《气体的等温变化》ppt课件
合集下载
气体的等温变化课件

在化学反应动力学研究中,气体的等温变化原理被用于研 究化学反应速率与温度的关系,为化学反应机理和动力学 模型的研究提供重要依原理是研究热力学性质 和状态方程的重要基础,如范德华方程、维里方程等。
在日常生活中的应用
压力锅
温度调节
压力锅是利用气体的等温变化原理来 提高烹饪效率的厨房用具。通过加压 烹饪,可以缩短烹饪时间并保持食物 的营养和口感。
验结果的影响。
数据记录
准确记录实验数据,避 免遗漏或误差。
实验后处理
实验结束后,应关闭气 瓶阀门,清理实验装置
,确保实验室整洁。
04
等温变化的实验结果分析
实验数据记录与整理
数据记录
在实验过程中,需要详细记录气体的 温度、压力和体积等数据,确保数据 的准确性和完整性。
数据整理
将实验数据整理成表格或图表形式, 便于分析和比较不同条件下的实验结 果。
在日常生活中,温度调节设备如空调 、暖气等都利用了气体的等温变化原 理。通过调节温度和压力,实现室内 温度的调节和控制。
气球和飞艇
气球和飞艇利用气体的等温变化原理 来调节浮力和姿态。通过充气和放气 ,气球和飞艇可以实现升空、悬浮和 下降等动作。
感谢您的观看
THANKS
如化工、制药、食品加工 等领域,利用等温变化原 理进行气体分离、液化、 压缩等操作。
科学实验研究
在实验室中模拟等温变化 过程,研究气体性质和反 应机理。
02
理想气体定律
理想气体定律的表述
理想气体定律的表述
在等温、等压条件下,气体的体积与气体的物质的量成正比。
公式表示
V1/n1=V2/n2 或 p1V1=p2V2
理想气体定律的适用范围
适用范围
在日常生活中的应用
压力锅
温度调节
压力锅是利用气体的等温变化原理来 提高烹饪效率的厨房用具。通过加压 烹饪,可以缩短烹饪时间并保持食物 的营养和口感。
验结果的影响。
数据记录
准确记录实验数据,避 免遗漏或误差。
实验后处理
实验结束后,应关闭气 瓶阀门,清理实验装置
,确保实验室整洁。
04
等温变化的实验结果分析
实验数据记录与整理
数据记录
在实验过程中,需要详细记录气体的 温度、压力和体积等数据,确保数据 的准确性和完整性。
数据整理
将实验数据整理成表格或图表形式, 便于分析和比较不同条件下的实验结 果。
在日常生活中,温度调节设备如空调 、暖气等都利用了气体的等温变化原 理。通过调节温度和压力,实现室内 温度的调节和控制。
气球和飞艇
气球和飞艇利用气体的等温变化原理 来调节浮力和姿态。通过充气和放气 ,气球和飞艇可以实现升空、悬浮和 下降等动作。
感谢您的观看
THANKS
如化工、制药、食品加工 等领域,利用等温变化原 理进行气体分离、液化、 压缩等操作。
科学实验研究
在实验室中模拟等温变化 过程,研究气体性质和反 应机理。
02
理想气体定律
理想气体定律的表述
理想气体定律的表述
在等温、等压条件下,气体的体积与气体的物质的量成正比。
公式表示
V1/n1=V2/n2 或 p1V1=p2V2
理想气体定律的适用范围
适用范围
《1 气体的等温变化》PPT课件(部级优课)

温变化过程中压强与体积的定量关系
1、实验中的研究对象是什么? 一定质量的气体
2、如何控制气体的质量m、温度T保持不变?
封闭、缓慢移动活塞、不触碰容器壁
3、如何改变压强P、体积V? 4、如何测量压强P、体积V?
求压强
Ps
m M
P0s (M+m)g
横截面积S Ps =P0s +(M+m)g
P=P0 +(M+m)g/S-F/S
(三)玻意耳定律
1、内容:
一定质量的气体,在温度不变的情况下,它的压强跟体 积成反比
2、表达式: PV C P1V1 P2V2
3、图像:
P
P
V
4、适用范围:温度不太低,压强不太大 1/V
5.等温变化图象
①等温线是双曲线的一支。 ②温度越高,其等温线离原点越远.
