功分器和定向耦合器的设计
实验3:分支线耦合器设计
MTEE$ ID=TL5
MTEE$ ID=TL6
2
MLIN ID=TL2 L=10 mm
PORT P=2 Z=50 Ohm MSUB Er=4.4 H=1 mm T=0.035 mm Rho=1 Tand=0 ErNom=4.4 Name=SUB1
MTRACE2 ID=X2 BType=2 M=1 MTRACE2 ID=X3 BType=2 M=1
������������1 = ������������������ =
1 − ������������������������′������1 ������������1 ������������������������������1
由:
������������0 180������0 ������0 (弧度) = (度) = 90 2������������������ 2������������������ ������������������ (1 − ������������������������ ′ ������1 )������������������ 2 ������������1 ������������������������������������ ������ (������������������2������������1 − ������������������������ ′ ������1 )������������������������ ′ ������1 ������1
1 2
MTRACE2 ID=X4 BType=2 M=1
MLIN PORT ID=TL4 P=4 Z=50 Ohm L=10 mm
2
3
3 1
MLIN ID=TL3 L=10 mm
微波工程-第7章功率分配器与定向耦合器
对称定向耦合器(7.5,7.6)
1 1 1
S13 S 23 S14 S 24 0 S12 S 23 S14 S 34 0 S14 S13 S 24 S 23 0
反对称定向耦合器(7.8)
* 耦合传输线型理想定向耦合器的三种类型——正向、反向和
定向耦合器等效成四端口网络
S11 S 21 S S31 S 41 S12 S 22 S32 S 42 S13 S 23 S33 S 43 S14 S 24 ——16x2个自由度 S34 S 44
微波工程基础 第七章 功率分配器和定向耦合器 理想定向耦合器的散射参数
微波工程基础 第七章 功率分配器和定向耦合器 各端口都匹配的无耗非互易三端口网络——环形器
网络是匹配的 网络是无耗的
2
三端口网络(T型结)
任意三端口网络的散射参数——9x2个自由度(参数)
S11 S S 21 S31 S12 S 22 S32 S13 S 23 ——9x2个自由度(参数) S33
Wilkinson等分功率分配器,奇偶模分析法
S12 (S13)
e 偶模 V1 jV0 2
求Z,r
S11=0 可算出 Z 2 Z 0
V2e V0
S22 0
S12 (S13)
r 2 ?:保证奇模S22为0
奇偶模分析法 思想?
要点:1、偶+奇=单端口分析 2、所有端口加匹配负载 2、支路串联结构
S13 S 31 S 22 0
2 2 2
S11 0
S 22 0
S 33 0
——6x2个自由度
功分器定向耦合器和混合环
上述性质的证明:
(1)若元件是互易的,则有ST=S,散射矩阵变成[S]1
⎡S11
[S]1 = ⎢⎢S12
⎢⎣ S13
S12 S13 ⎤
S 22
S
23
⎥ ⎥
S23 S33 ⎥⎦
⎡0
[S]2 = ⎢⎢S12
S12 S13 ⎤
0
S
23
⎥ ⎥
⎢⎣ S13 S23 0 ⎥⎦
(2)若所有的端口均匹配,则有S11=S22=S33=0,散射矩阵变成[S]2
= 10 lg k2
♠确定耦合线尺寸的方法
第一步:根据中心频率f0时的耦合度C求出耦合系数k
C (dB) −
k = 10 20
第二步:由k的值及其定义式 k = Zoe − Z oo 可得 Z oe + Z oo
1+ k Z oe = Z o 1 − k
