第3章模拟多路开关
多路复用模拟开关
向二极管电流为最大额定电流值。 2. θJA是在空气条件下,元件直接安装在高效导热性系数的测试板上测量得到的。详细内容参考技术
摘要TB379。
4
武汉力源信息技术有限公司
14
武汉力源信息技术有限公司
免费电话:800-880-8051
数据手册 DS-107-00024CN
电源供电考虑
ISL43681 和 ISL43741 的结构是典型的 CMOS 模拟开关,因为它们有 3 个电源引脚:V+,V-,和 GND。 V+和 V- 驱动内部 CMOS 开关,决定它们的模拟电压极限值,因此模拟信号通路和 GND 之间没有连接。 不象用 13V 最大电源电压供电的其他模拟开关,ISL43681 和 ISL43741 的 15V 最大电源电压为 10%容差
引脚图
2
武汉力源信息技术有限公司
免费电话:800-880-8051
真值表
数据手册 DS-107-00024CN
注:逻辑“0” ≤ 0.8V,逻辑“1” ≥ 2.4V,V+在 2.7V 和 10V 之间。”X”=无影响。
注:逻辑“0” ≤ 0.8V,逻辑“1” ≥ 2.4V,V+在 2.7V 和 10V 之间。”X”=无影响。 订购信息
3
武汉力源信息技术有限公司
免费电话:800-880-8051
数据手册 DS-107-00024CN
引脚描述
引脚 V+ VGND
Hale Waihona Puke ENENLECOM NO ADD N.C.
计算机网络通信技术第03章 调制解调和多路复用技术
调制解调技术
在频带系统中,调制器、解调器是核心,调制解 调技术也是通信学科中的关键技术和重要内容。
在频带系统中还有功率放大器、混频器、馈线系 统、天线等部分,这些部分从原理角度看对信号不会 产生有本质变化,不列在频带系统中。
调制解调技术(2)
数据信号的调制是指利用数据信号来控制一定 形式高频载波的参数,以实现其频率搬移的过程。
高频载波的参数有幅度、频率和相位,因此, 就形成了幅移键控(ASK)、频移键控(FSK) 和相移键控(PSK)三种基本数字调制方式。
幅移键控(ASK)( 1.定义 )
幅移键控(ASK, Amplitude Shift Keying)又称幅度键控,
上,让载波通过;0信号时开关S断开,载波不能通过。这
种通过开关的通断达到载波的有无(实质上是改变载波的
幅度)所形成的信号也叫 OOK(On-off Keying)信号。
3.波形
由定义和实现逻辑都可画出2ASK信 号的波形,如图所示。
第03章 调制解调和多路复用技术
第03章 调制解调和多路复用技术
内容提要:
调制与解调 基带传输 频带传输 PSK、FSK、ASK 多路复用技术
调制和解调
在计算机与打印机之间的近距离数据 传输、在局域网和一些域域网中计算机间 的数据传输等都是基带传输。
基带传输实现简单,但传输距离受限。
④.抽样判决器:带有噪声的数据波形恢复成标准的数据基带信号。
1.理想基带传输系统
理想基带传输系统的传输特性具有理想低通特 性,其传输函数为
理想基带传输系统
模拟多路开关
延迟时间; tOPEN:开关切换时间,即当两个通道均为断开时,
开关从一个通道的接通状态转到另一个通道 的接通状态并达到稳定所用的时间。
3.3 多路开关集成芯片 1. 无译码器的多路开关
AD7510芯片:
USS 1
芯片中无译码器,四个通 GND 2 道开关都有各自的控制端。 A1 3
TL182C,AD7510,AD7511,AD7512,CD4066, TS12A44513,TS3A4741,TS3A24159,… …
RON < 0.3Ω
TS12A44513芯片
CD4066芯片
3.3 多路开关集成芯片
2. 有译码器的多路开关
AD7501(AD7503)
AD7501(AD7503) 芯片结构及引脚功能
双极性晶体管开关 场效应晶体管开关
➢ 结型 ➢ 绝缘栅型(MOS) 集成电路开关
C
C
B E
B E
NPN
PNP
双极型晶体管
多路开关:
3.1 概述
电子多路开关根据结构可分为:
双极性晶体管开关 场效应晶体管开关
➢ 结型 ➢ 绝缘栅型(MOS) 集成电路开关
多路开关:
3.1 概述
ห้องสมุดไป่ตู้
电子多路开关根据结构可分为:
3.1 概述
多路开关:
PMOS和NMOS结合可以构成 CMOS(互补对称MOS:
电子多路开关根据结构 可分为:
双极性晶体管开关
场效应晶体管开关
Complementary Metal-OxideSemiconductor Transistor 互 补型金属氧化物半导体)
第03章 模拟多路开关
3.3 多路开关集成芯片
一、无译码器的多路开关
模拟电路开关设计之一
s1 s0 = 00时,clk_out=clk_in = 01时,clk_out=clk_in/2 = 10时,clk_out=clk_in/4 = 11时,clk_out=clk_in/8
用1片AD7510和若干个基本门(与、或、非)实现!
