化工热力学(第三版)陈钟秀课后习题答案
化工热力学(第三版)陈钟秀课后习题问题详解
第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程2 2.52 2.560.5268.314190.60.427480.42748 3.2224.610c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT a P V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.6 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
化工热力学第三版(完全版)课后习题答案
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,U =()1121T PPR C igP ⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig P C R igPP P R V P R C ,H =1121T P P C igP C R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛。
化工热力学第三版(完全版)课后习题答案
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对) 3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
) 二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PPR C igP ⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
化工热力学陈钟秀第三版14章答案(供参考)
2-1.使用下述方法计算1kmol 甲烷贮存在体积为、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V = m 3/1kmol= cm 3/mol查附录二得甲烷的临界参数:T c = P c = V c =99 cm 3/mol ω= (1) 理想气体方程P=RT/V=××10-6=(2) R-K 方程2 2.52 2.560.5268.314190.60.427480.42748 3.2224.610c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT a P V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=(3) 普遍化关系式323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0= 又Tr=,查附录三得:Z 0= Z 1=01Z Z Z ω=+=+×=此时,P=P c P r =×=同理,取Z 1= 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
∴ P=2-2.分别使用理想气体方程和Pitzer 普遍化关系式计算510K 、正丁烷的摩尔体积。
(完整版)化工热力学(第三版)答案陈钟秀
2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程2 2.52 2.560.5268.314190.60.427480.42748 3.2224.610c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT a P V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
化工热力学答案(第三版).
化工热力学课后答案(第三版)陈钟秀编著 2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008(1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程 ∴()0.5RT aP V b T V V b =--+ =19.04MPa (3) 普遍化关系式323.15190.61.695r c T T T === 124.6991.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴ c r PVZ P RT=迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.4623 01Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
∴ P=19.22MPa2-2.分别使用理想气体方程和Pitzer 普遍化关系式计算510K 、2.5MPa 正丁烷的摩尔体积。
已知实验值为1480.7cm 3/mol 。
解:查附录二得正丁烷的临界参数:T c =425.2K P c =3.800MPa V c =99 cm 3/mol ω=0.193(1)理想气体方程V=RT/P=8.314×510/2.5×106=1.696×10-3m 3/mol误差:1.696 1.4807100%14.54%1.4807-⨯=(2)Pitzer 普遍化关系式对比参数:510425.2 1.199r c T T T === 2.53.80.6579r c P P P ===—普维法∴ 01.61.60.4220.4220.0830.0830.23261.199rB T =-=-=-01cc BP B B RT ω=+=-0.2326+0.193×0.05874=-0.2213 11c r c rBP BP PZ RT RT T =+=+=1-0.2213×0.6579/1.199=0.8786 ∴ PV=ZRT→V= ZRT/P=0.8786×8.314×510/2.5×106=1.49×10-3 m 3/mol 误差:1.49 1.4807100%0.63%1.4807-⨯=2-3.生产半水煤气时,煤气发生炉在吹风阶段的某种情况下,76%(摩尔分数)的碳生成二氧化碳,其余的生成一氧化碳。
化工热力学第三版(完全版)课后习题答案(I).doc
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