1− k Z oo = Z o 1 + k
第三步:由Zoe和Zoo的值,可以确定耦合线的尺寸。 这是计算平行耦合定向耦合器结构尺寸的基本公式。
图3-2 耦合器的结构
3、技术指标: 耦合度、定向性系数、隔离度、输入驻波比、频带宽度
图3-3 定向耦合器的原理图 主传输线(1)(2),副传输线(3)(4): (1)端口为输入端、 (2)端口为直通端、(3)端口为耦合端、(4)端口为隔离端
♣耦合度C(或过渡衰减):定义为输入端的输入功率P1与耦 合输出端的输出功率P3之比,通常用分贝表示,即
(3)若元件无耗,则由能量守恒知满足
S+S=1S,12 即2 + S13 2 = 1 S12 2 + S23 2 = 1 (a)
S13 2 + S23 2 = 1
四.功分器和定向耦合器的设计
C10logP P1320logS31
dB[S(3,1)]
• 隔离度: 隔离端口4的输出功率P4和输入端口1的输入功率P1之比:
I10logP P1 420logS41 dB[S(4,1)]
定向耦合器的基本原理
• 8-16GHz倍频程内定向度: S41/S31<-17dB
• 8-16GHz倍频程内隔离度: S41<-20dB
定向耦合器的仿真设计
建立耦合器设计的电路原理图
耦合端口
输入端口
直通端口
隔离端口
/4;f012GHz
定向耦合器的仿真设计
建立耦合器设计的电路原理图
耦合端口
输入端口
直通端口
功分器的设计、仿真、优化
设置完成的功分器电路图
功分器的设计、仿真、优化
开始仿真 全频段内隔离度未达指标,并且平坦度较差,需优化
功分器的设计、仿真、优化
电路优化
• 对阻抗匹配电路的优化---优化变量w2,lh
功分器的设计、仿真、优化
电路优化
• 优化仿真器和优化目标的设置—由于电路对称性,S(3,1)和S(3,3)不需优化
dB[S(2,1)]
C1310logP P 3 i 20logS13
dB[S(3,1)]
功分器的基本原理
功分器的基本指标
• 输出端口间的隔离度: 根据输出端口2的输出功率P2与输出端口3的输出功率P3之比计算
• 功分比:
C2310logP P2 320logS S1 12 3
• 定向耦合器属于无源微波器件,为四端口器件,分为:
隔离
耦合
《射频与微波电路设计》--微带功分器、耦合器设计
2 3
1 K / K
Z 02 K Z 03 Z 0
2
K则上述结果归结为等分情况。另外还见到,
输出线被匹配到阻抗R2 = Z0K和R3 = Z0/K,而不是阻抗
Z0,可用阻抗变换器来变换这些输出阻抗。
微带功分器(Wilkinson功分器)设计
5
图5-38 图5-37电路的切开
S22 = S23 = 0(因对两种模式激励时,端口2和3都是匹配的);
S12 = S21 = –0.707(因互易网络的对称性);
S13 = S31 = –0.707(因互易网络的对称性); S23 = S32 = 0(因等分上为短路或开路)。
这最后结果意味着端口2和3之间是隔离的。
V x V
e
j x
e
j x
V 0 V
1 V 2
V
V 1 V / 4 jV
2 2
1 jV 1 / 1
在端口1处看向归一化值为2的电阻上的反射系数为
2 2
和
V 1 jV
图5-47 (a)方形分支电桥;(b)圆形分支电桥
平行耦合线耦合器
平行耦合线耦合器(见 图5-48)具有对称性, 对称面上电流=0,电压 最大,相当于开路,称 为偶对称,另一种分布, 对称面上电压=0,电流 最大,相当于短路,称 为奇对称。耦合线上任 何场分布都可看成奇模 与偶模场分布的组合。 基于奇、偶模分析可得 到耦合线结构3dB定向 耦合器的设计方程。
0 2 f 0 C 1 C 2 Z 0 o
式中f0是耦合器中心频率。
射频实施技术-功率分配器和定向耦合器
微波炉工作原理(磁控管)
磁控管是在同轴放射状的电场加上与其成直角的磁场,并 由它来控制电子发射的电子管。我公司管系连续波磁控管 (固定频率、包装式磁钢、探头输出)。
我司磁控管的铭牌如下图:
图中以流水号最后六位数来分辨磁控管 的性质:如果在“—”前的三位数与后面 三位数相等的话为普通高功率磁控管, 如果两三位数数值相差2,侧为EMC 磁控管。