将多路开关、计数器、译码器和控制电路制造在一块芯片上。
二、多路开关的主要技术指标
Ron:导通电阻。 Ron越小,开关两端压降越小, 开关性能越好; topen:当两个通道均断开时,开关从一个通 道的接通状态转到另一个通道接通状 态并达到稳定所需要的时间。 topen越小,开关切换速度越快,开关 性能越好;
交流电压有效值的测量
为了保证精度,AC/DC的输入交流有效值应在0.7V-7V之间。 被测信号输入有三档:0V-0.1V 0.1V-1V 1V-10V
量程转换
传感器
小电流监测
分流器是一个阻值很小的电阻,其精度较高且温漂小。通 常模数转换芯片输入模拟信号是电压信号,通过测量分流器其 两端的压降可计算出动力电池电流的大小。
Ur I r
基于霍尔传感器的大电流监测
霍尔传感器的输出电压与被测电流的关系
霍尔传感器是用电磁感应原理来测量电流信号的,通过电 磁场感应得到的电压信号通常较小,只有几个mV左右。 现在市场上采购到的霍尔传感器,很多已将放大电路内嵌 到传感器内部,为此,需要为内嵌的放大器提供正负电源。
二、双端接法
输入信号源的两端各 自分别接至多路开关的两 个输入端。 多路开关实际通道数 只有单端接法的一半。
3.6 模拟多路开关的应用
一、通道的扩展方法
二、组成程控放大器
第三章 微机继电保护基础
跟随器的输入阻抗很高(达 1010 ), 输出阻抗很低(最大 ),因而A1对输入 6 u sr 来说是高阻抗;而在采样状态时,对 信号 C h 为低阻抗充电,故可快速采样。又 电容器 由于A2的缓冲和隔离作用,使电路有较好的 保持性能。
SA为场效应晶体管模拟开关,由运算放大器A3 驱动。A3的逻辑输入端 S / H 由外部电路(通常可 C h 处于 由定时器)按一定时序控制,进而控制着 采样或保持状态。符号 表示该端子有双重功 S/H 能,即 S/H S / H =“1”电平为采样(Sample)功能, =“0”电平为保持(Hold)功能。某个符号 上面带一横,表示该功能为低电平有效,这是数字 电路的习惯表示法。
A1和A2的接法实质相同,在采样状态(SA接通时),A1 的反相输入端从A2输出端经电阻器R获得负反馈,使输出跟 踪输入电压。在SA断开后的保持阶段,虽然模拟量输入仍 在变化,但A2的输出电压却不再变化,这样A1不再从A2的 输出端获得负反馈,为此在A1的输出端和反相输入端之间跨 接了两个反向并联的二极管,直接从A1的输出端经过二极 管获得负反馈,以防止A1进入饱和区,同时配合电阻器R起 到隔离第二级输出与第一级 fmax
目前大多数的微机保护原理都是反映工频量的,在这种 情况下,可以在采样前用一个低通模拟滤波器(Low Pass Fliter, LPF)将高频分量滤掉,这样就可以降低 f S 。实际 上,由于数字滤波器有许多优点,因而通常并不要求图3-1中 的模拟低通滤波器滤掉所有的高频分量,而仅用它滤掉 f S / 2 以上的分量,以消除频率混叠,防止高频分量混叠到工频附 近来。低于 f S / 2 的其他暂态频率分量,可以通过数字滤波 来滤除。
由于Z g 很小,所以共模干扰信号对变 换器二次侧的影响得到了极大的抑制。这 样中间变换器还起到屏蔽和隔离共模干扰 信号的作用,可提高交流回路的可靠性。
模拟开关和多路复用器常见问题解答
模拟开关和多路复用器常见问题解答声明Analog Devices公司拥有本文档及本文档中描述内容的完整知识产权(IP)。
Analog Devices公司有权在不通知读者的情况下更改本文档中的任何描述。
如果读者需要任何技术帮助,请通过china.support@或免费热线电话4006-100-006联系亚洲技术支持中心团队。
