4﹣2(t﹣4)=12﹣2t,∴y关于t的函数表达式为;(2)由(1)中得到的函数表达式可知:当t=0时,y=0;当t=4时,y=4;当t=6时,y=0,分别描出三个点(0,0),(4,4),(6,0),然后顺次连线,如图:该函数的其中一个性质:当0<t≤4时,y随t的增大而增大.(答案不唯一,正确即可)(3)把y=3分别代入y=t和y=12﹣2t中,得:3=t,3=12﹣2t,解得:t=3或t=4.5,∴点E,F相距3个单位长度时t的值为3或4.5.24.(10分)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A﹣D﹣C﹣B;②A﹣E﹣B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.(参考数据:≈1.41,≈1.73)(1)求AD的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?【解答】解:(1)过D作DF⊥AE,垂足为F,由题意得:四边形ABCF是矩形,∴AF=BC=10千米,在Rt△ADF中,∠DAF=45°,∴AD===10≈10×1.41≈14(千米).∴AD的长度约为14米;(2)小明应该选择线路①,理由:在Rt△ADF中,∠DAF=45°,AF=10千米,∴∠ADF=45°=∠DAF,∴DF=AF=10千米,在Rt△ABE中,∠ABE=90°﹣60°=30°,AB=DF+CD=24千米,∴AE=AB•tan30°=24×=8(千米),EB=2AE=16千米,按路线①A﹣D﹣C﹣B走的路程为AD+DC+CB=17+14+10=41(千米)按路线②A﹣E﹣B走的路程为AE+EB=8+16≈241.73=41.52(千米)∵41千米<41.52千米,∴小明应该选择线路①.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2过点(1,3),且交x轴于点A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PD⊥BC于点D,过点P作y轴的平行线交直线BC于点E,求△PDE周长的最大值及此时点P的坐标;(3)在(2)中△PDE周长取得最大值的条件下,将该抛物线沿射线CB方向平移个单位长度,点M为平移后的抛物线的对称轴上一点.在平面内确定一点N,使得以点A,P,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=﹣x2+x+2;(2)令y=﹣x2+x+2=0,解得:x=4或﹣1,即点B(4,0),∵PE∥y轴,则∠PED=∠OCB,则tan∠PED=tan∠OCB=2,则sin∠PED=,cos∠PED=,由点B、C的坐标得,直线BC的表达式为:y=﹣x+2,则PE=﹣x2+x+2+x﹣2=﹣(x﹣2)2+2≤2,即PE的最大值为2,此时,点P(2,3),则△PDE周长的最大值=PE(1+sin∠PED+cos∠PED)=(1++)PE=,即△PDE周长的最大值为,点P(2,3);(3)抛物线沿射线CB方向平移个单位长度,相当于向右平移2个单位向下平移1个单位,则平移后抛物线的对称轴为x=,设点M(,m),点N(s,t),由点A、P的坐标得,AP2=18,当AP是对角线时,由中点坐标公式和AM=AN得:,解得:,即点N的坐标为:(﹣,);当AM或AN是对角线时,由中点坐标公式和AN=AP或AM=AP得:或,解得:(不合题意的值已舍去),即点N的坐标为:(,);综上,点N的坐标为:(,﹣)或(,)或(﹣,).26.(10分)在Rt△ABC中,∠ACB=90°,∠B=60°,点D为线段AB上一动点,连接CD.(1)如图1,若AC=9,BD=,求线段AD的长;(2)如图2,以CD为边在CD上方作等边△CDE,点F是DE的中点,连接BF并延长,交CD的延长线于点G.若∠G=∠BCE,求证:GF=BF+BE;(3)在CD取得最小值的条件下,以CD为边在CD右侧作等边△CDE.点M为CD所在直线上一点,将△BEM沿BM所在直线翻折至△ABC所在平面内得到△BNM.连接AN,点P为AN的中点,连接CP,当CP取最大值时,连接BP,将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,请直接写出此时的值.【解答】(1)解:在Rt△ABC中,∠ACB=90°,∵∠B=60°,AC=9,∴BC==3,AB=2BC=6∵BD=,∴AD=AB﹣BD=5;(2)证明:取AB的中点O,连接OC,如图:在Rt△ABC中,点O为斜边AB的中点,∴OC=OB,∵∠ABC=60°,∴△BOC为等边三角形,∴CO=CB,∠OCB=∠BOC=60°,∴∠DOC=120°,∵△CDE为等边三角形,∴CD=CE,∠DCE=60°,∴∠DCE=∠OCB=60°,即∠OCD+∠OCE=∠OCE+∠BCE,∴∠OCD=∠BCE,在△OCD和△BCE中,,∴△OCD≌△BCE(SAS),∴∠EBC=∠DOC=120°,∴∠OCB+∠EBC=180°,∴OC∥BE,在GF上截取HF=BF,连接DH,∵点F是DE的中点,∴FE=FD.