同一气体,不同温度下等温线是不同的
小实验
能吹起气球吗?
?
同学们观察到什么现象?
热学性质 T
复习: 气体状态的描述 (气体的三个状态参量)
几何性质
V
力学性质 P
(一) 气体的等温变化
m不变 T不变
(二)实验探究
猜想: P、V的关系
水中的气泡在上升的过程中,气泡 不断变大,说明压强减小,体积增大。
定量研究: 设计一个实验研究一定质量的气体在等
求压强刻度值是体积吗? 怎么算体积? 一定需要测截面积吗?
实 验次
实验数据的处理
数1 2 3 4 5
压强(×105Pa)
体积(L)
p/105 Pa
3
2
1
0
0.2
0.4
0.6
0.8
1/V
1、实验中的研究对象是什么? 一定质量的气体
2、如何控制气体的质量m、温度T保持不变?
封闭、缓慢移动活塞、不触碰容器壁
3、如何改变压强P、体积V? 4、如何测量压强P、体积V?
求压强
Ps
m M
P0s (M+m)g
横截面积S Ps =P0s +(M+m)g
P=P0 +(M+m)g/S-F/S
(三)玻意耳定律
1、内容:
一定质量的气体,在温度不变的情况下,它的压强跟体 积成反比
2、表达式: PV C P1V1 P2V2
3、图像:
P
P
V
4、适用范围:温度不太低,压强不太大 1/V
5.等温变化图象
①等温线是双曲线的一支。 ②温度越高,其等温线离原点越远.
同一气体,不同温度下等温线是不同的
小实验
能吹起气球吗?
?
同学们观察到什么现象?
热学性质 T
复习: 气体状态的描述 (气体的三个状态参量)
几何性质
V
力学性质 P
(一) 气体的等温变化
m不变 T不变
(二)实验探究
猜想: P、V的关系
水中的气泡在上升的过程中,气泡 不断变大,说明压强减小,体积增大。
定量研究: 设计一个实验研究一定质量的气体在等
求压强刻度值是体积吗? 怎么算体积? 一定需要测截面积吗?
实 验次
实验数据的处理
数1 2 3 4 5
压强(×105Pa)
体积(L)
p/105 Pa
3
2
1
0
0.2
0.4
0.6
0.8
1/V
《气体的等温变化》PPT课件

精选ppt
3
隔离活塞:活塞受力情况为: PS+F-mg-P0S=0
计算的方法是: 对固体(活塞或汽缸)进行受力分析,列出平 衡方程,进而求解出封闭气体的压强.
精选ppt
4
2.如图所示,气缸由两个横截面不同的圆筒连接而成.活 塞A、B被轻质刚性细杆连接在一起,可无摩擦移动.A、 B的质量分别为mA,mB,横截面积分别为SA,SB.一定质 量的理想气体被封闭在两活塞之间,活塞外侧大气压强 p0。气缸水平放置达到平衡状态如图(a)所示, 将气缸 竖直放置达到平衡后如图(b)所示. 求两种情况下封闭 气体的压强.