其他技术支持资料以及相关活动请访问以下技术支持中心网页/zh/content/ADI_CIC_index/fca.html.Analog Devices, Inc.版本历史版本日期作者描述1.0 2013/9/7 CAC(XS)文档新建目录版本历史 (II)目录 (III)第1章简介 (4)1.1产品简介 (4)1.2参考资料 (5)第2章模拟开关基础 (6)第3章常见应用问题解答 (8)3.1 使用模拟开关时,会带来哪些直流误差? (8)3.2使用模拟开关时,会带来哪些交流误差? (9)3.3模拟开关的建立时间和开关时间代表什么? (14)3.4在使用电子开关设置运放增益时,怎样减小模拟开关的导通电阻所带来的误差? (14)3.5什么条件会导致模拟开关的闩锁? (17)3.6模拟开关可以驱动的电容大小是多少,或者说其输出端的走线长度有要求吗? (20)3.7当数字控制口悬空时,电子开关的输入处在什么状态,会切换到固定的通道吗? (20)3.8模拟电子开关可否用来传输4-20mA电流信号? (20)3.9模拟电子开关的输入信号大小怎么确定? (20)3.10模拟电子开关在没有上电的情况下其输入输出通道是什么状态? (21)3.11模拟电子开关有没有大电流导通能力的,可以应用在切断电源上的电子开关? (21)3.12电子开关是不是都是双向导通的? (21)第1章简介1.1 产品简介在要求针对模拟信号控制和选择指定传输路径的电子系统的设计中,模拟开关和多路复用器已成为必要元件之一。
多路复用器和模拟开关
多路复用器和模拟开关多路复用器(MULTIPLEXER 也称为数据选择器)是用来选择数字信号通路的;模拟开关是传递模拟信号的,因为数字信号也是由高低两个模拟电压组成的, 所以模拟开关也能传递数字信号。
在CMOS多路复用器中,因为其数据通道也是模拟开关结构,所以也能用于选择多路模拟信号。
但是TTL的多路复用器就不能选择模拟信号.。
用CMOS的多路复用器或模拟开关传递模拟信号时要注意:模拟信号的变化值必须在正负电源电压之间,譬如要传递有正负半周的正弦波时,必须使用正负电源且电源电压大于传递的模拟信号峰值,这时其控制或地址信号必须以负电源电压为0,而以正电源电压为1;或者用单电源供电,而使模拟信号的变化中值在 1/2 电源电压上, 传递之后再恢复到原来的值。
1、常用CMOS模拟开关引脚功能和工作原理1.四双向模拟开关CD4066CD4066的引脚功能如下图所示。
每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。
当控制端加高电平时,开关导通;当控制端加低电平时开关截止。
模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。
模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。
各开关间的串扰很小,典型值为-50dB。
2.单八路模拟开关CD4051CD4051引脚功能如下图所示。
CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。
“INH”是禁止端,当“INH”=1时,各通道均不接通。
此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。
例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。
智能仪器原理与设计-采样保持器和模拟多路开关
从发出保持命令开始到采样/保持器输出达到保持终值(在确定的
一个n位二进制数共有2n个离散值,定义基本度量单
位 Q = VFS / 2n 。 模拟量的量化就是算出模拟量Vin用多少个Q表示,即
D=rnd(Vin/Q)
注:函数“rnd”表示对括弧中的项取整到最接近的整数(用n位二进制数表示)。
量化过程的输入输出关系
图中特性曲线呈阶梯状,每个台阶的宽度称为量化带。输入模拟量的 幅度在DQ与(D+1)Q之间时,输出都以D表示。显然,这是以有限的量 化值代替无限数目的模拟量的过程,因此,必然存在量化误差。由图
1.低速ADC(≥1ms) 2.中速ADC(1ms~10µs) 3.高速ADC(10µs~1µs) 4.超高速ADC(<1µs)
ADC的发展是在三个方面进行的。
一是专攻速度,牺牲一些精度指标。例如,速度已达 1000MHz的超高速ADC的分辨率只有8位,实际应用时的 有效精度只有6~7位。
二是专攻精度。24位的ADSl210/1211在保证精度下工作, 转换速度仅为10Hz,这是由于校正、滤波要花费大量的时 间,特别是滤波,需要有很多个周期数据才能完成。
3.5.2.4 量化噪声和有效分辨率 该部分内容请同学自学