化工热力学第三版课后习题答案(1)
化工热力学课后答案第1章绪言—、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相, 。
在尚未达到平衡时,, 两个相都是均相敞开体系;达到平衡时,则,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程, 其体积总是变化着的, 但是初态和终态的体积相T 2等,初态和终态的温度分别为 T [和丁2,则该过程的 UC V dT ;同样,对于初、终态T iT 2压力相等的过程有 HC p dT 。
(对。
状态函数的变化仅决定于初、 终态与途径无关。
)T 1二、填空题状态函数的特点是: ________ 。
封闭体系中,温度是 T 的1mol 理想气体从(P , V )等温可逆地膨胀到(P ,V f ),则所做的 功为 W revRTl nV i V f (以 V 表示)或 W rev RT l nP f P (以 P 表示)。
C PP T1T 1。
1.3. 封闭体系中的imol 理想气体(已知C pg ),按下列途径由T 、P i 和V 可逆地变化至P 2,则A 等容过程的 W = _,Q= Cp 1RP 2 P 2P i/C Pg RP 1 1 T 1 , H=B等温过程的RTln l,^RTln t,U= 0 ,H=_0 ___ 。
解:EOSW revV 2 b RTl n丄 V 1 bRTln 纟V 1999In 2 1.0007222. 对于c P为常数的理想气体经过一绝热可逆过程,状态变化符合下列方程解: 3. 解: T 1 P 1(1),其式又是如何?以上a 、b 、 理想气体的绝热可逆过程,C ;gRdTT 22a Rb TT 1aln 旦 b T 2T1RT dV V cT dTCigC !,试问,对于C P a bTcT 2的理想气体,上述关系c 为常数。
化工热力学第三版课后习题答案
《化工热力学》(第三版)习题参考答案58页第2章2-1 求温度673.15K 、压力4.053MPa 的甲烷气体摩尔体积。
解:(a )理想气体方程133610381.110053.415.673314.8--⋅⋅⋅=⋅⋅==⇒=molm p RT V RT pV(b )用R-K 方程① 查表求c T 、c p ;② 计算a 、b ;③ 利用迭代法计算V 。
()()()133113301103896.110381.1--+--+⋅⋅⋅=⋅⋅⋅⋅⋅⋅=+⋅⋅--+=+⋅⋅--=molm V molm V b V V T b V a b p RT V b V V T a b V RT p i i i i i(c )用PR 方程步骤同(b ),计算结果:1331103893.1--+⋅⋅⋅=molm V i 。
(d )利用维里截断式2.416.101172.0139.0422.0083.0111rrrr rr rr cc T B T BT p B T p B T p RT Bp RT Bp RTpV Z -=-=⋅⋅+⋅+=⋅+=+==ω查表可计算r p 、r T 、0B 、1B 和Z 由13310391.1--⋅⋅⋅==⇒=molm pZRT V RTpV Z2-2 V=0.5 m 3,耐压2.7 MPa 容器。
规定丙烷在T=400.15K 时,p<1.35MPa 。
求可充丙烷多少千克?解:(a )用理想气体方程 136948.815.400314.85.01035.10441.0--⋅⋅=⋅⋅⋅⋅==⇒=⇒=molm RTMpV m RT Mm pV nRT pV (b )用R-K 方程① 查表求c T 、c p ;② 计算a 、b ;③ 利用迭代法计算V 。
()()()13311330110241.210464.2--+--+⋅⋅⋅=⋅⋅⋅⋅⋅⋅=+⋅⋅--+=+⋅⋅--=molm V molm V b V V T b V a b pRT V b V V T a b V RT p i i i i i则可充丙烷质量计算如下:kg M V V M n m i ⋅=⋅⋅=⋅=⋅=-+838.910241.25.00441.031(c )利用维里截断式:2.416.101172.0139.0422.0083.0111rrrr rr rr cc m T B T BT p B T p B T p RT Bp RTBp RTpV Z -=-=⋅⋅+⋅+=⋅+=+==ω查表可计算r p 、r T 、0B 、1B 和Z 由133610257.21035.115.400314.8916.0--⋅⋅⋅=⋅⋅⋅=⇒=molm V RTpV Z m m则可充丙烷质量计算如下:kg M V V M n m i ⋅=⋅⋅=⋅=⋅=-+77.910257.25.00441.0312-4 V=1.213 m 3,乙醇45.40 kg ,T=500.15K ,求压力。
化工热力学(第三版)陈钟秀课后习题答案
第二章2-1。
使用下述方法计算1kmol 甲烷贮存在体积为0。
1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R —K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0。
1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190。
6K P c =4.600MPa V c =99 cm 3/mol ω=0。
008 (1) 理想气体方程P=RT/V=8。
314×323。
15/124。
6×10-6=21.56MPa(2) R —K 方程2 2.52 2.560.5268.314190.60.427480.42748 3.2224.610c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT aP V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0。
8938+0.008×0。
4623=0.8975此时,P=P c P r =4.6×4。
化工热力学第三版(完全版)课后习题问题详解
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对) 3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