的,B端开口向上。两管中水银面的高度差h=20cm。
外界大气压强为76cmHg。求A管中封闭气体的压强。
A
B
(提示:76cmHg=760mmHg=1.01×105Pa h 液体压强公式:P= ρgh)
计算的方法步骤是:
图8-2
①选取一个假想的液体薄片(其自重不计)为研究对
象(选最低液面);
②分析液片两侧受力情况,建立力的平衡方程,消去
第八章 气体
1、气体的等温变化
精选ppt
1
气体的状态参量
1、温度
热力学温度T ,单位:开 尔文 T = t + 273 K
宏观上表示物体的冷热程度,微观上表示物
体内部分子无规则运动的剧烈程度。
复 习 2、体积
体积 V 单位:有L、mL等
气体的体积是指气体分子所能达到的空间,等
于容器的容积。
3、压强
2、表达式: PVC P1V1P2V2
3、图像: P
P
精选ppt
V
1/1V5
三、玻意耳定律
点拨:(1)玻意耳定律是实验定律,由英国科学家 玻意耳和法国科学家马略特各自通过实验独立发现的。
《气体的等温变化》课件

《气体的等温变化》ppt课件
目录
• 气体的等温变化概述 • 理想气体模型 • 波义耳定律 • 等温变化的实验验证 • 等温变化的工程应用
01
气体的等温变化概述
等温变化的概念
等温变化
在等温过程中,气体的温度保持 不变,即气体与外界没有热量交
换。
等温变化的过程
气体在等温条件下经历的状态变化 。
等温变化的条件
理想气体模型的应用
在科学研究、工业生产和日常生活中,理想气体模型被广泛用于描述气体的性质和 行为。
在化学反应、燃烧过程、热力学等领域,理想气体模型为理论分析和实验研究提供 了基础。
通过理想气体模型,我们可以推导出许多重要的热力学公式和定律,如波义耳定律 、查理定律等。
03
波义耳定律
波义耳定律的表述
02
理想气体模型
理想气体模型的定义
01
理想气体模型是一种理论模型, 用于描述气体在一定条件下(如 温度和压力)的行为。
02
它忽略了气体分子间的相互作用 和分子自身的体积,只考虑气体 分子的平均动能。
可以忽略不计。
气体的温度保持恒定 ,即等温变化。
气体分子本身的体积 相比于容器容积可以 忽略不计。
在管道输送过程中,等温过程 可以减少气体温度的变化,保 证输送效率。
在气瓶压力控制过程中,等温 过程可以保证气瓶压力的稳定 性,提高气瓶的使用安全性。
THANKS
感谢观看
波义耳定律的应用实例
总结词
波义耳定律的应用实例
详细描述
波义耳定律在日常生活和工业生产中有着广泛的应用。例如,在气瓶压力不足时,可以通过减小体积来增大压力 ;在气瓶压力过高时,可以通过增大体积来减小压力。此外,波义耳定律还应用于气体压缩、气体输送、气体分 离等领域。
目录
• 气体的等温变化概述 • 理想气体模型 • 波义耳定律 • 等温变化的实验验证 • 等温变化的工程应用
01
气体的等温变化概述
等温变化的概念
等温变化
在等温过程中,气体的温度保持 不变,即气体与外界没有热量交
换。
等温变化的过程
气体在等温条件下经历的状态变化 。
等温变化的条件
理想气体模型的应用
在科学研究、工业生产和日常生活中,理想气体模型被广泛用于描述气体的性质和 行为。
在化学反应、燃烧过程、热力学等领域,理想气体模型为理论分析和实验研究提供 了基础。
通过理想气体模型,我们可以推导出许多重要的热力学公式和定律,如波义耳定律 、查理定律等。
03
波义耳定律
波义耳定律的表述
02
理想气体模型
理想气体模型的定义
01
理想气体模型是一种理论模型, 用于描述气体在一定条件下(如 温度和压力)的行为。
02
它忽略了气体分子间的相互作用 和分子自身的体积,只考虑气体 分子的平均动能。
可以忽略不计。
气体的温度保持恒定 ,即等温变化。
气体分子本身的体积 相比于容器容积可以 忽略不计。
在管道输送过程中,等温过程 可以减少气体温度的变化,保 证输送效率。
在气瓶压力控制过程中,等温 过程可以保证气瓶压力的稳定 性,提高气瓶的使用安全性。
THANKS
感谢观看
波义耳定律的应用实例
总结词
波义耳定律的应用实例
详细描述
波义耳定律在日常生活和工业生产中有着广泛的应用。例如,在气瓶压力不足时,可以通过减小体积来增大压力 ;在气瓶压力过高时,可以通过增大体积来减小压力。此外,波义耳定律还应用于气体压缩、气体输送、气体分 离等领域。
《气体的等温变化》课件

《气体的等温变化》PPT课件
本PPT课件是关于气体的等温变化的介绍。通过本课件,您将了解气体等温 变化的定义、特点、图形表示、实际应用、意义和影响等内容。让我们一起 探索气体的神奇世界吧!