3.5.3 ADC的种类及特点
分类方法 按器件工艺结构
类型
1.组件型ADC 2.混合(集成)电路型ADC 3单片式ADC (1)双极型;(2)MOS型;(3)双极MOS型
智能仪器复习提纲
第一章绪论什么是智能仪器:智能仪器是计算机与测试技术相结合的产物,是含有微计算机或微处理器的测量仪器。
由于它拥有对数据的存储、运算、逻辑判断和自动化操作等功能,具有一定的智能作用,因而被称为智能仪器。
智能仪器已开始从数据处理向知识处理发展。
1.1 智能仪器发展概况各个时期的发展:50年代:模拟式(指针式)仪器;60年代:数字式仪器;70年代:独立式智能仪器(简称称智能仪器);80年代初:个人仪器(PC仪器);80年代后期:虚拟仪器。
1.2智能仪器发展趋势1、微型化2、多功能化3、人工智能化4、网络化1.3 智能仪器的分类、组成和特点从发展应用的角度看,智能仪器分为微机内嵌式和微机扩展式两大类。
微机内嵌式:将微机作为核心部件嵌入到智能仪器中,仪器包含一个或多个微机,属于嵌入式系统。
智能仪器由硬件和软件两大部分组成。
硬件包括微处理器、存储器、输入通道、输出通道、人机接口电路、通信接口电路等部分。
微处理器是仪器的核心;存储器包括程序存储器和数据存储器用来存储程序和数据;输入通道主要包括传感器、信号调理电路和A/D转换器等,完成信号的滤波、放大、模数转换等;输出通道主要包括D/A转换器、放大驱动电路和模拟执行器等,将处理器处理后的数字信号转换为模拟信号;人机接口电路主要包括键盘和显示器,是操作者和仪器的通信桥梁,操作者可通过键盘仪器发出控制指令,仪器可通过显示器将处理结果显示出来;通信接口电路实现仪器与计算机或其它仪器的通信。
智能仪器的特点:1、操作自动化2、自测功能3、数据分析和处理功能4、友好的人机对话功能5、可程控操作能力1.4智能仪器设计要求、原则及步骤智能仪器设计的基本要求:功能及技术指标要求、可靠性要求、便于操作和维护、仪器工艺结构与造型设计要求智能仪器的设计原则:1、从整体到局部(自顶向下)的原则2、较高的性能价格比原则3、开放式设计原则智能仪器的设计步骤:1、确定设计任务2、拟定总体设计方案3、方案实施:(1)根据仪器总体方案,确定仪器的核心部件:单片机、信号处理器(DSP)、可编程控制器(PLC)或微计算机(MPC)等(2)设计和调试仪器。
模拟开关和多路复用器基本知识
模拟开关和多路复用器基本知识目录一、模拟开关基本知识 (1)1.1 模拟开关的定义与分类 (2)1.2 模拟开关的工作原理 (3)1.3 模拟开关的应用场景 (4)1.4 模拟开关的性能指标 (5)1.5 模拟开关的选购与使用注意事项 (7)二、多路复用器基本知识 (8)2.1 多路复用器的定义与分类 (9)2.2 多路复用器的工作原理 (10)2.3 多路复用器的应用场景 (11)2.4 多路复用器的性能指标 (13)2.5 多路复用器的选购与使用注意事项 (14)三、模拟开关与多路复用器的比较与应用 (15)3.1 模拟开关与多路复用器的相同点与不同点 (16)3.2 模拟开关与多路复用器在电路设计中的应用 (18)3.3 模拟开关与多路复用器在数据采集系统中的应用 (19)3.4 模拟开关与多路复用器在通信系统中的应用 (21)一、模拟开关基本知识模拟开关是一种将模拟信号转换为数字信号的设备,它在数字通信系统中扮演着重要的角色。
模拟开关的主要功能是将输入的模拟信号进行采样、量化和编码,以便在数字通信系统中进行传输和处理。
模拟开关的基本组成部分包括:采样电阻、量化器、编码器和解码器。
采样电阻:采样电阻的作用是在输入信号发生变化时,将其转换为电位差信号,从而产生一个电流变化的电压信号。
这个电压信号就是模拟信号在时间上的离散表示。
量化器:量化器的作用是将采样电阻产生的电压信号进行量化,即将其转换为一定范围内的数字信号。
量化器的输出通常是一个二进制数,表示输入信号的强度。
编码器:编码器的作用是将量化后的数字信号进行编码,使其能够在数字通信系统中传输。
编码器的输出通常是一个二进制码,表示输入信号的具体信息。
解码器:解码器的作用是将接收到的数字信号进行解码,还原成原始的模拟信号。
解码器的输出通常是一个新的采样电阻值,用于驱动后续的模拟开关电路。