) 二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PPR C igP ⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
化工热力学第三版答案陈钟秀
2-1.使用下述方法计算1kmol 甲烷贮存在体积为、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V = m 3/1kmol= cm 3/mol查附录二得甲烷的临界参数:T c = P c = V c =99 cm 3/mol ω=(1) 理想气体方程P=RT/V=××10-6=(2) R-K方程2 2.52 2.560.5268.314190.60.427480.42748 3.2224.610c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT a P V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=(3) 普遍化关系式323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴ c r PVZ P RT=654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0= 又Tr=,查附录三得:Z 0= Z 1=01Z Z Z ω=+=+×=此时,P=P c P r =×=同理,取Z 1= 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
∴ P=2-2.分别使用理想气体方程和Pitzer 普遍化关系式计算510K 、正丁烷的摩尔体积。
化工热力学(第三版)陈钟秀课后习题答案-精选.pdf
7.378 10 6
B20
0.422
0.083
T 1.6 r2
0.083
0.422
1.6
303 304.2
0.3417
B21
0.139
0.172 T 4.2
r2
0.139
0.172
4.2
303 304.2
0.03588
B22
RTc 2 Pc 2
B20
2 B21
8.314 304.2 7.376 106 0.3417 0.225 0.03588
V c=99 cm3/mol ω =0.008
(1) 理想气体方程 P=RT/V=8.314 ×323.15/124.6 1×0-6=21.56MPa
(2) R-K 方程
a 0. 4 2 7 4R82Tc 2 . 5 Pc
0. 4 287. 34 18 42 4. 6
1 9 0. 26. 5 160
RT
RTc Tr
∴ PV=ZR→T V= ZRT/P=0.8786×8.314 ×510/2.5 ×106=1.49 ×10-3 m3/mol
1.49
误差:
1.4807
100%
0.63%
1.4807
2-3.生产半水煤气时,煤气发生炉在吹风阶段的某种情况下,
76%(摩尔分数)的碳生成二氧化碳,其余的
生成一氧化碳。试计算: ( 1)含碳量为 81.38%的 100kg 的焦炭能生成 1.1013MPa、 303K 的吹风气若干立
RT
8.314 323.15
迭代:令 Z0= 1→ Pr0=4.687
又 Tr=1.695 ,查附录三得:
0
Z =0.8938
化工热力学答案陈钟秀
2-1、使用下述方法计算1kmol 甲烷贮存在体积为0、1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0、1246 m 3/1kmol=124、6 cm 3/mol查附录二得甲烷的临界参数:T c =190、6K P c =4、600MPa V c =99 cm 3/mol ω=0、008 (1) 理想气体方程P=RT/V=8、314×323、15/124、6×10-6=21、56MPa(2) R-K 方程2 2.52 2.560.5268.314190.60.427480.42748 3.2224.610c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT a P V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19、04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0=4、687 又Tr=1、695,查附录三得:Z 0=0、8938 Z 1=0、462301Z Z Z ω=+=0、8938+0、008×0、4623=0、8975此时,P=P c P r =4、6×4、687=21、56MPa同理,取Z 1=0、8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 与P 的值。
化工热力学第三版(完全版)课后习题答案
(a)由软件计算可知
(b)
3.试由饱和液体水的性质估算(a)100℃,2.5MPa和(b)100℃,20MPa下水的焓和熵,已知100℃下水的有关性质如下
MPa, Jg-1, J g-1K-1, cm3g-1,
cm3g-1K-1
化工热力学课后答案
第1章 绪言
一、是否题
1.封闭体系的体积为一常数。(错)
2.封闭体系中有两个相 。在尚未达到平衡时, 两个相都是均相敞开体系;达到平衡时,则 两个相都等价于均相封闭体系。(对)
3.理想气体的焓和热容仅是温度的函数。(对)
4.理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。)
2.对于混合物体系,偏离函数中参考态是与研究态同温.同组成的理想气体混合物。
四、计算题
1.试计算液态水从2.5MPa和20℃变化到30MPa和300℃的焓变化和熵变化,既可查水的性质表,也可以用状态方程计算。
解:用PR方程计算。查附录A-1得水的临界参数Tc=647.30K;Pc=22.064MPa;ω=0.344
A.
B.0
C.
D.
3. 等于(D。因为 )
A.
B.
C.
D.
4.吉氏函数变化与P-V-T关系为 ,则 的状态应该为(C。因为 )
A.T和P下纯理想气体
B.T和零压的纯理想气体
C.T和单位压力的纯理想气体
三、填空题
1.状态方程 的偏离焓和偏离熵分别是 和 ;若要计算 和 还需要什么性质? ;其计算式分别是 和 。
四、计算题
1.某一服从P(V-b)=RT状态方程(b是正常数)的气体,在从1000b等温可逆膨胀至2000b,所做的功应是理想气体经过相同过程所做功的多少倍?