气体的等温变化:定义
气体的等温变化是指在恒定温度下,气体的体积和压力之间的关系变化。
等温过程的特点
1
定义
等温过程是指温度保持不变的情况下,气体发生的体积和压力变化。
2
原理
等温过程遵循理想气体状态方程 PV = nRT,其中 P 为压力,V 为体积,n 为物 质的物质量,R 为气体常数,T 为温度。
3
物理公式
Boyle's Law: PV = k (k为常数)
Charle's Law: V/T = k(k为常数)
气体等温变化的图形表示
等温图
等温图是表示气体等温变化的 图形,横轴为体积,纵轴为压 力,曲线为等温线。
等温线
等温线是等温变化曲线上的每 个点,表示相同温度下对应的 压力和体积。
示意图
示意图通过简化的图形展示了 气体等变化的基本特点。气体等温变化的实际应用
工业过程
气体等温变化广泛应用于工业过程中的气体压缩、液化和输送。
自然现象
气体等温变化在自然界中的应用包括大气压力变化、温度变化和气候现象。
实验示例
通过气体等温变化的实验,可以观察气体在相同温度下体积和压力的关系。
气体等温变化的意义和影响
• 运算过程中的注意事项 • 熵变与气体等温变化之间的关系 • 对系统能量的转化和传递的影响
总结与展望
通过本PPT课件的学习,您已经了解了气体的等温变化的定义、特点、图形 表示、实际应用、意义和影响。希望您对气体的等温变化有了更深入的理解。 继续探索气体世界的奥秘吧!
本PPT课件是关于气体的等温变化的介绍。通过本课件,您将了解气体等温 变化的定义、特点、图形表示、实际应用、意义和影响等内容。让我们一起 探索气体的神奇世界吧!
气体的等温变化:定义
气体的等温变化是指在恒定温度下,气体的体积和压力之间的关系变化。
等温过程的特点
1
定义
等温过程是指温度保持不变的情况下,气体发生的体积和压力变化。
2
原理
等温过程遵循理想气体状态方程 PV = nRT,其中 P 为压力,V 为体积,n 为物 质的物质量,R 为气体常数,T 为温度。
3
物理公式
Boyle's Law: PV = k (k为常数)
Charle's Law: V/T = k(k为常数)
气体等温变化的图形表示
等温图
等温图是表示气体等温变化的 图形,横轴为体积,纵轴为压 力,曲线为等温线。
等温线
等温线是等温变化曲线上的每 个点,表示相同温度下对应的 压力和体积。
示意图
示意图通过简化的图形展示了 气体等变化的基本特点。气体等温变化的实际应用
工业过程
气体等温变化广泛应用于工业过程中的气体压缩、液化和输送。
自然现象
气体等温变化在自然界中的应用包括大气压力变化、温度变化和气候现象。
实验示例
通过气体等温变化的实验,可以观察气体在相同温度下体积和压力的关系。
气体等温变化的意义和影响
• 运算过程中的注意事项 • 熵变与气体等温变化之间的关系 • 对系统能量的转化和传递的影响
总结与展望
通过本PPT课件的学习,您已经了解了气体的等温变化的定义、特点、图形 表示、实际应用、意义和影响。希望您对气体的等温变化有了更深入的理解。 继续探索气体世界的奥秘吧!