模拟开关是一种将模拟信号转换为数字信号的设备,它通过采样、量化、编码和解码等过程,实现了模拟信号与数字信号之间的相互转换。
模拟多路开关
目录
• 模拟多路开关概述 • 模拟多路开关的类型 • 模拟多路开关的性能指标 • 模拟多路开关的选择与使用 • 模拟多路开关的发展趋势
01
模拟多路开关概述
定义与特点
定义
模拟多路开关是一种电子元件,用于 在多个信号源之间进行选择切换。
特点
具有低电阻、低电容、低电感和高隔 离电压等特性,能够实现多路信号的 快速、稳定切换。
05
模拟多路开关的发展趋势
高通道数、高速切换
总结词
随着电子设备的发展,多路开关需要更 高的通道数和更快的切换速度来满足复 杂系统的需求。
VS
详细描述
高通道数的模拟多路开关能够同时切换多 个信号,提高了系统的效率和性能。高速 切换技术则能够减小切换时间,降低信号 损失和噪声干扰,子模拟多路开关的可靠性相对较低,容易受到电磁干扰和 温度变化的影响。
数字模拟多路开关
优点
数字模拟多路开关具有高精度、高速、高可靠性等优点,适用于需要同时传输数 字信号和模拟信号的应用场景。
缺点
数字模拟多路开关的成本较高,电路设计较为复杂。
03
模拟多路开关的性能指标
通道数量
总结词
通道数量是模拟多路开关的重要性能指标之一,它决定了同时连接和切换的信号路数。
隔离能力
总结词
隔离能力是指模拟多路开关在接通通道时,输入信号与输出信号之间的隔离度,是衡量信号噪声和干扰的重要参 数。
详细描述
隔离能力越强,输入信号对输出信号的干扰就越小,从而降低了信号的噪声和失真。这有助于提高信号的传输质 量和系统的稳定性。
通道一致性
总结词
通道一致性是指模拟多路开关各通道在接通时,其传输特性的一致性,包括电压增益、 相位差和阻抗匹配等。
《智能仪器》(第二版 程德福 林君)课后习题参考答案
智能仪器考试题型:名词解释、简答、简述、综合没有给重点,但是老师说考题都是由课后习题凝练出来的,所以我将大部分课后习题答案整理出来,仅供参考。
难免有错误,望大家谅解并指出。
课后习题参考第一章1-1 你在学习和生活中,接触、使用或了解了哪些仪器仪表?它们分别属于哪种类型?指出他们的共同之处与主要区别。
选择一种仪器,针对其存在的问题或不足,提出改进设想(课堂作业)。
解:就测量仪器而言,按测量各种物理量不同可划分为八种:几何量计量仪器、热工量计量仪器、机械量计量仪器、时间频率计量仪器、电磁计量仪器、无线电参数测量仪器、光学与声学测量仪器、电离辐射计量仪器。
1-2 结合你对智能仪器概念的理解,讨论“智能化”的层次。
解:P2 智能仪器是计算机技术和测量仪器相结合的产物,是含有微型计算机或微处理器的测量(或检测)仪器。
由于它拥有对数据的存储、运算、逻辑判断及自动化操作等功能,具有一定智能的作用(表现为智能的延伸或加强等),因而被称为智能仪器。
P5- P6 智能仪器的四个层次:聪敏仪器、初级智能仪器、模型化仪器和高级智能仪器。
聪敏仪器类是以电子、传感、测量技术为基础(也可能计算机技术和信号处理技术)。
特点是通过巧妙的设计而获得某一有特色的功能。
初级智能仪器除了应用电子、传感、测量技术外,主要特点是应用了计算机及信号处理技术,这类仪器已具有了拟人的记忆、存储、运算、判断、简单决策等功能。
模型化仪器是在初级智能仪器的基础上应用了建模技术和方法,这类仪器可对被测对象状态或行为作出评估,可以建立对环境、干扰、仪器参数变化作出自适应反映的数学模型,并对测量误差(静态或动态误差)进行补偿。
高级智能仪器是智能仪器的最高级别,这类仪器多运用模糊判断、容错技术、传感融合、人工智能、专家系统等技术。
有较强的自适应、自学习、自组织、自决策、自推理能力。
1-3 仪器仪表的重要性体现在哪些方面?P3-5解:(1)仪器及检测技术已经成为促进当代生产的主流环节,仪器整体发展水平是国家综合国力的重要标志之一(2)先进的科学仪器设备既是知识创新和技术创新的前提,也是创新研究的主题内容之一和创新成就得重要体现形式,科学仪器的创新是知识创新和及时创新的组成部分。
微型计算机控制技术第二版于海生期末复习资料精选全文完整版