微波炉工作原理(微波发生系统)
微波炉的微波发生部分如下图所示
高压整流电路电路工作原理为,220伏电网电源经过变压器升压,输 出约2000伏左右的交流高压。高压绕组在正半周时,二极管D导通对 电容器C充电,电容器被充到电压的峰值。当高压绕组电压为负半周 时,二极管D截止,磁控管导通。电容器C上正半周所充的电与绕组 电压正相串联,获得2倍高压,即4000伏左右的直流高压,加在磁控 管的阳极与阴极之间射。频实施技术-功率分配器和定向耦合器
射频实施技术-功率分配器和定向耦合器
微波炉工作原理(磁控管)
工作原理:
在磁控管外侧阳极内壁上,沿着圆周 有偶数谐振腔。在这谐振腔内产生的 微波电场,与从位于中央部位的阴极 发射出来的电子进行能量交换,并由 此产生微波。
射频实施技术-功率分配器和定向耦合器
相关标准培训
引用标准:
IEC60335-1:2001 (家用电器通用标准) IEC60335-2-25:1996 (微波炉特殊要求) IEC60335-2-25:2002 (微波炉特殊要求) IEC60335-2-6:2002 (电热器具特殊要求) IEC60335-2-9:2002 (电热器具特殊要求) UL 923 (美国UL微波炉标准) CAN/CSA C22.2-No. 150-M89 (加拿大微波炉标准)
微波技术基础讲义7—功率分配器和定向耦合器
Z0 3 V1 V V2 V3 V Z0 Z0 3 4 2
微波技术基础
定向耦合器
定向耦合器种类
按传输线类型
按耦合方式
波导
同轴线
带状线
微带线
单孔耦合
多孔耦合
连续耦合
平行线耦合
输出方向
输出相位
按耦合强弱
同向耦合
反向耦合
90度定向
180度定向
强耦合
中等耦合
弱耦合
11
定向耦合器
定向耦合器举例
微波技术基础
(2)
定向耦合器
定向耦合器——工作参量
P 1 20 lg S 31 dB P3 S P3 方向性 D 10 lg 20 lg 31 dB P4 S 41 耦合度 C 10 lg 隔离度 I 10 lg P 1 20 lg S 14 P4
0 [S ] j 0
将S12与(III)式相乘、S34与(IV)式 相乘,并相减得
S34 0
S23 ( S12 2 S34 2 ) 0
令S14=S23=0,利用幺正性得
2 2 S12 S13 1 将第1列与第3列相乘、第4列 与第2列相乘得 2 2 S12 S24 1 * * (III) S S S 2 2 12 23 14 S 34 0 S13 S 34 1 * * 2 S S S S 2 14 12 34 23 0 (IV) S S 1 34 24
* S12 S13 0 * S21S23 0 S * S 0 31 32
S12 S23 S31 0 S21 S32 S13 1
功分器、定向耦合器课件
S 12 S 23 S 31 1
1 0 0 0 1 0
2
0 0 1
1 0 0
1
3
1
3
环形器
三端口网络——两个端口匹配,无耗,互易
j
S 21 e
0 j S e 0
e
j
0 0
0 0 j e
1
S12 e
无耗网络的散射矩阵满足么正性
2 S kj 1, k 1 4 S * S kj 0, k 1 ki 4
j 1, 2, 3, 4 i j, i , j 1, 2, 3, 4
四端口网络的基本特性(续2)
S12 S12 S13 S14
λg/4 ZC1 ZC ①
③
ZC
R
ZC1 λg/4
ZC
②
0 S 0 j 2
0
0 j 2
j 2 j 2 0
微带功分器(Wilkison 功分器)(续3)
功率不等分:
Z c2 Z c
2
1 K
2
/K
证明:采用反证法,假设三端口网络的所有端口匹配、互易,网络无耗。
S11 S S 21 S 31 S12 S 22 S 32 S13 S 23 S 33
匹配: S 11 S 22 S 33 0
互易: S ij S ji
无耗: S S 1
2
S13 S 23 S 23 S 24
2
S14 S 24 S 34 S 34
2
1 1 1 1
四功分器和定向耦合器的设计
谢谢!