气体的等温变化PPT教学课件

四.平衡状态
平衡态: 在不受外界影响(即系统与外界没有物质和能
量的交换)的条件下,无论初始状态如何,系统的 宏观性质在经充分长时间后不再发生变化的状态。 准静态过程:如果状态变化过程进行得非常缓慢,以 至过程中的每一个中间状态都近似于平衡态,这样的 过程称为“准静态过程 ”,又称“平衡过程 ”。
§3 理想气体物态方程
例:若汽缸内气体为系统,其它为外界
二.系统状态的描述 微观量:分子的质量、速度、动量、能量等。
在宏观上不能直接进行测量和观察。 宏观量: 温度、压强、体积等。
在宏观上能够直接进行测量和观察。 宏观量与微观量的关系: 宏观量与微观量的内在联系表现在大量分子杂乱无章 的热运动遵从一定的统计规律性上。在实验中,所测 量到的宏观量只是大量分子热运动的统计平均值。
3.1 气体的实验规律 一.气体定律
P1V1 P2V2 恒量 (质量不变) T1 T2
二.阿伏伽德罗定律 在相同的温度和压强下,1摩尔的任何气体所占据的体积 都相同.在标准状态下,即压强P0=1atm、温度T0=273.15K 时, 1摩尔的任何气体的体积均为 v0=22.41L/mol
N A 6.022 1023 mol 1
D
p=p0-h
探究方法: 控制变量法
控制变量法:在实验中研究三个物理量的关 系时,先保持一个量不变,研究另外两个 量的关系;然后再保持另一个量不变,研 究剩余两个量的关系,最后把研究结果结 合起来,这种方法叫做控制变量法
基础知识:
等温变化: 气体在温度不变的状态下,
发生的变化叫做等温变化。
猜想
讨论回答:
气体等温变化的p-v图像
p
t2 t1
0
V
例题:
气体的等温变化(第一课时)课件(共44张PPT)高二下学期物理人教版(2019)选择性必修第三册

专题 1 : 封闭气体压强的计算
一、压力与压强
F
1、压强的计算: p
P =ρgh h:为竖直方向的高度
S
2、压强的单位:
(1)国际单位:帕斯卡(Pa) 1pa=1N/m2
(2)常用单位:标准大气压(atm)
厘米汞柱(cmHg)、毫米汞柱(mmHg)
5
1atm 1.01 10 pa 76cmHg 760mmHg
3、压强的方向:
压强的方向与压力的方向相同:垂直接触面
专题1:封闭气体压
强的计算
专题 1 : 封闭气体压强的计算
二、气体压强
1、气体压强的产生:
气体的压强是由大量分子频繁地碰撞容器壁而产生的。
2、气体压强的特点:
由于气体的自重忽略不计,故密闭气体内部各部分压强
处处相等。但大气压强是由重力产生的,大气压随高度的
(2)p - 1 图像:一定质量的气体的p - 1 图像为过原点的_________,如图乙
V
所示。
V
探究与思考
1
p- 图像是一条过原点的直线,更能直观描述压强与体积的关系,
V
为什么直线在原点附近要画成虚线?
1
提示:在等温变化过程中,体积不可能无限大,故 和 p不可能为零,所以图线在
V
原点附近要画成虚线,表示过原点,但此处实际不存在。
状态参量
状态的这几个物理量叫作气体的_________。
2.等温变化:
一定质量的气体
温度不变
我们首先研究一种特殊的情况:_______________,在_________的条件下,其压
强与体积变化时的关系,我们把这种变化叫作气体的等温变化。
玻意耳定律
气体的等温变化精品PPT课件

h
h
h
②
③
一 气体的压强
h
h
h
④
⑤
⑥
一 气体的压强
⑦ m
S
⑧
m S
一 气体的压强
⑨
M
Sm
⑩ Sm
M
二 气体等温变化
实验探究 等温变化过程中压强与体积的关系 m S
结论:V减小,P增大
猜想: P、V 反比?