第一章:绪论1、计算机控制系统组成(作业)2、工作原理:(作业) (1)实时数据采集 (2)实时控制决策 (3)实时控制输出 (4)实时显示和数据保存 (5)联网通信(测控管一体化)失败:一、若控制时间间隔取的太长,则控制效果可能变差。
二、若控制时间间隔取的太短,计算机在这个采样时间间隔内不能完成前三项工作,也会引起控制质量下降。
3、 (1)在线方式:在SCC 中,生产过程与计算机连接,且受计算机控制的方式称为在线方式。
离线方式:生产过程不与计算机连接,即不受计算机控制,或称为脱机方式(2)实时的含义:是指被控量的检测,控制信号的计算,控制信号的输出都必须在一定的时间间隔内完成。
由计算机中断自动产生,或采用查询方式产生,或由用户自行设定 一个在线的系统不一定是一个实时系统,但是一个实时系统必定是在线系统。
过程输入输出通道包括模拟量输入输出通道和数字(开关)量输入输出通道。
4、按完成的功能和结构(6种典型形式:···,DDC 、SCC 、DCS 、FCS 、····) 按照控制规律分类(填空)(1)数字程序和顺序控制(2)PID 控制:调节器的输出是调节器输入的比例、积分和微分的函数 (3)最小拍控制:要求设计的系统在尽可能短的时间内完成调节过程 (4)复杂规律的控制 (5)智能控制计算机控制装置生产过程按照控制方式的不同,计算机控制系统可分为开环控制系统和闭环控制系统。
5、常用的典型机型(1)单片微型计算机: 内含有微处理器的特殊超大规模集成电路,专用性强、内存容量小,本身不具备自开发功能(2)PLC:可靠性高、编程容易、功能完善、扩展灵活、安装调试简单方便(3)工业PC:小板结构模块化设计;标准化及兼容性;完善的I/O通道;环境适应能力强、可靠性高;软件丰富(组态软件)6、计算机控制系统的发展趋势一、单片机(微处理器)组成的控制系统日趋先进二、可编程逻辑控制器(PLC)得到广泛应用三、推广使用新型的集散控制系统(DCS)四、大力发展和采用现场控制总线技术五、大力研究和发展智能控制系统第二章:过程输入输出通道技术1、模拟量输入信道(A/D信道或AI信道)的任务是把被控对象的过程参数的模拟量信号转换成计算机可以接收的数字量信号.2、多路模拟信号集中采集式一、集中式数据采集系统的典型结构:(1)多路共享采集电路分时采集;(2)多路同步取样共享A/D分时采集(3)多通道同步采样A/D,分时传输数据;多信道独立取样A/D,有通道缓存二、分布式采集3、典型模拟调理电路的组成框图4、传感器的主要技术指标:(将被测量→转换后续电路可用电量)(填空) 1)测量范围:与被测量实际变化范围相一致。
第三章模拟量输入通道
NOP OR AL,01000000B OUT DX,AL AND AL,10111111B OUT DX,AL MOV DX,2C0H POLLING: IN AL,DX TEST AL,80H
JNZ POLLING
;置采样缓冲区首址 ;8255A的PC口址 ;送PC口控制信号与通道号
;CE=1 ;启动A/D ;CE=0 ;8255A的PA口址
1.无源I/V变换
构成--无源器件电阻+RC滤波+二极管限幅等实现, 取值: 输入0- 10 mA,输出为0 -5 V ,R1=100Ω,R2=500Ω;
输入4 -20 mA,输出为1 - 5 V,R1=100Ω,R2=250Ω; 电路图:
2. 有源I/V变换
构成-- 运算放大器+电阻电容组成;
(4)非线性误差
A/D转换器实际转换特性曲线与理想特性曲线之间的 最大偏差。在转换器设计中,一般要求非线性误差不大于 1/2LSB。通常用非线性误差来表示A/D转换器的线性度。
3.5.2 ADC0809及其接口电路
主要知识点 1. ADC0809芯片介绍 2.ADC0809接口电路
1. ADC0809芯片介绍
同样,在A/D转换器与PC总线之间的数据传送上也可以 使用程序查询、软件定时或中断控制等多种方法。由于 AD574A的转换速度很高,一般多采用查询或定时方式。其接 口电路及其程序参见下一节。
3.6 A/D转换模板
1、A/D转换模板也需要遵循I/O模板的通用性原则:符合 总线标准,接口地址可选以及输入方式可选。输入 方式可选主要是指模板既可以接受单端输入信号也 可以接受双端差动输入信号。
将输入信号放大到A/D 可接受的范围
核心,实现A到D 的转换