输出端口2
输入端口1
输出端口3
功分器的设计、仿真、优化
版图的S参数仿真
功分器的设计、仿真、优化
版图的S参数仿真结果
功分器的设计、仿真、优化
小结
• 功分器的基本工作原理及主要指标 • 威尔金森功分器的仿真设计优化 • 威尔金森功分器版图的仿真设计
定向耦合器的基本原理
定向耦合器基本工作原理
隔离端口
/4;f012GHz W/H=0.107
S/H=0.071 直通端口与耦合端口相位差
定向耦合器的仿真设计
经验初值的仿真结果
定向耦合器的仿真设计
耦合器的参数优化
优化微带线线宽w(0.02-0.0508mm);和缝间距s(0.02-0.038mm)
插入损耗
耦合度
隔离度
定向耦合器的仿真设计
• 耦合度: 耦合端口3输出功率P3和输入端口1输入功率P1之比:
C10logP P1320logS31
dB[S(3,1)]
• 隔离度: 隔离端口4的输出功率P4和输入端口1的输入功率P1之比:
I10logP P1 420logS41 dB[S(4,1)]
定向耦合器的基本原理
• 常用定向耦合器: Lange耦合器(交指耦合器) 应用于耦合较强的情况,通常设计为3dB耦合; 具有一个倍频程或更宽的带宽; 在平衡放大器、功率分配器和平衡混频器中有广泛应用。
定向耦合器的基本原理
Lange耦合器基本工作原理
金丝焊接
① ② ③ ④ ⑤
90度相位差
定向耦合器的基本原理
定向耦合器的基本原理
定向耦合器基本指标
• 输入驻波比: 端口2、3、4都接匹配负载时,输入端口1的驻波比:
(完整版)功分器、定向耦合器及应用简介
功分器、定向耦合器及应用简介
编写:俱新德
西安海天天线技术支持部天线部 2005年12月
第一部分 功分器
1、T型功分器
图1.1所示为T型功分器,端口1为输入 端,端口2、3为输出端。如果输入、输 出端口的负载阻抗均为Z0,为了使输入、 输出端口均匹配,如图1.1(b)所示,必 须加一段特性阻抗Z01=Z0/ ,长度2 为λ/4 的阻抗变换段。
③端口1无反射。
第二部分 定向耦合器
2.1 分类
定向耦合器的对称性是定向耦合器的 重要特性,在分析和计算中经常利用对 称性。按对称性把定向耦合器分成三类, 如图2.1所示。
1类:沿X、Y轴均对称——完全对称 2类:沿X轴对称——部分对称 3类:沿Y轴对称——部分对称
按输出端口的相位差也分成三类:
图1.12和1.13分别为四功分器和三功分 器。
6、不等功分比功分器
在工程中,有时还需要使用一些不等功分比 二功分器。如在赋形基站天线阵中,需要用不 同功率给各辐射单元馈电,对不等功分比功分 器,按照端口之间的功分比与端口之间馈线特 性阻抗成反比的原则来设计相应的不等阻抗匹 配网络,来满足所需要的不等功分比。图1.14 为三端口微带不等功分器的结构示意图,信号 由端口1输入,由端口2、3按不等功分比输出。
把Wilkinson功分器级联,可以进一步展宽它 的带宽。
对图1.3所示2级联功分器,在倍频程带宽内, 在端口1,VSWR≤1.1,在端口2、3, VSWR≤1.01,端口2、3之间的最小隔离度为 27.3dB。
图 1.4
多段功分器级联后,输入/输出端口的 最大VSWR的频率特性如图1.4所示。
T型功分器由于结构简单,既可以用同 轴线,也可以用微带线实现,因而在基 站天线阵中,大量用它作为馈电网络。T 型功分器的缺点是输出端口彼此不隔离, 因此也把T型功分器叫无隔离功分器。
不同系列功分器
不同系列功分器、耦合器的特性分析南京博翔电子有限公司是一个民办的无源部件专业厂,研制、生产移动通信用的功分器、耦合器、合路器、中功率负载等多个系列产品。
以低损耗、宽频带、高可靠、防水为特点,深受国内外网络商的青睐。
其中功分器、耦合器分为同轴腔体结构和微带、带线结构两大系列。
为便于用户对这些不同系列产品的深入了解,笔者从设计原理、阻抗计算、传输特征等方面分析了不同系列产品的特点,供用户参考。
1、同轴腔体功分器、耦合器下面以二功分器为例,分析、计算各端口的阻抗关系、传输特征(三功分、四功分数据见表1)图1:同轴腔体二功分器原理示意图1.1功分器的设计原理本质上是一个阻抗变换器,二功分的阻抗变换比为2:1即输入端(A点)阻抗为50Ω,变换到B点,B点阻抗R BA=25 Ω,在B点分路,输出口C1、C2分别端接R L1、R L2用户终端(例如天线,以下简称终端),两个终端并联,正好跟B点匹配。