在△BEF和△HDF中,,∴△BEF≌△HDF(SAS),∴BE=HD,∠BEF=∠HDF,∴DH∥BE,∴DH∥OC,∴∠HDG=∠OCD,又∠G=∠BCE,∴∠G=∠HDG,∴HG=HD,∴HG=BE,∴GF=HG+FH=BE+BF;(3)解:取AB的中点S,连接PS,如图:在CD取得最小值时,CD⊥AB,设AB=4a,则BC=2a,AC=2a,=AC•BC=AB•CD,∵2S△ABC∴CD==a,BD=BC=a,∵△CDE是等边三角形,∴∠DCE=60°,CD=CE,∴∠BCE=∠DCE﹣∠DCB=60°﹣30°=30°=∠DCB,∵BC=BC,∴△BCD≌△BCE(SAS),∴BD=BE=a,∵将△BEM沿BM所在直线翻折至△ABC所在平面内得到△BNM,∴BE=BN=a,∴N的运动轨迹是以B为圆心,a为半径的圆,∵点P为AN的中点,S为AB的中点,∴PS=BN=a,∴P的运动轨迹是以S为圆心,a为半径的圆,当CP最大时,C,P,S三点共线,过P作PT⊥AC于T,过N作NR⊥AC于R,如图:∵S是AB中点,∴BS=AS=CS=AB=2a,∵∠ABC=60°,∴△BSC是等边三角形,∴∠PCB=60°,BC=CS=2a,∴∠PCA=30°,∵CP=CS+PS=2a+a=a,∴PT=CP=a,CT=PT=a,∴AT=AC﹣CT=a,连接PQ交NR于W,如图:∵将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,∴PQ⊥BC,∵AC⊥BC,∴PQ∥AC,即PW∥AR,∵P为AN中点,∴PW是△ANR的中位线,∴NW=RW=NR,同理可得PT是△ANR的中位线,∴PT=NR,∴PT=NW=RW=a,PW=AR=AT=a,∵将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,∴∠QCB=∠PCB=60°,CP=CQ,∴∠QCP=120°,∴PQ=CP=a,∴WQ=PQ﹣PW=a﹣a=a,∴NQ===a,∴==.。
2020年重庆中考数学a卷试题及答案
2020年重庆中考数学a卷试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 以下哪个选项是实数集的子集?A. 整数集B. 有理数集C. 无理数集D. 复数集答案:B2. 已知一个等腰三角形的底边长为5cm,腰长为7cm,那么这个三角形的高是多少?A. 3cmB. 4cmC. 5cmD. 6cm答案:B3. 函数y=2x+3的图象与x轴的交点坐标是?A. (-1,0)B. (0,-3)C. (1,5)D. (3,-1)答案:B4. 下列哪个选项是二次函数y=ax^2+bx+c的顶点坐标?A. (-b/2a, 4ac-b^2/4a)B. (b/2a, 4ac-b^2/4a)C. (-b/2a, -4ac-b^2/4a)D. (b/2a, -4ac-b^2/4a)答案:B5. 计算下列表达式的值:(3x^2-2x+1)-(2x^2-3x+4)。
A. x^2+x-3B. x^2-x-3C. x^2+x+3D. x^2-x+3答案:B6. 一个圆的半径为3cm,那么它的周长是多少?A. 6πcmB. 9πcmC. 12πcmD. 18πcm答案:C7. 已知一个数列的前三项为1,2,3,第四项为前三项的和,那么第五项是多少?A. 6B. 9C. 12D. 158. 一个长方体的长、宽、高分别为5cm、4cm、3cm,那么它的体积是多少?A. 60cm^3B. 120cm^3C. 180cm^3D. 240cm^3答案:A9. 已知一个角的正弦值为0.5,那么这个角的余弦值是多少?A. 0.5B. -0.5C. 0.866D. -0.866答案:B10. 计算下列表达式的值:(2x-1)(x+2)。
A. 2x^2+3x-2B. 2x^2+x-2C. 2x^2-3x-2D. 2x^2-x-2答案:A二、填空题(本题共5小题,每小题4分,共20分)1. 已知一个直角三角形的两条直角边长分别为3cm和4cm,那么斜边长为______。
2023年重庆市中考数学真题(A卷)(含答案解析)
那么称这个四位数为“递减数”.例如:四位数 4129,∵ 41 12 29 ,∴4129 是“递减数”;
又如:四位数 5324,∵ 53 32 21 24 ,∴5324 不是“递减数”.若一个“递减数”为 a312 ,
则这个数为___________;若一个“递减数”的前三个数字组成的三位数 abc 与后三个数字
已知:如图,四边形 ABCD 是平行四边形, AC 是对角线, EF 垂直平分 AC ,垂足为
点 O.
求证: OE OF .
证明:∵四边形 ABCD 是平行四边形,
∴ DC ∥ AB .
∴ ECO ① .
∵ EF 垂直平分 AC ,
∴② .
又 EOC ___________③ .
∴ COE AOF ASA .
∴ OE OF .
小虹再进一步研究发现,过平行四边形对角线 AC 中点的直线与平行四边形一组对边相
交形成的线段均有此特征.请你依照题意完成下面命题:
过平行四边形对角线中点的直线 ④ .
20.为了解 A、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关
人员分别随机调查了 A、B 两款智能玩具飞机各 10 架,记录下它们运行的最长时间(分
组成的三位数 bcd 的和能被 9 整除,则满足条件的数的最大值是___________.
三、解答题
18.计算:
(1) a 2 a a 1 a 1 ;
(2)
x2
x
x
.
2
x 2x 1
x 1
19.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对
【详解】解:∵两个相似三角形周长的比为 1: 4 ,