多路模拟开关
H (s)
s
2
2 2
s s ( w0 / Q ) w0
26
1. 概述
(1) 存储器功能:具有记忆功能的部件,用来存放
数据和程序
(2) 存储器分类
1) 2) 3) 4) 按在系统中的作用 按存储介质 按存储方式 按信息的可保存性
27
(2) 存储器分类—1) 按在系统中的作用
主存储器(主存)
17
2. AD585
(3) 应用— 一倍增益采样保持电路
18
1. 放大电路原理
用途:
传感器输出电压信号一般较弱,后面需接放大器电路, 与AD转换器所需电平极性匹配,充分利用AD精度; 阻抗变换,隔离后面的负载对传感器影响,充分抑制 共模干扰; 要求:高输入阻抗、高共模抑制比、低失调与漂移、 低噪声及高闭环增益稳定性等。
捕捉时间:从采样命令发出到采样/保持器的输出
由上次保持值达到输入信号的当前值所需时间。
保持电压的衰减率:保持模式状态下,由于保持电
容的漏电和其他杂散漏电流引起的保持电压衰减
的速率。
12
(4) 结构形式
1) 多通道公用S/H和A/D
特点:完成一次AD变换后,要等到下一次采样命令到 达,并是保持电容上的电压跟踪到当前输入信号的值 后,才能再次启动AD变换器。速度慢,易引起各通
辅助存储器(辅存)
高速缓冲存储器 (缓存) 存放当前正在执行 的部分程序或数据, 向CPU快速提供马 上要执行的指令或 数据。位于CPU和 主存之间,速度可 与CPU匹配,存取 时间快,容量较小
存放当前运行时 所需要的程序和 数据,以便向 CPU快速提供信 息。 存取速度快、容 量较小,价格较 高,设置于主机 内部(内存储器)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据采集与处理
9
3.2 多路开关的工作原理及主要技术指标
2. 集成电路开关
T1 Ui1
Ui2
T2
Ui...3
...
Ui1 5
Ui1 6
T3
U0
......
T1 5 T1 6
1
2
3
......
15 16
四- 十六线译码器
计数
四位计数器
23 22 21 20
Hale Waihona Puke 图3.5 集成多路开关数据采集与处理
10
3.2 多路开关的工作原理及主要技术指标
➢tOPEN:开关从一个导通通道切换到另一个通道
并导通的时间。
数据采集与处理
11
第3章 模拟多路开关
3.3 多路开关集成芯片
1. 无译码器芯片: TL182C,AD7510,AD7511,AD7512。
数据采集与处理
12
3.3 多路开关集成芯片
USS 1 GND 2
A1 3 A2 4 A3 5 A4 6 NC 7 UDD 8
类型 式: 系统干扰性大。
电 电气性:小电流、低压、高速切换。 子 机械性:无触点,寿命长,体积小, 式: 系统干扰性小。
结论:数据采集系统中广泛采用电子式多 路开关。
数据采集与处理
2
3.1 概 述
1、双极性晶体管开关:导通电阻大,电流控
制,功耗大,集成度低,单向传输信号;工
电 作速度快。
子 式
2、场效应晶体管开关:
结型:分立器件, 需电平转换电路驱动。
电压控制,双向传输信号,
类 导通电阻小。 型
绝缘栅型: 易于集成电路。
3、集成电路开关:芯片上集成场效应多路开关
、地址计数器、译码器,体积小,稳定性好,
使用方便。
数据采集与处理
3
第3章 模拟多路开关
3.2 多路开关的工作原理及主要技术指标
1. 工作原理
Ui1 模拟信号1
Ui1
T1
Uo
-2 0 V
R21
UC1 Ui8 UC8
R11
. . .
-2 0 V
R18
T1 +4 V
T8
R28
T8
+4 V
图3.4 绝缘栅场效应管多路开关
数据采集与处理
8
3.2 多路开关的工作原理及主要技术指标
优 开关切换速度快,导通电阻小,且随 点:信号电压变化波动小;易于电路集成。
缺 点:衬底要有保护电压。
缺 ①漏电流大,开路电阻小,导通电 阻大。
点: ②电流控制器件,基极电流对信号 源有干扰,功耗大,一个方向传送 信号。
数据采集与处理
5
3.2 多路开关的工作原理及主要技术指标
(2) 场效应管型:
Ui1
T1
Uo
(a) 结型场
R21
效应管 (P沟道耗尽型)
通道选择1
UC1
R11
.