但是请注意,单个端口C1(或C2)跟B点是不匹配的,其内阻 Z C内等于R BA 与另外一个终端负载R L2(或R L1)并联。
即 Z C内=25 Ω || 50 Ω=16.667 Ω输出端口C1(或C2)的驻波比1.2 信号传输特征1.2.1 正向传输(下行通道)下行信号,由输入口A传输到B点,并在B点分路,分别传送到R L1、R L2 两个终端。
虽然单个输出口与终端负载不匹配,但是如1.1分析的,当功分器的二个输出口同时端接负载时,A→B的驻波比ρ应该满足技术条件ρ<1.2:1。
输出口C1 (或C2)与负载R L1(或R L2)的大驻波反射不会进入到AB阻抗变换段,只可能在R L1-C1-B-C2-R L2之间来回反射,最终达到平衡,下行信号将一分为二,全部送到二个终端。
1.2.2反向传输(上行通道)来自终端的上行信号,送到端口C1(或C2),C1口的驻波比ρ =3:1反射系数Γ= (ρ–1) /(ρ +1) =0.5反射功率P反=|Γ|2=0.25即25%的信号功率被反射回去,75%送到B点。
【2019年整理】射频技术-功率分配器与定向耦合器 (2)
2 0 2
Te
2 A B C D
[1
j
2 j (1)] /
1 (1 j) 22
•同理可求得奇模的ABCD距阵并求得反射参数和传输参数
A C
B D
1 1
2
j
j 1
0 0
T0
1 (1 j) 2
•由此各支路出射波幅分别求得为
b1
1 2
e
1 2
0
0
b2
1 2
Te
1 2
T0
j 2
b3
1 2
二、Wilkinson功率分配器 •Wilkinson的特点
三端口同时匹配;分支隔离;三端口匹配时无耗; •Wilkinson的电路形式(等分)
•奇耦模式分析方法
归一化和完全对称 条件下的等效电路
(a)偶模等效电路 (b)奇模等效电路
(a)偶模等效电路
2
从右往左看
Zin
2 2
1
(b)奇模等效电路
-40
-60
-80 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 freq, GHz
•不等分Wilkinson功率分配器*
电路形式
重要计算公式
Z02 K2Z03 Z0 K 1 K2
Z03 Z0
1 K2 K3
R
Z0
K
1 K
K 2 P3 / P2
*《微波电路》p277, 《微波固态电路设计》p164
•(输出)
•幅度(-3dB) •相位(90°) •隔离 (隔离度) •损耗 (插入损耗)
•描述与分析方法 •I)散射参数
0 j 1 0
[S]
1
j
功分器-定向耦合器和混合环
∵ P1
=
1 2
a1
2 , P3
=
1 2
b3
2
C = 10lg P1 P3
∴C
= 10lg
1 2
a12Βιβλιοθήκη = 10lg11 2
b3
2
S31 2
C表征耦合的强弱,当P1一定时,P3越大,C越小。
故零分贝、3分贝定向耦合器为强定向耦合器;
20分贝、30分贝定向耦合器为弱定向耦合器
♣隔离度D:定义为输入端的输入功率P1 与隔离端的输出功率P4之比,
图3-2 耦合器的结构
3、技术指标: 耦合度、定向性系数、隔离度、输入驻波比、频带宽度
图3-3 定向耦合器的原理图 主传输线(1)(2),副传输线(3)(4): (1)端口为输入端、 (2)端口为直通端、(3)端口为耦合端、(4)端口为隔离端
♣耦合度C(或过渡衰减):定义为输入端的输入功率P1与耦 合输出端的输出功率P3之比,通常用分贝表示,即
0 S23
S23 S33
⎥ ⎥⎦
由一元性可得
⎡ 0 e jθ 0 ⎤ ⇒ S = ⎢e jθ 0 0 ⎥
⎢⎣ 0 0 e jψ ⎥⎦
S13 = S23 = 0,S12 = S33 = 1
三、四端口网络(定向耦合器和混合接头):
定向耦合器可以设计成任意功分比例,混合接头一般使用 等功分( 900相移型和1800魔T型)。
第三章 功分器、定向耦合器和混合环
第一节 功率器件基本特性
一、特点: 是无源微波元件,用以功率分路或功率合路,一般为三
端或四端元件,用散射矩阵S参数来分析。如图3-1所示:
通常大功率微波功分器采用波导或同轴线结构,中小 功率则多用带状线或微带线结构。
第4章79 定向耦合器与功率分配器
2016/5/18
7
第四章 微波元器件
4.7 定向耦合器
因此,一个理想的定向耦合器可以对传输线上的正、反向电磁波分别 采样。即:
Γ2
2