二 气体等温变化
二 气体等温变化
玻意耳定律
1、内容: 一定质量的气体,在温度不变的情况下,它的压强跟
例2. 某个容器的容积是10L,所装气体的压强是20×105Pa。 如果温度保持不变,把容器的开关打开以后,容器里剩下的气 体是原来的百分之几?设大气压是1.0×105Pa。
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
体积成反比
2、表达式: PV C P1V1 P2V2
二 气体等温变化
二.等温变化图象 等温线是双曲线的一支。
p
23
1
0
V
t3>t2>t1
二 气体等温变化
例1 一定质量气体的体积是20L时,压强为1×105Pa。当气体的 体积减小到16L时,压强为多大?设气体的温度保持不变。
二 气体等温变化
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
演讲人:XXXXXX 时 间:XX年XX月XX日
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
玻意耳定律
1、文字表述:一定质量某种气体,在温度 不变的情况下,压强p与体积V成反比。
2、公式表述:pV=常数 或p1V1=p2V2
11
玻意耳定律
1、文字表述:一定质量某种气体,在温度 不变的情况下,压强p与体积V成反比。
2、公式表述:pV=常数 或p1V1=p2V2 3、图像表述:
12
玻意耳定律
1、文字表述:一定质量某种气体,在温度 不变的情况下,压强p与体积V成反比。
2、公式表述:pV=常数
3、图像表述:
p
p
或p1V1=p2V2
·A
·A
0
1/V 0
V
13
说明 需要注意的问题 研究对象: 一定质量的气体 适用条件: 温度保持不变 适用范围:温度不太低,压强不太大
14
思考与讨论
同一气体,不同温度下等温线是不同的, 你能判断那条等温线是表示温度较高的情形 吗?你是根据什么理由作出判断的?
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。 ①液面下h深处的压强为p=ρgh。 ②液面与外界大气相接触。则液面下h处的压强为
p=p0+ρgh ③帕斯卡定律:加在密闭静止液体(或气体)上的
压强能够大小不变地由液体(或气体)向各个方向 传递(注意:适用于密闭静止的液体或气体)
2倍
设气体温度不变
19
例题.一个足球的体积是2.5L。用打气筒给 这个足球打气,每一次都把体积为125mL,压强 与大气压相同的气体打进球 内。如果在打气前 足球已经是球形并且里面的压强与大气压相同, 打了20次后,足球内部空气的压强是大气压的多 少倍?你在得出结论时考虑到了什么前提?实际 打气时能满足你的前提吗?
30
1.计算下面几幅图中封闭的气体的压强
31
1.计算下面几幅图中封闭的气体的压强
静止
2
3
4
h
1
32
1.计算下面几幅图中封闭的气体的压强
静止
2
3
4
h
1
已知大气压P0,水银柱长均为h
33
1.计算下面几幅图中封闭的气体的压强
①选取封闭气体的水银柱为研究对象
静止
2
3
4
h
1
已知大气压P0,水银柱长均为h
5
气体的等温变化
1.等温变化: 气体在温度不变的状态下,发生的
变化叫做等温变化。 2.实验研究
6
p/105 Pa 3
实2 验
1
0
1
2
3
4
7V
p/105 Pa 3
实2 验
1
0
0.2
0.4
0.6
0.8
18 /V
实验结论
在温度不变时,压强p和体积V成反比。
9
玻意耳定律
1、文字表述:一定质量某种气体,在温度 不变的情况下,压强p与体积V成反比。
23
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。 ①液面下h深处的压强为p=ρgh。 ②液面与外界大气相接触。则液面下h处方法(一)——参考液片法
25
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。
p
23
1
0
V
15
思考与讨论
同一气体,不同温度下等温线是不同的, 你能判断那条等温线是表示温度较高的情形 吗?你是根据什么理由作出判断的?
p
23 1 0
结论:t3>t2>t1 V
16
例题.一个足球的体积是2.5L。用打气筒给 这个足球打气,每一次都把体积为125mL,压强 与大气压相同的气体打进球 内。如果在打气前 足球已经是球形并且里面的压强与大气压相同, 打了20次后,足球内部空气的压强是大气压的多 少倍?你在得出结论时考虑到了什么前提?实际 打气时能满足你的前提吗?