T1
.
Ui8 .
T8
R28
(1)芯片中无译 16 S1 码器,四个通道开 15 D1 关都有各自的控制
14 S2
端; 13 D2 12 S3 (2)可程控逐个 11 D3 导通,也可同时多 10 S4 个导通,使用灵活;
9 D4 (3)引脚多,开
关少,巡回检测复
图 3 . 6 A D 7 5 1 0 芯 片 杂。
数据采集与处理
...
...
OUT S1 S4 S5 S8 OUT
A1 GND
EN (5~ 8)OUT
S8 S7 S6 S5
1
16
2
15
3
14
4 AD 13 5 7502 12
6
11
7
10
8
9
图3.8 AD7502芯片结构及引脚功能
A0
USS UDD S1 OUT(1~ 4)
S2 S3 S4
数据采集与处理
17
3.3 多路开关集成芯片
UC8 通道选择8
R18
T8
图3.3 结型场效应管多路开关
数据采集与处理
6
3.2 多路开关的工作原理及主要技术指标
优点:开关切换速度快,导通电阻小,可 双向传送信号。
缺点:为分立元件,需专门的电平转换电 路驱动,使用不方便。
数据采集与处理
7
3.2 多路开关的工作原理及主要技术指标
(b) 绝缘栅场效应管开关(N沟道增强型)
数据采集与处理
15
3.3 多路开关集成芯片 表3.1 AD7501真值表
A2
A1
A0
EN
导通
0
0
0
1
1
0
0
1
1
2
0
1
0
1
2
0
1
1
1
4
1
0
0
1
5
1
0
1
1
6
1
1
0
1
7
1
1
1
1
8
×
×
×
0
无
数据采集与处理
16
3.3 多路开关集成芯片
UDD
(+1 5 V)
地
USS
(-1 5 V)
EN A1 A0
电平转换 译码驱动
EN A2 A1 A0
电平转换
译码驱动
... ...
A1
GND EN A2 S8
OUT S7
S6 S5
1
16
2
15
3
14
AD
4 7501 13
5
12
6
11
7
10
8
9
A0 USS UDD S1 OUT S2 S3 S4
S1
S8
图3.7 AD7501(AD7503)芯片结构及引脚功能
片上所有逻辑输入与TTL/DTL及CMOS电路兼容。
T1
Uo
R21 +15V
⑴双极型
UC1 通道选择1
R11
T1
模拟信号8 Ui8 通道选择8 UC8
. . .
T8
R18
R28 +15V T8
图3.2 双极型晶体管开关电路
数据采集与处理
4
3.2 多路开关的工作原理及主要技术指标
注意:在控制信号UC1~ UC8中能否同时有 两个或两个以上为0?
优点:开关速度快。
第3章 模拟多路开关
3.1 概述
3.2 多路开关的工作原理及主要技 术指标
3.3 多路开关集成芯片
3.4 多路开关的电路特性
3.5 多路开关的配置
3.6 模拟多路开关的应用
数据采集与处理
1
第3章 模拟多路开关
3.1 概述
作用:切换模拟通道,将多路被测信号
分别传送到A/D转换器进行转换。
机 电气性:大电流、高压、低速切换。 电 机械性:有触点,寿命短,体积大,
13
3.3 多路开关集成芯片
2. 有译码器芯片
单向传输信号类型: ⑴AD7501(AD7503的EN反极性)8选1; (2)AD7502: 双4选2。
双向传输信号类型: (1)CD4501:8选1; (2)CD4502:双4选2。
数据采集与处理
14
UDD
(+1 5 V)
地
USS
(-1 5 V)
3.3 多路开关集成芯片
表3.2 AD7502真值表
A1
A0
EN
接通通道
0
0
1
0
1
1
1
0
1
1
1
1
×
×
0
1和5 2和6 2和7 4和8
无
数据采集与处理
18
3.3 多路开关集成芯片
UDD 16
(+15V)
INH C
6
9
BA
10
2. 多路开关的主要指标
➢RON :导通电阻;
➢RONVS:导通电阻温度漂移;
➢IC :开关接通电流;
➢IS :开关断开时的泄漏电流;
➢CS:开关断开时,开关对地电容;
➢COUT:开关断开时,输出端对地电容; ➢tON:选通信号有效至开关接通的延迟时间;
➢tOFF:选通信号无效至开关断开的延迟时间;