化工热力学第三版(完全版)课后习题答案
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
化工热力学(第三版)陈钟秀课后习题问题详解
第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程22.522.560.5268.314190.60.427480.42748 3.2224.610c cR T a Pa m K mol P -⨯===⋅⋅⋅⨯53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT a P V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.699 1.259r c VV V ===<2 ∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =654.61012.46100.21338.314323.15c r r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程2 2.52 2.560.5268.314190.60.427480.42748 3.2224.610c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT a P V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
∴ P=19.22MPa2-2.分别使用理想气体方程和Pitzer 普遍化关系式计算510K 、2.5MPa 正丁烷的摩尔体积。
已知实验值为1480.7cm 3/mol 。
解:查附录二得正丁烷的临界参数:T c =425.2K P c =3.800MPa V c =99 cm 3/mol ω=0.193(1)理想气体方程V=RT/P=8.314×510/2.5×106=1.696×10-3m 3/mol误差:1.696 1.4807100%14.54%1.4807-⨯=(2)Pitzer 普遍化关系式 对比参数:510425.2 1.199rc T T T === 2.53.80.6579r c P P P ===—普维法∴0 1.6 1.60.4220.4220.0830.0830.23261.199r B T =-=-=- 1 4.2 4.20.1720.1720.1390.1390.058741.199r B T =-=-=- 01cc BP B B RT ω=+=-0.2326+0.193×0.05874=-0.2213 11c r c rBP BP PZ RT RT T =+=+=1-0.2213×0.6579/1.199=0.8786∴ PV=ZRT→V= ZRT/P=0.8786×8.314×510/2.5×106=1.49×10-3 m 3/mol 误差:1.49 1.4807100%0.63%1.4807-⨯=2-3.生产半水煤气时,煤气发生炉在吹风阶段的某种情况下,76%(摩尔分数)的碳生成二氧化碳,其余的生成一氧化碳。
试计算:(1)含碳量为81.38%的100kg 的焦炭能生成1.1013MPa 、303K 的吹风气若干立方米?(2)所得吹风气的组成和各气体分压。
解:查附录二得混合气中各组分的临界参数:一氧化碳(1):T c =132.9K P c =3.496MPa V c =93.1 cm 3/mol ω=0.049 Z c =0.295 二氧化碳(2):T c =304.2K P c =7.376MPa V c =94.0 cm 3/mol ω=0.225 Z c =0.274 又y 1=0.24,y 2=0.76 ∴(1)由Kay 规则计算得:0.24132.90.76304.2263.1cm i ci iT y T K ==⨯+⨯=∑0.24 3.4960.767.376 6.445cm i ci iP y P MPa ==⨯+⨯=∑303263.1 1.15rm cm T T T === 0.1011.4450.0157rm cm P P P ===—普维法利用真实气体混合物的第二维里系数法进行计算()01 1.61.610.4220.4220.0830.0830.029********.9r B T =-=-=- ()11 4.24.210.1720.1720.1390.1390.1336303132.9r B T =-=-=()()016111111618.314132.90.029890.0490.13367.378103.49610c c RT B B B P ω-⨯=+=-+⨯=-⨯⨯ ()02 1.61.620.4220.4220.0830.0830.3417303304.2r B T =-=-=- ()12 4.24.220.1720.1720.1390.1390.0358*******.2r B T =-=-=- ()()016222222628.314304.20.34170.2250.03588119.93107.37610c c RT B B B P ω-⨯=+=--⨯=-⨯⨯ 又()()0.50.5132.9304.2201.068cijci cj T T T K ==⨯=331313131331293.194.093.55/22c c cij V V V cm mol ⎛⎫⎛⎫++=== ⎪ ⎪⎝⎭⎝⎭120.2950.2740.284522c c cij Z Z Z ++===120.2950.2250.13722cij ωωω++===()6/0.28458.314201.068/93.5510 