29
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。 ①液面下h深处的压强为p=ρgh。 ②液面与外界大气相接触。则液面下h处的压强为
p=p0+ρgh ③帕斯卡定律:加在密闭静止液体(或气体)上的
压强能够大小不变地由液体(或气体)向各个方向 传递(注意:适用于密闭静止的液体或气体) ④连通器原理:在连通器中,同一种液体(中间液体 不间断)的同一水平面上的压强是相等的。
2倍
18
例题.一个足球的体积是2.5L。用打气筒给 这个足球打气,每一次都把体积为125mL,压强 与大气压相同的气体打进球 内。如果在打气前 足球已经是球形并且里面的压强与大气压相同, 打了20次后,足球内部空气的压强是大气压的多 少倍?你在得出结论时考虑到了什么前提?实际 打气时能满足你的前提吗?
☆ 控制变量的方法
在物理学中,当需要研究三个物理量之 间的关系时,往往采用“保持一个量不变, 研究其它两个量之间的关系,然后综合起来 得出所要研究的几个量之间的关系”,
4
引言
今天,我们便来研究气体的三个状态 参量T、V、p之间的关系。
首先,我们来研究:当温度( T ) 保持不变时,体积( V )和压强( p ) 之间的关系。
17
例题.一个足球的体积是2.5L。用打气筒给 这个足球打气,每一次都把体积为125mL,压强 与大气压相同的气体打进球 内。如果在打气前 足球已经是球形并且里面的压强与大气压相同, 打了20次后,足球内部空气的压强是大气压的多 少倍?你在得出结论时考虑到了什么前提?实际 打气时能满足你的前提吗?
8.1 .1气体的等温变化
1
复习
1.温度 2.体积 3.压强
气体的状态参量
热力学温度T :开尔文 T = t + 273 K
体积 V 单位:有L、mL等 压强 p 单位:Pa(帕斯卡)
2
问题
一定质量的气体,它的温度、 体积和压强三个量之间变化是相互对 应的。我们如何确定三个量之间的关 系呢?
3
方法研究
2倍
设气体温度不变
实际打气时不能满足这一前提,温度会升高
20
气体压强的计算方法(一)——参考液片法
21
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。
22
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。 ①液面下h深处的压强为p=ρgh。
26
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。 ①液面下h深处的压强为p=ρgh。
27
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。 ①液面下h深处的压强为p=ρgh。 ②液面与外界大气相接触。则液面下h处的压强为
p=p0+ρgh
28
玻意耳定律
1、文字表述:一定质量某种气体,在温度 不变的情况下,压强p与体积V成反比。
2、公式表述:pV=常数 或p1V1=p2V2
11
玻意耳定律
1、文字表述:一定质量某种气体,在温度 不变的情况下,压强p与体积V成反比。
2、公式表述:pV=常数 或p1V1=p2V2 3、图像表述:
12
玻意耳定律
1、文字表述:一定质量某种气体,在温度 不变的情况下,压强p与体积V成反比。
2、公式表述:pV=常数
3、图像表述:
p
p
或p1V1=p2V2
·A
·A
0
1/V 0
V
13
说明 需要注意的问题 研究对象: 一定质量的气体 适用条件: 温度保持不变 适用范围:温度不太低,压强不太大
14
思考与讨论
同一气体,不同温度下等温线是不同的, 你能判断那条等温线是表示温度较高的情形 吗?你是根据什么理由作出判断的?
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。 ①液面下h深处的压强为p=ρgh。 ②液面与外界大气相接触。则液面下h处的压强为
p=p0+ρgh ③帕斯卡定律:加在密闭静止液体(或气体)上的
压强能够大小不变地由液体(或气体)向各个方向 传递(注意:适用于密闭静止的液体或气体)
2倍
设气体温度不变
19
例题.一个足球的体积是2.5L。用打气筒给 这个足球打气,每一次都把体积为125mL,压强 与大气压相同的气体打进球 内。如果在打气前 足球已经是球形并且里面的压强与大气压相同, 打了20次后,足球内部空气的压强是大气压的多 少倍?你在得出结论时考虑到了什么前提?实际 打气时能满足你的前提吗?