P2 P2 P 1 P P 4 24 4 2 2 2 P1 P3 (1 k )P1 k (1 k )P1 k P1 P3
(4-29)
(4-32) (4-34)
(1) 电压耦合系数 ki 必须很小,不能任选,可以通过改变小孔的个数 n 来 调整正向过渡衰减量 L + ; (2) 方向性系数 D 也可以通过改变小孔的个数 n 来调整; (3) 由于多孔定向耦合器对 d 无严格的特殊要求,只要 d k 就可以。 因此,多孔定向耦合器的工作频带较宽。
16
2016/5/18
第四章 微波元器件
理想微波定向耦合器的 S 参数
b1 S11 S12 b S 2 21 S 22 b3 S31 S32 b4 S 41 S 42 S13 S 23 S33 S 43 S14 a1 S 24 a2 S34 a3 S 44 a4
(4 - 26)
只要主、副波导之间的小孔位置合适,就可以构成定向耦合器。 需要注意的是,只有在耦合孔很小时,两个小孔的耦合波幅度才会近 似相等。只有这样,相对于波源信号反向传输的耦合波才有可能在 No.4 端口相互抵销,从而得到 P14 = 0 结论。
波 源
2016/5/18
负 载
8
第四章 微波元器件
P P3 1 1 3 k 2 (1 k 2 ) P2 P4 (1 k 2 ) 2 P3 P4
第7章 功率分配器和定向耦合器
输入口 激励V1
分析过程
结中心
匹配状态
输入端口匹配 由于三个端口对称则 所有端口均匹配
功率分配
散射矩阵
(非幺正)
则 输出功率低于输入功率6dB,一半的功率消耗 在电阻上 Microwave Technique
7.3
wilkinson功率分配器
前两种功分器特点 无耗T型结分配器:不能全部端口匹配,输出端口之间无隔离。 电阻性分配器:能全匹配,但有耗,且输出端口之间无隔离。
dB
③ → ④ 传输功率
隔离度
p1 I 10lg 20lg S14 p4
dB
① → ④ 传输功率
其中
I D C dB
感兴趣点:耦合器方向性的测量(不能直接测量)
Microwave Technique
7.2
T型结功率分配器
简单的三口网络
E面波导T型结
H面波导T型结
均为不存在传输
线损耗的无耗结, 不能同时匹配
(1)对称耦合器:
2
(同相)
混合网络耦合器
差别:
参考面的选择 (2)反对称耦合器:
0,
(反相)
魔T混合网络 或环形波导
振幅α和β不独立
理想的定向耦合器只 有一个自由度
Microwave Technique
另外两种推导见书269页。
四端口网络的结论:
任何互易、无耗、匹配的四口网络是一个定向耦合器。 两种常用的定向耦合器的表示符号: 直通功率 (传输功率) 耦合因数 (耦合度dB)
奇模
A B 1 1 j C D 2 j 1 o
0 0
射频技术功率分配器与定向耦合器
Z0 Z0
Z0 / 2
•λ/4 •λ/4
Z0
•Port 2
•(输出)
Z0 Z0
•Port 3
•(输出)
•Port 4
•(隔离)
Z0
•幅度(-3dB) •相位(90°) •隔离 (隔离度) •损耗 (插入损耗)
Z0 / 2
•描述与分析方法
•I)散射参数
0 j 1 0 j 0 0 1 1 [S ] 2 1 0 0 j 0 1 j 0
-60 4.0
freq, GHz
•按相位变化180±10 ° 定义的相对带宽为 37% 。 与此相对应,微带移相 器 在 相 同 带 宽 内 ( 1.65~2.39GHz ) 移 相 为148~214 °.
phase(S(1,2))-phase(S(1,3))
freq, GHz
•非理想负载条件下的功率分配响 应
•多节
•基片RT/D 6010, 相对介电常数10.8, 厚度1.27mm
二、Wilkinson功率分配器
•Wilkinson的特点 三端口同时匹配;分支隔离;三端口匹配时无耗;
•Wilkinson的电路形式(等分)
•奇耦模式分析方法
归一化和完全对称 条件下的等效电路
(a)偶模等效电路 (b)奇模等效电路
•II)奇偶模分析 • 线性互易网络,可以利用叠加原理。将 工作模式分解为奇、偶两种模式。任何模式都 是奇偶模式的线性叠加。
•奇偶模等效电路分解示意图
•以输入和隔离端作为一对端口区分奇偶模式。
•根据上述等效电路,所有支路出射波幅分别 为: 1 1 1 1
b1 2 e 2 0 b2 Te T0 2 2 1 1 b3 Te T0 2 2 1 1 b4 e 0 2 2