5.0838cij cij cij cij P Z RT V MPa -==⨯⨯⨯=∴303201.068 1.507rij cij T T === 0.10135.08380.0199rij cij P P P ===12 1.6 1.6120.4220.4220.0830.0830.1361.507r B T =-=-=- 112 4.2 4.2120.1720.1720.1390.1390.10831.507r B T =-=-= ∴()()01612121212126128.314201.0680.1360.1370.108339.84105.083810c c RT B B B P ω-⨯=+=-+⨯=-⨯⨯ 2211112122222m B y B y y B y B =++()()()26626630.247.3781020.240.7639.84100.76119.931084.2710/cm mol----=⨯-⨯+⨯⨯⨯-⨯+⨯-⨯=-⨯∴1m mB P PVZ RT RT=+=→V=0.02486m 3/mol∴V 总=n V=100×103×81.38%/12×0.02486=168.58m 3 (2)1110.2950.240.10130.0250.2845c m Z P y PMPa Z ==⨯=2220.2740.760.10130.0740.2845c m Z P y PMPa Z ==⨯= 2-4.将压力为2.03MPa 、温度为477K 条件下的2.83m 3NH 3压缩到0.142 m 3,若压缩后温度448.6K ,则其压力为若干?分别用下述方法计算:(1)Vander Waals 方程;(2)Redlich-Kwang 方程;(3)Peng-Robinson 方程;(4)普遍化关系式。
解:查附录二得NH 3的临界参数:T c =405.6K P c =11.28MPa V c =72.5 cm 3/mol ω=0.250 (1) 求取气体的摩尔体积对于状态Ⅰ:P=2.03 MPa 、T=447K 、V=2.83 m 3477405.6 1.176r c T T T === 2.0311.280.18r c P P P ===—普维法∴01.6 1.60.4220.4220.0830.0830.24261.176r BT =-=-=- 1 4.2 4.20.1720.1720.1390.1390.051941.176r B T =-=-= 010.24260.250.051940.2296cc BP B B RT ω=+=-+⨯=- 11c r c rBP PV BP PZ RT RT RT T =+==+→V=1.885×10-3m 3/mol∴n=2.83m 3/1.885×10-3m 3/mol=1501mol对于状态Ⅱ:摩尔体积V=0.142 m 3/1501mol=9.458×10-5m 3/mol T=448.6K (2) Vander Waals 方程222262627278.314405.60.4253646411.2810c c R T a Pa m mol P -⨯⨯===⋅⋅⨯⨯ 53168.314405.6 3.737108811.2810c c RT b m mol P --⨯===⨯⋅⨯⨯ ()()22558.314448.60.425317.659.458 3.73710 3.73710RT a P MPa V b V --⨯=-=-=--⨯⨯ (3) Redlich-Kwang 方程2 2.52 2.560.5268.314405.60.427480.427488.67911.2810c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314405.60.086640.08664 2.591011.2810c c RT b m mol P --⨯===⨯⋅⨯ ()()()0.550.5558.314448.68.67918.349.458 2.5910448.69.458109.458 2.5910RT a P MPa V b T V V b ---⨯=-=-=-+-⨯⨯⨯+⨯(4) Peng-Robinson 方程 ∵448.6405.6 1.106r c T T T ===∴220.3746 1.542260.269920.3746 1.542260.250.269920.250.7433kωω=+-=+⨯-⨯=()()()220.50.51110.74331 1.1060.9247r T k T α⎡⎤⎡⎤=+-=+⨯-=⎣⎦⎣⎦()()()22226268.314405.60.457240.457240.92470.426211.2810c c c R T a T a T T Pa m mol P αα-⨯===⨯⨯=⋅⋅⨯ 53168.314405.60.077800.07780 2.3261011.2810c c RT b m mol P --⨯==⨯=⨯⋅⨯ ∴()()()a T RTP V b V V b b V b =--++- ()()()510108.314448.60.42629.458 2.326109.4589.458 2.32610 2.3269.458 2.32610---⨯=--⨯⨯+⨯+⨯+⨯19.00MPa =(5) 普遍化关系式 ∵559.458107.2510 1.305r c V V V --==⨯⨯=<2 适用普压法,迭代进行计算,方法同1-1(3)2-6.试计算含有30%(摩尔分数)氮气(1)和70%(摩尔分数)正丁烷(2)气体混合物7g,在188℃、6.888MPa 条件下的体积。