30
1.计算下面几幅图中封闭的气体的压强
31
1.计算下面几幅图中封闭的气体的压强
静止
2
3
4
h
1
32
1.计算下面几幅图中封闭的气体的压强
静止
2
3
4
h
1
已知大气压P0,水银柱长均为h
33
1.计算下面几幅图中封闭的气体的压强
①选取封闭气体的水银柱为研究对象
静止
2
3
4
h
1
已知大气压P0,水银柱长均为h
5
气体的等温变化
1.等温变化: 气体在温度不变的状态下,发生的
变化叫做等温变化。 2.实验研究
6
p/105 Pa 3
实2 验
1
0
1
2
3
4
7V
p/105 Pa 3
实2 验
1
0
0.2
0.4
0.6
0.8
18 /V
实验结论
在温度不变时,压强p和体积V成反比。
9
玻意耳定律
1、文字表述:一定质量某种气体,在温度 不变的情况下,压强p与体积V成反比。
23
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。 ①液面下h深处的压强为p=ρgh。 ②液面与外界大气相接触。则液面下h处方法(一)——参考液片法
25
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。
p
23
1
0
V
15
思考与讨论
同一气体,不同温度下等温线是不同的, 你能判断那条等温线是表示温度较高的情形 吗?你是根据什么理由作出判断的?
p
23 1 0
结论:t3>t2>t1 V
16
例题.一个足球的体积是2.5L。用打气筒给 这个足球打气,每一次都把体积为125mL,压强 与大气压相同的气体打进球 内。如果在打气前 足球已经是球形并且里面的压强与大气压相同, 打了20次后,足球内部空气的压强是大气压的多 少倍?你在得出结论时考虑到了什么前提?实际 打气时能满足你的前提吗?
29
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。 ①液面下h深处的压强为p=ρgh。 ②液面与外界大气相接触。则液面下h处的压强为
p=p0+ρgh ③帕斯卡定律:加在密闭静止液体(或气体)上的
压强能够大小不变地由液体(或气体)向各个方向 传递(注意:适用于密闭静止的液体或气体) ④连通器原理:在连通器中,同一种液体(中间液体 不间断)的同一水平面上的压强是相等的。
2倍
18
例题.一个足球的体积是2.5L。用打气筒给 这个足球打气,每一次都把体积为125mL,压强 与大气压相同的气体打进球 内。如果在打气前 足球已经是球形并且里面的压强与大气压相同, 打了20次后,足球内部空气的压强是大气压的多 少倍?你在得出结论时考虑到了什么前提?实际 打气时能满足你的前提吗?
☆ 控制变量的方法
在物理学中,当需要研究三个物理量之 间的关系时,往往采用“保持一个量不变, 研究其它两个量之间的关系,然后综合起来 得出所要研究的几个量之间的关系”,
4
引言
今天,我们便来研究气体的三个状态 参量T、V、p之间的关系。
首先,我们来研究:当温度( T ) 保持不变时,体积( V )和压强( p ) 之间的关系。
17
例题.一个足球的体积是2.5L。用打气筒给 这个足球打气,每一次都把体积为125mL,压强 与大气压相同的气体打进球 内。如果在打气前 足球已经是球形并且里面的压强与大气压相同, 打了20次后,足球内部空气的压强是大气压的多 少倍?你在得出结论时考虑到了什么前提?实际 打气时能满足你的前提吗?
8.1 .1气体的等温变化
1
复习
1.温度 2.体积 3.压强
气体的状态参量
热力学温度T :开尔文 T = t + 273 K
体积 V 单位:有L、mL等 压强 p 单位:Pa(帕斯卡)
2
问题
一定质量的气体,它的温度、 体积和压强三个量之间变化是相互对 应的。我们如何确定三个量之间的关 系呢?
3
方法研究
2倍
设气体温度不变
实际打气时不能满足这一前提,温度会升高
20
气体压强的计算方法(一)——参考液片法
21
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。
22
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。 ①液面下h深处的压强为p=ρgh。
26
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。 ①液面下h深处的压强为p=ρgh。
27
气体压强的计算方法(一)——参考液片法
1.计算的主要依据是液体静止力学知识。 ①液面下h深处的压强为p=ρgh。 ②液面与外界大气相接触。则液面下h处的压强为
p=p0+ρgh
28